Machine learning reduced workload with minimal risk of missing studies: development and evaluation of a randomized controlled trial classifier for Cochrane Reviews

This study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews. A machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the “Cochrane RCT Classifier”),...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of clinical epidemiology Ročník 133; s. 140 - 151
Hlavní autori: Thomas, James, McDonald, Steve, Noel-Storr, Anna, Shemilt, Ian, Elliott, Julian, Mavergames, Chris, Marshall, Iain J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.05.2021
Elsevier Limited
Elsevier
Predmet:
ISSN:0895-4356, 1878-5921, 1878-5921
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews. A machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the “Cochrane RCT Classifier”), with the algorithm trained using a data set of title–abstract records from Embase, manually labeled by the Cochrane Crowd. The classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99% recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts of sufficient length to allow machine classification. The Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99 (95% confidence interval 0.98–0.99) and precision of 0.08 (95% confidence interval 0.06–0.12) in this data set. The final, calibrated RCT classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were more likely to be missed than those more recently published. The Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed within Cochrane to help improve the efficiency of the study identification processes that support systematic review production. •Systematic review processes need to become more efficient.•Machine learning is sufficiently mature for real-world use.•A machine learning classifier was built using data from Cochrane Crowd.•It was calibrated to achieve very high recall.•It is now live and in use in Cochrane review production systems.
AbstractList This study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews. A machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the “Cochrane RCT Classifier”), with the algorithm trained using a data set of title–abstract records from Embase, manually labeled by the Cochrane Crowd. The classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99% recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts of sufficient length to allow machine classification. The Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99 (95% confidence interval 0.98–0.99) and precision of 0.08 (95% confidence interval 0.06–0.12) in this data set. The final, calibrated RCT classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were more likely to be missed than those more recently published. The Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed within Cochrane to help improve the efficiency of the study identification processes that support systematic review production. •Systematic review processes need to become more efficient.•Machine learning is sufficiently mature for real-world use.•A machine learning classifier was built using data from Cochrane Crowd.•It was calibrated to achieve very high recall.•It is now live and in use in Cochrane review production systems.
• Systematic review processes need to become more efficient. • Machine learning is sufficiently mature for real-world use. • A machine learning classifier was built using data from Cochrane Crowd. • It was calibrated to achieve very high recall. • It is now live and in use in Cochrane review production systems.
This study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews. A machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the "Cochrane RCT Classifier"), with the algorithm trained using a data set of title-abstract records from Embase, manually labeled by the Cochrane Crowd. The classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99% recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts of sufficient length to allow machine classification. The Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99 (95% confidence interval 0.98-0.99) and precision of 0.08 (95% confidence interval 0.06-0.12) in this data set. The final, calibrated RCT classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were more likely to be missed than those more recently published. The Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed within Cochrane to help improve the efficiency of the study identification processes that support systematic review production.
This study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews.OBJECTIVESThis study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews.A machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the "Cochrane RCT Classifier"), with the algorithm trained using a data set of title-abstract records from Embase, manually labeled by the Cochrane Crowd. The classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99% recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts of sufficient length to allow machine classification.METHODSA machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the "Cochrane RCT Classifier"), with the algorithm trained using a data set of title-abstract records from Embase, manually labeled by the Cochrane Crowd. The classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99% recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts of sufficient length to allow machine classification.The Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99 (95% confidence interval 0.98-0.99) and precision of 0.08 (95% confidence interval 0.06-0.12) in this data set. The final, calibrated RCT classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were more likely to be missed than those more recently published.RESULTSThe Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99 (95% confidence interval 0.98-0.99) and precision of 0.08 (95% confidence interval 0.06-0.12) in this data set. The final, calibrated RCT classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were more likely to be missed than those more recently published.The Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed within Cochrane to help improve the efficiency of the study identification processes that support systematic review production.CONCLUSIONSThe Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed within Cochrane to help improve the efficiency of the study identification processes that support systematic review production.
ObjectivesThis study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews.MethodsA machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the “Cochrane RCT Classifier”), with the algorithm trained using a data set of title–abstract records from Embase, manually labeled by the Cochrane Crowd. The classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99% recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts of sufficient length to allow machine classification.ResultsThe Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99 (95% confidence interval 0.98–0.99) and precision of 0.08 (95% confidence interval 0.06–0.12) in this data set. The final, calibrated RCT classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were more likely to be missed than those more recently published.ConclusionsThe Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed within Cochrane to help improve the efficiency of the study identification processes that support systematic review production.
AbstractObjectivesThis study developed, calibrated, and evaluated of a machine learning classifier designed to reduce study identification workload in Cochrane for producing systematic reviews. MethodsA machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the “Cochrane RCT Classifier”), with the algorithm trained using a data set of title–abstract records from Embase, manually labeled by the Cochrane Crowd. The classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99% recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts of sufficient length to allow machine classification. ResultsThe Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99 (95% confidence interval 0.98–0.99) and precision of 0.08 (95% confidence interval 0.06–0.12) in this data set. The final, calibrated RCT classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were more likely to be missed than those more recently published. ConclusionsThe Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed within Cochrane to help improve the efficiency of the study identification processes that support systematic review production.
Author Marshall, Iain J.
Elliott, Julian
Mavergames, Chris
Shemilt, Ian
Thomas, James
McDonald, Steve
Noel-Storr, Anna
Author_xml – sequence: 1
  givenname: James
  surname: Thomas
  fullname: Thomas, James
  email: james.thomas@ucl.ac.uk
  organization: EPPI-Centre, UCL Social Research Institute, University College London, London, UK
– sequence: 2
  givenname: Steve
  surname: McDonald
  fullname: McDonald, Steve
  organization: Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
– sequence: 3
  givenname: Anna
  surname: Noel-Storr
  fullname: Noel-Storr, Anna
  organization: Radcliffe Department of Medicine, University of Oxford, Oxford, UK
– sequence: 4
  givenname: Ian
  surname: Shemilt
  fullname: Shemilt, Ian
  organization: EPPI-Centre, UCL Social Research Institute, University College London, London, UK
– sequence: 5
  givenname: Julian
  orcidid: 0000-0002-9165-5875
  surname: Elliott
  fullname: Elliott, Julian
  organization: Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, Australia
– sequence: 6
  givenname: Chris
  orcidid: 0000-0003-2762-6196
  surname: Mavergames
  fullname: Mavergames, Chris
  organization: Cochrane, London, UK
– sequence: 7
  givenname: Iain J.
  surname: Marshall
  fullname: Marshall, Iain J.
  organization: School of Population Health & Environmental Sciences, Kings College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33171275$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xLrBX5gsccNNi-3E-UBoAlUMkIaQ-Li2HPtkdevaxU46jb_DH90J3SroBeMmsZ3nvDmvz3uSHfngIcvOGJ0xysqXy9lSO-thY2eccjxkM0rzR9mE1VU9FQ1nR9mE1o2YFrkoj7OTlJaUsopW4kl2nOesYrwSk-zXJ6UXqEMcqOitvyIRzKDBkOsQVy4oXNh-QdbW27VyJNq0IqHDfUojnfrBWEiviIEtuLBZg--J8obAVrlB9Tb4EVck4mFY25-orIPvY3AOl320KKqdQrXOQiRdiGQe9AJxIF9ga-E6Pc0ed8oleHb3Ps2-X7z7Nv8wvfz8_uP87eVUl7Tpp0bXNe94qzkrRJFXbddAUTBKdaGLtjJt0SramlJURqmuFUxUbWPAGGhF2YDJT7Pzne5maNdgNFqJyslNROfxRgZl5d9fvF3Iq7CVNSvx1zUKvLgTiOHHAKmXeE0anEMzYUiSF6IpeY5NIfr8AF2GIXq0J7ngTc1LwUbq7M-O9q3czw-BcgfoGFKK0O0RRuUYFLmU90GRY1AkYxKDgoWvDwq17X-PC51Z93D5m1054DxwSFEmbcFjbmwE3UsT7MMS5wcSI2W1ciu4gbS_DiYTl1R-HcM8ZpnTnLEKn_8U-J8ObgHkbA3b
CitedBy_id crossref_primary_10_1136_bmjebm_2022_112019
crossref_primary_10_1002_14651858_CD001072_pub2
crossref_primary_10_1093_cid_ciae476
crossref_primary_10_7326_M24_0877
crossref_primary_10_1186_s13643_023_02171_y
crossref_primary_10_1002_14651858_CD013758_pub2
crossref_primary_10_1016_j_mhp_2024_200349
crossref_primary_10_1016_j_zefq_2022_11_008
crossref_primary_10_1038_d41586_021_03690_1
crossref_primary_10_1007_s10462_024_10902_3
crossref_primary_10_1002_14651858_CD006182_pub3
crossref_primary_10_1016_j_compind_2024_104191
crossref_primary_10_1371_journal_pone_0307418
crossref_primary_10_1186_s12961_023_01085_4
crossref_primary_10_1002_clt2_70045
crossref_primary_10_11124_JBIES_23_00139
crossref_primary_10_1002_14651858_CD000143_pub2
crossref_primary_10_1186_s13643_021_01880_6
crossref_primary_10_11124_JBIES_23_00377
crossref_primary_10_3390_make7020028
crossref_primary_10_1002_14651858_CD015952
crossref_primary_10_1002_14651858_CD003281_pub5
crossref_primary_10_1002_14651858_CD012178_pub2
crossref_primary_10_1371_journal_pone_0330288
crossref_primary_10_1038_s41746_022_00730_6
crossref_primary_10_1002_jrsm_1731
crossref_primary_10_1002_14651858_CD015064_pub2
crossref_primary_10_1136_bmjebm_2022_112152
crossref_primary_10_1002_cesm_12021
crossref_primary_10_1027_2151_2604_a000509
crossref_primary_10_1002_14651858_CD015786_pub2
crossref_primary_10_1016_j_jclinepi_2022_04_027
crossref_primary_10_1002_asi_24851
crossref_primary_10_1002_14651858_CD016179
crossref_primary_10_1002_14651858_CD016178
crossref_primary_10_1002_cesm_70030
crossref_primary_10_1080_13678868_2025_2560486
crossref_primary_10_1002_14651858_CD016171
crossref_primary_10_1002_14651858_CD016170
crossref_primary_10_1002_jrsm_1589
crossref_primary_10_1016_j_jbi_2023_104389
crossref_primary_10_1016_j_ajpc_2025_101082
crossref_primary_10_1177_23969873221100032
crossref_primary_10_1017_rsm_2025_10023
crossref_primary_10_1002_cesm_70046
crossref_primary_10_1093_ejo_cjae037
crossref_primary_10_1017_rsm_2025_10028
crossref_primary_10_1111_aas_14295
crossref_primary_10_1186_s13750_025_00362_9
crossref_primary_10_1186_s13643_024_02592_3
crossref_primary_10_1002_14651858_CD016180
crossref_primary_10_1002_14651858_MR000054_pub2
crossref_primary_10_1111_hir_12515
crossref_primary_10_1002_14651858_CD008349_pub5
crossref_primary_10_1186_s12874_024_02320_4
crossref_primary_10_1186_s12874_021_01271_4
crossref_primary_10_1038_s41390_024_03197_1
crossref_primary_10_2106_JBJS_RVW_23_00077
crossref_primary_10_1002_14651858_CD014895_pub2
crossref_primary_10_1002_14651858_CD015983
crossref_primary_10_1002_cesm_70012
crossref_primary_10_1186_s13643_023_02255_9
crossref_primary_10_1136_bmj_r1105
crossref_primary_10_3390_electronics14061110
crossref_primary_10_12688_wellcomeopenres_22551_1
crossref_primary_10_1002_14651858_CD005495_pub5
crossref_primary_10_1017_rsm_2025_3
crossref_primary_10_1111_jebm_12594
crossref_primary_10_1001_jamainternmed_2025_3832
crossref_primary_10_1002_14651858_CD006475_pub3
crossref_primary_10_1186_s12874_021_01451_2
crossref_primary_10_1186_s13643_023_02334_x
crossref_primary_10_1002_14651858_CD013396_pub2
crossref_primary_10_1002_14651858_CD016207
crossref_primary_10_1186_s12978_025_01947_w
crossref_primary_10_1111_jgs_19457
crossref_primary_10_1016_j_jclinepi_2023_10_007
crossref_primary_10_1038_s41598_025_03979_5
crossref_primary_10_1016_j_jclinepi_2022_08_013
crossref_primary_10_1186_s12874_022_01649_y
crossref_primary_10_1186_s12879_023_08304_x
crossref_primary_10_1016_j_jclinepi_2022_03_019
crossref_primary_10_1002_14651858_CD015968
crossref_primary_10_1007_s00402_024_05359_6
crossref_primary_10_1111_bph_16100
crossref_primary_10_1016_j_jor_2024_03_012
crossref_primary_10_1002_oby_24172
crossref_primary_10_1002_14651858_CD015894_pub2
crossref_primary_10_3390_ijerph20116020
crossref_primary_10_1093_ageing_afaf171
crossref_primary_10_1002_jrsm_1664
crossref_primary_10_1016_j_jestch_2023_101433
crossref_primary_10_1002_14651858_CD013757_pub3
crossref_primary_10_1002_14651858_CD011677_pub4
crossref_primary_10_1016_j_cgh_2025_01_030
crossref_primary_10_1371_journal_pone_0283342
crossref_primary_10_3310_UDIR6682
crossref_primary_10_1016_j_jclinepi_2023_09_007
crossref_primary_10_1002_cl2_1363
crossref_primary_10_1007_s00607_023_01181_x
Cites_doi 10.1093/jamia/ocx053
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1016/j.jclinepi.2017.08.011
10.1016/S0895-4356(01)00341-9
10.7326/0003-4819-147-4-200708210-00179
10.1016/S0140-6736(13)62329-6
10.1186/2046-4053-1-60
10.1371/journal.pmed.1002708
10.1111/j.1471-1842.2008.00827.x
10.1186/2046-4053-4-5
10.1002/jrsm.1287
10.1371/journal.pmed.1000326
10.1136/bmj.f139
10.1016/j.jclinepi.2020.08.008
ContentType Journal Article
Copyright 2020 The Authors
The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020. The Authors
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020. The Authors
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7RV
7T2
7T7
7TK
7U7
7U9
7X7
7XB
88C
88E
8AO
8C1
8FD
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
KB0
M0S
M0T
M1P
M2O
M7N
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.jclinepi.2020.11.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
PML(ProQuest Medical Library)
Research Library (subscription)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
Toxicology Abstracts
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-5921
EndPage 151
ExternalDocumentID PMC8168828
33171275
10_1016_j_jclinepi_2020_11_003
S0895435620311720
1_s2_0_S0895435620311720
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. National Library of Medicine
  grantid: 2R01-LM012086-05
  funderid: https://doi.org/10.13039/100000092
– fundername: Medical Research Council
  grantid: MR/N015185/1
  funderid: https://doi.org/10.13039/501100000265
– fundername: National Health & Medical Research Council
  grantid: APP1114605
  funderid: https://doi.org/10.13039/501100000925
– fundername: National Institute for Health Research
  funderid: https://doi.org/10.13039/501100000272
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: MR/J005037/1
– fundername: NLM NIH HHS
  grantid: R01 LM012086
– fundername: Medical Research Council
  grantid: MR/N015185/1
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8G5
8P~
9JM
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYJJ
AAYWO
ABBQC
ABFNM
ABIVO
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
AQUVI
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
D-I
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HEH
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
L7B
M0T
M1P
M29
M2O
M3W
M41
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OD~
OHT
OO0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PRBVW
PROAC
PSQYO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSB
SSH
SSO
SSZ
SV3
T5K
UAP
UKHRP
WOW
WUQ
X7M
XPP
YHZ
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
AKYCK
F3I
LCYCR
ZA5
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T2
7T7
7TK
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c609t-dc882f2bc2145437bf9e44100c4c4b7db4ba0bd657daafb5157b9deddeb569ed3
IEDL.DBID 7RV
ISICitedReferencesCount 118
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653651200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-4356
1878-5921
IngestDate Tue Nov 04 01:47:32 EST 2025
Thu Oct 02 04:10:46 EDT 2025
Sat Nov 29 14:55:54 EST 2025
Mon Jul 21 06:05:00 EDT 2025
Tue Nov 18 22:14:29 EST 2025
Sat Nov 29 07:14:19 EST 2025
Fri Feb 23 02:45:58 EST 2024
Tue Feb 25 20:07:18 EST 2025
Tue Oct 14 19:36:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Crowdsourcing
Methods/methodology
Automation
Searching
Cochrane Library
Machine learning
Systematic reviews
Study classifiers
Information retrieval
Randomized controlled trials
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-dc882f2bc2145437bf9e44100c4c4b7db4ba0bd657daafb5157b9deddeb569ed3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2762-6196
0000-0002-9165-5875
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8168828
PMID 33171275
PQID 2529826511
PQPubID 105585
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8168828
proquest_miscellaneous_2459623441
proquest_journals_2529826511
pubmed_primary_33171275
crossref_primary_10_1016_j_jclinepi_2020_11_003
crossref_citationtrail_10_1016_j_jclinepi_2020_11_003
elsevier_sciencedirect_doi_10_1016_j_jclinepi_2020_11_003
elsevier_clinicalkeyesjournals_1_s2_0_S0895435620311720
elsevier_clinicalkey_doi_10_1016_j_jclinepi_2020_11_003
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Elmsford
PublicationTitle Journal of clinical epidemiology
PublicationTitleAlternate J Clin Epidemiol
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References McKibbon, Lou, Haynes (bib21) 2009; 26
Shojania, Sampson, Ansari, Ji, Doucette (bib4) 2007; 147
Marshall, Storr, Kuiper, Thomas, Wallace (bib8) 2018; 9
Turner, Shamseer, Altman, Schulz, Moher (bib22) 2012; 29
Thomas, Noel-Storr, Marshall, Wallace, McDonald, Mavergames (bib10) 2017; 91
Brier (bib20) 1950
Noel-Storr, Dooley, Wisneiwski, Glanville, Thomas, Cox (bib12) 2020; 127
Bastian, Glasziou, Chalmers (bib3) 2010; 7
O’Mara-Eves, Thomas, McNaught, Miwa, Ananiadou (bib7) 2015; 4
Sain, Vapnik (bib17) 2006
(bib11) 2019
Platt (bib18) 1999
.
Wallace, Noel-Storr, Marshall, Cohen, Smalheiser, Thomas (bib9) 2017; 24
Schulz, Altman, Moher (bib16) 2010; 8
Lefebvre, Glanville, Briscoe, Littlewood, Marshall, Metzendorf (bib2) 2019
Macleod, Michie, Roberts, Dirnagl, Chalmers, Ioannidis (bib5) 2014; 383
Nevin (bib14) 2018; 15
Steyerberg, Harrell, Borsboom, Eijkemans, Vergouwe, Habbema (bib19) 2001
(bib1) 2019
Noel-Storr A, Dooley G, Elliott J, Steele E, Shemilt I, Mavergames C, et al. An evaluation of Cochrane Crowd finds that crowdsourcing can help to address the challenge of information overload in evidence synthesis.
Tsafnat, Dunn, Glasziou, Coiera (bib6) 2013; 346
Wilczynski, Douglas, Haynes (bib15) 2005; 5
Noel-Storr (10.1016/j.jclinepi.2020.11.003_bib12) 2020; 127
Tsafnat (10.1016/j.jclinepi.2020.11.003_bib6) 2013; 346
Bastian (10.1016/j.jclinepi.2020.11.003_bib3) 2010; 7
Macleod (10.1016/j.jclinepi.2020.11.003_bib5) 2014; 383
O’Mara-Eves (10.1016/j.jclinepi.2020.11.003_bib7) 2015; 4
Marshall (10.1016/j.jclinepi.2020.11.003_bib8) 2018; 9
Thomas (10.1016/j.jclinepi.2020.11.003_bib10) 2017; 91
Nevin (10.1016/j.jclinepi.2020.11.003_bib14) 2018; 15
Wilczynski (10.1016/j.jclinepi.2020.11.003_bib15) 2005; 5
Schulz (10.1016/j.jclinepi.2020.11.003_bib16) 2010; 8
Lefebvre (10.1016/j.jclinepi.2020.11.003_bib2) 2019
Steyerberg (10.1016/j.jclinepi.2020.11.003_bib19) 2001
Shojania (10.1016/j.jclinepi.2020.11.003_bib4) 2007; 147
10.1016/j.jclinepi.2020.11.003_bib13
Brier (10.1016/j.jclinepi.2020.11.003_bib20) 1950
Platt (10.1016/j.jclinepi.2020.11.003_bib18) 1999
Sain (10.1016/j.jclinepi.2020.11.003_bib17) 2006
Turner (10.1016/j.jclinepi.2020.11.003_bib22) 2012; 29
McKibbon (10.1016/j.jclinepi.2020.11.003_bib21) 2009; 26
Wallace (10.1016/j.jclinepi.2020.11.003_bib9) 2017; 24
References_xml – volume: 91
  start-page: 31
  year: 2017
  end-page: 37
  ident: bib10
  article-title: Living systematic reviews: 2. Combining human and machine effort
  publication-title: J Clin Epidemiol
– volume: 383
  start-page: 101
  year: 2014
  end-page: 104
  ident: bib5
  article-title: Biomedical research: increasing value, reducing waste
  publication-title: Lancet
– volume: 15
  start-page: 4
  year: 2018
  end-page: 7
  ident: bib14
  article-title: Advancing the beneficial use of machine learning in health care and medicine: toward a community understanding
  publication-title: PLoS Med
– start-page: 131
  year: 2006
  ident: bib17
  article-title: The nature of statistical learning theory
– volume: 9
  start-page: 602
  year: 2018
  end-page: 614
  ident: bib8
  article-title: Machine learning for identifying randomized controlled trials: an evaluation and practitioner’s guide
  publication-title: Res Synth Methods
– reference: .
– volume: 147
  start-page: 224
  year: 2007
  end-page: 233
  ident: bib4
  article-title: How quickly do systematic reviews go out of date? A survival analysis
  publication-title: Ann Intern Med
– volume: 127
  start-page: 142
  year: 2020
  end-page: 150
  ident: bib12
  article-title: Cochrane Centralised Search Service showed high sensitivity identifying randomized controlled trials: a retrospective analysis
  publication-title: J Clin Epidemiol
– volume: 346
  start-page: f139
  year: 2013
  ident: bib6
  article-title: The automation of systematic reviews
  publication-title: BMJ
– year: 2019
  ident: bib11
  article-title: About the CRS (Cochrane Register of Studies). Cochrane Community
– year: 1950
  ident: bib20
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon Weather Rev
– year: 1999
  ident: bib18
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv Large Margin Classif
– year: 2001
  ident: bib19
  article-title: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis
  publication-title: J Clin Epidemiol
– volume: 7
  start-page: e1000326
  year: 2010
  ident: bib3
  article-title: Seventy-five trials and eleven systematic reviews a day: how will we ever keep up?
  publication-title: PLoS Med
– reference: Noel-Storr A, Dooley G, Elliott J, Steele E, Shemilt I, Mavergames C, et al. An evaluation of Cochrane Crowd finds that crowdsourcing can help to address the challenge of information overload in evidence synthesis.
– year: 2019
  ident: bib1
  article-title: Cochrane Library
– volume: 8
  start-page: 1
  year: 2010
  end-page: 9
  ident: bib16
  article-title: CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials
  publication-title: BMC Med
– volume: 24
  start-page: 1165
  year: 2017
  end-page: 1168
  ident: bib9
  article-title: Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach
  publication-title: J Am Med Inform Assoc
– start-page: 67
  year: 2019
  end-page: 99
  ident: bib2
  article-title: Chapter 4: searching for and selecting studies
  publication-title: Cochrane Handbook for Systematic Reviews of Interventions
– volume: 26
  start-page: 187
  year: 2009
  end-page: 202
  ident: bib21
  article-title: Retrieving randomized controlled trials from MEDLINE: a comparison of 38 published search filters
  publication-title: Health Info Libr J
– volume: 4
  start-page: 5
  year: 2015
  ident: bib7
  article-title: Using text mining for study identification in systematic reviews: a systematic review of current approaches
  publication-title: Syst Rev
– volume: 5
  start-page: 1
  year: 2005
  end-page: 15
  ident: bib15
  article-title: An overview of the design and methods for retrieving high-quality studies for clinical care
  publication-title: BMC Med Inform Decis Mak
– volume: 29
  start-page: 60
  year: 2012
  ident: bib22
  article-title: Does use of the CONSORT statement impact the completeness of reporting of randomised controlled trials published in medical journals? A Cochrane review
  publication-title: Syst Rev
– volume: 24
  start-page: 1165
  issue: 6
  year: 2017
  ident: 10.1016/j.jclinepi.2020.11.003_bib9
  article-title: Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocx053
– year: 1950
  ident: 10.1016/j.jclinepi.2020.11.003_bib20
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 91
  start-page: 31
  year: 2017
  ident: 10.1016/j.jclinepi.2020.11.003_bib10
  article-title: Living systematic reviews: 2. Combining human and machine effort
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2017.08.011
– year: 2001
  ident: 10.1016/j.jclinepi.2020.11.003_bib19
  article-title: Internal validation of predictive models: efficiency of some procedures for logistic regression analysis
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(01)00341-9
– volume: 147
  start-page: 224
  year: 2007
  ident: 10.1016/j.jclinepi.2020.11.003_bib4
  article-title: How quickly do systematic reviews go out of date? A survival analysis
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-147-4-200708210-00179
– volume: 383
  start-page: 101
  year: 2014
  ident: 10.1016/j.jclinepi.2020.11.003_bib5
  article-title: Biomedical research: increasing value, reducing waste
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62329-6
– volume: 29
  start-page: 60
  issue: 1
  year: 2012
  ident: 10.1016/j.jclinepi.2020.11.003_bib22
  article-title: Does use of the CONSORT statement impact the completeness of reporting of randomised controlled trials published in medical journals? A Cochrane review
  publication-title: Syst Rev
  doi: 10.1186/2046-4053-1-60
– volume: 15
  start-page: 4
  issue: 11
  year: 2018
  ident: 10.1016/j.jclinepi.2020.11.003_bib14
  article-title: Advancing the beneficial use of machine learning in health care and medicine: toward a community understanding
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002708
– volume: 26
  start-page: 187
  year: 2009
  ident: 10.1016/j.jclinepi.2020.11.003_bib21
  article-title: Retrieving randomized controlled trials from MEDLINE: a comparison of 38 published search filters
  publication-title: Health Info Libr J
  doi: 10.1111/j.1471-1842.2008.00827.x
– volume: 4
  start-page: 5
  issue: 1
  year: 2015
  ident: 10.1016/j.jclinepi.2020.11.003_bib7
  article-title: Using text mining for study identification in systematic reviews: a systematic review of current approaches
  publication-title: Syst Rev
  doi: 10.1186/2046-4053-4-5
– start-page: 67
  year: 2019
  ident: 10.1016/j.jclinepi.2020.11.003_bib2
  article-title: Chapter 4: searching for and selecting studies
– volume: 9
  start-page: 602
  year: 2018
  ident: 10.1016/j.jclinepi.2020.11.003_bib8
  article-title: Machine learning for identifying randomized controlled trials: an evaluation and practitioner’s guide
  publication-title: Res Synth Methods
  doi: 10.1002/jrsm.1287
– ident: 10.1016/j.jclinepi.2020.11.003_bib13
– year: 1999
  ident: 10.1016/j.jclinepi.2020.11.003_bib18
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv Large Margin Classif
– volume: 7
  start-page: e1000326
  issue: 9
  year: 2010
  ident: 10.1016/j.jclinepi.2020.11.003_bib3
  article-title: Seventy-five trials and eleven systematic reviews a day: how will we ever keep up?
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000326
– volume: 346
  start-page: f139
  issue: 1
  year: 2013
  ident: 10.1016/j.jclinepi.2020.11.003_bib6
  article-title: The automation of systematic reviews
  publication-title: BMJ
  doi: 10.1136/bmj.f139
– volume: 8
  start-page: 1
  issue: 18
  year: 2010
  ident: 10.1016/j.jclinepi.2020.11.003_bib16
  article-title: CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials
  publication-title: BMC Med
– volume: 127
  start-page: 142
  year: 2020
  ident: 10.1016/j.jclinepi.2020.11.003_bib12
  article-title: Cochrane Centralised Search Service showed high sensitivity identifying randomized controlled trials: a retrospective analysis
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2020.08.008
– start-page: 131
  year: 2006
  ident: 10.1016/j.jclinepi.2020.11.003_bib17
– volume: 5
  start-page: 1
  issue: 20
  year: 2005
  ident: 10.1016/j.jclinepi.2020.11.003_bib15
  article-title: An overview of the design and methods for retrieving high-quality studies for clinical care
  publication-title: BMC Med Inform Decis Mak
SSID ssj0017075
Score 2.6730638
Snippet This study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for producing...
AbstractObjectivesThis study developed, calibrated, and evaluated of a machine learning classifier designed to reduce study identification workload in Cochrane...
ObjectivesThis study developed, calibrated, and evaluated a machine learning classifier designed to reduce study identification workload in Cochrane for...
• Systematic review processes need to become more efficient. • Machine learning is sufficiently mature for real-world use. • A machine learning classifier was...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 140
SubjectTerms Algorithms
Automation
Bibliographic data bases
Calibration
Classification
Classifiers
Clinical trials
Cochrane Library
Confidence intervals
Cost control
Crowdsourcing
Databases, Bibliographic - standards
Databases, Bibliographic - statistics & numerical data
Datasets
Efficiency
Epidemiology
Evaluation
Humans
Information retrieval
Information Storage and Retrieval - methods
Information Storage and Retrieval - standards
Information Storage and Retrieval - statistics & numerical data
Internal Medicine
Learning algorithms
Machine Learning
Methods/methodology
Original
Production methods
Randomized controlled trials
Randomized Controlled Trials as Topic - classification
Randomized Controlled Trials as Topic - methods
Randomized Controlled Trials as Topic - standards
Randomized Controlled Trials as Topic - statistics & numerical data
Recall
Searching
Study classifiers
Systematic review
Systematic reviews
Systematic Reviews as Topic - methods
Systematic Reviews as Topic - standards
Validity
Workflow
Workload
Workload - statistics & numerical data
Workloads
Title Machine learning reduced workload with minimal risk of missing studies: development and evaluation of a randomized controlled trial classifier for Cochrane Reviews
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895435620311720
https://www.clinicalkey.es/playcontent/1-s2.0-S0895435620311720
https://dx.doi.org/10.1016/j.jclinepi.2020.11.003
https://www.ncbi.nlm.nih.gov/pubmed/33171275
https://www.proquest.com/docview/2529826511
https://www.proquest.com/docview/2459623441
https://pubmed.ncbi.nlm.nih.gov/PMC8168828
Volume 133
WOSCitedRecordID wos000653651200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: M0T
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: 8C1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1878-5921
  dateEnd: 20251007
  omitProxy: false
  ssIdentifier: ssj0017075
  issn: 0895-4356
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYhLedNAqYzENW3iPBxzQbBqxWWXqhS0Nyt-pJvVNlk2Ww78Hf4oM4mTbakECC5Woth5eTzz2fN5hpDXsTBJmGrrmzSECYoNEl-xNPeZEcLwOOdprNtkE3wyyaZTceIW3BpHq-x1YquoTa1xjfyQJUwAFAZ88Hb51cesUehddSk0bpPtEG03yDM__TJ4EXgXaDfIROIDLEiv7BCeH8xx66FdljBHZKg5DoI-cdZN43QTfP7KobxilI7v_-_nPCA7Do7Sd538PCS3bPWI3B07h_tj8mPcki0tddklzukKY71aQ5HQtahzOCjXM4oRSi7gRshUp3UB5w0uQtCmoym-oWZDTqJ5ZegmyjhWzymYTFNflN_hzo49v4DDNqcI1YjwywL-EQWITUe1nkF1Szu_RvOEfD4-Oht98F1eB1-ngVj7RgOsL5jSGCU9jrgqhAVUFgQ61rHiRsUqD5RJE27yvFCAuLgSxoIiVkkqrImekq2qruwuoZkVhRLQ1QW6kLMkM1FqrI1gzg9Y0jKPJH2HSu2CnmPujYXs2W1z2QuCREGAGRGGS_XI4dBu2YX9-GML3suL7De1ghqWYJn-raVtnDZpZCgbJgP5CQUZ5ZiBJgbgGXhEDC0dYOqA0F89da8XTDk8aCOVHnk1XAaRQS8SdGx9CXViTNgUQYd55Fk3BoZfFAEaxYwB8EnXRsdQAYOZX79SlbM2qDnmf4HZ__Pfv9YLco8hqahlnO6RrfXq0r4kd_S3ddms9tvRj-WUt2UGZTYK98n2-6PJySmcjYMzLNnHn_Szbyk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VgoAX7iNQYJHg0a2zPtaLhBAqVK3aREgUqW9b72HiKI1DnILg7_DOb2TGV1oqAULqA2-OvLt2duf4xvvtDMCzUNqoHxvn2biPAYrzI0_zOPW4ldKKMBVxaKpiE2I4TA4O5LsV-NGehSFaZWsTK0NtC0PfyDd4xCVCYcQHr2afPKoaRburbQmNWix23dcvGLKVL3fe4Po-53zr7f7mttdUFfBM7MuFZw2CyoxrQzm6w0DoTDrEBL5vQhNqYXWoU1_bOBI2TTON_l5oaR2aAR3F0tkAx70AF9GOC6KQiYMuwOuLOrGvn8jIQxgSnziRPF4f01FHN8sxJuVkqdb9tlDXWWd4Fuz-ytk84QS3rv9v03cDrjVwm72u9eMmrLjpLbg8aAgFt-H7oCKTOtZUz_jI5pTL1llGhLVJkeJFvhgxysByhAMRE58VGf4u6SMLK2sa5gtml-Qrlk4tW2ZRp-YpQ0hgi6P8G47cnA6Y4GVVM4UZimDyDNeEYQjBNgszwuaO1fs25R34cC5TdBdWp8XU3QeWOJlpiaKV0RZ5EiU2iK1zQSwJKzveg6gVIGWapO5UW2SiWvbeWLWCp0jwMOKjdLA92Oj6zeq0Jn_sIVr5VO2hXXQzCj3vv_V0ZWMtS9VXJVe-ek-KQ3rD0dMgsPZ7ILueDSCsgd5fPXWtVQTVPWipBT142t1GkaFdMlzY4hjbhFSQKsAF68G9Wue6KQoQbVNFBPxLp7Sxa0DJ2k_fmeajKmk71bdJePLg96_1BK5s7w_21N7OcPchXOVEoKrYtWuwupgfu0dwyXxe5OX8cWV5GByet67-BIBxyWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VgipeuBcCBRYJHt046-siIYRaIqqSqBJF6tvivZg4Su0QpyD4Hf6Cr2PGt7RUAoTUB94ceXft7M7ljPfsDMBTX5hgEGrrmHCAAYp1A0fxMHG4EcJEfhKFvq6KTUTjcXx0JA7W4Ed7FoZola1NrAy1KTR9I-_zgAuEwogP-mlDizjYHb6cf3KoghTttLblNGoR2bdfv2D4Vr7Y28W1fsb58PXhzhunqTDg6NAVS8doBJgpV5rydftepFJhER-4rva1ryKjfJW4yoRBZJIkVej7IyWMRZOgglBY4-G4l-By5Aec6GQj97DbwYjqJL9uLAIHIUl46nTydHtKxx7tPMP4lJPV2nbbol3nHeN54Psrf_OUQxxe_5-n8gZca2A4e1XrzU1Ys_kt2Bg1RIPb8H1UkUwta6pqfGQLynFrDSMi26xI8CJbThhlZjnGgYihz4oUf5f08YWVNT3zOTMrUhZLcsNW2dWpecIQKpjiOPuGIzenBmZ4WdVSYZoimyzF9WEYWrCdQk-wuWX1fk55B95fyBRtwnpe5PYesNiKVAkUs5S2zuMgNl5orPVCQRja8h4ErTBJ3SR7p5ojM9my-qayFUJJQoiRIKWJ7UG_6zev0538sUfUyqpsD_Oi-5Hokf-tpy0bK1rKgSy5dOU7UiLSIY4eCAG32wPR9WyAYg0A_-qpW61SyO5BK43owZPuNooM7Z7hwhYn2ManQlUeLlgP7tb6102RhyicKiXgXzqjmV0DSuJ-9k6eTapk7lT3Jubx_d-_1mPYQBWVb_fG-w_gKideVUW63YL15eLEPoQr-vMyKxePKiPE4MNFq-pPy2vSNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+reduced+workload+with+minimal+risk+of+missing+studies%3A+development+and+evaluation+of+a+randomized+controlled+trial+classifier+for+Cochrane+Reviews&rft.jtitle=Journal+of+clinical+epidemiology&rft.au=Thomas%2C+James&rft.au=McDonald%2C+Steve&rft.au=Noel-Storr%2C+Anna&rft.au=Shemilt%2C+Ian&rft.date=2021-05-01&rft.issn=1878-5921&rft.eissn=1878-5921&rft.volume=133&rft.spage=140&rft_id=info:doi/10.1016%2Fj.jclinepi.2020.11.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4356&client=summon