Integrated web visualizations for protein-protein interaction databases
Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein inter...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 16; číslo 1; s. 195 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
16.06.2015
BioMed Central Ltd |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.
Results
We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on
http://tinyurl.com/PPI-DB-Comparison-2015
.
Conclusions
Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing. |
|---|---|
| AbstractList | Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. Results We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on Conclusions Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing. Keywords: Visualization, Visual analysis, Network visualization, Protein-protein interaction, Systems biology Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing. Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.BACKGROUNDUnderstanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.RESULTSWe selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.CONCLUSIONSOnly some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing. Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing. Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. Results We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015 . Conclusions Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing. |
| ArticleNumber | 195 |
| Audience | Academic |
| Author | Jeanquartier, Fleur Holzinger, Andreas Jean-Quartier, Claire |
| Author_xml | – sequence: 1 givenname: Fleur surname: Jeanquartier fullname: Jeanquartier, Fleur email: f.jeanquartier@hci-kdd.org organization: Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz – sequence: 2 givenname: Claire surname: Jean-Quartier fullname: Jean-Quartier, Claire organization: Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz – sequence: 3 givenname: Andreas surname: Holzinger fullname: Holzinger, Andreas organization: Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Institute for Information Systems & Computer Media Graz University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26077899$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl2L1DAUhoOsuB_6A7yRgjd60TVJ2yS9EZZF14EFwY_rcJqejlk6yZikq86vN7WzsiOyBHJC8rwvObznlBw575CQ54yeM6bEm8i4atqSsqakIm-7R-SE1ZKVnNHm6N75mJzGeEMpk4o2T8gxF1RK1bYn5GrlEq4DJOyLH9gVtzZOMNodJOtdLAYfim3wCa0r97WwWRHAzEDRQ4IOIsan5PEAY8Rn-3pGvr5_9-XyQ3n98Wp1eXFdGkHbVPacUmGgEhWItm9qITmHVol-kBxbWqtOVj1HIzouoGKsbhoFtVRcmaE1dKjOyNvFdzt1G-wNuhRg1NtgNxB-aQ9WH744-02v_a2uayGUqLLBq71B8N8njElvbDQ4juDQT1EzoVrBayZ4Rl8u6BpG1NYNPjuaGdcXTc2qRio5G57_h8qrx401ObDB5vsDwesDQWYS_kxrmGLUq8-fDtkX99v92-ddgBmQC2CCjzHgoI1Nf8LLv7CjZlTPo6KXUdF5VPQ8KnqXlewf5Z35Qxq-aGJm3RqDvvFTcDnwB0S_AXC70BE |
| CitedBy_id | crossref_primary_10_3390_cancers15164167 crossref_primary_10_1186_s43141_023_00539_0 crossref_primary_10_3390_ijms20235847 crossref_primary_10_3390_ijms21020547 crossref_primary_10_3390_ijms19103173 crossref_primary_10_1016_j_neuron_2019_05_002 crossref_primary_10_1016_j_jmb_2022_167603 crossref_primary_10_1080_21655979_2022_2030557 crossref_primary_10_1002_jcb_29577 crossref_primary_10_1038_s41598_021_92091_5 crossref_primary_10_3389_fmolb_2022_962799 crossref_primary_10_3390_ijms19010183 crossref_primary_10_1186_s12918_016_0318_8 crossref_primary_10_2174_1574893613666181112130346 crossref_primary_10_1016_j_inffus_2021_01_008 crossref_primary_10_1515_cclm_2019_0626 crossref_primary_10_1016_j_bbrc_2022_05_040 crossref_primary_10_1186_s12014_022_09356_y crossref_primary_10_3390_make4040047 crossref_primary_10_1111_aji_12971 crossref_primary_10_1007_s00299_024_03294_9 crossref_primary_10_1016_j_jbi_2024_104600 crossref_primary_10_1186_s40246_019_0223_5 crossref_primary_10_1016_j_micpath_2022_105737 crossref_primary_10_1002_widm_1554 crossref_primary_10_1177_20552076241271769 crossref_primary_10_3389_fphy_2020_00203 crossref_primary_10_3390_app8122669 crossref_primary_10_1186_s13040_018_0190_8 crossref_primary_10_1186_s13287_018_1050_7 crossref_primary_10_1007_s12539_017_0213_z crossref_primary_10_1038_s41598_024_72748_7 crossref_primary_10_3389_fmed_2021_657918 crossref_primary_10_1093_brain_awac266 crossref_primary_10_1016_j_micpath_2021_105293 crossref_primary_10_1080_07391102_2020_1841681 crossref_primary_10_1186_s12859_020_3352_x |
| Cites_doi | 10.1093/nar/gks1158 10.1126/science.1105136 10.1109/TVCG.2011.279 10.1186/1752-0509-5-S1-S1 10.1093/bib/bbq064 10.1186/1471-2105-14-322 10.1093/nar/gkl128 10.1093/bioinformatics/bti1016 10.1093/bioinformatics/bts283 10.1093/bioinformatics/bti1015 10.1109/MCG.2006.70 10.1186/gb-2007-8-5-r95 10.1093/nar/gkr1088 10.1007/s10209-007-0074-z 10.1093/nar/gkt1115 10.12688/f1000research.3-50.v1 10.1186/1471-2105-6-S4-S21 10.1186/1471-2105-15-129 10.1038/nmeth.f.301 10.1186/1471-2105-15-S6-I1 10.1186/1471-2105-14-S1-S1 10.1016/j.sbi.2013.07.005 10.1093/bioinformatics/bth253 10.1002/pmic.201400412 10.1002/pmic.200700131 10.1002/9780470050118.ecse561 10.1016/j.yexmp.2012.03.013 10.1093/nar/gks1094 10.1093/nar/gks1055 10.1186/1471-2105-7-S5-S19 10.1093/bioinformatics/bti273 10.1093/nar/gkq973 10.11113/jt.v63.1226 10.1117/12.911901 10.1186/1471-2105-9-S8-S2 10.1021/pr201211w 10.12688/f1000research.4510.2 10.1007/978-3-662-43968-5 10.1093/bioinformatics/btq430 10.1186/1471-2105-14-47 10.1007/978-94-007-6803-1 10.1093/bib/bbr069 10.1677/jme.1.01693 10.1093/bioinformatics/btq675 10.1186/1752-0509-2-104 10.1038/nature13302 10.1093/bib/bbp001 10.1093/nar/gkj126 10.1038/nmeth.2561 10.1007/978-3-642-40511-2_36 10.1145/2160718.2160738 10.1126/science.1135003 10.1093/nar/gkr930 10.1186/gb-2008-9-s2-s12 10.1159/000314161 10.1093/nar/gkt1100 |
| ContentType | Journal Article |
| Copyright | Jeanquartier et al. 2015 COPYRIGHT 2015 BioMed Central Ltd. |
| Copyright_xml | – notice: Jeanquartier et al. 2015 – notice: COPYRIGHT 2015 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM |
| DOI | 10.1186/s12859-015-0615-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| ExternalDocumentID | PMC4466863 A541357873 26077899 10_1186_s12859_015_0615_z |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c609t-d2006ca363a69d546722a986df72e9048b73d2ec6b26a3114558a47828cf9c0f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356132100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Tue Nov 04 02:01:24 EST 2025 Wed Oct 01 13:52:33 EDT 2025 Tue Nov 11 11:02:35 EST 2025 Tue Nov 04 18:20:27 EST 2025 Thu Nov 13 16:40:18 EST 2025 Thu Apr 03 06:55:24 EDT 2025 Sat Nov 29 05:39:58 EST 2025 Tue Nov 18 20:58:03 EST 2025 Sat Sep 06 07:27:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Network visualization Visualization Protein-protein interaction Systems biology Visual analysis |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c609t-d2006ca363a69d546722a986df72e9048b73d2ec6b26a3114558a47828cf9c0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s12859-015-0615-z |
| PMID | 26077899 |
| PQID | 1689624162 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4466863 proquest_miscellaneous_1689624162 gale_infotracmisc_A541357873 gale_infotracacademiconefile_A541357873 gale_incontextgauss_ISR_A541357873 pubmed_primary_26077899 crossref_citationtrail_10_1186_s12859_015_0615_z crossref_primary_10_1186_s12859_015_0615_z springer_journals_10_1186_s12859_015_0615_z |
| PublicationCentury | 2000 |
| PublicationDate | 20150616 2015-6-16 2015-Jun-16 |
| PublicationDateYYYYMMDD | 2015-06-16 |
| PublicationDate_xml | – month: 6 year: 2015 text: 20150616 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2015 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | GS Omenn (615_CR45) 2006; 314 E Moser (615_CR49) 2010; 86 C North (615_CR52) 2006; 26 SI O’Donoghue (615_CR4) 2010; 7 615_CR37 615_CR39 615_CR6 A Chatr-aryamontri (615_CR10) 2013; 41 A Holzinger (615_CR27) 2014 GC Koh (615_CR34) 2012; 11 PV Gopalacharyulu (615_CR48) 2005; 21 A Franceschini (615_CR66) 2013; 41 MS Kim (615_CR18) 2014; 509 RKR Kalathur (615_CR67) 2014; 42 M Albrecht (615_CR24) 2010 C Ware (615_CR12) 2012 EP Consortium (615_CR17) 2004; 306 Y Byun (615_CR41) 2003 A Calderone (615_CR63) 2013; 10 C Turkay (615_CR5) 2014 T Lammarsch (615_CR55) 2008 K Ono (615_CR57) 2014; 3 H Lam (615_CR54) 2012; 18 T Berggr̀d (615_CR19) 2007; 7 KR Brown (615_CR8) 2005; 21 A Droit (615_CR29) 2005; 34 615_CR46 615_CR47 N Gehlenborg (615_CR15) 2010; 7 615_CR42 615_CR43 S Carpendale (615_CR53) 2008 615_CR16 C Prieto (615_CR59) 2006; 34 615_CR11 615_CR56 A Kamburov (615_CR60) 2013; 41 615_CR58 E Oveland (615_CR38) 2015; 15 615_CR51 ME Smoot (615_CR14) 2011; 27 A Holzinger (615_CR13) 2007; 6 N Atias (615_CR32) 2012; 55 R Mosca (615_CR31) 2013; 23 A Prokop (615_CR44) 2013 X Zheng (615_CR50) 2012; 93 JM Berg (615_CR1) 2002 J Das (615_CR2) 2012; 28 615_CR26 615_CR28 615_CR22 615_CR23 M Krzywinski (615_CR25) 2012; 13 615_CR62 A Ben-Hur (615_CR30) 2005; 21 615_CR21 615_CR65 K Han (615_CR40) 2002 T Klingström (615_CR35) 2011; 12 615_CR61 D Szklarczyk (615_CR9) 2011; 39 CT Lopes (615_CR20) 2010; 26 N Tuncbag (615_CR33) 2009; 10 K Han (615_CR7) 2004; 20 L Licata (615_CR64) 2012; 40 615_CR3 GD Bader (615_CR36) 2006; 34 |
| References_xml | – volume-title: Information Visualization year: 2008 ident: 615_CR53 – volume: 41 start-page: D816 year: 2013 ident: 615_CR10 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1158 – volume: 306 start-page: 636 year: 2004 ident: 615_CR17 publication-title: Science doi: 10.1126/science.1105136 – volume: 18 start-page: 1520 year: 2012 ident: 615_CR54 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2011.279 – ident: 615_CR43 doi: 10.1186/1752-0509-5-S1-S1 – volume: 12 start-page: 702 year: 2011 ident: 615_CR35 publication-title: Brief Bioinformatics doi: 10.1093/bib/bbq064 – ident: 615_CR42 doi: 10.1186/1471-2105-14-322 – volume: 34 start-page: W298 year: 2006 ident: 615_CR59 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl128 – volume: 21 start-page: i38 year: 2005 ident: 615_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1016 – volume: 28 start-page: 1873 year: 2012 ident: 615_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts283 – volume: 21 start-page: i177 year: 2005 ident: 615_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1015 – volume-title: Information Visualisation, 2008. IV ’08. 12th International Conference year: 2008 ident: 615_CR55 – volume: 26 start-page: 6 year: 2006 ident: 615_CR52 publication-title: IEEE Comput Graph Appl doi: 10.1109/MCG.2006.70 – ident: 615_CR51 – ident: 615_CR62 doi: 10.1186/gb-2007-8-5-r95 – ident: 615_CR21 doi: 10.1093/nar/gkr1088 – volume: 6 start-page: 31 year: 2007 ident: 615_CR13 publication-title: Universal Access in the Information Society doi: 10.1007/s10209-007-0074-z – ident: 615_CR61 doi: 10.1093/nar/gkt1115 – ident: 615_CR22 doi: 10.12688/f1000research.3-50.v1 – ident: 615_CR65 doi: 10.1186/1471-2105-6-S4-S21 – volume-title: Biochemistry year: 2002 ident: 615_CR1 – ident: 615_CR23 doi: 10.1186/1471-2105-15-129 – volume: 7 start-page: S2 year: 2010 ident: 615_CR4 publication-title: Nat Methods doi: 10.1038/nmeth.f.301 – ident: 615_CR6 doi: 10.1186/1471-2105-15-S6-I1 – volume-title: Information Visualization: Perception for Design year: 2012 ident: 615_CR12 – ident: 615_CR26 doi: 10.1186/1471-2105-14-S1-S1 – volume: 23 start-page: 929 year: 2013 ident: 615_CR31 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2013.07.005 – volume: 20 start-page: 2466 year: 2004 ident: 615_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth253 – volume: 15 start-page: 1341 year: 2015 ident: 615_CR38 publication-title: PROTEOMICS doi: 10.1002/pmic.201400412 – volume: 7 start-page: 2833 year: 2007 ident: 615_CR19 publication-title: PROTEOMICS doi: 10.1002/pmic.200700131 – ident: 615_CR28 doi: 10.1002/9780470050118.ecse561 – volume: 93 start-page: 111 year: 2012 ident: 615_CR50 publication-title: Exp Mol Pathol doi: 10.1016/j.yexmp.2012.03.013 – volume: 41 start-page: D808 year: 2013 ident: 615_CR66 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1094 – volume: 41 start-page: D793 year: 2013 ident: 615_CR60 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1055 – ident: 615_CR3 doi: 10.1186/1471-2105-7-S5-S19 – volume: 21 start-page: 2076 year: 2005 ident: 615_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti273 – volume: 39 start-page: D561 year: 2011 ident: 615_CR9 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq973 – ident: 615_CR16 doi: 10.11113/jt.v63.1226 – ident: 615_CR58 doi: 10.1117/12.911901 – volume-title: Graph Drawing. Volume 2528 of Lecture Notes in Computer Science year: 2002 ident: 615_CR40 – ident: 615_CR47 doi: 10.1186/1471-2105-9-S8-S2 – volume: 11 start-page: 2014 year: 2012 ident: 615_CR34 publication-title: J Proteome Res doi: 10.1021/pr201211w – volume: 3 start-page: 143 year: 2014 ident: 615_CR57 publication-title: F1000Research doi: 10.12688/f1000research.4510.2 – volume-title: Interactive Knowledge Discovery and Data Mining in Biomedical Informatics year: 2014 ident: 615_CR27 doi: 10.1007/978-3-662-43968-5 – volume: 26 start-page: 2347 year: 2010 ident: 615_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq430 – ident: 615_CR37 doi: 10.1186/1471-2105-14-47 – volume-title: Systems Biology: Integrative Biology and Simulation Tools year: 2013 ident: 615_CR44 doi: 10.1007/978-94-007-6803-1 – volume-title: Interactive Knowledge Discovery and Data Mining in Biomedical Informatics year: 2014 ident: 615_CR5 – volume: 13 start-page: 627 year: 2012 ident: 615_CR25 publication-title: Brief Bioinformatics doi: 10.1093/bib/bbr069 – volume: 34 start-page: 263 year: 2005 ident: 615_CR29 publication-title: J Mol Endocrinol doi: 10.1677/jme.1.01693 – volume: 27 start-page: 431 year: 2011 ident: 615_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq675 – ident: 615_CR39 doi: 10.1186/1752-0509-2-104 – volume: 509 start-page: 575 year: 2014 ident: 615_CR18 publication-title: Nature doi: 10.1038/nature13302 – volume-title: Graph Drawing. Volume 5849 of Lecture Notes in Computer Science year: 2010 ident: 615_CR24 – volume: 10 start-page: 217 year: 2009 ident: 615_CR33 publication-title: Brief Bioinformatics doi: 10.1093/bib/bbp001 – volume: 34 start-page: D504 year: 2006 ident: 615_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj126 – volume: 7 start-page: S56 year: 2010 ident: 615_CR15 publication-title: Nat Sethods – volume: 10 start-page: 690 year: 2013 ident: 615_CR63 publication-title: Nat Methods doi: 10.1038/nmeth.2561 – ident: 615_CR11 doi: 10.1007/978-3-642-40511-2_36 – volume: 55 start-page: 88 year: 2012 ident: 615_CR32 publication-title: Commun ACM doi: 10.1145/2160718.2160738 – volume: 314 start-page: 1696 year: 2006 ident: 615_CR45 publication-title: Science doi: 10.1126/science.1135003 – volume: 40 start-page: D857 year: 2012 ident: 615_CR64 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr930 – ident: 615_CR46 doi: 10.1186/gb-2008-9-s2-s12 – volume: 86 start-page: 22 year: 2010 ident: 615_CR49 publication-title: Pharmacology doi: 10.1159/000314161 – volume-title: Computational Science? ICCS 2003. Volume 2659 of Lecture Notes in Computer Science year: 2003 ident: 615_CR41 – ident: 615_CR56 – volume: 42 start-page: D408 year: 2014 ident: 615_CR67 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1100 |
| SSID | ssj0017805 |
| Score | 2.3907132 |
| Snippet | Background
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein... Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein... Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 195 |
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Graphics Computer Simulation Databases, Protein Humans Internet Life Sciences Microarrays Networks analysis Protein Interaction Maps Proteins - metabolism Research Article Software Systems Biology User-Computer Interface |
| Title | Integrated web visualizations for protein-protein interaction databases |
| URI | https://link.springer.com/article/10.1186/s12859-015-0615-z https://www.ncbi.nlm.nih.gov/pubmed/26077899 https://www.proquest.com/docview/1689624162 https://pubmed.ncbi.nlm.nih.gov/PMC4466863 |
| Volume | 16 |
| WOSCitedRecordID | wos000356132100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9sq-CL3x_RGqIIghKaZLMfeazS6iEeoVU5fVk2m8QelJxc7gr2r3cm2RzmUEFfNg87S5LJfGZmfwvwPMUgQEXCoPVjAhOUNEOdi0xY8NigfimbsqI7bEJOp2o2y3K3j7sdut2HkmRnqTu1VuKgjQlrDVNfTqcR8PByB_Y4gc1Qin76eVM6IJB-V7787bKRA9o2w7_4oe0eya1Caed_jm_-15Pfghsu3AwOe_m4DVeq5g5c6w-g_HEX3k4GtIgyQHsaXMxb2mTptmYGGNAGHZDDvAndNSB8iWW_GyKg9lJyg-09-HR89PHNu9AdrRBaEWWrsKQ_CdYwwYzISo7WMklMpkRZy6TKUKsLycqksqJIhGExoZkrk2I0oWyd2ahm92G3WTTVQwhEoYoCF0RxZdKSlYZbzoqYasNVXUnuQTTwW1uHO07HX5zrLv9QQvf80cgfTfzRlx683Cz53oNu_I34GX1ETWAWDXXLfDPrttWT0xN9yNFFk0liHrxwRPUCb26N23yAr0D4VyPK_RElapsdTT8dZEXTFLWoNdVi3epYqExgPCQSDx70srN5eEwapcTM1gM5kqoNAYF8j2ea-VkH9k31diXwvq8G2dLOyrR_5smjf6J-DNeTXjjDWOzD7mq5rp7AVXuxmrdLH3bkTHaj8mHv9dE0P_G7Pxc4vpehT92yOY45_4rz-eRD_sXvNPIn8vkp9A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gaOQFUBEKqNWYmGga22673T4SAnIBL0bQ8LbZbrd4CemR2zsS-OuZabcXelETfbqHnU17c_N5M_MbgPcJBgEi5AqtH-OYoCQ56lyogiKNFOqX0AkrmmUT2XAoLi7yb26O23bd7l1JsrHUjVoL_tlGhLWGqW9K2wjS4O4RrCS0ZYdS9LOf89IBgfS78uVvr_Uc0KIZfuCHFnskFwqljf85Wv-vN9-ANRdu-vutfDyDJVM_hyftAsrbF_Bl0KFFlD7aU_9mZGnI0o1m-hjQ-g2Qw6gO3KdP-BKTdhrCp_ZScoN2E34cHZ4fHAdutUKgeZhPg5L-SdCKcaZ4XqZoLeNY5YKXVRabHLW6yFgZG82LmCsWEZq5UAlGE0JXuQ4r9hKW63FttsHnhSgKvBBGRiUlK1WqU1ZEVBs2lclSD8KO31I73HFaf3Elm_xDcNnyRyJ_JPFH3nnwcX7lugXd-BvxO_oRJYFZ1NQtc6lm1srB2Xe5n6KLJpPEPPjgiKoxPlwrN3yAX4Hwr3qUez1K1DbdO37byYqkI2pRq814ZmXERc4xHuKxB1ut7MxfHpPGLMPM1oOsJ1VzAgL57p_Uo18N2DfV2wXH537qZEs6K2P_zJOdf6J-A0-Pz7-eytPB8GQXVuNWUIOI78HydDIzr-CxvpmO7OR1o2n39TEkAw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qq-KLWj-jrUYRhEpokk02m8die3pYjtKq9G3ZbDZ6ILlye1ewf70z2c1hDhWkT_ews-QyN583M78BeJNhECBirtD6MY4JSlaizsUqqvJEoX4JnbGqWzZRTCbi_Lw88XtObd_t3pck3UwDoTS1i_2LunEqLvi-TQh3DdPgnDYT5NHVDdjKMJGhnq7Ts6-rMgIB9vtS5h-vDZzRukn-zSet90uuFU07XzS6d-23uA93fRgaHji52YYN0z6AW24x5c-H8GHco0jUIdrZ8HJqafjSj2yGGOiGHcDDtI38Z0i4E3M3JRFS2ym5R_sIvoyOPr__GPmVC5HmcbmIavqHQSvGmeJlnaMVTVNVCl43RWpK1PaqYHVqNK9SrlhCKOdCZRhlCN2UOm7YY9hsZ615CiGvRFXhhTgxKqtZrXKdsyqhmrFpTJEHEPe8l9rjkdNajB-yy0sEl44_EvkjiT_yKoC91ZULB8bxL-LX9INKArloqYvmm1paK8dnp_IgR9dNpooF8NYTNTN8uFZ-KAFfgXCxBpQ7A0rUQj04ftXLjaQjal1rzWxpZcJFyTFO4mkAT5wcrb48JpNFgRlvAMVAwlYEBP49PGmn3zsQcKrDC47PfdfLmfTWx_6dJ8_-i_ol3D45HMnj8eTTc7iTOjmNEr4Dm4v50uzCTX25mNr5i07pfgEQ5Szn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+web+visualizations+for+protein-protein+interaction+databases&rft.jtitle=BMC+bioinformatics&rft.au=Jeanquartier%2C+Fleur&rft.au=Jean-Quartier%2C+Claire&rft.au=Holzinger%2C+Andreas&rft.date=2015-06-16&rft.eissn=1471-2105&rft.volume=16&rft.spage=195&rft_id=info:doi/10.1186%2Fs12859-015-0615-z&rft_id=info%3Apmid%2F26077899&rft.externalDocID=26077899 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |