Integrated web visualizations for protein-protein interaction databases

Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein inter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 16; číslo 1; s. 195
Hlavní autoři: Jeanquartier, Fleur, Jean-Quartier, Claire, Holzinger, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 16.06.2015
BioMed Central Ltd
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. Results We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015 . Conclusions Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
AbstractList Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. Results We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on Conclusions Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing. Keywords: Visualization, Visual analysis, Network visualization, Protein-protein interaction, Systems biology
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.BACKGROUNDUnderstanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.We selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.RESULTSWe selected M=10 out of N=53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.CONCLUSIONSOnly some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. Results We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015 . Conclusions Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.
ArticleNumber 195
Audience Academic
Author Jeanquartier, Fleur
Holzinger, Andreas
Jean-Quartier, Claire
Author_xml – sequence: 1
  givenname: Fleur
  surname: Jeanquartier
  fullname: Jeanquartier, Fleur
  email: f.jeanquartier@hci-kdd.org
  organization: Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz
– sequence: 2
  givenname: Claire
  surname: Jean-Quartier
  fullname: Jean-Quartier, Claire
  organization: Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz
– sequence: 3
  givenname: Andreas
  surname: Holzinger
  fullname: Holzinger, Andreas
  organization: Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Institute for Information Systems & Computer Media Graz University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26077899$$D View this record in MEDLINE/PubMed
BookMark eNp9kl2L1DAUhoOsuB_6A7yRgjd60TVJ2yS9EZZF14EFwY_rcJqejlk6yZikq86vN7WzsiOyBHJC8rwvObznlBw575CQ54yeM6bEm8i4atqSsqakIm-7R-SE1ZKVnNHm6N75mJzGeEMpk4o2T8gxF1RK1bYn5GrlEq4DJOyLH9gVtzZOMNodJOtdLAYfim3wCa0r97WwWRHAzEDRQ4IOIsan5PEAY8Rn-3pGvr5_9-XyQ3n98Wp1eXFdGkHbVPacUmGgEhWItm9qITmHVol-kBxbWqtOVj1HIzouoGKsbhoFtVRcmaE1dKjOyNvFdzt1G-wNuhRg1NtgNxB-aQ9WH744-02v_a2uayGUqLLBq71B8N8njElvbDQ4juDQT1EzoVrBayZ4Rl8u6BpG1NYNPjuaGdcXTc2qRio5G57_h8qrx401ObDB5vsDwesDQWYS_kxrmGLUq8-fDtkX99v92-ddgBmQC2CCjzHgoI1Nf8LLv7CjZlTPo6KXUdF5VPQ8KnqXlewf5Z35Qxq-aGJm3RqDvvFTcDnwB0S_AXC70BE
CitedBy_id crossref_primary_10_3390_cancers15164167
crossref_primary_10_1186_s43141_023_00539_0
crossref_primary_10_3390_ijms20235847
crossref_primary_10_3390_ijms21020547
crossref_primary_10_3390_ijms19103173
crossref_primary_10_1016_j_neuron_2019_05_002
crossref_primary_10_1016_j_jmb_2022_167603
crossref_primary_10_1080_21655979_2022_2030557
crossref_primary_10_1002_jcb_29577
crossref_primary_10_1038_s41598_021_92091_5
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_3390_ijms19010183
crossref_primary_10_1186_s12918_016_0318_8
crossref_primary_10_2174_1574893613666181112130346
crossref_primary_10_1016_j_inffus_2021_01_008
crossref_primary_10_1515_cclm_2019_0626
crossref_primary_10_1016_j_bbrc_2022_05_040
crossref_primary_10_1186_s12014_022_09356_y
crossref_primary_10_3390_make4040047
crossref_primary_10_1111_aji_12971
crossref_primary_10_1007_s00299_024_03294_9
crossref_primary_10_1016_j_jbi_2024_104600
crossref_primary_10_1186_s40246_019_0223_5
crossref_primary_10_1016_j_micpath_2022_105737
crossref_primary_10_1002_widm_1554
crossref_primary_10_1177_20552076241271769
crossref_primary_10_3389_fphy_2020_00203
crossref_primary_10_3390_app8122669
crossref_primary_10_1186_s13040_018_0190_8
crossref_primary_10_1186_s13287_018_1050_7
crossref_primary_10_1007_s12539_017_0213_z
crossref_primary_10_1038_s41598_024_72748_7
crossref_primary_10_3389_fmed_2021_657918
crossref_primary_10_1093_brain_awac266
crossref_primary_10_1016_j_micpath_2021_105293
crossref_primary_10_1080_07391102_2020_1841681
crossref_primary_10_1186_s12859_020_3352_x
Cites_doi 10.1093/nar/gks1158
10.1126/science.1105136
10.1109/TVCG.2011.279
10.1186/1752-0509-5-S1-S1
10.1093/bib/bbq064
10.1186/1471-2105-14-322
10.1093/nar/gkl128
10.1093/bioinformatics/bti1016
10.1093/bioinformatics/bts283
10.1093/bioinformatics/bti1015
10.1109/MCG.2006.70
10.1186/gb-2007-8-5-r95
10.1093/nar/gkr1088
10.1007/s10209-007-0074-z
10.1093/nar/gkt1115
10.12688/f1000research.3-50.v1
10.1186/1471-2105-6-S4-S21
10.1186/1471-2105-15-129
10.1038/nmeth.f.301
10.1186/1471-2105-15-S6-I1
10.1186/1471-2105-14-S1-S1
10.1016/j.sbi.2013.07.005
10.1093/bioinformatics/bth253
10.1002/pmic.201400412
10.1002/pmic.200700131
10.1002/9780470050118.ecse561
10.1016/j.yexmp.2012.03.013
10.1093/nar/gks1094
10.1093/nar/gks1055
10.1186/1471-2105-7-S5-S19
10.1093/bioinformatics/bti273
10.1093/nar/gkq973
10.11113/jt.v63.1226
10.1117/12.911901
10.1186/1471-2105-9-S8-S2
10.1021/pr201211w
10.12688/f1000research.4510.2
10.1007/978-3-662-43968-5
10.1093/bioinformatics/btq430
10.1186/1471-2105-14-47
10.1007/978-94-007-6803-1
10.1093/bib/bbr069
10.1677/jme.1.01693
10.1093/bioinformatics/btq675
10.1186/1752-0509-2-104
10.1038/nature13302
10.1093/bib/bbp001
10.1093/nar/gkj126
10.1038/nmeth.2561
10.1007/978-3-642-40511-2_36
10.1145/2160718.2160738
10.1126/science.1135003
10.1093/nar/gkr930
10.1186/gb-2008-9-s2-s12
10.1159/000314161
10.1093/nar/gkt1100
ContentType Journal Article
Copyright Jeanquartier et al. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Copyright_xml – notice: Jeanquartier et al. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1186/s12859-015-0615-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID PMC4466863
A541357873
26077899
10_1186_s12859_015_0615_z
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c609t-d2006ca363a69d546722a986df72e9048b73d2ec6b26a3114558a47828cf9c0f3
IEDL.DBID RSV
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356132100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 02:01:24 EST 2025
Wed Oct 01 13:52:33 EDT 2025
Tue Nov 11 11:02:35 EST 2025
Tue Nov 04 18:20:27 EST 2025
Thu Nov 13 16:40:18 EST 2025
Thu Apr 03 06:55:24 EDT 2025
Sat Nov 29 05:39:58 EST 2025
Tue Nov 18 20:58:03 EST 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Network visualization
Visualization
Protein-protein interaction
Systems biology
Visual analysis
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-d2006ca363a69d546722a986df72e9048b73d2ec6b26a3114558a47828cf9c0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12859-015-0615-z
PMID 26077899
PQID 1689624162
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4466863
proquest_miscellaneous_1689624162
gale_infotracmisc_A541357873
gale_infotracacademiconefile_A541357873
gale_incontextgauss_ISR_A541357873
pubmed_primary_26077899
crossref_citationtrail_10_1186_s12859_015_0615_z
crossref_primary_10_1186_s12859_015_0615_z
springer_journals_10_1186_s12859_015_0615_z
PublicationCentury 2000
PublicationDate 20150616
2015-6-16
2015-Jun-16
PublicationDateYYYYMMDD 2015-06-16
PublicationDate_xml – month: 6
  year: 2015
  text: 20150616
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References GS Omenn (615_CR45) 2006; 314
E Moser (615_CR49) 2010; 86
C North (615_CR52) 2006; 26
SI O’Donoghue (615_CR4) 2010; 7
615_CR37
615_CR39
615_CR6
A Chatr-aryamontri (615_CR10) 2013; 41
A Holzinger (615_CR27) 2014
GC Koh (615_CR34) 2012; 11
PV Gopalacharyulu (615_CR48) 2005; 21
A Franceschini (615_CR66) 2013; 41
MS Kim (615_CR18) 2014; 509
RKR Kalathur (615_CR67) 2014; 42
M Albrecht (615_CR24) 2010
C Ware (615_CR12) 2012
EP Consortium (615_CR17) 2004; 306
Y Byun (615_CR41) 2003
A Calderone (615_CR63) 2013; 10
C Turkay (615_CR5) 2014
T Lammarsch (615_CR55) 2008
K Ono (615_CR57) 2014; 3
H Lam (615_CR54) 2012; 18
T Berggr̀d (615_CR19) 2007; 7
KR Brown (615_CR8) 2005; 21
A Droit (615_CR29) 2005; 34
615_CR46
615_CR47
N Gehlenborg (615_CR15) 2010; 7
615_CR42
615_CR43
S Carpendale (615_CR53) 2008
615_CR16
C Prieto (615_CR59) 2006; 34
615_CR11
615_CR56
A Kamburov (615_CR60) 2013; 41
615_CR58
E Oveland (615_CR38) 2015; 15
615_CR51
ME Smoot (615_CR14) 2011; 27
A Holzinger (615_CR13) 2007; 6
N Atias (615_CR32) 2012; 55
R Mosca (615_CR31) 2013; 23
A Prokop (615_CR44) 2013
X Zheng (615_CR50) 2012; 93
JM Berg (615_CR1) 2002
J Das (615_CR2) 2012; 28
615_CR26
615_CR28
615_CR22
615_CR23
M Krzywinski (615_CR25) 2012; 13
615_CR62
A Ben-Hur (615_CR30) 2005; 21
615_CR21
615_CR65
K Han (615_CR40) 2002
T Klingström (615_CR35) 2011; 12
615_CR61
D Szklarczyk (615_CR9) 2011; 39
CT Lopes (615_CR20) 2010; 26
N Tuncbag (615_CR33) 2009; 10
K Han (615_CR7) 2004; 20
L Licata (615_CR64) 2012; 40
615_CR3
GD Bader (615_CR36) 2006; 34
References_xml – volume-title: Information Visualization
  year: 2008
  ident: 615_CR53
– volume: 41
  start-page: D816
  year: 2013
  ident: 615_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1158
– volume: 306
  start-page: 636
  year: 2004
  ident: 615_CR17
  publication-title: Science
  doi: 10.1126/science.1105136
– volume: 18
  start-page: 1520
  year: 2012
  ident: 615_CR54
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2011.279
– ident: 615_CR43
  doi: 10.1186/1752-0509-5-S1-S1
– volume: 12
  start-page: 702
  year: 2011
  ident: 615_CR35
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbq064
– ident: 615_CR42
  doi: 10.1186/1471-2105-14-322
– volume: 34
  start-page: W298
  year: 2006
  ident: 615_CR59
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl128
– volume: 21
  start-page: i38
  year: 2005
  ident: 615_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1016
– volume: 28
  start-page: 1873
  year: 2012
  ident: 615_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts283
– volume: 21
  start-page: i177
  year: 2005
  ident: 615_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1015
– volume-title: Information Visualisation, 2008. IV ’08. 12th International Conference
  year: 2008
  ident: 615_CR55
– volume: 26
  start-page: 6
  year: 2006
  ident: 615_CR52
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/MCG.2006.70
– ident: 615_CR51
– ident: 615_CR62
  doi: 10.1186/gb-2007-8-5-r95
– ident: 615_CR21
  doi: 10.1093/nar/gkr1088
– volume: 6
  start-page: 31
  year: 2007
  ident: 615_CR13
  publication-title: Universal Access in the Information Society
  doi: 10.1007/s10209-007-0074-z
– ident: 615_CR61
  doi: 10.1093/nar/gkt1115
– ident: 615_CR22
  doi: 10.12688/f1000research.3-50.v1
– ident: 615_CR65
  doi: 10.1186/1471-2105-6-S4-S21
– volume-title: Biochemistry
  year: 2002
  ident: 615_CR1
– ident: 615_CR23
  doi: 10.1186/1471-2105-15-129
– volume: 7
  start-page: S2
  year: 2010
  ident: 615_CR4
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.301
– ident: 615_CR6
  doi: 10.1186/1471-2105-15-S6-I1
– volume-title: Information Visualization: Perception for Design
  year: 2012
  ident: 615_CR12
– ident: 615_CR26
  doi: 10.1186/1471-2105-14-S1-S1
– volume: 23
  start-page: 929
  year: 2013
  ident: 615_CR31
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2013.07.005
– volume: 20
  start-page: 2466
  year: 2004
  ident: 615_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth253
– volume: 15
  start-page: 1341
  year: 2015
  ident: 615_CR38
  publication-title: PROTEOMICS
  doi: 10.1002/pmic.201400412
– volume: 7
  start-page: 2833
  year: 2007
  ident: 615_CR19
  publication-title: PROTEOMICS
  doi: 10.1002/pmic.200700131
– ident: 615_CR28
  doi: 10.1002/9780470050118.ecse561
– volume: 93
  start-page: 111
  year: 2012
  ident: 615_CR50
  publication-title: Exp Mol Pathol
  doi: 10.1016/j.yexmp.2012.03.013
– volume: 41
  start-page: D808
  year: 2013
  ident: 615_CR66
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1094
– volume: 41
  start-page: D793
  year: 2013
  ident: 615_CR60
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1055
– ident: 615_CR3
  doi: 10.1186/1471-2105-7-S5-S19
– volume: 21
  start-page: 2076
  year: 2005
  ident: 615_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti273
– volume: 39
  start-page: D561
  year: 2011
  ident: 615_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq973
– ident: 615_CR16
  doi: 10.11113/jt.v63.1226
– ident: 615_CR58
  doi: 10.1117/12.911901
– volume-title: Graph Drawing. Volume 2528 of Lecture Notes in Computer Science
  year: 2002
  ident: 615_CR40
– ident: 615_CR47
  doi: 10.1186/1471-2105-9-S8-S2
– volume: 11
  start-page: 2014
  year: 2012
  ident: 615_CR34
  publication-title: J Proteome Res
  doi: 10.1021/pr201211w
– volume: 3
  start-page: 143
  year: 2014
  ident: 615_CR57
  publication-title: F1000Research
  doi: 10.12688/f1000research.4510.2
– volume-title: Interactive Knowledge Discovery and Data Mining in Biomedical Informatics
  year: 2014
  ident: 615_CR27
  doi: 10.1007/978-3-662-43968-5
– volume: 26
  start-page: 2347
  year: 2010
  ident: 615_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq430
– ident: 615_CR37
  doi: 10.1186/1471-2105-14-47
– volume-title: Systems Biology: Integrative Biology and Simulation Tools
  year: 2013
  ident: 615_CR44
  doi: 10.1007/978-94-007-6803-1
– volume-title: Interactive Knowledge Discovery and Data Mining in Biomedical Informatics
  year: 2014
  ident: 615_CR5
– volume: 13
  start-page: 627
  year: 2012
  ident: 615_CR25
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbr069
– volume: 34
  start-page: 263
  year: 2005
  ident: 615_CR29
  publication-title: J Mol Endocrinol
  doi: 10.1677/jme.1.01693
– volume: 27
  start-page: 431
  year: 2011
  ident: 615_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq675
– ident: 615_CR39
  doi: 10.1186/1752-0509-2-104
– volume: 509
  start-page: 575
  year: 2014
  ident: 615_CR18
  publication-title: Nature
  doi: 10.1038/nature13302
– volume-title: Graph Drawing. Volume 5849 of Lecture Notes in Computer Science
  year: 2010
  ident: 615_CR24
– volume: 10
  start-page: 217
  year: 2009
  ident: 615_CR33
  publication-title: Brief Bioinformatics
  doi: 10.1093/bib/bbp001
– volume: 34
  start-page: D504
  year: 2006
  ident: 615_CR36
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj126
– volume: 7
  start-page: S56
  year: 2010
  ident: 615_CR15
  publication-title: Nat Sethods
– volume: 10
  start-page: 690
  year: 2013
  ident: 615_CR63
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2561
– ident: 615_CR11
  doi: 10.1007/978-3-642-40511-2_36
– volume: 55
  start-page: 88
  year: 2012
  ident: 615_CR32
  publication-title: Commun ACM
  doi: 10.1145/2160718.2160738
– volume: 314
  start-page: 1696
  year: 2006
  ident: 615_CR45
  publication-title: Science
  doi: 10.1126/science.1135003
– volume: 40
  start-page: D857
  year: 2012
  ident: 615_CR64
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr930
– ident: 615_CR46
  doi: 10.1186/gb-2008-9-s2-s12
– volume: 86
  start-page: 22
  year: 2010
  ident: 615_CR49
  publication-title: Pharmacology
  doi: 10.1159/000314161
– volume-title: Computational Science? ICCS 2003. Volume 2659 of Lecture Notes in Computer Science
  year: 2003
  ident: 615_CR41
– ident: 615_CR56
– volume: 42
  start-page: D408
  year: 2014
  ident: 615_CR67
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1100
SSID ssj0017805
Score 2.3907132
Snippet Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein...
Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein...
Background Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Graphics
Computer Simulation
Databases, Protein
Humans
Internet
Life Sciences
Microarrays
Networks analysis
Protein Interaction Maps
Proteins - metabolism
Research Article
Software
Systems Biology
User-Computer Interface
Title Integrated web visualizations for protein-protein interaction databases
URI https://link.springer.com/article/10.1186/s12859-015-0615-z
https://www.ncbi.nlm.nih.gov/pubmed/26077899
https://www.proquest.com/docview/1689624162
https://pubmed.ncbi.nlm.nih.gov/PMC4466863
Volume 16
WOSCitedRecordID wos000356132100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9sq-CL3x_RGqIIghKaZLMfeazS6iEeoVU5fVk2m8QelJxc7gr2r3cm2RzmUEFfNg87S5LJfGZmfwvwPMUgQEXCoPVjAhOUNEOdi0xY8NigfimbsqI7bEJOp2o2y3K3j7sdut2HkmRnqTu1VuKgjQlrDVNfTqcR8PByB_Y4gc1Qin76eVM6IJB-V7787bKRA9o2w7_4oe0eya1Caed_jm_-15Pfghsu3AwOe_m4DVeq5g5c6w-g_HEX3k4GtIgyQHsaXMxb2mTptmYGGNAGHZDDvAndNSB8iWW_GyKg9lJyg-09-HR89PHNu9AdrRBaEWWrsKQ_CdYwwYzISo7WMklMpkRZy6TKUKsLycqksqJIhGExoZkrk2I0oWyd2ahm92G3WTTVQwhEoYoCF0RxZdKSlYZbzoqYasNVXUnuQTTwW1uHO07HX5zrLv9QQvf80cgfTfzRlx683Cz53oNu_I34GX1ETWAWDXXLfDPrttWT0xN9yNFFk0liHrxwRPUCb26N23yAr0D4VyPK_RElapsdTT8dZEXTFLWoNdVi3epYqExgPCQSDx70srN5eEwapcTM1gM5kqoNAYF8j2ea-VkH9k31diXwvq8G2dLOyrR_5smjf6J-DNeTXjjDWOzD7mq5rp7AVXuxmrdLH3bkTHaj8mHv9dE0P_G7Pxc4vpehT92yOY45_4rz-eRD_sXvNPIn8vkp9A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gaOQFUBEKqNWYmGga22673T4SAnIBL0bQ8LbZbrd4CemR2zsS-OuZabcXelETfbqHnU17c_N5M_MbgPcJBgEi5AqtH-OYoCQ56lyogiKNFOqX0AkrmmUT2XAoLi7yb26O23bd7l1JsrHUjVoL_tlGhLWGqW9K2wjS4O4RrCS0ZYdS9LOf89IBgfS78uVvr_Uc0KIZfuCHFnskFwqljf85Wv-vN9-ANRdu-vutfDyDJVM_hyftAsrbF_Bl0KFFlD7aU_9mZGnI0o1m-hjQ-g2Qw6gO3KdP-BKTdhrCp_ZScoN2E34cHZ4fHAdutUKgeZhPg5L-SdCKcaZ4XqZoLeNY5YKXVRabHLW6yFgZG82LmCsWEZq5UAlGE0JXuQ4r9hKW63FttsHnhSgKvBBGRiUlK1WqU1ZEVBs2lclSD8KO31I73HFaf3Elm_xDcNnyRyJ_JPFH3nnwcX7lugXd-BvxO_oRJYFZ1NQtc6lm1srB2Xe5n6KLJpPEPPjgiKoxPlwrN3yAX4Hwr3qUez1K1DbdO37byYqkI2pRq814ZmXERc4xHuKxB1ut7MxfHpPGLMPM1oOsJ1VzAgL57p_Uo18N2DfV2wXH537qZEs6K2P_zJOdf6J-A0-Pz7-eytPB8GQXVuNWUIOI78HydDIzr-CxvpmO7OR1o2n39TEkAw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qq-KLWj-jrUYRhEpokk02m8die3pYjtKq9G3ZbDZ6ILlye1ewf70z2c1hDhWkT_ews-QyN583M78BeJNhECBirtD6MY4JSlaizsUqqvJEoX4JnbGqWzZRTCbi_Lw88XtObd_t3pck3UwDoTS1i_2LunEqLvi-TQh3DdPgnDYT5NHVDdjKMJGhnq7Ts6-rMgIB9vtS5h-vDZzRukn-zSet90uuFU07XzS6d-23uA93fRgaHji52YYN0z6AW24x5c-H8GHco0jUIdrZ8HJqafjSj2yGGOiGHcDDtI38Z0i4E3M3JRFS2ym5R_sIvoyOPr__GPmVC5HmcbmIavqHQSvGmeJlnaMVTVNVCl43RWpK1PaqYHVqNK9SrlhCKOdCZRhlCN2UOm7YY9hsZ615CiGvRFXhhTgxKqtZrXKdsyqhmrFpTJEHEPe8l9rjkdNajB-yy0sEl44_EvkjiT_yKoC91ZULB8bxL-LX9INKArloqYvmm1paK8dnp_IgR9dNpooF8NYTNTN8uFZ-KAFfgXCxBpQ7A0rUQj04ftXLjaQjal1rzWxpZcJFyTFO4mkAT5wcrb48JpNFgRlvAMVAwlYEBP49PGmn3zsQcKrDC47PfdfLmfTWx_6dJ8_-i_ol3D45HMnj8eTTc7iTOjmNEr4Dm4v50uzCTX25mNr5i07pfgEQ5Szn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+web+visualizations+for+protein-protein+interaction+databases&rft.jtitle=BMC+bioinformatics&rft.au=Jeanquartier%2C+Fleur&rft.au=Jean-Quartier%2C+Claire&rft.au=Holzinger%2C+Andreas&rft.date=2015-06-16&rft.eissn=1471-2105&rft.volume=16&rft.spage=195&rft_id=info:doi/10.1186%2Fs12859-015-0615-z&rft_id=info%3Apmid%2F26077899&rft.externalDocID=26077899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon