Novel deep learning model for more accurate prediction of drug-drug interaction effects
Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or...
Uloženo v:
| Vydáno v: | BMC bioinformatics Ročník 20; číslo 1; s. 415 - 8 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
06.08.2019
BioMed Central Ltd BMC |
| Témata: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance.
Results
In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research.
Conclusions
We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. |
|---|---|
| AbstractList | Abstract Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance.BACKGROUNDPredicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance.In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research.RESULTSIn this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research.We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.CONCLUSIONSWe present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. Keywords: Drug-drug interaction, Deep learning, Autoencoder, Similarity profile |
| ArticleNumber | 415 |
| Audience | Academic |
| Author | Lee, Geonhee Park, Chihyun Ahn, Jaegyoon |
| Author_xml | – sequence: 1 givenname: Geonhee surname: Lee fullname: Lee, Geonhee organization: Department of Computer Science and Engineering, Incheon National University – sequence: 2 givenname: Chihyun surname: Park fullname: Park, Chihyun organization: Department of Computer Sciences, Yonsei University – sequence: 3 givenname: Jaegyoon orcidid: 0000-0002-7020-7002 surname: Ahn fullname: Ahn, Jaegyoon email: jgahn@inu.ac.kr organization: Department of Computer Science and Engineering, Incheon National University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31387547$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kluL1TAUhYuMOBf9Ab5IwRd96JhL07QvwjB4OTAoeMHHkKQ7NYc2OSbpoP_e1I7DVGQIJGHnWys7YZ0WR847KIqnGJ1j3DavIiYt6yqEu4oiTCv0oDjBNccVwYgd3dkfF6cx7hHCvEXsUXFMMW05q_lJ8e2Dv4ax7AEO5QgyOOuGcvJ9rhkf8i5AKbWeg0xQHgL0VifrXelN2Yd5qJaptC5BkOsBGAM6xcfFQyPHCE9u1rPi69s3Xy7fV1cf3-0uL64q3aAu5VmTTtGeoRo4dFxirpBhJJdx3QJtVMuINrhpJXCitKaKqh4zXEvoFOvoWbFbfXsv9-IQ7CTDL-GlFX8KPgxChmT1CAJQw6ihSNVU15SArBXnWqleIsIUQ9nr9ep1mNUEvQaXghw3ptsTZ7-LwV-LpsldtjwbvLgxCP7HDDGJyUYN4ygd-DkKQpquRoSyNqPPV3SQuTXrjM-OesHFBesa1tWELNT5f6g8episzmEwNtc3gpcbQWYS_EyDnGMUu8-ftuyzu8-9feffcGQAr4AOPsYA5hbBSCwBFGsARQ6gWAIolj_k_2i0TXJJRu7cjvcqyaqM-RY3QBB7PweXw3OP6DfKcu2f |
| CitedBy_id | crossref_primary_10_1007_s10489_025_06259_x crossref_primary_10_1109_TBDATA_2025_3536924 crossref_primary_10_1007_s10928_022_09820_0 crossref_primary_10_1016_j_isci_2024_109148 crossref_primary_10_1186_s13321_022_00659_8 crossref_primary_10_1093_bib_bbad235 crossref_primary_10_1016_j_ab_2022_114631 crossref_primary_10_1016_j_eswa_2022_119312 crossref_primary_10_1186_s12859_023_05242_y crossref_primary_10_3389_fphar_2024_1354540 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_1109_JBHI_2023_3246225 crossref_primary_10_1016_j_heliyon_2024_e38726 crossref_primary_10_3390_pharmaceutics15102469 crossref_primary_10_1016_j_compbiomed_2025_110467 crossref_primary_10_1016_j_jpha_2024_101159 crossref_primary_10_3389_frai_2023_1069353 crossref_primary_10_1007_s13755_023_00250_x crossref_primary_10_1016_j_compbiomed_2024_108076 crossref_primary_10_1016_j_knosys_2023_111337 crossref_primary_10_3390_ijms22041809 crossref_primary_10_1016_j_csbj_2022_04_021 crossref_primary_10_1055_a_2682_5167 crossref_primary_10_1093_bib_bbac296 crossref_primary_10_1093_bib_bbad385 crossref_primary_10_1109_JBHI_2025_3561009 crossref_primary_10_1155_2022_7818480 crossref_primary_10_1109_ACCESS_2025_3547594 crossref_primary_10_1093_bib_bbac209 crossref_primary_10_1142_S0219720025500039 crossref_primary_10_1093_bib_bbab514 crossref_primary_10_1109_TCBB_2022_3172421 crossref_primary_10_1016_j_compbiolchem_2023_108001 crossref_primary_10_1109_TCBB_2024_3385796 crossref_primary_10_1093_bib_bbac602 crossref_primary_10_1016_j_neucom_2023_127203 crossref_primary_10_1109_ACCESS_2023_3315241 crossref_primary_10_3390_molecules27093004 crossref_primary_10_1007_s10489_024_05832_0 crossref_primary_10_3390_life12020319 crossref_primary_10_1007_s41066_022_00315_4 crossref_primary_10_1109_TCBB_2021_3081268 crossref_primary_10_3390_electronics13152935 crossref_primary_10_1016_j_compbiomed_2024_109496 crossref_primary_10_1016_j_compbiomed_2024_108642 crossref_primary_10_1007_s10462_022_10306_1 crossref_primary_10_1007_s12539_022_00524_0 crossref_primary_10_1186_s12967_024_05372_8 crossref_primary_10_1016_j_jbi_2025_104772 crossref_primary_10_1038_s41598_024_54409_x crossref_primary_10_3233_SW_233324 crossref_primary_10_1016_j_asoc_2024_112242 crossref_primary_10_1186_s12859_022_04612_2 crossref_primary_10_1007_s11814_023_1377_3 crossref_primary_10_1186_s12859_021_04398_9 crossref_primary_10_2174_1574893616666211119093100 crossref_primary_10_1016_j_dmd_2025_100137 crossref_primary_10_1016_j_eswa_2023_122500 crossref_primary_10_1038_s41598_021_97193_8 crossref_primary_10_1038_s41598_022_05132_y crossref_primary_10_1016_j_artmed_2025_103275 crossref_primary_10_1089_cmb_2024_0476 crossref_primary_10_1093_bib_bbad041 crossref_primary_10_1109_ACCESS_2024_3372188 crossref_primary_10_3389_fphar_2021_814858 crossref_primary_10_1186_s13321_025_01093_2 crossref_primary_10_1016_j_ymeth_2024_01_009 crossref_primary_10_3390_ijms24054500 crossref_primary_10_3389_fphar_2022_1021329 crossref_primary_10_1093_bib_bbad445 crossref_primary_10_1093_bib_bbab421 crossref_primary_10_1021_acs_jcim_5c00043 crossref_primary_10_1186_s12859_021_04241_1 crossref_primary_10_1007_s10910_022_01331_0 crossref_primary_10_1016_j_ymeth_2023_10_007 crossref_primary_10_1016_j_imu_2023_101429 crossref_primary_10_1186_s12859_023_05212_4 crossref_primary_10_1038_s41746_022_00639_0 crossref_primary_10_1093_bfgp_elae052 crossref_primary_10_1093_bib_bbac427 crossref_primary_10_3390_pharmaceutics16010003 crossref_primary_10_3389_fphar_2021_794205 crossref_primary_10_1016_j_ins_2021_09_008 crossref_primary_10_3389_fgene_2020_01000 crossref_primary_10_1109_JBHI_2023_3343911 crossref_primary_10_1109_TKDE_2020_2978055 crossref_primary_10_1021_acs_jcim_5c00913 crossref_primary_10_1007_s41870_024_02314_x |
| Cites_doi | 10.1038/75556 10.21236/ADA164453 10.1093/nar/gkx1037 10.1038/msb.2012.26 10.1038/srep12339 10.1038/nprot.2014.151 10.1136/amiajnl-2011-000214 10.1126/science.132.3434.1115 10.1136/amiajnl-2013-002512 10.1371/journal.pone.0058321 10.1371/journal.pcbi.1002998 10.1177/0962280215574320 10.1136/amiajnl-2011-000612 10.1016/S0140-6736(00)02799-9 10.1093/nar/gkw1102 10.1038/nm.3954 10.1371/journal.pone.0098426 10.1002/prp2.149 10.1161/CIRCULATIONAHA.109.192704 10.1186/s12916-016-0553-2 10.1371/journal.pone.0140816 10.1021/ci100050t 10.1073/pnas.1803294115 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION NPM ISR 7X8 5PM DOA |
| DOI | 10.1186/s12859-019-3013-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_e0653f30b43c432ea4b77cbbda025b50 PMC6685287 A596594228 31387547 10_1186_s12859_019_3013_0 |
| Genre | Journal Article |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GrantInformation_xml | – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education grantid: NRF-2016R1D1A1B03934135 – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT grantid: NRF-2019R1A2C3005212 – fundername: ; grantid: NRF-2016R1D1A1B03934135 – fundername: ; grantid: NRF-2019R1A2C3005212 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 M0N NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c609t-c6c29b3d504e7e97a17b0f526c2148e36b852cf168ae72bcc3b3bd1514ae9b593 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479193600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Mon Nov 10 04:27:15 EST 2025 Tue Nov 04 02:02:21 EST 2025 Thu Oct 02 05:40:46 EDT 2025 Tue Nov 11 09:52:01 EST 2025 Tue Nov 04 17:42:55 EST 2025 Thu Nov 13 14:17:44 EST 2025 Wed Feb 19 02:32:45 EST 2025 Sat Nov 29 05:40:04 EST 2025 Tue Nov 18 21:23:56 EST 2025 Sat Sep 06 07:27:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Similarity profile Drug-drug interaction Autoencoder |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c609t-c6c29b3d504e7e97a17b0f526c2148e36b852cf168ae72bcc3b3bd1514ae9b593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7020-7002 |
| OpenAccessLink | https://doaj.org/article/e0653f30b43c432ea4b77cbbda025b50 |
| PMID | 31387547 |
| PQID | 2269402358 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e0653f30b43c432ea4b77cbbda025b50 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6685287 proquest_miscellaneous_2269402358 gale_infotracmisc_A596594228 gale_infotracacademiconefile_A596594228 gale_incontextgauss_ISR_A596594228 pubmed_primary_31387547 crossref_primary_10_1186_s12859_019_3013_0 crossref_citationtrail_10_1186_s12859_019_3013_0 springer_journals_10_1186_s12859_019_3013_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-06 |
| PublicationDateYYYYMMDD | 2019-08-06 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | J Huang (3013_CR13) 2013; 9 S Vilar (3013_CR9) 2013; 8 F Cheng (3013_CR11) 2014; 21 H Gao (3013_CR6) 2015; 21 S Vilar (3013_CR10) 2014; 9 K Park (3013_CR14) 2015; 10 P Zhang (3013_CR12) 2015; 5 J Foucquier (3013_CR1) 2015; 3 H-B Fang (3013_CR7) 2017; 26 JY Ryu (3013_CR15) 2018; 115 3013_CR16 M Ashburner (3013_CR19) 2000; 25 DJ Rogers (3013_CR24) 1960; 132 DS Wishart (3013_CR17) 2017; 46 S Phansalkar (3013_CR21) 2012; 19 D Rogers (3013_CR25) 2010; 50 A Chatr-Aryamontri (3013_CR18) 2017; 45 LT Drye (3013_CR23) 2014; 9 IJ Onakpoya (3013_CR5) 2016; 14 BJ Drew (3013_CR22) 2010; 121 Nicholas P Tatonetti (3013_CR3) 2012; 19 3013_CR27 3013_CR4 IR Edwards (3013_CR2) 2000; 356 A Gottlieb (3013_CR8) 2012; 8 Consortium GO (3013_CR20) 2016; 45 3013_CR26 |
| References_xml | – volume: 25 start-page: 25 issue: 1 year: 2000 ident: 3013_CR19 publication-title: Nat Genet doi: 10.1038/75556 – ident: 3013_CR16 doi: 10.21236/ADA164453 – volume: 46 start-page: D1074 issue: D1 year: 2017 ident: 3013_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 8 start-page: 592 issue: 1 year: 2012 ident: 3013_CR8 publication-title: Mol Syst Biol doi: 10.1038/msb.2012.26 – volume: 5 year: 2015 ident: 3013_CR12 publication-title: Sci Rep doi: 10.1038/srep12339 – volume: 9 start-page: 2147 issue: 9 year: 2014 ident: 3013_CR10 publication-title: Nat Protoc doi: 10.1038/nprot.2014.151 – ident: 3013_CR27 – volume: 19 start-page: 79 issue: 1 year: 2012 ident: 3013_CR3 publication-title: Journal of the American Medical Informatics Association doi: 10.1136/amiajnl-2011-000214 – volume: 45 start-page: D331 issue: D1 year: 2016 ident: 3013_CR20 publication-title: Nucleic Acids Res – volume: 132 start-page: 1115 issue: 3434 year: 1960 ident: 3013_CR24 publication-title: Science doi: 10.1126/science.132.3434.1115 – volume: 21 start-page: e278 issue: e2 year: 2014 ident: 3013_CR11 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002512 – ident: 3013_CR4 – volume: 8 start-page: e58321 issue: 3 year: 2013 ident: 3013_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0058321 – volume: 9 start-page: e1002998 issue: 3 year: 2013 ident: 3013_CR13 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002998 – volume: 26 start-page: 1261 issue: 3 year: 2017 ident: 3013_CR7 publication-title: Stat Methods Med Res doi: 10.1177/0962280215574320 – volume: 19 start-page: 735 issue: 5 year: 2012 ident: 3013_CR21 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2011-000612 – volume: 356 start-page: 1255 issue: 9237 year: 2000 ident: 3013_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(00)02799-9 – volume: 45 start-page: D369 issue: D1 year: 2017 ident: 3013_CR18 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1102 – ident: 3013_CR26 – volume: 21 start-page: 1318 issue: 11 year: 2015 ident: 3013_CR6 publication-title: Nat Med doi: 10.1038/nm.3954 – volume: 9 start-page: e98426 issue: 6 year: 2014 ident: 3013_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0098426 – volume: 3 start-page: e00149 issue: 3 year: 2015 ident: 3013_CR1 publication-title: Pharmacol Res Perspect doi: 10.1002/prp2.149 – volume: 121 start-page: 1047 issue: 8 year: 2010 ident: 3013_CR22 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.192704 – volume: 14 start-page: 10 issue: 1 year: 2016 ident: 3013_CR5 publication-title: BMC Med doi: 10.1186/s12916-016-0553-2 – volume: 10 start-page: e0140816 issue: 10 year: 2015 ident: 3013_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0140816 – volume: 50 start-page: 742 issue: 5 year: 2010 ident: 3013_CR25 publication-title: J Chem Inf Model doi: 10.1021/ci100050t – volume: 115 start-page: E4304 issue: 18 year: 2018 ident: 3013_CR15 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1803294115 |
| SSID | ssj0017805 |
| Score | 2.6061504 |
| Snippet | Background
Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational... Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches... Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational... Abstract Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 415 |
| SubjectTerms | Algorithms Autoencoder Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Deep learning Drug interactions Drug-drug interaction Genes Legal fees Life Sciences Machine Learning and Artificial Intelligence in Bioinformatics Mathematical models Methodology Methodology Article Microarrays Novels Online health care information services Pharmaceutical industry Similarity profile |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Kvjit97qKVEEQSnXTdI2fTzFQ18WufPj3kImTdaDo13a7cH998602cWeH6AveUgmpTOZSTLM5DeMvZSoB0IGlaRl0ImywScAuUu0AO3BphBCNRSbKBYLfXJSforvuLtNtvsmJDns1INZ63y_mxPWGrq-FKunkgRX2TU87TRZ49Hx123ogED6Y_jyt9MmB9CA0__rbvzTcXQ5VfJSvHQ4hg5v_xcDd9iteOvkB6Oa3GVXfH2P3RjrUF7cZ98Wzbk_45X3Kx7LSCz5UCOH452WUy4ut871BCvBVy3Fdmg9eRN41fbLhBpOwBPt-EyCxyyRB-zL4fvP7z4kseJC4vK0XGPrRAmyylLlC18Wdl5AGjKB3eg2eZmDzoQL81xbXwhwToKECi8NyvoSslI-ZDt1U_tdxtFJF1Y7UOhwqVKDFl4CTvI2tQG0mrF0swzGRThyqopxZga3ROdmlJdBeRmSl0ln7PV2ymrE4vgb8Vta2y0hwWgPHU27NNEqjSdk3iBTUNIpif-moCgcQGXxKggZfuQFaYYhoIyaMnGWtu868_H4yBxkBMVIAGoz9ioShQY5cDY-bEA5ELbWhHJvQomW7CbDzzcKaGiI0t9q3_SdEfTemJCJkObRqJBbxuRcos-pihkrJqo64Xw6Up9-H4DE8xyXU-PMNxuFNXEH6_4s2Mf_RP2E3RSk8ZRkk--xnXXb-6fsujtfn3bts8FyfwB-XD-o priority: 102 providerName: Springer Nature |
| Title | Novel deep learning model for more accurate prediction of drug-drug interaction effects |
| URI | https://link.springer.com/article/10.1186/s12859-019-3013-0 https://www.ncbi.nlm.nih.gov/pubmed/31387547 https://www.proquest.com/docview/2269402358 https://pubmed.ncbi.nlm.nih.gov/PMC6685287 https://doaj.org/article/e0653f30b43c432ea4b77cbbda025b50 |
| Volume | 20 |
| WOSCitedRecordID | wos000479193600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (ProQuest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aFXwpfnu1HlEEQVm6l2Q32cdWWizisVz9OH0JSTY5C2XvuL0r-N87s5s7uhX1xZeBTSawmZl8DDP5DSGvONgB40EkaRFUIkzwibW5SxSzyluT2hCqttiEHI_VdFqUV0p9YU5YBw_cCe7AI3hq4KkV3AnOvBFWSmdtZeC0tp23DreejTMV4weI1B9jmCOVHzQjxGkDtxnj_FjOoHcKtWD9v2_JV86k6_mS14Km7Vl0co_sxkskPex-_j654esH5E5XVvLnQ_J1PL_0F7TyfkFjVYgZbUveULiiUkytpca5NaJE0MUSQzWoHjoPtFquZwkSijgSy-7VA41JH4_I55PjT-_eJ7GAQuLytFgBdaywvMpS4aUvpBlJm4aMQTN4QZ7nVmXMhVGujJfMOscttxXcAYTxhc0K_pjs1PPaPyUUfG5mlLMC_CdRKKuY5xYGeZOaYJUYkHQjUO0iujgWubjQrZehct3pQIMONOpApwPyZjtk0UFr_I35CLW0ZURU7LYBbEVHW9H_spUBeYk61oh7UWNizcysm0afnk30YYbIioiHNiCvI1OYwwycie8UQA4IldXj3O9xwsJ0ve4XG1PS2IXZbLWfrxvN8PkwAg0Bz5POtLYT4yMOLqSQAyJ7Rtebeb-nPv_R4oLnOahTwci3G_PUcUNq_izYvf8h2GfkLsPFhak0-T7ZWS3X_jm57S5X581ySG7KqWypGpJbR8fjcjJslyvQDzIZYr5tCbTMvkN_efqx_AZfk7MvvwC8pkVP |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDI9ggMYL34ODAQEhIYEqek3apo8DMW1inNA2YG9RnCbHpKk9tddJ_PfYbe5Ex4cEL3lInKp2nA_L9s-MvRCoB4nwMooLryJpvIsAMhupBJQDE4P3ZV9sIp_N1MlJ8SnkcberaPeVS7I_qfttrbI37ZSw1tD0JV89lSS4zK5IvLAoju_w6MvadUAg_cF9-dtpowuox-n_9TT-6Tq6GCp5wV_aX0O7N_-LgVvsRnh18p1BTW6zS666w64NdSi_32VfZ_W5O-OlcwseykjMeV8jh-ObllMsLjfWdgQrwRcN-XZoPXntedl084gaTsATzZAmwUOUyD32eff98bu9KFRciGwWF0tsbVKAKNNYutwVuZnmEPs0wW40m5zIQKWJ9dNMGZcnYK0AASU-GqRxBaSF2GIbVV25B4yjkZ4YZUGiwSULBSpxAnCSM7HxoOSExatl0DbAkVNVjDPdmyUq04O8NMpLk7x0PGGv1lMWAxbH34jf0tquCQlGu--om7kOu1I7Qub1IgYprBT4bxLy3AKUBp-CkOJHnpNmaALKqCgSZ266ttX7R4d6JyUoRgJQm7CXgcjXyIE1IbEB5UDYWiPK7REl7mQ7Gn62UkBNQxT-Vrm6a3VC-caETIQ09weFXDMmpgJtTplPWD5S1RHn45Hq9FsPJJ5luJwKZ75eKawOJ1j7Z8E-_Cfqp2xz7_jjgT7Yn314xK4npP0UcJNts41l07nH7Ko9X562zZN-F_8Ae0pCjA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagQMUL97FQwCAkJFDUbOwkzmM5VlSgVUU5-mZ5HHtbqUpWyW4l_j0zibMi5ZAQL36wx1E8Hh-jGX8fY88F2kEivIziwqtIGu8igMxGKgHlwMTgfdmRTeTzuTo6Kg4Cz2k7ZLsPIcn-TQOhNFWr3WXp-yWust12Srhr6AZT3J7oCS6yS5I4g8hdP_y6CSMQYH8IZf622-gw6jD7f92ZfzqazqdNnouddkfS7Pp_D-YGuxZuo3yvN5-b7IKrbrErPT_l99vs27w-c6e8dG7JA73EgnfcORzvupxydLmxdk1wE3zZUMyH5pnXnpfNehFRwQmQoumfT_CQPXKHfZm9-_zmfRSYGCKbxcUKS5sUIMo0li53RW6mOcQ-TbAa3SknMlBpYv00U8blCVgrQECJlwlpXAFpIe6yraqu3H3G0XlPjLIg0RGThQKVOAHYyZnYeFBywuJhSrQNMOXElnGqO3dFZbrXl0Z9adKXjifs5abLssfo-Jvwa5rnjSDBa3cVdbPQYbVqR4i9XsQghZUC_01CnluA0uAVEVL8yDOyEk0AGhVl6CzMum31_uEnvZcSRCMBq03YiyDkaxyBNeHBA-qBMLdGkjsjSVzhdtT8dDBGTU2UFle5et3qhN4hE2IRytzrjXMzMDEV6IvKfMLykdmORj5uqU6OO4DxLMPpVNjz1WC8Ouxs7Z8V--CfpJ-w7YO3M_1xf_7hIbuakPFTHk62w7ZWzdo9Ypft2eqkbR53C_oH5adLcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+deep+learning+model+for+more+accurate+prediction+of+drug-drug+interaction+effects&rft.jtitle=BMC+bioinformatics&rft.au=Lee%2C+Geonhee&rft.au=Park%2C+Chihyun&rft.au=Ahn%2C+Jaegyoon&rft.date=2019-08-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=20&rft_id=info:doi/10.1186%2Fs12859-019-3013-0&rft_id=info%3Apmid%2F31387547&rft.externalDocID=PMC6685287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |