Novel deep learning model for more accurate prediction of drug-drug interaction effects

Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 20; číslo 1; s. 415 - 8
Hlavní autoři: Lee, Geonhee, Park, Chihyun, Ahn, Jaegyoon
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 06.08.2019
BioMed Central Ltd
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
AbstractList Abstract Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance.BACKGROUNDPredicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance.In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research.RESULTSIn this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research.We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.CONCLUSIONSWe present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects.
Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches to predict the effect of DDIs have been proposed, with the aim of reducing the effort of identifying these interactions in vivo or in vitro, but room remains for improvement in prediction performance. Results In this study, we propose a novel deep learning model to predict the effect of DDIs more accurately.. The proposed model uses autoencoders and a deep feed-forward network that are trained using the structural similarity profiles (SSP), Gene Ontology (GO) term similarity profiles (GSP), and target gene similarity profiles (TSP) of known drug pairs to predict the pharmacological effects of DDIs. The results show that GSP and TSP increase the prediction accuracy when using SSP alone, and the autoencoder is more effective than PCA for reducing the dimensions of each profile. Our model showed better performance than the existing methods, and identified a number of novel DDIs that are supported by medical databases or existing research. Conclusions We present a novel deep learning model for more accurate prediction of DDIs and their effects, which may assist in future research to discover novel DDIs and their pharmacological effects. Keywords: Drug-drug interaction, Deep learning, Autoencoder, Similarity profile
ArticleNumber 415
Audience Academic
Author Lee, Geonhee
Park, Chihyun
Ahn, Jaegyoon
Author_xml – sequence: 1
  givenname: Geonhee
  surname: Lee
  fullname: Lee, Geonhee
  organization: Department of Computer Science and Engineering, Incheon National University
– sequence: 2
  givenname: Chihyun
  surname: Park
  fullname: Park, Chihyun
  organization: Department of Computer Sciences, Yonsei University
– sequence: 3
  givenname: Jaegyoon
  orcidid: 0000-0002-7020-7002
  surname: Ahn
  fullname: Ahn, Jaegyoon
  email: jgahn@inu.ac.kr
  organization: Department of Computer Science and Engineering, Incheon National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31387547$$D View this record in MEDLINE/PubMed
BookMark eNp9kluL1TAUhYuMOBf9Ab5IwRd96JhL07QvwjB4OTAoeMHHkKQ7NYc2OSbpoP_e1I7DVGQIJGHnWys7YZ0WR847KIqnGJ1j3DavIiYt6yqEu4oiTCv0oDjBNccVwYgd3dkfF6cx7hHCvEXsUXFMMW05q_lJ8e2Dv4ax7AEO5QgyOOuGcvJ9rhkf8i5AKbWeg0xQHgL0VifrXelN2Yd5qJaptC5BkOsBGAM6xcfFQyPHCE9u1rPi69s3Xy7fV1cf3-0uL64q3aAu5VmTTtGeoRo4dFxirpBhJJdx3QJtVMuINrhpJXCitKaKqh4zXEvoFOvoWbFbfXsv9-IQ7CTDL-GlFX8KPgxChmT1CAJQw6ihSNVU15SArBXnWqleIsIUQ9nr9ep1mNUEvQaXghw3ptsTZ7-LwV-LpsldtjwbvLgxCP7HDDGJyUYN4ygd-DkKQpquRoSyNqPPV3SQuTXrjM-OesHFBesa1tWELNT5f6g8episzmEwNtc3gpcbQWYS_EyDnGMUu8-ftuyzu8-9feffcGQAr4AOPsYA5hbBSCwBFGsARQ6gWAIolj_k_2i0TXJJRu7cjvcqyaqM-RY3QBB7PweXw3OP6DfKcu2f
CitedBy_id crossref_primary_10_1007_s10489_025_06259_x
crossref_primary_10_1109_TBDATA_2025_3536924
crossref_primary_10_1007_s10928_022_09820_0
crossref_primary_10_1016_j_isci_2024_109148
crossref_primary_10_1186_s13321_022_00659_8
crossref_primary_10_1093_bib_bbad235
crossref_primary_10_1016_j_ab_2022_114631
crossref_primary_10_1016_j_eswa_2022_119312
crossref_primary_10_1186_s12859_023_05242_y
crossref_primary_10_3389_fphar_2024_1354540
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1109_JBHI_2023_3246225
crossref_primary_10_1016_j_heliyon_2024_e38726
crossref_primary_10_3390_pharmaceutics15102469
crossref_primary_10_1016_j_compbiomed_2025_110467
crossref_primary_10_1016_j_jpha_2024_101159
crossref_primary_10_3389_frai_2023_1069353
crossref_primary_10_1007_s13755_023_00250_x
crossref_primary_10_1016_j_compbiomed_2024_108076
crossref_primary_10_1016_j_knosys_2023_111337
crossref_primary_10_3390_ijms22041809
crossref_primary_10_1016_j_csbj_2022_04_021
crossref_primary_10_1055_a_2682_5167
crossref_primary_10_1093_bib_bbac296
crossref_primary_10_1093_bib_bbad385
crossref_primary_10_1109_JBHI_2025_3561009
crossref_primary_10_1155_2022_7818480
crossref_primary_10_1109_ACCESS_2025_3547594
crossref_primary_10_1093_bib_bbac209
crossref_primary_10_1142_S0219720025500039
crossref_primary_10_1093_bib_bbab514
crossref_primary_10_1109_TCBB_2022_3172421
crossref_primary_10_1016_j_compbiolchem_2023_108001
crossref_primary_10_1109_TCBB_2024_3385796
crossref_primary_10_1093_bib_bbac602
crossref_primary_10_1016_j_neucom_2023_127203
crossref_primary_10_1109_ACCESS_2023_3315241
crossref_primary_10_3390_molecules27093004
crossref_primary_10_1007_s10489_024_05832_0
crossref_primary_10_3390_life12020319
crossref_primary_10_1007_s41066_022_00315_4
crossref_primary_10_1109_TCBB_2021_3081268
crossref_primary_10_3390_electronics13152935
crossref_primary_10_1016_j_compbiomed_2024_109496
crossref_primary_10_1016_j_compbiomed_2024_108642
crossref_primary_10_1007_s10462_022_10306_1
crossref_primary_10_1007_s12539_022_00524_0
crossref_primary_10_1186_s12967_024_05372_8
crossref_primary_10_1016_j_jbi_2025_104772
crossref_primary_10_1038_s41598_024_54409_x
crossref_primary_10_3233_SW_233324
crossref_primary_10_1016_j_asoc_2024_112242
crossref_primary_10_1186_s12859_022_04612_2
crossref_primary_10_1007_s11814_023_1377_3
crossref_primary_10_1186_s12859_021_04398_9
crossref_primary_10_2174_1574893616666211119093100
crossref_primary_10_1016_j_dmd_2025_100137
crossref_primary_10_1016_j_eswa_2023_122500
crossref_primary_10_1038_s41598_021_97193_8
crossref_primary_10_1038_s41598_022_05132_y
crossref_primary_10_1016_j_artmed_2025_103275
crossref_primary_10_1089_cmb_2024_0476
crossref_primary_10_1093_bib_bbad041
crossref_primary_10_1109_ACCESS_2024_3372188
crossref_primary_10_3389_fphar_2021_814858
crossref_primary_10_1186_s13321_025_01093_2
crossref_primary_10_1016_j_ymeth_2024_01_009
crossref_primary_10_3390_ijms24054500
crossref_primary_10_3389_fphar_2022_1021329
crossref_primary_10_1093_bib_bbad445
crossref_primary_10_1093_bib_bbab421
crossref_primary_10_1021_acs_jcim_5c00043
crossref_primary_10_1186_s12859_021_04241_1
crossref_primary_10_1007_s10910_022_01331_0
crossref_primary_10_1016_j_ymeth_2023_10_007
crossref_primary_10_1016_j_imu_2023_101429
crossref_primary_10_1186_s12859_023_05212_4
crossref_primary_10_1038_s41746_022_00639_0
crossref_primary_10_1093_bfgp_elae052
crossref_primary_10_1093_bib_bbac427
crossref_primary_10_3390_pharmaceutics16010003
crossref_primary_10_3389_fphar_2021_794205
crossref_primary_10_1016_j_ins_2021_09_008
crossref_primary_10_3389_fgene_2020_01000
crossref_primary_10_1109_JBHI_2023_3343911
crossref_primary_10_1109_TKDE_2020_2978055
crossref_primary_10_1021_acs_jcim_5c00913
crossref_primary_10_1007_s41870_024_02314_x
Cites_doi 10.1038/75556
10.21236/ADA164453
10.1093/nar/gkx1037
10.1038/msb.2012.26
10.1038/srep12339
10.1038/nprot.2014.151
10.1136/amiajnl-2011-000214
10.1126/science.132.3434.1115
10.1136/amiajnl-2013-002512
10.1371/journal.pone.0058321
10.1371/journal.pcbi.1002998
10.1177/0962280215574320
10.1136/amiajnl-2011-000612
10.1016/S0140-6736(00)02799-9
10.1093/nar/gkw1102
10.1038/nm.3954
10.1371/journal.pone.0098426
10.1002/prp2.149
10.1161/CIRCULATIONAHA.109.192704
10.1186/s12916-016-0553-2
10.1371/journal.pone.0140816
10.1021/ci100050t
10.1073/pnas.1803294115
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s12859-019-3013-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 8
ExternalDocumentID oai_doaj_org_article_e0653f30b43c432ea4b77cbbda025b50
PMC6685287
A596594228
31387547
10_1186_s12859_019_3013_0
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
  grantid: NRF-2016R1D1A1B03934135
– fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT
  grantid: NRF-2019R1A2C3005212
– fundername: ;
  grantid: NRF-2016R1D1A1B03934135
– fundername: ;
  grantid: NRF-2019R1A2C3005212
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
M0N
NPM
7X8
5PM
ID FETCH-LOGICAL-c609t-c6c29b3d504e7e97a17b0f526c2148e36b852cf168ae72bcc3b3bd1514ae9b593
IEDL.DBID DOA
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479193600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:27:15 EST 2025
Tue Nov 04 02:02:21 EST 2025
Thu Oct 02 05:40:46 EDT 2025
Tue Nov 11 09:52:01 EST 2025
Tue Nov 04 17:42:55 EST 2025
Thu Nov 13 14:17:44 EST 2025
Wed Feb 19 02:32:45 EST 2025
Sat Nov 29 05:40:04 EST 2025
Tue Nov 18 21:23:56 EST 2025
Sat Sep 06 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Similarity profile
Drug-drug interaction
Autoencoder
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-c6c29b3d504e7e97a17b0f526c2148e36b852cf168ae72bcc3b3bd1514ae9b593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7020-7002
OpenAccessLink https://doaj.org/article/e0653f30b43c432ea4b77cbbda025b50
PMID 31387547
PQID 2269402358
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_e0653f30b43c432ea4b77cbbda025b50
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6685287
proquest_miscellaneous_2269402358
gale_infotracmisc_A596594228
gale_infotracacademiconefile_A596594228
gale_incontextgauss_ISR_A596594228
pubmed_primary_31387547
crossref_primary_10_1186_s12859_019_3013_0
crossref_citationtrail_10_1186_s12859_019_3013_0
springer_journals_10_1186_s12859_019_3013_0
PublicationCentury 2000
PublicationDate 2019-08-06
PublicationDateYYYYMMDD 2019-08-06
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References J Huang (3013_CR13) 2013; 9
S Vilar (3013_CR9) 2013; 8
F Cheng (3013_CR11) 2014; 21
H Gao (3013_CR6) 2015; 21
S Vilar (3013_CR10) 2014; 9
K Park (3013_CR14) 2015; 10
P Zhang (3013_CR12) 2015; 5
J Foucquier (3013_CR1) 2015; 3
H-B Fang (3013_CR7) 2017; 26
JY Ryu (3013_CR15) 2018; 115
3013_CR16
M Ashburner (3013_CR19) 2000; 25
DJ Rogers (3013_CR24) 1960; 132
DS Wishart (3013_CR17) 2017; 46
S Phansalkar (3013_CR21) 2012; 19
D Rogers (3013_CR25) 2010; 50
A Chatr-Aryamontri (3013_CR18) 2017; 45
LT Drye (3013_CR23) 2014; 9
IJ Onakpoya (3013_CR5) 2016; 14
BJ Drew (3013_CR22) 2010; 121
Nicholas P Tatonetti (3013_CR3) 2012; 19
3013_CR27
3013_CR4
IR Edwards (3013_CR2) 2000; 356
A Gottlieb (3013_CR8) 2012; 8
Consortium GO (3013_CR20) 2016; 45
3013_CR26
References_xml – volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 3013_CR19
  publication-title: Nat Genet
  doi: 10.1038/75556
– ident: 3013_CR16
  doi: 10.21236/ADA164453
– volume: 46
  start-page: D1074
  issue: D1
  year: 2017
  ident: 3013_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 8
  start-page: 592
  issue: 1
  year: 2012
  ident: 3013_CR8
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2012.26
– volume: 5
  year: 2015
  ident: 3013_CR12
  publication-title: Sci Rep
  doi: 10.1038/srep12339
– volume: 9
  start-page: 2147
  issue: 9
  year: 2014
  ident: 3013_CR10
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.151
– ident: 3013_CR27
– volume: 19
  start-page: 79
  issue: 1
  year: 2012
  ident: 3013_CR3
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1136/amiajnl-2011-000214
– volume: 45
  start-page: D331
  issue: D1
  year: 2016
  ident: 3013_CR20
  publication-title: Nucleic Acids Res
– volume: 132
  start-page: 1115
  issue: 3434
  year: 1960
  ident: 3013_CR24
  publication-title: Science
  doi: 10.1126/science.132.3434.1115
– volume: 21
  start-page: e278
  issue: e2
  year: 2014
  ident: 3013_CR11
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2013-002512
– ident: 3013_CR4
– volume: 8
  start-page: e58321
  issue: 3
  year: 2013
  ident: 3013_CR9
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058321
– volume: 9
  start-page: e1002998
  issue: 3
  year: 2013
  ident: 3013_CR13
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002998
– volume: 26
  start-page: 1261
  issue: 3
  year: 2017
  ident: 3013_CR7
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280215574320
– volume: 19
  start-page: 735
  issue: 5
  year: 2012
  ident: 3013_CR21
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000612
– volume: 356
  start-page: 1255
  issue: 9237
  year: 2000
  ident: 3013_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02799-9
– volume: 45
  start-page: D369
  issue: D1
  year: 2017
  ident: 3013_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1102
– ident: 3013_CR26
– volume: 21
  start-page: 1318
  issue: 11
  year: 2015
  ident: 3013_CR6
  publication-title: Nat Med
  doi: 10.1038/nm.3954
– volume: 9
  start-page: e98426
  issue: 6
  year: 2014
  ident: 3013_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098426
– volume: 3
  start-page: e00149
  issue: 3
  year: 2015
  ident: 3013_CR1
  publication-title: Pharmacol Res Perspect
  doi: 10.1002/prp2.149
– volume: 121
  start-page: 1047
  issue: 8
  year: 2010
  ident: 3013_CR22
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.192704
– volume: 14
  start-page: 10
  issue: 1
  year: 2016
  ident: 3013_CR5
  publication-title: BMC Med
  doi: 10.1186/s12916-016-0553-2
– volume: 10
  start-page: e0140816
  issue: 10
  year: 2015
  ident: 3013_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140816
– volume: 50
  start-page: 742
  issue: 5
  year: 2010
  ident: 3013_CR25
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100050t
– volume: 115
  start-page: E4304
  issue: 18
  year: 2018
  ident: 3013_CR15
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1803294115
SSID ssj0017805
Score 2.6061504
Snippet Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational...
Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational approaches...
Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many computational...
Abstract Background Predicting the effect of drug-drug interactions (DDIs) precisely is important for safer and more effective drug co-prescription. Many...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 415
SubjectTerms Algorithms
Autoencoder
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Deep learning
Drug interactions
Drug-drug interaction
Genes
Legal fees
Life Sciences
Machine Learning and Artificial Intelligence in Bioinformatics
Mathematical models
Methodology
Methodology Article
Microarrays
Novels
Online health care information services
Pharmaceutical industry
Similarity profile
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Kvjit97qKVEEQSnXTdI2fTzFQ18WufPj3kImTdaDo13a7cH998602cWeH6AveUgmpTOZSTLM5DeMvZSoB0IGlaRl0ImywScAuUu0AO3BphBCNRSbKBYLfXJSforvuLtNtvsmJDns1INZ63y_mxPWGrq-FKunkgRX2TU87TRZ49Hx123ogED6Y_jyt9MmB9CA0__rbvzTcXQ5VfJSvHQ4hg5v_xcDd9iteOvkB6Oa3GVXfH2P3RjrUF7cZ98Wzbk_45X3Kx7LSCz5UCOH452WUy4ut871BCvBVy3Fdmg9eRN41fbLhBpOwBPt-EyCxyyRB-zL4fvP7z4kseJC4vK0XGPrRAmyylLlC18Wdl5AGjKB3eg2eZmDzoQL81xbXwhwToKECi8NyvoSslI-ZDt1U_tdxtFJF1Y7UOhwqVKDFl4CTvI2tQG0mrF0swzGRThyqopxZga3ROdmlJdBeRmSl0ln7PV2ymrE4vgb8Vta2y0hwWgPHU27NNEqjSdk3iBTUNIpif-moCgcQGXxKggZfuQFaYYhoIyaMnGWtu868_H4yBxkBMVIAGoz9ioShQY5cDY-bEA5ELbWhHJvQomW7CbDzzcKaGiI0t9q3_SdEfTemJCJkObRqJBbxuRcos-pihkrJqo64Xw6Up9-H4DE8xyXU-PMNxuFNXEH6_4s2Mf_RP2E3RSk8ZRkk--xnXXb-6fsujtfn3bts8FyfwB-XD-o
  priority: 102
  providerName: Springer Nature
Title Novel deep learning model for more accurate prediction of drug-drug interaction effects
URI https://link.springer.com/article/10.1186/s12859-019-3013-0
https://www.ncbi.nlm.nih.gov/pubmed/31387547
https://www.proquest.com/docview/2269402358
https://pubmed.ncbi.nlm.nih.gov/PMC6685287
https://doaj.org/article/e0653f30b43c432ea4b77cbbda025b50
Volume 20
WOSCitedRecordID wos000479193600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9aFXwpfnu1HlEEQVm6l2Q32cdWWizisVz9OH0JSTY5C2XvuL0r-N87s5s7uhX1xZeBTSawmZl8DDP5DSGvONgB40EkaRFUIkzwibW5SxSzyluT2hCqttiEHI_VdFqUV0p9YU5YBw_cCe7AI3hq4KkV3AnOvBFWSmdtZeC0tp23DreejTMV4weI1B9jmCOVHzQjxGkDtxnj_FjOoHcKtWD9v2_JV86k6_mS14Km7Vl0co_sxkskPex-_j654esH5E5XVvLnQ_J1PL_0F7TyfkFjVYgZbUveULiiUkytpca5NaJE0MUSQzWoHjoPtFquZwkSijgSy-7VA41JH4_I55PjT-_eJ7GAQuLytFgBdaywvMpS4aUvpBlJm4aMQTN4QZ7nVmXMhVGujJfMOscttxXcAYTxhc0K_pjs1PPaPyUUfG5mlLMC_CdRKKuY5xYGeZOaYJUYkHQjUO0iujgWubjQrZehct3pQIMONOpApwPyZjtk0UFr_I35CLW0ZURU7LYBbEVHW9H_spUBeYk61oh7UWNizcysm0afnk30YYbIioiHNiCvI1OYwwycie8UQA4IldXj3O9xwsJ0ve4XG1PS2IXZbLWfrxvN8PkwAg0Bz5POtLYT4yMOLqSQAyJ7Rtebeb-nPv_R4oLnOahTwci3G_PUcUNq_izYvf8h2GfkLsPFhak0-T7ZWS3X_jm57S5X581ySG7KqWypGpJbR8fjcjJslyvQDzIZYr5tCbTMvkN_efqx_AZfk7MvvwC8pkVP
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDI9ggMYL34ODAQEhIYEqek3apo8DMW1inNA2YG9RnCbHpKk9tddJ_PfYbe5Ex4cEL3lInKp2nA_L9s-MvRCoB4nwMooLryJpvIsAMhupBJQDE4P3ZV9sIp_N1MlJ8SnkcberaPeVS7I_qfttrbI37ZSw1tD0JV89lSS4zK5IvLAoju_w6MvadUAg_cF9-dtpowuox-n_9TT-6Tq6GCp5wV_aX0O7N_-LgVvsRnh18p1BTW6zS666w64NdSi_32VfZ_W5O-OlcwseykjMeV8jh-ObllMsLjfWdgQrwRcN-XZoPXntedl084gaTsATzZAmwUOUyD32eff98bu9KFRciGwWF0tsbVKAKNNYutwVuZnmEPs0wW40m5zIQKWJ9dNMGZcnYK0AASU-GqRxBaSF2GIbVV25B4yjkZ4YZUGiwSULBSpxAnCSM7HxoOSExatl0DbAkVNVjDPdmyUq04O8NMpLk7x0PGGv1lMWAxbH34jf0tquCQlGu--om7kOu1I7Qub1IgYprBT4bxLy3AKUBp-CkOJHnpNmaALKqCgSZ266ttX7R4d6JyUoRgJQm7CXgcjXyIE1IbEB5UDYWiPK7REl7mQ7Gn62UkBNQxT-Vrm6a3VC-caETIQ09weFXDMmpgJtTplPWD5S1RHn45Hq9FsPJJ5luJwKZ75eKawOJ1j7Z8E-_Cfqp2xz7_jjgT7Yn314xK4npP0UcJNts41l07nH7Ko9X562zZN-F_8Ae0pCjA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagQMUL97FQwCAkJFDUbOwkzmM5VlSgVUU5-mZ5HHtbqUpWyW4l_j0zibMi5ZAQL36wx1E8Hh-jGX8fY88F2kEivIziwqtIGu8igMxGKgHlwMTgfdmRTeTzuTo6Kg4Cz2k7ZLsPIcn-TQOhNFWr3WXp-yWust12Srhr6AZT3J7oCS6yS5I4g8hdP_y6CSMQYH8IZf622-gw6jD7f92ZfzqazqdNnouddkfS7Pp_D-YGuxZuo3yvN5-b7IKrbrErPT_l99vs27w-c6e8dG7JA73EgnfcORzvupxydLmxdk1wE3zZUMyH5pnXnpfNehFRwQmQoumfT_CQPXKHfZm9-_zmfRSYGCKbxcUKS5sUIMo0li53RW6mOcQ-TbAa3SknMlBpYv00U8blCVgrQECJlwlpXAFpIe6yraqu3H3G0XlPjLIg0RGThQKVOAHYyZnYeFBywuJhSrQNMOXElnGqO3dFZbrXl0Z9adKXjifs5abLssfo-Jvwa5rnjSDBa3cVdbPQYbVqR4i9XsQghZUC_01CnluA0uAVEVL8yDOyEk0AGhVl6CzMum31_uEnvZcSRCMBq03YiyDkaxyBNeHBA-qBMLdGkjsjSVzhdtT8dDBGTU2UFle5et3qhN4hE2IRytzrjXMzMDEV6IvKfMLykdmORj5uqU6OO4DxLMPpVNjz1WC8Ouxs7Z8V--CfpJ-w7YO3M_1xf_7hIbuakPFTHk62w7ZWzdo9Ypft2eqkbR53C_oH5adLcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+deep+learning+model+for+more+accurate+prediction+of+drug-drug+interaction+effects&rft.jtitle=BMC+bioinformatics&rft.au=Lee%2C+Geonhee&rft.au=Park%2C+Chihyun&rft.au=Ahn%2C+Jaegyoon&rft.date=2019-08-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=20&rft_id=info:doi/10.1186%2Fs12859-019-3013-0&rft_id=info%3Apmid%2F31387547&rft.externalDocID=PMC6685287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon