A validated predictive algorithm of post-traumatic stress course following emergency department admission after a traumatic stressor
Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event 1 . These patients are at substantial psychiatric risk, with approximately 10–20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (P...
Uložené v:
| Vydané v: | Nature medicine Ročník 26; číslo 7; s. 1084 - 1088 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Nature Publishing Group US
01.07.2020
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1078-8956, 1546-170X, 1546-170X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event
1
. These patients are at substantial psychiatric risk, with approximately 10–20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD)
2
–
4
. At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma
5
. Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment
6
–
9
to mitigate subsequent psychopathology in high-risk populations
10
,
11
. This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient’s immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care.
A machine-learning algorithm using electronic medical records and self-reported measures of stress at admission to the emergency department due to trauma can predict the risk and long-term trajectories of post-traumatic stress disorder in two independent cohorts. |
|---|---|
| AbstractList | Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event.sup.1. These patients are at substantial psychiatric risk, with approximately 10-20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD).sup.2-4. At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma.sup.5. Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment.sup.6-9 to mitigate subsequent psychopathology in high-risk populations.sup.10,11. This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient's immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care. Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event1. These patients are at substantial psychiatric risk, with approximately 10-20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD)2-4. At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma5. Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment6-9 to mitigate subsequent psychopathology in high-risk populations10,11. This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient's immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care.Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event1. These patients are at substantial psychiatric risk, with approximately 10-20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD)2-4. At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma5. Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment6-9 to mitigate subsequent psychopathology in high-risk populations10,11. This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient's immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care. Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event1. These patients are at substantial psychiatric risk, with approximately 10–20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD)2–4. At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma5. Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment6–9 to mitigate subsequent psychopathology in high-risk populations10,11. This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient’s immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care.A machine-learning algorithm using electronic medical records and self-reported measures of stress at admission to the emergency department due to trauma can predict the risk and long-term trajectories of post-traumatic stress disorder in two independent cohorts. Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event 1 . These patients are at substantial psychiatric risk, with approximately 10–20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD) 2 – 4 . At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma 5 . Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment 6 – 9 to mitigate subsequent psychopathology in high-risk populations 10 , 11 . This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient’s immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care. A machine-learning algorithm using electronic medical records and self-reported measures of stress at admission to the emergency department due to trauma can predict the risk and long-term trajectories of post-traumatic stress disorder in two independent cohorts. Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event . These patients are at substantial psychiatric risk, with approximately 10-20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD) . At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma . Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment to mitigate subsequent psychopathology in high-risk populations . This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient's immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care. Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event.sup.1. These patients are at substantial psychiatric risk, with approximately 10-20% developing one or more disorders, including anxiety, depression or post-traumatic stress disorder (PTSD).sup.2-4. At present, no accurate method exists to predict the development of PTSD symptoms upon ED admission after trauma.sup.5. Accurate risk identification at the point of treatment by ED services is necessary to inform the targeted deployment of existing treatment.sup.6-9 to mitigate subsequent psychopathology in high-risk populations.sup.10,11. This work reports the development and validation of an algorithm for prediction of post-traumatic stress course over 12 months using two independently collected prospective cohorts of trauma survivors from two level 1 emergency trauma centers, which uses routinely collectible data from electronic medical records, along with brief clinical assessments of the patient's immediate stress reaction. Results demonstrate externally validated accuracy to discriminate PTSD risk with high precision. While the predictive algorithm yields useful reproducible results on two independent prospective cohorts of ED patients, future research should extend the generalizability to the broad, clinically heterogeneous ED population under conditions of routine medical care. A machine-learning algorithm using electronic medical records and self-reported measures of stress at admission to the emergency department due to trauma can predict the risk and long-term trajectories of post-traumatic stress disorder in two independent cohorts. |
| Audience | Academic |
| Author | Shin, Soo-Min Marmar, Charles R. Ressler, Kerry J. Jovanovic, Tanja Rothbaum, Barbara O. Nemeroff, Charles B. Schultebraucks, Katharina Maples-Keller, Jessica L. Michopoulos, Vasiliki Grudzen, Corita R. Bonanno, George A. Galatzer-Levy, Isaac R. Shalev, Arieh Y. Stevens, Jennifer S. |
| Author_xml | – sequence: 1 givenname: Katharina orcidid: 0000-0001-5085-8249 surname: Schultebraucks fullname: Schultebraucks, Katharina email: ks3796@cumc.columbia.edu organization: Department of Psychiatry, New York University Grossman School of Medicine, Vagelos School of Physicians and Surgeons, Department of Emergency Medicine, Columbia University Irving Medical Center, Data Science Institute, Columbia University – sequence: 2 givenname: Arieh Y. surname: Shalev fullname: Shalev, Arieh Y. organization: Department of Psychiatry, New York University Grossman School of Medicine – sequence: 3 givenname: Vasiliki surname: Michopoulos fullname: Michopoulos, Vasiliki organization: Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Yerkes National Primate Research Center – sequence: 4 givenname: Corita R. surname: Grudzen fullname: Grudzen, Corita R. organization: Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine – sequence: 5 givenname: Soo-Min surname: Shin fullname: Shin, Soo-Min organization: Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine – sequence: 6 givenname: Jennifer S. orcidid: 0000-0003-4674-0314 surname: Stevens fullname: Stevens, Jennifer S. organization: Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine – sequence: 7 givenname: Jessica L. surname: Maples-Keller fullname: Maples-Keller, Jessica L. organization: Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine – sequence: 8 givenname: Tanja surname: Jovanovic fullname: Jovanovic, Tanja organization: Department of Psychiatry and Behavioral Neurosciences, Wayne State University – sequence: 9 givenname: George A. surname: Bonanno fullname: Bonanno, George A. organization: Department of Counseling and Clinical Psychology, Teachers College, Columbia University – sequence: 10 givenname: Barbara O. surname: Rothbaum fullname: Rothbaum, Barbara O. organization: Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine – sequence: 11 givenname: Charles R. surname: Marmar fullname: Marmar, Charles R. organization: Department of Psychiatry, New York University Grossman School of Medicine, Center for Alcohol Use Disorder and PTSD, New York University Grossman School of Medicine – sequence: 12 givenname: Charles B. surname: Nemeroff fullname: Nemeroff, Charles B. organization: Dell Medical School, Department of Psychiatry, University of Texas at Austin, Institute for Early Life Adversity Research, University of Texas at Austin – sequence: 13 givenname: Kerry J. surname: Ressler fullname: Ressler, Kerry J. organization: Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, McLean Hospital, Harvard Medical School – sequence: 14 givenname: Isaac R. surname: Galatzer-Levy fullname: Galatzer-Levy, Isaac R. organization: Department of Psychiatry, New York University Grossman School of Medicine, AiCure LLC |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32632194$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttrFDEUxgep2Iv-Ab5IQJD6MDWXuT4uxWqhUPCGb-Fs5sxsSmYyJplq--wfbsZtqbusInnIhd_3kXPOd5jsDXbAJHnO6AmjonrjM5bXLKWcprTOWXr7KDlgeVakrKRf9-KZllVa1Xmxnxx6f0UpFTSvnyT7gheCszo7SH4uyDUY3UDAhowOG62CvkYCprNOh1VPbEtG60MaHEw9BK2IDw69J8pOziNprTH2ux46gj26Dgd1QxocwYUeh0Cg6bX32g4E2oCOANk2su5p8rgF4_HZ3X6UfD57--n0fXpx-e78dHGRqoLWIV3yvOWCUaayuPOKqXivmoqiKEBVvBWUsVihoJCzrMrzUlRsWQoOlHIQShwlx2vf0dlvE_og498UGgMD2slLnnEWe0ZZFtGXW-hVLHeIv5spIURRZ-UD1YFBqYfWxuLUbCoXBa8zTsvfVLqDip1CByZOtNXxeYM_2cHH1WCv1U7B6w1BZAL-CB1M3svzjx_-n738ssm--oNdIZiw8tZMIY7Tb4Iv7ro1LXts5Oh0D-5G3ucsAuUaUM5677CVSgeYfWJp2khG5ZxouU60jImWc6LlbVSyLeW9-b80fK3xkR06dA_D-7voF4yOBLg |
| CitedBy_id | crossref_primary_10_1016_j_hermed_2024_100946 crossref_primary_10_1186_s13063_023_07764_5 crossref_primary_10_3390_s24010164 crossref_primary_10_3389_fpsyt_2024_1140376 crossref_primary_10_1016_j_jad_2022_09_094 crossref_primary_10_1159_000512394 crossref_primary_10_1038_s41398_022_02165_9 crossref_primary_10_1155_2023_6671337 crossref_primary_10_1146_annurev_psych_011123_024224 crossref_primary_10_3389_fendo_2024_1390352 crossref_primary_10_2196_42045 crossref_primary_10_1016_j_copsyc_2021_05_003 crossref_primary_10_1093_ije_dyac030 crossref_primary_10_3928_00485713_20201203_01 crossref_primary_10_1016_j_cpr_2021_101981 crossref_primary_10_1155_2024_5570405 crossref_primary_10_1002_wps_21269 crossref_primary_10_1017_S0963180121000839 crossref_primary_10_3928_00485713_20201203_02 crossref_primary_10_4103_jfsm_jfsm_35_24 crossref_primary_10_3928_00485713_20201207_01 crossref_primary_10_1097_TA_0000000000004639 crossref_primary_10_1136_bmjopen_2022_065422 crossref_primary_10_1016_j_jpsychires_2021_05_064 crossref_primary_10_1093_sleep_zsaa200 crossref_primary_10_1038_s41551_024_01290_8 crossref_primary_10_1016_j_ijpsycho_2023_01_009 crossref_primary_10_1016_j_jad_2021_08_033 crossref_primary_10_2196_46652 crossref_primary_10_1017_S0033291720002718 crossref_primary_10_1177_00048674211060747 crossref_primary_10_1177_24705470211032208 crossref_primary_10_1016_j_psyneuen_2025_107514 crossref_primary_10_1016_j_jpsychires_2025_01_032 crossref_primary_10_3928_00485713_20201204_01 crossref_primary_10_1371_journal_pdig_0000620 crossref_primary_10_1038_s41591_020_0981_6 crossref_primary_10_1038_s41386_021_01073_8 crossref_primary_10_1093_milmed_usaf162 crossref_primary_10_1038_s41398_023_02699_6 crossref_primary_10_1038_s41386_021_01247_4 crossref_primary_10_1038_s44159_023_00233_5 crossref_primary_10_1016_j_bbi_2024_05_011 crossref_primary_10_1038_s41380_023_01995_3 crossref_primary_10_1080_20008198_2021_1942642 crossref_primary_10_1038_s41551_023_01034_0 crossref_primary_10_1055_s_0041_1742218 crossref_primary_10_1016_j_jpsychires_2023_05_014 crossref_primary_10_1027_1016_9040_a000423 crossref_primary_10_1038_s41398_023_02339_z crossref_primary_10_1111_acem_14962 crossref_primary_10_1016_j_injury_2022_01_016 crossref_primary_10_1016_j_genhosppsych_2023_01_012 crossref_primary_10_1146_annurev_clinpsy_080921_073212 crossref_primary_10_1080_20008066_2023_2225153 crossref_primary_10_1017_S003329172200191X crossref_primary_10_1017_S0033291720003839 crossref_primary_10_1038_s41380_023_02047_6 crossref_primary_10_1038_s41398_023_02592_2 crossref_primary_10_3389_fpsyg_2021_782866 crossref_primary_10_1016_j_paid_2021_111278 crossref_primary_10_1016_j_annemergmed_2022_08_011 crossref_primary_10_3389_fpsyt_2022_856998 crossref_primary_10_1016_j_bpsc_2021_08_007 crossref_primary_10_1017_S1092852922000852 crossref_primary_10_1186_s42466_025_00390_3 crossref_primary_10_3389_fimmu_2023_1281674 crossref_primary_10_1016_j_expneurol_2020_113526 crossref_primary_10_1097_MCC_0000000000001309 crossref_primary_10_1097_TA_0000000000003524 crossref_primary_10_1186_s12888_024_06110_6 crossref_primary_10_1007_s00127_024_02805_z crossref_primary_10_1089_cyber_2023_0737 crossref_primary_10_1111_acem_14932 crossref_primary_10_1016_j_ejtd_2020_100193 crossref_primary_10_1080_15622975_2023_2177342 crossref_primary_10_1111_acps_13520 crossref_primary_10_1109_JBHI_2021_3053909 crossref_primary_10_1038_s41386_022_01359_5 crossref_primary_10_1038_s41380_022_01445_6 crossref_primary_10_1016_j_neuropharm_2022_109344 crossref_primary_10_1016_j_janxdis_2022_102642 crossref_primary_10_1016_j_jrp_2024_104524 |
| Cites_doi | 10.1023/A:1010933404324 10.1176/appi.books.9780890425596 10.1016/j.janxdis.2018.10.004 10.1016/j.copsyc.2017.01.002 10.1067/mem.2001.118225 10.1016/j.biopsych.2011.10.026 10.4088/JCP.15m09932 10.1002/jts.22059 10.1371/journal.pone.0070084 10.1016/j.biopsych.2018.02.007 10.1176/appi.ps.201300399 10.1016/j.genhosppsych.2017.03.004 10.1007/978-0-387-21606-5 10.1177/2470547019844441 10.1007/978-1-4614-6849-3 10.1016/j.biopsych.2018.03.007 10.1007/978-3-319-89656-4_7 10.1093/nsr/nwy108 10.4088/JCP.13m08715 10.1186/s13049-015-0109-z 10.1111/acem.13223 10.1007/s10115-013-0679-x 10.1056/NEJMra1612499 10.1038/s41380-019-0581-3 10.1002/wps.20608 10.1037/abn0000440 10.1007/s40138-020-00206-5 10.4172/2324-8947.1000139 10.1016/j.jpsychires.2014.08.017 10.3928/00485713-20190605-01 10.1016/j.patrec.2008.08.010 10.1001/archpsyc.55.6.553 10.1016/S0006-3223(98)00276-5 10.1002/jts.2490060405 10.1080/10705511.2016.1247646 10.1038/npp.2016.146 10.1056/NEJMsb1900856 10.1177/000313481708301137 10.1001/archgenpsychiatry.2011.127 10.1136/bmj.b605 10.1001/jama.2013.281053 10.1111/j.1469-7610.2006.01648.x 10.1186/s12916-014-0241-z 10.2196/jmir.5870 10.1016/j.cpr.2016.09.001 10.1002/jts.22384 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 COPYRIGHT 2020 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
| DOI | 10.1038/s41591-020-0951-z |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1546-170X |
| EndPage | 1088 |
| ExternalDocumentID | A629420747 32632194 10_1038_s41591_020_0951_z |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: SCHU 3259/1-1 funderid: https://doi.org/10.13039/501100001659 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R01MH094759; R01MH094757; K01MH102415 funderid: https://doi.org/10.13039/100000025 – fundername: NIMH NIH HHS grantid: R01 MH094759 – fundername: NIMH NIH HHS grantid: K01 MH102415 – fundername: NIMH NIH HHS grantid: R01 MH094757 |
| GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB XRW AETEA CGR CUY CVF ECM EIF NFIDA NPM ACMFV 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c609t-b25f23101c4f23281c5f28d80e36ac82f301130530a5148557381b732a002a3c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545954500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1078-8956 1546-170X |
| IngestDate | Thu Oct 02 16:13:20 EDT 2025 Mon Oct 06 17:27:25 EDT 2025 Sat Nov 29 13:18:32 EST 2025 Sat Nov 29 11:52:02 EST 2025 Sat Nov 29 10:20:57 EST 2025 Wed Nov 26 10:13:59 EST 2025 Wed Nov 26 10:15:04 EST 2025 Thu May 22 21:16:20 EDT 2025 Mon Jul 21 05:47:39 EDT 2025 Tue Nov 18 21:58:38 EST 2025 Sat Nov 29 06:02:27 EST 2025 Fri Feb 21 02:37:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c609t-b25f23101c4f23281c5f28d80e36ac82f301130530a5148557381b732a002a3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4674-0314 0000-0001-5085-8249 |
| PMID | 32632194 |
| PQID | 2423336947 |
| PQPubID | 33975 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2421107014 proquest_journals_2423336947 gale_infotracmisc_A629420747 gale_infotracgeneralonefile_A629420747 gale_infotracacademiconefile_A629420747 gale_incontextgauss_ISR_A629420747 gale_incontextgauss_IOV_A629420747 gale_healthsolutions_A629420747 pubmed_primary_32632194 crossref_citationtrail_10_1038_s41591_020_0951_z crossref_primary_10_1038_s41591_020_0951_z springer_journals_10_1038_s41591_020_0951_z |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature medicine |
| PublicationTitleAbbrev | Nat Med |
| PublicationTitleAlternate | Nat Med |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Luo (CR58) 2016; 18 Mellon, Gautam, Hammamieh, Jett, Wolkowitz (CR25) 2018; 83 McLean (CR33) 2020; 25 Schultebraucks, Galatzer-Levy (CR32) 2019; 32 Schultebraucks (CR23) 2019; 128 DiMaggio, Avraham, Lee, Frangos, Wall (CR1) 2017; 24 Štrumbelj, Kononenko (CR60) 2014; 41 CR37 van de Schoot, Sijbrandij, Winter, Depaoli, Vermunt (CR48) 2017; 24 Altman, Vergouwe, Royston, Moons (CR31) 2009; 338 CR35 Ferri, Hernández-Orallo, Modroiu (CR54) 2009; 30 Pedregosa (CR51) 2011; 12 Fakhry (CR4) 2017; 83 Foa, Riggs, Dancu, Rothbaum (CR42) 1993; 6 Collins, Reitsma, Altman, Moons (CR57) 2015; 13 Michopoulos, Powers, Gillespie, Ressler, Jovanovic (CR26) 2017; 42 Michopoulos (CR24) 2019; 2019 Shalev, Barbano (CR11) 2019; 49 Love, Zatzick (CR29) 2014; 65 Shalev (CR8) 2016; 77 Rothbaum (CR6) 2014; 75 CR49 CR47 Zhou, Feng (CR55) 2018; 6 CR45 CR44 Moons, Royston, Vergouwe, Grobbee, Altman (CR59) 2009; 338 Shalev (CR5) 2019; 18 CR41 Shalev, Liberzon, Marmar (CR28) 2017; 376 Lundberg, Lee (CR38) 2017; 30 Galatzer-Levy, Karstoft, Statnikov, Shalev (CR12) 2014; 59 Sullivan (CR3) 2017; 46 Shalev (CR15) 1998; 55 Horwitz, Kuznetsova, Jones (CR34) 2019; 381 Wiseman, Curtis, Lam, Foster (CR2) 2015; 23 Van Zuiden (CR22) 2012; 71 Roberts, Kitchiner, Kenardy, Bisson (CR10) 2010; 17 Blevins, Weathers, Davis, Witte, Domino (CR39) 2015; 28 Fein, Kassam-Adams, Vu, Datner (CR36) 2001; 38 CR53 Falsetti, Resnick, Resick, Kilpatrick (CR43) 1993; 16 CR50 Ressler (CR18) 2018; 83 Weathers (CR46) 2017; 14 Morris, Hellman, Abelson, Rao (CR21) 2016; 49 Yehuda, McFarlane, Shalev (CR16) 1998; 44 Galatzer-Levy (CR7) 2013; 8 Nugent, Christopher, Delahanty (CR27) 2006; 47 Vermetten, Zhohar, Krugers (CR30) 2014; 16 Papini (CR17) 2018; 60 Fawcett (CR56) 2004; 31 Breiman (CR52) 2001; 45 Galatzer-Levy, Ma, Statnikov, Yehuda, Shalev (CR13) 2017; 7 CR20 Hinrichs (CR19) 2019; 3 Karstoft, Galatzer-Levy, Statnikov, Li, Shalev (CR14) 2015; 15 Schultebraucks, Wen, Kronish, Willey, Chang (CR40) 2020; 8 Shalev (CR9) 2012; 69 TA Wiseman (951_CR2) 2015; 23 C Ferri (951_CR54) 2009; 30 SA McLean (951_CR33) 2020; 25 K Schultebraucks (951_CR40) 2020; 8 T Fawcett (951_CR56) 2004; 31 CJ DiMaggio (951_CR1) 2017; 24 951_CR20 SH Mellon (951_CR25) 2018; 83 KJ Ressler (951_CR18) 2018; 83 GS Collins (951_CR57) 2015; 13 J Love (951_CR29) 2014; 65 W Luo (951_CR58) 2016; 18 IR Galatzer-Levy (951_CR7) 2013; 8 AY Shalev (951_CR5) 2019; 18 E Vermetten (951_CR30) 2014; 16 V Michopoulos (951_CR26) 2017; 42 K Schultebraucks (951_CR32) 2019; 32 S Papini (951_CR17) 2018; 60 K-I Karstoft (951_CR14) 2015; 15 LI Horwitz (951_CR34) 2019; 381 JA Fein (951_CR36) 2001; 38 951_CR37 L Breiman (951_CR52) 2001; 45 951_CR35 M Van Zuiden (951_CR22) 2012; 71 SM Lundberg (951_CR38) 2017; 30 V Michopoulos (951_CR24) 2019; 2019 R Yehuda (951_CR16) 1998; 44 SM Fakhry (951_CR4) 2017; 83 AY Shalev (951_CR15) 1998; 55 AY Shalev (951_CR9) 2012; 69 EB Foa (951_CR42) 1993; 6 Z-H Zhou (951_CR55) 2018; 6 951_CR41 KGM Moons (951_CR59) 2009; 338 E Sullivan (951_CR3) 2017; 46 AY Shalev (951_CR8) 2016; 77 DG Altman (951_CR31) 2009; 338 MC Morris (951_CR21) 2016; 49 951_CR47 IR Galatzer-Levy (951_CR12) 2014; 59 A Shalev (951_CR28) 2017; 376 951_CR49 951_CR44 951_CR45 NR Nugent (951_CR27) 2006; 47 AY Shalev (951_CR11) 2019; 49 IR Galatzer-Levy (951_CR13) 2017; 7 NP Roberts (951_CR10) 2010; 17 SA Falsetti (951_CR43) 1993; 16 951_CR50 951_CR53 R Hinrichs (951_CR19) 2019; 3 F Pedregosa (951_CR51) 2011; 12 BO Rothbaum (951_CR6) 2014; 75 FW Weathers (951_CR46) 2017; 14 R van de Schoot (951_CR48) 2017; 24 CA Blevins (951_CR39) 2015; 28 E Štrumbelj (951_CR60) 2014; 41 K Schultebraucks (951_CR23) 2019; 128 32632192 - Nat Med. 2020 Jul;26(7):1012-1013 |
| References_xml | – ident: CR45 – volume: 24 start-page: 451 year: 2017 end-page: 467 ident: CR48 article-title: The GRoLTS-checklist: guidelines for reporting on latent trajectory studies publication-title: Struct. Equ. Modeling – ident: CR49 – volume: 49 start-page: 299 year: 2019 end-page: 306 ident: CR11 article-title: PTSD: risk assessment and early management publication-title: Psychiatr. Ann. – volume: 83 start-page: 1308 year: 2017 end-page: 1314 ident: CR4 article-title: Continuing trauma: the unmet needs of trauma patients in the postacute care setting publication-title: Am. Surgeon – volume: 376 start-page: 2459 year: 2017 end-page: 2469 ident: CR28 article-title: Post-traumatic stress disorder publication-title: New Engl. J. Med. – volume: 71 start-page: 309 year: 2012 end-page: 316 ident: CR22 article-title: Glucocorticoid receptor pathway components predict posttraumatic stress disorder symptom development: a prospective study publication-title: Biol. Psychiatry – volume: 15 year: 2015 ident: CR14 article-title: Bridging a translational gap: using machine learning to improve the prediction of PTSD publication-title: BMC Psychiatry – volume: 381 start-page: 1175 year: 2019 ident: CR34 article-title: Creating a learning health system through rapid-cycle, randomized testing publication-title: New Engl. J. Med. – ident: CR35 – volume: 24 start-page: 1244 year: 2017 end-page: 1256 ident: CR1 article-title: The epidemiology of emergency department trauma discharges in the United States publication-title: Acad. Emerg. Med. – volume: 23 year: 2015 ident: CR2 article-title: Incidence of depression, anxiety and stress following traumatic injury: a longitudinal study publication-title: Scand. J. Trauma Resusc. Emerg. Med. – volume: 59 start-page: 68 year: 2014 end-page: 76 ident: CR12 article-title: Quantitative forecasting of PTSD from early trauma responses: a machine-learning application publication-title: J. Psychiatr. Res. – volume: 83 start-page: 866 year: 2018 end-page: 875 ident: CR25 article-title: Metabolism, metabolomics, and inflammation in posttraumatic stress disorder publication-title: Biol. Psychiatry – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR51 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 31 start-page: 1 year: 2004 end-page: 38 ident: CR56 article-title: ROC graphs: notes and practical considerations for researchers publication-title: Mach. Learn. – volume: 49 start-page: 79 year: 2016 end-page: 91 ident: CR21 article-title: Cortisol, heart rate, and blood pressure as early markers of PTSD risk: a systematic review and meta-analysis publication-title: Clin. Psychol. Rev. – volume: 2019 start-page: 19010039 year: 2019 ident: CR24 article-title: Association of prospective risk for chronic PTSD symptoms with low TNF-α and IFN-γ concentrations in the immediate aftermath of trauma exposure publication-title: Am. J. Psychiatry – volume: 32 start-page: 215 year: 2019 end-page: 225 ident: CR32 article-title: Machine learning for prediction of posttraumatic stress and resilience following trauma: an overview of basic concepts and recent advances publication-title: J. Trauma Stress – volume: 75 start-page: 1380 year: 2014 ident: CR6 article-title: Early intervention following trauma may mitigate genetic risk for PTSD in civilians: a pilot prospective emergency department study publication-title: J. Clin. Psychiat. – ident: CR50 – volume: 44 start-page: 1305 year: 1998 end-page: 1313 ident: CR16 article-title: Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event publication-title: Biol. Psychiatry – volume: 28 start-page: 489 year: 2015 end-page: 498 ident: CR39 article-title: The posttraumatic stress disorder checklist for DSM‐5 (PCL‐5): development and initial psychometric evaluation publication-title: J. Trauma. Stress – volume: 30 start-page: 4765 year: 2017 end-page: 4774 ident: CR38 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 338 start-page: b605 year: 2009 ident: CR31 article-title: Prognosis and prognostic research: validating a prognostic model publication-title: Br. Med. J. – volume: 30 start-page: 27 year: 2009 end-page: 38 ident: CR54 article-title: An experimental comparison of performance measures for classification publication-title: Pattern Recognit. Lett. – volume: 6 start-page: 459 year: 1993 end-page: 473 ident: CR42 article-title: Reliability and validity of a brief instrument for assessing post‐traumatic stress disorder publication-title: J. Trauma. Stress – volume: 16 year: 2014 ident: CR30 article-title: Pharmacotherapy in the aftermath of trauma; opportunities in the ‘golden hours’ publication-title: Curr. Psychiatry Rep. – volume: 41 start-page: 647 year: 2014 end-page: 665 ident: CR60 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl. Inf. Syst. – volume: 338 start-page: b605 year: 2009 ident: CR59 article-title: Prognosis and prognostic research: what, why, and how? publication-title: Br. Med. J. – volume: 18 start-page: 77 year: 2019 end-page: 87 ident: CR5 article-title: Estimating the risk of PTSD in recent trauma survivors: results of the International Consortium to Predict PTSD (ICPP) publication-title: World Psychiatry – volume: 3 start-page: 2470547019844441 year: 2019 ident: CR19 article-title: Increased skin conductance response in the immediate aftermath of trauma predicts PTSD risk publication-title: Chronic Stress – volume: 47 start-page: 919 year: 2006 end-page: 926 ident: CR27 article-title: Emergency medical service and in-hospital vital signs as predictors of subsequent PTSD symptom severity in pediatric injury patients publication-title: J. Child Psychol. Psychiatry – ident: CR47 – volume: 17 start-page: CD007944 year: 2010 ident: CR10 article-title: Early psychological interventions to treat acute traumatic stress symptoms publication-title: Cochrane Database Syst. Rev. – volume: 60 start-page: 35 year: 2018 end-page: 42 ident: CR17 article-title: Ensemble machine-learning prediction of posttraumatic stress disorder screening status after emergency room hospitalization publication-title: J. Anxiety Disord. – ident: CR37 – ident: CR53 – volume: 65 start-page: 918 year: 2014 end-page: 923 ident: CR29 article-title: Screening and intervention for comorbid substance disorders, PTSD, depression, and suicide: a trauma center survey publication-title: Psychiatr. Serv. – volume: 55 start-page: 553 year: 1998 end-page: 559 ident: CR15 article-title: A prospective study of heart rate response following trauma and the subsequent development of posttraumatic stress disorder publication-title: Arch. Gen. Psychiatry – volume: 38 start-page: 391 year: 2001 end-page: 396 ident: CR36 article-title: Emergency department evaluation of acute stress disorder symptoms in violently injured youths publication-title: Ann. Emerg. Med. – volume: 128 start-page: 645 year: 2019 ident: CR23 article-title: Heightened biological stress response during exposure to a trauma film predicts an increase in intrusive memories publication-title: J. Abnorm. Psychol. – volume: 69 start-page: 166 year: 2012 end-page: 176 ident: CR9 article-title: Prevention of posttraumatic stress disorder by early treatment: results from the Jerusalem Trauma Outreach And Prevention study publication-title: Arch. Gen. Psychiatry – volume: 18 start-page: e323 year: 2016 ident: CR58 article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view publication-title: J. Med. Internet Res. – ident: CR44 – volume: 16 start-page: 161 year: 1993 end-page: 162 ident: CR43 article-title: The modified PTSD symptom scale: a brief self-report measure of posttraumatic stress disorder publication-title: Behav. Ther. – volume: 14 start-page: 122 year: 2017 end-page: 126 ident: CR46 article-title: Redefining posttraumatic stress disorder for DSM-5 publication-title: Curr. Opin. Psychol. – volume: 6 start-page: 74 year: 2018 end-page: 86 ident: CR55 article-title: Deep forest publication-title: Nat. Sci. Rev. – volume: 25 start-page: 283 year: 2020 end-page: 296 ident: CR33 article-title: The AURORA study: a longitudinal, multimodal library of brain biology and function after traumatic stress exposure publication-title: Mol. Psychiatry – volume: 42 start-page: 254 year: 2017 ident: CR26 article-title: Inflammation in fear-and anxiety-based disorders: PTSD, GAD, and beyond publication-title: Neuropsychopharmacology – volume: 46 start-page: 49 year: 2017 end-page: 54 ident: CR3 article-title: The association between posttraumatic stress symptoms, depression, and length of hospital stay following traumatic injury publication-title: Gen. Hosp. Psychiatry – volume: 8 start-page: e70084 year: 2013 ident: CR7 article-title: Early PTSD symptom trajectories: persistence, recovery, and response to treatment: results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS) publication-title: PLoS ONE – volume: 77 start-page: e580 year: 2016 end-page: e587 ident: CR8 article-title: Long-term outcome of early interventions to prevent posttraumatic stress disorder publication-title: J. Clin. Psychiat. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR52 article-title: Random forests publication-title: Mach. Learn. – volume: 83 start-page: 792 year: 2018 end-page: 794 ident: CR18 article-title: Molecular signatures of stress and posttraumatic stress disorder: an overview publication-title: Biol. Psychiatry – volume: 7 year: 2017 ident: CR13 article-title: Utilization of machine learning for prediction of post-traumatic stress: a re-examination of cortisol in the prediction and pathways to non-remitting PTSD publication-title: Transl. Psychiatry – ident: CR41 – volume: 8 start-page: 1 year: 2020 end-page: 8 ident: CR40 article-title: Post-traumatic stress disorder following acute stroke publication-title: Curr. Emerg. Hosp. Med. Rep. – ident: CR20 – volume: 13 year: 2015 ident: CR57 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement publication-title: BMC Med. – volume: 15 year: 2015 ident: 951_CR14 publication-title: BMC Psychiatry – volume: 45 start-page: 5 year: 2001 ident: 951_CR52 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: 951_CR35 doi: 10.1176/appi.books.9780890425596 – volume: 60 start-page: 35 year: 2018 ident: 951_CR17 publication-title: J. Anxiety Disord. doi: 10.1016/j.janxdis.2018.10.004 – volume: 14 start-page: 122 year: 2017 ident: 951_CR46 publication-title: Curr. Opin. Psychol. doi: 10.1016/j.copsyc.2017.01.002 – volume: 38 start-page: 391 year: 2001 ident: 951_CR36 publication-title: Ann. Emerg. Med. doi: 10.1067/mem.2001.118225 – volume: 71 start-page: 309 year: 2012 ident: 951_CR22 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.10.026 – volume: 77 start-page: e580 year: 2016 ident: 951_CR8 publication-title: J. Clin. Psychiat. doi: 10.4088/JCP.15m09932 – volume: 28 start-page: 489 year: 2015 ident: 951_CR39 publication-title: J. Trauma. Stress doi: 10.1002/jts.22059 – volume: 8 start-page: e70084 year: 2013 ident: 951_CR7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0070084 – volume: 7 year: 2017 ident: 951_CR13 publication-title: Transl. Psychiatry – volume: 83 start-page: 866 year: 2018 ident: 951_CR25 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2018.02.007 – volume: 65 start-page: 918 year: 2014 ident: 951_CR29 publication-title: Psychiatr. Serv. doi: 10.1176/appi.ps.201300399 – volume: 46 start-page: 49 year: 2017 ident: 951_CR3 publication-title: Gen. Hosp. Psychiatry doi: 10.1016/j.genhosppsych.2017.03.004 – ident: 951_CR53 doi: 10.1007/978-0-387-21606-5 – volume: 3 start-page: 247054701984444 year: 2019 ident: 951_CR19 publication-title: Chronic Stress doi: 10.1177/2470547019844441 – ident: 951_CR49 doi: 10.1007/978-1-4614-6849-3 – volume: 83 start-page: 792 year: 2018 ident: 951_CR18 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2018.03.007 – ident: 951_CR50 doi: 10.1007/978-3-319-89656-4_7 – volume: 6 start-page: 74 year: 2018 ident: 951_CR55 publication-title: Nat. Sci. Rev. doi: 10.1093/nsr/nwy108 – volume: 75 start-page: 1380 year: 2014 ident: 951_CR6 publication-title: J. Clin. Psychiat. doi: 10.4088/JCP.13m08715 – volume: 16 start-page: 161 year: 1993 ident: 951_CR43 publication-title: Behav. Ther. – ident: 951_CR47 – volume: 12 start-page: 2825 year: 2011 ident: 951_CR51 publication-title: J. Mach. Learn. Res. – volume: 23 year: 2015 ident: 951_CR2 publication-title: Scand. J. Trauma Resusc. Emerg. Med. doi: 10.1186/s13049-015-0109-z – volume: 24 start-page: 1244 year: 2017 ident: 951_CR1 publication-title: Acad. Emerg. Med. doi: 10.1111/acem.13223 – volume: 41 start-page: 647 year: 2014 ident: 951_CR60 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0679-x – volume: 376 start-page: 2459 year: 2017 ident: 951_CR28 publication-title: New Engl. J. Med. doi: 10.1056/NEJMra1612499 – volume: 25 start-page: 283 year: 2020 ident: 951_CR33 publication-title: Mol. Psychiatry doi: 10.1038/s41380-019-0581-3 – ident: 951_CR37 – volume: 18 start-page: 77 year: 2019 ident: 951_CR5 publication-title: World Psychiatry doi: 10.1002/wps.20608 – volume: 128 start-page: 645 year: 2019 ident: 951_CR23 publication-title: J. Abnorm. Psychol. doi: 10.1037/abn0000440 – ident: 951_CR44 – volume: 8 start-page: 1 year: 2020 ident: 951_CR40 publication-title: Curr. Emerg. Hosp. Med. Rep. doi: 10.1007/s40138-020-00206-5 – ident: 951_CR45 doi: 10.4172/2324-8947.1000139 – volume: 59 start-page: 68 year: 2014 ident: 951_CR12 publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2014.08.017 – volume: 49 start-page: 299 year: 2019 ident: 951_CR11 publication-title: Psychiatr. Ann. doi: 10.3928/00485713-20190605-01 – volume: 30 start-page: 27 year: 2009 ident: 951_CR54 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.08.010 – volume: 55 start-page: 553 year: 1998 ident: 951_CR15 publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.55.6.553 – volume: 44 start-page: 1305 year: 1998 ident: 951_CR16 publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(98)00276-5 – volume: 6 start-page: 459 year: 1993 ident: 951_CR42 publication-title: J. Trauma. Stress doi: 10.1002/jts.2490060405 – volume: 16 year: 2014 ident: 951_CR30 publication-title: Curr. Psychiatry Rep. – volume: 24 start-page: 451 year: 2017 ident: 951_CR48 publication-title: Struct. Equ. Modeling doi: 10.1080/10705511.2016.1247646 – volume: 42 start-page: 254 year: 2017 ident: 951_CR26 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.146 – volume: 30 start-page: 4765 year: 2017 ident: 951_CR38 publication-title: Adv. Neural Inf. Process. Syst. – volume: 381 start-page: 1175 year: 2019 ident: 951_CR34 publication-title: New Engl. J. Med. doi: 10.1056/NEJMsb1900856 – volume: 83 start-page: 1308 year: 2017 ident: 951_CR4 publication-title: Am. Surgeon doi: 10.1177/000313481708301137 – volume: 69 start-page: 166 year: 2012 ident: 951_CR9 publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2011.127 – volume: 338 start-page: b605 year: 2009 ident: 951_CR31 publication-title: Br. Med. J. doi: 10.1136/bmj.b605 – ident: 951_CR41 doi: 10.1001/jama.2013.281053 – volume: 31 start-page: 1 year: 2004 ident: 951_CR56 publication-title: Mach. Learn. – volume: 47 start-page: 919 year: 2006 ident: 951_CR27 publication-title: J. Child Psychol. Psychiatry doi: 10.1111/j.1469-7610.2006.01648.x – ident: 951_CR20 – volume: 2019 start-page: 19010039 year: 2019 ident: 951_CR24 publication-title: Am. J. Psychiatry – volume: 13 year: 2015 ident: 951_CR57 publication-title: BMC Med. doi: 10.1186/s12916-014-0241-z – volume: 18 start-page: e323 year: 2016 ident: 951_CR58 publication-title: J. Med. Internet Res. doi: 10.2196/jmir.5870 – volume: 49 start-page: 79 year: 2016 ident: 951_CR21 publication-title: Clin. Psychol. Rev. doi: 10.1016/j.cpr.2016.09.001 – volume: 17 start-page: CD007944 year: 2010 ident: 951_CR10 publication-title: Cochrane Database Syst. Rev. – volume: 338 start-page: b605 year: 2009 ident: 951_CR59 publication-title: Br. Med. J. doi: 10.1136/bmj.b605 – volume: 32 start-page: 215 year: 2019 ident: 951_CR32 publication-title: J. Trauma Stress doi: 10.1002/jts.22384 – reference: 32632192 - Nat Med. 2020 Jul;26(7):1012-1013 |
| SSID | ssj0003059 |
| Score | 2.617492 |
| Snippet | Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event
1
. These patients are at substantial... Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event . These patients are at substantial... Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event.sup.1. These patients are at substantial... Annually, approximately 30 million patients are discharged from the emergency department (ED) after a traumatic event1. These patients are at substantial... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1084 |
| SubjectTerms | 631/114/1305 631/114/2415 692/499 692/53/2422 692/53/2423 Adolescent Adult Aged Algorithms Anxiety Biomedical and Life Sciences Biomedicine Cancer Research Care and treatment Complications and side effects Diagnosis Electronic health records Electronic medical records Emergency medical care Emergency medical services Emergency Service, Hospital - standards Female Health services Hospitalization Humans Infectious Diseases Learning algorithms Letter Machine learning Male Medical records Mental disorders Metabolic Diseases Middle Aged Molecular Medicine Neurosciences Patients Post traumatic stress disorder Prognosis Psychological stress Psychopathology Risk Risk Assessment Risk Factors Signs and symptoms Stress Disorders, Post-Traumatic - diagnosis Stress Disorders, Post-Traumatic - etiology Stress Disorders, Post-Traumatic - pathology Stress Disorders, Post-Traumatic - psychology Trauma Wounds and injuries Wounds and Injuries - complications Wounds and Injuries - diagnosis Wounds and Injuries - physiopathology Wounds and Injuries - psychology Young Adult |
| Title | A validated predictive algorithm of post-traumatic stress course following emergency department admission after a traumatic stressor |
| URI | https://link.springer.com/article/10.1038/s41591-020-0951-z https://www.ncbi.nlm.nih.gov/pubmed/32632194 https://www.proquest.com/docview/2423336947 https://www.proquest.com/docview/2421107014 |
| Volume | 26 |
| WOSCitedRecordID | wos000545954500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M7P dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2O dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1546-170X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDRAvfIyvwCgGISaBoiVx0jhPqKBN8LCuGh_qm-U6cZk0kpKkIPbMH86dk3SkggmJF1epL1bsO9-d7fPvAJ75mTCaIGfDRGARzTJXpUHsEvQIrpo9IyJtk03E47GYTpNJu-FWtWGVnU60ijotNO2R75Hd53yYhPGrxVeXskbR6WqbQmMDtgglgdvQvclKE6MsJ03MoXAFLgS6U00u9io0XBTzg4snm2n-rGeX1rXzb-Zp7bzUmqGDG__bgZtwvXVA2aiRmFtwKcu34UqTkvLHNlw9bA_bb8PPEUMxPKEtgZQtSvqfdCNTp3Nst_78hRWGLYqqdutSLS30K2uunjBdUGwIMyhkxXfsB8u6W54sRftX2tB2plIUMtqtYzZTOVNsvaGivAMfD_Y_vHnrtkkbXD30ktqdBZEhn9HXIf4Gwtf4LFLhZXyotAgMaRRkDPcU-moiimL0GWYxDxTqZsU1vwubeZFn94F5IXo3fmi0TniYeqFKI5PolBDhfCPCwAGvY5nULaI5JdY4lfZknQvZcFkilyVxWZ458GL1yqKB87iI-DHJgWxupK5UgRwNgyQMKPOAA08tBQFp5BSpM1fLqpLvjj79A9H74x7RbktkCuyDVu3tCBwJAujqUT7vUc4bePI_Ee70CJGlul_dyals9VYlz4XUgSeranqTYvHyrFhaGto0wLW1A_eaabEaS07w_36CNS-7eXLe-F8H-sHFn_IQrgV2olKQ9A5s1uUyewSX9bf6pCoHsBFPY1uKAWy93h9PjvHpMDiy5WRgVcIvqtxesA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8rzwKK-FQg3iIYGiJnaycQ4IrYCqq7ZLVQrqzXidZKlUNkuSpWrP_B5-IzNOsiUrqLj0wCWrrMdWMpmX7c8zAE-8RKaGUs76kcRLMEwcHfPQodQjOGt2UxkYW2wiHAzk3l60vQA_m7MwBKtsbKI11HFmaI18lfy-EN3ID19PvjlUNYp2V5sSGpVYbCRHhzhlK1713-L3fcr52rvdN-tOXVXAMV03Kp0hD1IKajzj4y-XnsF7GUs3EV1tJE9J5FELhKsxmJBBEKJTG4aCazQeWhiB456D8xhGcGmhgtszy4-9ogrjKB2JE49mF1XI1QIdJWGMcLJmK9sft_zgvDf4zR3O7c9at7d27X9j2HW4WgfYrFdpxA1YSMZLcLEquXm0BJe2ajDBTfjRY6hm-7TkEbNJTv-T7Wf6YITvUX75yrKUTbKidMpcT21qW1YdrWEmI-wLS1GJskPkG0uaU6wsRv-eW-g-0zEqEa1GMluJnWk2P1CW34KPZ8KN27A4zsbJXWCuj9Gb56fGRMKPXV_HQRqZmDLeean0eQfcRkSUqTO2U-GQA2WRA0KqSqoUSpUiqVLHHXgx6zKp0pWcRrxCcqeqE7czU6d6XR75nCordOCxpaBEIWNCIo30tChU__2nfyD6sNMiel4TpRm-g9H16Q_kBCUga1E-a1GOqvTrfyJcbhHiJzXt5kYvVG2XC3WiFB14NGumnoQ1HCfZ1NLQoojr-R24U6nhjJeCyht4Eba8bPTyZPC_Mvre6Y-yApfXd7c21WZ_sHEfrnBrJAgQvgyLZT5NHsAF873cL_KH1tww-HzW6voL3fGw9Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAhUXHuUVKHRBPCSQFdtrx-sDQhEloiqEiJd6WzZrb6hU4mA7VO2ZX8WvY2ZtpziCiksPXBIlO17Z4_lm9vHtDMADLxVGU8rZIBb4EY5TRyV-5FDqEZw1u0aE2habiIZDsbsbj1bgZ3MWhmiVjU-0jjrJNK2Rdynuc96Lg6hralrEaGvwfPbNoQpStNPalNOoTGQnPTzA6VvxbHsL3_VD3x-8_PDilVNXGHB0z41LZ-yHhgY4ng7w2xeext8iEW7Ke0oL35D5IyK4q3BgIcIwwgA3jriv0JEorjn2ewbORpS03NIGR4sogFfFFd9ROAInIc2OKhfdAoMm8Y1w4mar3B-1YuJyZPgtNC7t1doQOLj0PyvvMlysB96sXyHlCqyk03U4X5XiPFyHtTc1yeAq_OgzhN8eLYUkbJbT_xQTmNqf4HOUX76yzLBZVpROmau5TXnLqiM3TGfEiWEGwZUdoA5Z2pxuZQnG_dxS-plKEFy0SslshXam2HJHWX4NPp6KNq7D6jSbpjeBuQGO6rzAaB3zIHEDlYQm1gllwvOMCPwOuI25SF1ncqeCIvvSMgq4kJWFSbQwSRYmjzrwZHHJrEpjcpLwJtmgrE7iLlyg7Pf8OPCp4kIH7lsJSiAyJWuaqHlRyO23n_5B6P27ltDjWshk-Axa1adCUBOUmKwl-aglOanSsv9JcKMliK9Ut5sbjMjaXxfyGCAduLdopiuJgzhNs7mVocUS1ws6cKOC5EKXnMoeeDG2PG0wetz5XxV96-Rb2YQ1RKl8vT3cuQ0XfOsviCe-AatlPk_vwDn9vdwr8rvW8zD4fNpo_QV5-Lmy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+validated+predictive+algorithm+of+post-traumatic+stress+course+following+emergency+department+admission+after+a+traumatic+stressor&rft.jtitle=Nature+medicine&rft.au=Michopoulos%2C+Vasiliki&rft.au=Schultebraucks%2C+Katharina&rft.au=Grudzen%2C+Corita+R&rft.au=Shin%2C+Soo-Min&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.volume=26&rft.issue=7&rft.spage=1084&rft_id=info:doi/10.1038%2Fs41591-020-0951-z&rft.externalDBID=n%2Fa&rft.externalDocID=A629420747 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |