GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly...
Uloženo v:
| Vydáno v: | PLoS computational biology Ročník 17; číslo 12; s. e1009655 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
10.12.2021
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. |
|---|---|
| AbstractList | microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease.microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. Numerous studies have demonstrated that miRNAs are closely related to several common human diseases, so observing unverified associations between miRNAs and diseases is conducive to the diagnose and treatment of complex diseases. Considerable models proposed to infer potential miRNA-disease associations have made the prediction more effective and productive. We constructed GCAEMDA model to acquire more accuracy prediction result by integrating graph convolutional network and autoencoder to make prediction based on multi-source miRNA and disease information. The five-fold cross validation and global leave-one-out cross validation were implemented to evaluate the performance of our model. Consequently, GCAEMDA reached AUCs of 0.9415 and 0.9505 respectively that were distinctly higher than AUCs of other comparative models. Furthermore, we carried out case studies on lung neoplasms and breast neoplasms to demonstrate the practical application of the model, 47 and 47 of top-50 candidate miRNAs were confirmed by experimental reports. In summary, GCAEMDA could be considered as an effective and accuracy model to reveal relationship between miRNAs and diseases. |
| Audience | Academic |
| Author | Wang, Yu-Tian Ni, Jian-Cheng Su, Yan-Sen Zheng, Chun-Hou Li, Lei Ji, Cun-Mei |
| AuthorAffiliation | University of Electronic Science and Technology, CHINA 1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China 2 School of Artifial Intelligence, Anhui University, Hefei, China |
| AuthorAffiliation_xml | – name: 2 School of Artifial Intelligence, Anhui University, Hefei, China – name: University of Electronic Science and Technology, CHINA – name: 1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China |
| Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0003-0013-2735 surname: Li fullname: Li, Lei – sequence: 2 givenname: Yu-Tian orcidid: 0000-0002-8033-8727 surname: Wang fullname: Wang, Yu-Tian – sequence: 3 givenname: Cun-Mei orcidid: 0000-0002-7004-3351 surname: Ji fullname: Ji, Cun-Mei – sequence: 4 givenname: Chun-Hou surname: Zheng fullname: Zheng, Chun-Hou – sequence: 5 givenname: Jian-Cheng orcidid: 0000-0001-5667-9807 surname: Ni fullname: Ni, Jian-Cheng – sequence: 6 givenname: Yan-Sen orcidid: 0000-0002-3855-7133 surname: Su fullname: Su, Yan-Sen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34890410$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl1rFDEUhgep2A_9ByID3ujFrsnkYya9EJa11oVaZdXrkElOpllmJ2sys9h_30x3LV0RQRJIOHneN8nhPc2OOt9Blr3EaIpJid-t_BA61U43unZTjJDgjD3JTjBjZFISVh092h9npzGuEEpbwZ9lx4RWAlGMTrLl5Xx28fnD7Dz_GsA43buuyddueT2bGBdBRchVjF471TvfxXzrVN4EtbnJte-2vh3GsmpzNfQeOu0NhOfZU6vaCC_261n24-PF9_mnydWXy8V8djXRHIl-wimrTYEKS3GtDTOaFooxKEosKhAUKa4R4tRqKkxVUjAINGG1RZW2lpUFOcsWO1_j1UpuglurcCu9cvK-4EMjVeidbkEawRSzaTJMKKiiRnWVPIuCWOAEj17vd16boV6D0dD1QbUHpocnnbuRjd_KigtKCUoGb_YGwf8cIPZy7aKGtlUd-CHKgmNSiHQhT-jrHdqo9DTXWZ8c9YjLGa8qQQQrR8PpX6g0DKxd6j1Yl-oHgrcHgsT08Ktv1BCjXHxb_gd7fci-etyah578zlAC6A7QwccYwD4gGMkxqnIfVTlGVe6jmmTnf8i06-9Tlj7q2n-L7wAl4_EG |
| CitedBy_id | crossref_primary_10_3390_genes13061021 crossref_primary_10_1093_bib_bbad270 crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_3389_fbioe_2022_911769 crossref_primary_10_1109_JBHI_2023_3336247 crossref_primary_10_1007_s13755_024_00319_1 crossref_primary_10_1093_bib_bbad212 crossref_primary_10_1093_bib_bbad410 crossref_primary_10_1021_acs_jcim_5c00174 crossref_primary_10_1021_acs_jcim_5c01164 crossref_primary_10_1093_bib_bbad276 crossref_primary_10_1186_s13007_024_01158_7 crossref_primary_10_3390_bioengineering11070680 crossref_primary_10_1109_JBHI_2023_3272154 crossref_primary_10_3390_genes16040425 crossref_primary_10_1093_bib_bbad524 crossref_primary_10_1007_s12539_023_00599_3 crossref_primary_10_1109_TCBB_2022_3187739 crossref_primary_10_1109_TCBB_2022_3195514 crossref_primary_10_1371_journal_pcbi_1011927 crossref_primary_10_1186_s12859_022_04796_7 crossref_primary_10_2174_1574893618666230612161210 |
| Cites_doi | 10.1093/nar/gkw1079 10.3389/fgene.2020.00354 10.1016/j.tig.2004.09.010 10.1093/bioinformatics/btaa670 10.1371/journal.pone.0003420 10.1186/s12911-020-01320-w 10.1007/s00438-020-01693-7 10.1126/science.1121566 10.1016/j.gde.2005.08.005 10.1093/bioinformatics/btt426 10.1038/srep21106 10.1016/j.knosys.2019.104963 10.1056/NEJMe0905763 10.1093/bib/bbaa240 10.1001/jama.1994.03510380059038 10.1093/bioinformatics/btz965 10.1186/1471-2105-14-S12-S1 10.1093/nar/gkn714 10.1093/bib/bbab174 10.3390/cells8090977 10.1016/j.knosys.2020.106718 10.1186/s12967-018-1722-1 10.1111/brv.12176 10.1038/s41598-020-75005-9 10.1093/bioinformatics/bty333 10.1016/0022-2836(70)90057-4 10.18632/oncotarget.11251 10.1371/journal.pcbi.1006931 10.1038/nature02871 10.1186/1758-907X-1-6 10.1038/nature02873 10.1007/s00059-012-3656-3 10.4161/cc.7.6.5834 10.3389/fcell.2021.617569 10.1093/nar/gkt1181 10.3390/cells8091040 10.1186/1471-2164-10-407 10.1093/bioinformatics/btt769 10.1016/S0092-8674(01)00616-X 10.1016/S0092-8674(04)00045-5 10.1016/0092-8674(93)90530-4 10.1186/s12859-021-04135-2 10.1158/0008-5472.CAN-05-1783 10.1093/nar/gky1010 10.1371/journal.pcbi.1005455 10.1186/1752-0509-4-S1-S2 10.1093/nar/gki200 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Li et al 2021 Li et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Li et al 2021 Li et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1009655 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | GCAEMDA |
| EISSN | 1553-7358 |
| ExternalDocumentID | oai_doaj_org_article_d95a5fa5f5134ea2b0b8874223fe6312 PMC8694430 A688939570 34890410 10_1371_journal_pcbi_1009655 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: ; grantid: MMC202006 – fundername: ; grantid: ZR2020KC022 – fundername: ; grantid: 61873001 – fundername: ; grantid: U19A2064 – fundername: ; grantid: 11701318 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c609t-645bd202f41bcd5dc42a55e27198e940a6c0064fc49d874ed0ec35bf08cff5723 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927176500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Fri Oct 03 12:47:45 EDT 2025 Tue Nov 04 01:42:37 EST 2025 Thu Oct 02 11:29:22 EDT 2025 Tue Nov 11 10:20:40 EST 2025 Tue Nov 04 17:51:26 EST 2025 Thu Nov 13 15:29:26 EST 2025 Thu Nov 13 14:25:14 EST 2025 Wed Feb 19 02:27:18 EST 2025 Sat Nov 29 06:12:29 EST 2025 Tue Nov 18 21:48:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c609t-645bd202f41bcd5dc42a55e27198e940a6c0064fc49d874ed0ec35bf08cff5723 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8033-8727 0000-0001-5667-9807 0000-0003-0013-2735 0000-0002-3855-7133 0000-0002-7004-3351 |
| OpenAccessLink | https://doaj.org/article/d95a5fa5f5134ea2b0b8874223fe6312 |
| PMID | 34890410 |
| PQID | 2613292236 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d95a5fa5f5134ea2b0b8874223fe6312 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694430 proquest_miscellaneous_2613292236 gale_infotracmisc_A688939570 gale_infotracacademiconefile_A688939570 gale_incontextgauss_ISR_A688939570 gale_incontextgauss_ISN_A688939570 pubmed_primary_34890410 crossref_primary_10_1371_journal_pcbi_1009655 crossref_citationtrail_10_1371_journal_pcbi_1009655 |
| PublicationCentury | 2000 |
| PublicationDate | 20211210 |
| PublicationDateYYYYMMDD | 2021-12-10 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211210 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | Z Yang (pcbi.1009655.ref040) 2017; 45 P Xu (pcbi.1009655.ref011) 2004; 20 X Chen (pcbi.1009655.ref022) 2016; 7 X Chen (pcbi.1009655.ref025) 2016; 6 Y Wang (pcbi.1009655.ref050) 2021; 21 M Alshalalfa (pcbi.1009655.ref010) 2013; 14 Q Jiang (pcbi.1009655.ref020) 2010; 4 S Bandyopadhyay (pcbi.1009655.ref019) 2010; 1 L Zhang (pcbi.1009655.ref036) 2019; 8 Z Yu (pcbi.1009655.ref051) 2020 V. Ambros (pcbi.1009655.ref003) 2004; 431 X Tang (pcbi.1009655.ref034) 2021 X Chen (pcbi.1009655.ref048) 2018; 34 C Li (pcbi.1009655.ref030) 2019; 8 D Liu (pcbi.1009655.ref038) 2021; 22 MV Iorio (pcbi.1009655.ref015) 2005; 65 L Guo (pcbi.1009655.ref029) 2021; 214 AM Cheng (pcbi.1009655.ref007) 2005; 33 X Karp (pcbi.1009655.ref008) 2005; 310 W Lan (pcbi.1009655.ref021) 2015 X Chen (pcbi.1009655.ref023) 2018; 16 A Grover (pcbi.1009655.ref031) 2016; 2016 Z Huang (pcbi.1009655.ref041) 2019; 47 JN Goh (pcbi.1009655.ref053) 2016; 91 RC Lee (pcbi.1009655.ref005) 1993; 75 U Kühl (pcbi.1009655.ref013) 2012; 37 TN Kipf (pcbi.1009655.ref047) 2016 AF Gazdar (pcbi.1009655.ref052) 2009; 361 EA Miska (pcbi.1009655.ref009) 2005; 15 A Esquela-Kerscher (pcbi.1009655.ref014) 2008; 7 L Li (pcbi.1009655.ref028) 2021; 9 DP Bartel (pcbi.1009655.ref001) 2004; 116 Z You (pcbi.1009655.ref026) 2017; 13 J Qu (pcbi.1009655.ref027) 2019; 186 J Li (pcbi.1009655.ref033) 2020; 295 X Chen (pcbi.1009655.ref046) 2013; 29 HJ Lowe (pcbi.1009655.ref044) 1994; 271 V. Ambros (pcbi.1009655.ref002) 2001; 107 G Meister (pcbi.1009655.ref004) 2004; 431 KC Wong (pcbi.1009655.ref012) 2014; 30 D Wang (pcbi.1009655.ref045) 1644; 2010 C Liang (pcbi.1009655.ref017) 2019; 15 J Li (pcbi.1009655.ref024) 2020; 10 Q Jiang (pcbi.1009655.ref039) 2009; 37 M Lu (pcbi.1009655.ref018) 2008; 3 Q Wu (pcbi.1009655.ref049) 2020; 11 J Li (pcbi.1009655.ref032) 2020; 36 B Wightman (pcbi.1009655.ref006) 1993; 75 A Kozomara (pcbi.1009655.ref042) 2014; 42 SB Needleman (pcbi.1009655.ref043) 1970; 48 C Ji (pcbi.1009655.ref037) 2021; 37 Z Li (pcbi.1009655.ref035) 2020; 22 Y Chen (pcbi.1009655.ref016) 2009; 10 |
| References_xml | – volume: 2016 start-page: 855 year: 2016 ident: pcbi.1009655.ref031 article-title: node2vec: Scalable Feature Learning for Networks. publication-title: the 22nd ACM SIGKDD International Conference – volume: 45 start-page: D812 year: 2017 ident: pcbi.1009655.ref040 article-title: dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1079 – volume: 11 start-page: 354 year: 2020 ident: pcbi.1009655.ref049 article-title: MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association. publication-title: Front Genet doi: 10.3389/fgene.2020.00354 – volume: 20 start-page: 617 year: 2004 ident: pcbi.1009655.ref011 article-title: MicroRNAs and the regulation of cell death publication-title: Trend Genet doi: 10.1016/j.tig.2004.09.010 – volume: 37 start-page: 66 year: 2021 ident: pcbi.1009655.ref037 article-title: AEMDA: inferring miRNA-disease associations based on deep autoencoder publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa670 – volume: 3 start-page: e3420 year: 2008 ident: pcbi.1009655.ref018 article-title: An analysis of human microRNA and disease associations. publication-title: PLoS One doi: 10.1371/journal.pone.0003420 – volume: 21 start-page: 133 year: 2021 ident: pcbi.1009655.ref050 article-title: MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features. publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-020-01320-w – volume: 295 start-page: 1197 year: 2020 ident: pcbi.1009655.ref033 article-title: FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks publication-title: Mol Genet Genomics doi: 10.1007/s00438-020-01693-7 – volume: 310 start-page: 1288 year: 2005 ident: pcbi.1009655.ref008 article-title: Developmental biology. Encountering microRNAs in cell fate signaling publication-title: Science doi: 10.1126/science.1121566 – volume: 15 start-page: 563 year: 2005 ident: pcbi.1009655.ref009 article-title: How microRNAs control cell division, differentiation and death publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2005.08.005 – volume: 75 start-page: 3 year: 1993 ident: pcbi.1009655.ref005 article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 publication-title: Cell – volume: 29 start-page: 2617 year: 2013 ident: pcbi.1009655.ref046 article-title: Novel human lncRNA-disease association inference based on lncRNA expression profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt426 – volume: 6 start-page: 21106 year: 2016 ident: pcbi.1009655.ref025 article-title: WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. publication-title: Sci Rep doi: 10.1038/srep21106 – volume: 186 start-page: 104963 year: 2019 ident: pcbi.1009655.ref027 article-title: Prediction of potential miRNA-disease associations using matrix decomposition and label propagation publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.104963 – volume: 361 start-page: 1018 year: 2009 ident: pcbi.1009655.ref052 article-title: Personalized medicine and inhibition of EGFR signaling in lung cancer publication-title: N Engl J Med doi: 10.1056/NEJMe0905763 – volume: 22 start-page: bbaa240 year: 2020 ident: pcbi.1009655.ref035 article-title: A graph auto-encoder model for miRNA-disease associations prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbaa240 – volume: 271 start-page: 1103 year: 1994 ident: pcbi.1009655.ref044 article-title: Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. publication-title: Jama doi: 10.1001/jama.1994.03510380059038 – year: 2016 ident: pcbi.1009655.ref047 article-title: Semi-Supervised Classification with Graph Convolutional Networks. publication-title: arXiv preprint arXiv – volume: 36 start-page: 2538 year: 2020 ident: pcbi.1009655.ref032 article-title: Neural Inductive Matrix Completion with Graph Convolutional Networks for miRNA-disease Association Prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 14 start-page: S1 year: 2013 ident: pcbi.1009655.ref010 article-title: Using context-specific effect of miRNAs to identify functional associations between miRNAs and gene signatures publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-S12-S1 – volume: 37 start-page: D98 year: 2009 ident: pcbi.1009655.ref039 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – start-page: bbab174 year: 2021 ident: pcbi.1009655.ref034 article-title: Multi-view Multichannel Attention Graph Convolutional Network for miRNA–disease association prediction. publication-title: Brief Bioinform doi: 10.1093/bib/bbab174 – volume: 8 start-page: 977 year: 2019 ident: pcbi.1009655.ref030 article-title: A Novel Computational Model for Predicting microRNA–Disease Associations Based on Heterogeneous Graph Convolutional Networks. publication-title: Cells doi: 10.3390/cells8090977 – volume: 214 start-page: 106718 year: 2021 ident: pcbi.1009655.ref029 article-title: MLPMDA: Multi-layer linear projection for predicting miRNA-disease association. publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106718 – volume: 16 start-page: 348 year: 2018 ident: pcbi.1009655.ref023 article-title: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. publication-title: J Transl Med doi: 10.1186/s12967-018-1722-1 – year: 2015 ident: pcbi.1009655.ref021 article-title: Predicting microRNA-disease associations by integrating multiple biological information publication-title: IEEE International Conference on Bioinformatics & Biomedicine IEEE – volume: 91 start-page: 409 year: 2016 ident: pcbi.1009655.ref053 article-title: microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer publication-title: Biol Rev Camb Philos Soc doi: 10.1111/brv.12176 – volume: 10 start-page: 17901 year: 2020 ident: pcbi.1009655.ref024 article-title: Seq-SymRF: a random forest model predicts potential miRNA-disease associations based on information of sequences and clinical symptoms. publication-title: Sci Rep doi: 10.1038/s41598-020-75005-9 – volume: 34 start-page: 3178 year: 2018 ident: pcbi.1009655.ref048 article-title: BNPMDA: Bipartite network projection for MiRNA-Disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty333 – volume: 48 start-page: 443 year: 1970 ident: pcbi.1009655.ref043 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: J Mol Biol doi: 10.1016/0022-2836(70)90057-4 – volume: 7 start-page: 65257 year: 2016 ident: pcbi.1009655.ref022 article-title: HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. publication-title: Oncotarget doi: 10.18632/oncotarget.11251 – volume: 15 start-page: e1006931 year: 2019 ident: pcbi.1009655.ref017 article-title: Adaptive multi-view multi-label learning for identifying disease-associated candidate miRNAs. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006931 – volume: 2010 start-page: 26 year: 1644 ident: pcbi.1009655.ref045 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics – volume: 431 start-page: 350 year: 2004 ident: pcbi.1009655.ref003 article-title: The function of animal microRNAs publication-title: Nature doi: 10.1038/nature02871 – volume: 1 start-page: 6 year: 2010 ident: pcbi.1009655.ref019 article-title: Development of the human cancer microRNA network publication-title: Silence doi: 10.1186/1758-907X-1-6 – volume: 431 start-page: 343 year: 2004 ident: pcbi.1009655.ref004 article-title: Mechanisms of gene silencing by double-stranded RNA publication-title: Nature doi: 10.1038/nature02873 – volume: 37 start-page: 637 year: 2012 ident: pcbi.1009655.ref013 article-title: miRNA as activity markers in Parvo B19 associated heart disease publication-title: Herz doi: 10.1007/s00059-012-3656-3 – volume: 7 start-page: 759 year: 2008 ident: pcbi.1009655.ref014 article-title: The let-7 microrna reduces tumor growth in mouse models of lung cancer publication-title: Cell Cycle doi: 10.4161/cc.7.6.5834 – volume: 9 start-page: 617569 year: 2021 ident: pcbi.1009655.ref028 article-title: SNFIMCMDA: Similarity Network Fusion and Inductive Matrix Completion for miRNA-Disease Association Prediction publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.617569 – volume: 42 start-page: D68 year: 2014 ident: pcbi.1009655.ref042 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1181 – volume: 8 start-page: 1040 year: 2019 ident: pcbi.1009655.ref036 article-title: Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder. publication-title: Cells doi: 10.3390/cells8091040 – volume: 10 start-page: 407 year: 2009 ident: pcbi.1009655.ref016 article-title: Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis publication-title: BMC Genomics doi: 10.1186/1471-2164-10-407 – start-page: bbaa243 year: 2020 ident: pcbi.1009655.ref051 article-title: Predicting drug-disease associations through layer attention convolutional network publication-title: Brief Bioinform – volume: 30 start-page: 1112 year: 2014 ident: pcbi.1009655.ref012 article-title: SNPdryad: predicting deleterious non-synonymous human SNPs using only orthologous protein sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt769 – volume: 107 start-page: 823 year: 2001 ident: pcbi.1009655.ref002 article-title: microRNAs: tiny regulators with great potential publication-title: Cell doi: 10.1016/S0092-8674(01)00616-X – volume: 116 start-page: 281 year: 2004 ident: pcbi.1009655.ref001 article-title: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 75 start-page: 855 year: 1993 ident: pcbi.1009655.ref006 article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans publication-title: Cell doi: 10.1016/0092-8674(93)90530-4 – volume: 22 start-page: 219 year: 2021 ident: pcbi.1009655.ref038 article-title: SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04135-2 – volume: 65 start-page: 7065 year: 2005 ident: pcbi.1009655.ref015 article-title: MicroRNA Gene Expression Deregulation in Human Breast Cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-1783 – volume: 47 start-page: D1013 year: 2019 ident: pcbi.1009655.ref041 article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1010 – volume: 13 start-page: e1005455 year: 2017 ident: pcbi.1009655.ref026 article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005455 – volume: 4 start-page: S2 year: 2010 ident: pcbi.1009655.ref020 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S1-S2 – volume: 33 start-page: 1290 year: 2005 ident: pcbi.1009655.ref007 article-title: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis publication-title: Nucleic Acids Res doi: 10.1093/nar/gki200 |
| SSID | ssj0035896 |
| Score | 2.4658744 |
| Snippet | microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1009655 |
| SubjectTerms | Algorithms Area Under Curve Biology and life sciences China Computational Biology - methods Computer and Information Sciences Diseases Genetic aspects Genetic Predisposition to Disease - genetics Health aspects Humans Medicine and Health Sciences MicroRNA MicroRNAs - genetics MicroRNAs - metabolism Models, Genetic Neoplasms - genetics Neoplasms - metabolism Neural networks Neural Networks, Computer Physical Sciences Research and Analysis Methods Risk factors Social Sciences |
| Title | GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34890410 https://www.proquest.com/docview/2613292236 https://pubmed.ncbi.nlm.nih.gov/PMC8694430 https://doaj.org/article/d95a5fa5f5134ea2b0b8874223fe6312 |
| Volume | 17 |
| WOSCitedRecordID | wos000927176500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4k1hqQJC4hTW8SOOuXWXFlawVVRAKlwsxw-oBOmqaVfi3zNO3NIIob0gVXOoJw9_HmfG8vgbhF7o3FmBK5YyJ4uUWZhSFdc4BdOxVVVYQZlvi02I6bSYz2W5V-or5IR19MAdcEdWcs09_HhGmdOkwhXMCwZezbuctvWFCUQ928VU9w2mvGgrc4WiOCk8bh4PzVGRHcUxenVuqkXIEZB5OOa355Ra7v6_v9B7LqqfPrnnjya30a0YSCajrgN30BVX30U3utKSv-6h2duT0fjszeh1Uq7CXkzIbk5-LmbTURr3ZBL9Z2Sa5GKhk5a8Ogl56NEe4f56s14GrkvrVvfR58n408m7NNZPSE2O5TrNGa8swcSzrDKWW8OI5twRkcnCSYZ1bkJE4g2TFiB1FjtDeeVxYbzngtAH6KBe1u4RSiSlEBcKK4j3jBteQZiVgWCFh4jK6gGiWwCVieTiocbFD9XumAlYZHSwqAC7irAPULq76rwj17hE_ziMzU43UGO3f4DBqGgw6jKDGaDnYWRVIL-oQ3bNN71pGnX6capGeQHhm-QC_1Np1lN6GZX8EjprdDzRAJAFUq2e5mFPE6aw6TU_21qZCk0h7612y02jYH1LiYR3zwfoYWd1u95TVkjMMrha9OyxB0-_pV58bxnEi1wyRvHj_4HnE3SThDyfjIBLP0QH69XGPUXXzcV60ayG6KqYi1YWQ3TteDwtZ8N2qoKclB9AvhfpMGTcliBL_hW0ytOz8stv93lE8g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCAEMDA%3A+Predicting+miRNA-disease+associations+via+graph+convolutional+autoencoder&rft.jtitle=PLoS+computational+biology&rft.au=Li%2C+Lei&rft.au=Wang%2C+Yu-Tian&rft.au=Ji%2C+Cun-Mei&rft.au=Zheng%2C+Chun-Hou&rft.date=2021-12-10&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=17&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009655&rft.externalDBID=ISN&rft.externalDocID=A688939570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |