GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder

microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 17; číslo 12; s. e1009655
Hlavní autoři: Li, Lei, Wang, Yu-Tian, Ji, Cun-Mei, Zheng, Chun-Hou, Ni, Jian-Cheng, Su, Yan-Sen
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 10.12.2021
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease.
AbstractList microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease.microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease.
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease.
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. Numerous studies have demonstrated that miRNAs are closely related to several common human diseases, so observing unverified associations between miRNAs and diseases is conducive to the diagnose and treatment of complex diseases. Considerable models proposed to infer potential miRNA-disease associations have made the prediction more effective and productive. We constructed GCAEMDA model to acquire more accuracy prediction result by integrating graph convolutional network and autoencoder to make prediction based on multi-source miRNA and disease information. The five-fold cross validation and global leave-one-out cross validation were implemented to evaluate the performance of our model. Consequently, GCAEMDA reached AUCs of 0.9415 and 0.9505 respectively that were distinctly higher than AUCs of other comparative models. Furthermore, we carried out case studies on lung neoplasms and breast neoplasms to demonstrate the practical application of the model, 47 and 47 of top-50 candidate miRNAs were confirmed by experimental reports. In summary, GCAEMDA could be considered as an effective and accuracy model to reveal relationship between miRNAs and diseases.
Audience Academic
Author Wang, Yu-Tian
Ni, Jian-Cheng
Su, Yan-Sen
Zheng, Chun-Hou
Li, Lei
Ji, Cun-Mei
AuthorAffiliation University of Electronic Science and Technology, CHINA
1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
2 School of Artifial Intelligence, Anhui University, Hefei, China
AuthorAffiliation_xml – name: 2 School of Artifial Intelligence, Anhui University, Hefei, China
– name: University of Electronic Science and Technology, CHINA
– name: 1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0003-0013-2735
  surname: Li
  fullname: Li, Lei
– sequence: 2
  givenname: Yu-Tian
  orcidid: 0000-0002-8033-8727
  surname: Wang
  fullname: Wang, Yu-Tian
– sequence: 3
  givenname: Cun-Mei
  orcidid: 0000-0002-7004-3351
  surname: Ji
  fullname: Ji, Cun-Mei
– sequence: 4
  givenname: Chun-Hou
  surname: Zheng
  fullname: Zheng, Chun-Hou
– sequence: 5
  givenname: Jian-Cheng
  orcidid: 0000-0001-5667-9807
  surname: Ni
  fullname: Ni, Jian-Cheng
– sequence: 6
  givenname: Yan-Sen
  orcidid: 0000-0002-3855-7133
  surname: Su
  fullname: Su, Yan-Sen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34890410$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEUhgep2A_9ByID3ujFrsnkYya9EJa11oVaZdXrkElOpllmJ2sys9h_30x3LV0RQRJIOHneN8nhPc2OOt9Blr3EaIpJid-t_BA61U43unZTjJDgjD3JTjBjZFISVh092h9npzGuEEpbwZ9lx4RWAlGMTrLl5Xx28fnD7Dz_GsA43buuyddueT2bGBdBRchVjF471TvfxXzrVN4EtbnJte-2vh3GsmpzNfQeOu0NhOfZU6vaCC_261n24-PF9_mnydWXy8V8djXRHIl-wimrTYEKS3GtDTOaFooxKEosKhAUKa4R4tRqKkxVUjAINGG1RZW2lpUFOcsWO1_j1UpuglurcCu9cvK-4EMjVeidbkEawRSzaTJMKKiiRnWVPIuCWOAEj17vd16boV6D0dD1QbUHpocnnbuRjd_KigtKCUoGb_YGwf8cIPZy7aKGtlUd-CHKgmNSiHQhT-jrHdqo9DTXWZ8c9YjLGa8qQQQrR8PpX6g0DKxd6j1Yl-oHgrcHgsT08Ktv1BCjXHxb_gd7fci-etyah578zlAC6A7QwccYwD4gGMkxqnIfVTlGVe6jmmTnf8i06-9Tlj7q2n-L7wAl4_EG
CitedBy_id crossref_primary_10_3390_genes13061021
crossref_primary_10_1093_bib_bbad270
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_3389_fbioe_2022_911769
crossref_primary_10_1109_JBHI_2023_3336247
crossref_primary_10_1007_s13755_024_00319_1
crossref_primary_10_1093_bib_bbad212
crossref_primary_10_1093_bib_bbad410
crossref_primary_10_1021_acs_jcim_5c00174
crossref_primary_10_1021_acs_jcim_5c01164
crossref_primary_10_1093_bib_bbad276
crossref_primary_10_1186_s13007_024_01158_7
crossref_primary_10_3390_bioengineering11070680
crossref_primary_10_1109_JBHI_2023_3272154
crossref_primary_10_3390_genes16040425
crossref_primary_10_1093_bib_bbad524
crossref_primary_10_1007_s12539_023_00599_3
crossref_primary_10_1109_TCBB_2022_3187739
crossref_primary_10_1109_TCBB_2022_3195514
crossref_primary_10_1371_journal_pcbi_1011927
crossref_primary_10_1186_s12859_022_04796_7
crossref_primary_10_2174_1574893618666230612161210
Cites_doi 10.1093/nar/gkw1079
10.3389/fgene.2020.00354
10.1016/j.tig.2004.09.010
10.1093/bioinformatics/btaa670
10.1371/journal.pone.0003420
10.1186/s12911-020-01320-w
10.1007/s00438-020-01693-7
10.1126/science.1121566
10.1016/j.gde.2005.08.005
10.1093/bioinformatics/btt426
10.1038/srep21106
10.1016/j.knosys.2019.104963
10.1056/NEJMe0905763
10.1093/bib/bbaa240
10.1001/jama.1994.03510380059038
10.1093/bioinformatics/btz965
10.1186/1471-2105-14-S12-S1
10.1093/nar/gkn714
10.1093/bib/bbab174
10.3390/cells8090977
10.1016/j.knosys.2020.106718
10.1186/s12967-018-1722-1
10.1111/brv.12176
10.1038/s41598-020-75005-9
10.1093/bioinformatics/bty333
10.1016/0022-2836(70)90057-4
10.18632/oncotarget.11251
10.1371/journal.pcbi.1006931
10.1038/nature02871
10.1186/1758-907X-1-6
10.1038/nature02873
10.1007/s00059-012-3656-3
10.4161/cc.7.6.5834
10.3389/fcell.2021.617569
10.1093/nar/gkt1181
10.3390/cells8091040
10.1186/1471-2164-10-407
10.1093/bioinformatics/btt769
10.1016/S0092-8674(01)00616-X
10.1016/S0092-8674(04)00045-5
10.1016/0092-8674(93)90530-4
10.1186/s12859-021-04135-2
10.1158/0008-5472.CAN-05-1783
10.1093/nar/gky1010
10.1371/journal.pcbi.1005455
10.1186/1752-0509-4-S1-S2
10.1093/nar/gki200
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Li et al 2021 Li et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Li et al 2021 Li et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009655
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate GCAEMDA
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_d95a5fa5f5134ea2b0b8874223fe6312
PMC8694430
A688939570
34890410
10_1371_journal_pcbi_1009655
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: MMC202006
– fundername: ;
  grantid: ZR2020KC022
– fundername: ;
  grantid: 61873001
– fundername: ;
  grantid: U19A2064
– fundername: ;
  grantid: 11701318
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c609t-645bd202f41bcd5dc42a55e27198e940a6c0064fc49d874ed0ec35bf08cff5723
IEDL.DBID DOA
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927176500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Fri Oct 03 12:47:45 EDT 2025
Tue Nov 04 01:42:37 EST 2025
Thu Oct 02 11:29:22 EDT 2025
Tue Nov 11 10:20:40 EST 2025
Tue Nov 04 17:51:26 EST 2025
Thu Nov 13 15:29:26 EST 2025
Thu Nov 13 14:25:14 EST 2025
Wed Feb 19 02:27:18 EST 2025
Sat Nov 29 06:12:29 EST 2025
Tue Nov 18 21:48:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c609t-645bd202f41bcd5dc42a55e27198e940a6c0064fc49d874ed0ec35bf08cff5723
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-8033-8727
0000-0001-5667-9807
0000-0003-0013-2735
0000-0002-3855-7133
0000-0002-7004-3351
OpenAccessLink https://doaj.org/article/d95a5fa5f5134ea2b0b8874223fe6312
PMID 34890410
PQID 2613292236
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d95a5fa5f5134ea2b0b8874223fe6312
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8694430
proquest_miscellaneous_2613292236
gale_infotracmisc_A688939570
gale_infotracacademiconefile_A688939570
gale_incontextgauss_ISR_A688939570
gale_incontextgauss_ISN_A688939570
pubmed_primary_34890410
crossref_primary_10_1371_journal_pcbi_1009655
crossref_citationtrail_10_1371_journal_pcbi_1009655
PublicationCentury 2000
PublicationDate 20211210
PublicationDateYYYYMMDD 2021-12-10
PublicationDate_xml – month: 12
  year: 2021
  text: 20211210
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Z Yang (pcbi.1009655.ref040) 2017; 45
P Xu (pcbi.1009655.ref011) 2004; 20
X Chen (pcbi.1009655.ref022) 2016; 7
X Chen (pcbi.1009655.ref025) 2016; 6
Y Wang (pcbi.1009655.ref050) 2021; 21
M Alshalalfa (pcbi.1009655.ref010) 2013; 14
Q Jiang (pcbi.1009655.ref020) 2010; 4
S Bandyopadhyay (pcbi.1009655.ref019) 2010; 1
L Zhang (pcbi.1009655.ref036) 2019; 8
Z Yu (pcbi.1009655.ref051) 2020
V. Ambros (pcbi.1009655.ref003) 2004; 431
X Tang (pcbi.1009655.ref034) 2021
X Chen (pcbi.1009655.ref048) 2018; 34
C Li (pcbi.1009655.ref030) 2019; 8
D Liu (pcbi.1009655.ref038) 2021; 22
MV Iorio (pcbi.1009655.ref015) 2005; 65
L Guo (pcbi.1009655.ref029) 2021; 214
AM Cheng (pcbi.1009655.ref007) 2005; 33
X Karp (pcbi.1009655.ref008) 2005; 310
W Lan (pcbi.1009655.ref021) 2015
X Chen (pcbi.1009655.ref023) 2018; 16
A Grover (pcbi.1009655.ref031) 2016; 2016
Z Huang (pcbi.1009655.ref041) 2019; 47
JN Goh (pcbi.1009655.ref053) 2016; 91
RC Lee (pcbi.1009655.ref005) 1993; 75
U Kühl (pcbi.1009655.ref013) 2012; 37
TN Kipf (pcbi.1009655.ref047) 2016
AF Gazdar (pcbi.1009655.ref052) 2009; 361
EA Miska (pcbi.1009655.ref009) 2005; 15
A Esquela-Kerscher (pcbi.1009655.ref014) 2008; 7
L Li (pcbi.1009655.ref028) 2021; 9
DP Bartel (pcbi.1009655.ref001) 2004; 116
Z You (pcbi.1009655.ref026) 2017; 13
J Qu (pcbi.1009655.ref027) 2019; 186
J Li (pcbi.1009655.ref033) 2020; 295
X Chen (pcbi.1009655.ref046) 2013; 29
HJ Lowe (pcbi.1009655.ref044) 1994; 271
V. Ambros (pcbi.1009655.ref002) 2001; 107
G Meister (pcbi.1009655.ref004) 2004; 431
KC Wong (pcbi.1009655.ref012) 2014; 30
D Wang (pcbi.1009655.ref045) 1644; 2010
C Liang (pcbi.1009655.ref017) 2019; 15
J Li (pcbi.1009655.ref024) 2020; 10
Q Jiang (pcbi.1009655.ref039) 2009; 37
M Lu (pcbi.1009655.ref018) 2008; 3
Q Wu (pcbi.1009655.ref049) 2020; 11
J Li (pcbi.1009655.ref032) 2020; 36
B Wightman (pcbi.1009655.ref006) 1993; 75
A Kozomara (pcbi.1009655.ref042) 2014; 42
SB Needleman (pcbi.1009655.ref043) 1970; 48
C Ji (pcbi.1009655.ref037) 2021; 37
Z Li (pcbi.1009655.ref035) 2020; 22
Y Chen (pcbi.1009655.ref016) 2009; 10
References_xml – volume: 2016
  start-page: 855
  year: 2016
  ident: pcbi.1009655.ref031
  article-title: node2vec: Scalable Feature Learning for Networks.
  publication-title: the 22nd ACM SIGKDD International Conference
– volume: 45
  start-page: D812
  year: 2017
  ident: pcbi.1009655.ref040
  article-title: dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1079
– volume: 11
  start-page: 354
  year: 2020
  ident: pcbi.1009655.ref049
  article-title: MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association.
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00354
– volume: 20
  start-page: 617
  year: 2004
  ident: pcbi.1009655.ref011
  article-title: MicroRNAs and the regulation of cell death
  publication-title: Trend Genet
  doi: 10.1016/j.tig.2004.09.010
– volume: 37
  start-page: 66
  year: 2021
  ident: pcbi.1009655.ref037
  article-title: AEMDA: inferring miRNA-disease associations based on deep autoencoder
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa670
– volume: 3
  start-page: e3420
  year: 2008
  ident: pcbi.1009655.ref018
  article-title: An analysis of human microRNA and disease associations.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003420
– volume: 21
  start-page: 133
  year: 2021
  ident: pcbi.1009655.ref050
  article-title: MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features.
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-020-01320-w
– volume: 295
  start-page: 1197
  year: 2020
  ident: pcbi.1009655.ref033
  article-title: FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-020-01693-7
– volume: 310
  start-page: 1288
  year: 2005
  ident: pcbi.1009655.ref008
  article-title: Developmental biology. Encountering microRNAs in cell fate signaling
  publication-title: Science
  doi: 10.1126/science.1121566
– volume: 15
  start-page: 563
  year: 2005
  ident: pcbi.1009655.ref009
  article-title: How microRNAs control cell division, differentiation and death
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2005.08.005
– volume: 75
  start-page: 3
  year: 1993
  ident: pcbi.1009655.ref005
  article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
  publication-title: Cell
– volume: 29
  start-page: 2617
  year: 2013
  ident: pcbi.1009655.ref046
  article-title: Novel human lncRNA-disease association inference based on lncRNA expression profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– volume: 6
  start-page: 21106
  year: 2016
  ident: pcbi.1009655.ref025
  article-title: WBSMDA: Within and Between Score for MiRNA-Disease Association prediction.
  publication-title: Sci Rep
  doi: 10.1038/srep21106
– volume: 186
  start-page: 104963
  year: 2019
  ident: pcbi.1009655.ref027
  article-title: Prediction of potential miRNA-disease associations using matrix decomposition and label propagation
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.104963
– volume: 361
  start-page: 1018
  year: 2009
  ident: pcbi.1009655.ref052
  article-title: Personalized medicine and inhibition of EGFR signaling in lung cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMe0905763
– volume: 22
  start-page: bbaa240
  year: 2020
  ident: pcbi.1009655.ref035
  article-title: A graph auto-encoder model for miRNA-disease associations prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa240
– volume: 271
  start-page: 1103
  year: 1994
  ident: pcbi.1009655.ref044
  article-title: Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches.
  publication-title: Jama
  doi: 10.1001/jama.1994.03510380059038
– year: 2016
  ident: pcbi.1009655.ref047
  article-title: Semi-Supervised Classification with Graph Convolutional Networks.
  publication-title: arXiv preprint arXiv
– volume: 36
  start-page: 2538
  year: 2020
  ident: pcbi.1009655.ref032
  article-title: Neural Inductive Matrix Completion with Graph Convolutional Networks for miRNA-disease Association Prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 14
  start-page: S1
  year: 2013
  ident: pcbi.1009655.ref010
  article-title: Using context-specific effect of miRNAs to identify functional associations between miRNAs and gene signatures
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S12-S1
– volume: 37
  start-page: D98
  year: 2009
  ident: pcbi.1009655.ref039
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– start-page: bbab174
  year: 2021
  ident: pcbi.1009655.ref034
  article-title: Multi-view Multichannel Attention Graph Convolutional Network for miRNA–disease association prediction.
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab174
– volume: 8
  start-page: 977
  year: 2019
  ident: pcbi.1009655.ref030
  article-title: A Novel Computational Model for Predicting microRNA–Disease Associations Based on Heterogeneous Graph Convolutional Networks.
  publication-title: Cells
  doi: 10.3390/cells8090977
– volume: 214
  start-page: 106718
  year: 2021
  ident: pcbi.1009655.ref029
  article-title: MLPMDA: Multi-layer linear projection for predicting miRNA-disease association.
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106718
– volume: 16
  start-page: 348
  year: 2018
  ident: pcbi.1009655.ref023
  article-title: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease.
  publication-title: J Transl Med
  doi: 10.1186/s12967-018-1722-1
– year: 2015
  ident: pcbi.1009655.ref021
  article-title: Predicting microRNA-disease associations by integrating multiple biological information
  publication-title: IEEE International Conference on Bioinformatics & Biomedicine IEEE
– volume: 91
  start-page: 409
  year: 2016
  ident: pcbi.1009655.ref053
  article-title: microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer
  publication-title: Biol Rev Camb Philos Soc
  doi: 10.1111/brv.12176
– volume: 10
  start-page: 17901
  year: 2020
  ident: pcbi.1009655.ref024
  article-title: Seq-SymRF: a random forest model predicts potential miRNA-disease associations based on information of sequences and clinical symptoms.
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75005-9
– volume: 34
  start-page: 3178
  year: 2018
  ident: pcbi.1009655.ref048
  article-title: BNPMDA: Bipartite network projection for MiRNA-Disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty333
– volume: 48
  start-page: 443
  year: 1970
  ident: pcbi.1009655.ref043
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(70)90057-4
– volume: 7
  start-page: 65257
  year: 2016
  ident: pcbi.1009655.ref022
  article-title: HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction.
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11251
– volume: 15
  start-page: e1006931
  year: 2019
  ident: pcbi.1009655.ref017
  article-title: Adaptive multi-view multi-label learning for identifying disease-associated candidate miRNAs.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006931
– volume: 2010
  start-page: 26
  year: 1644
  ident: pcbi.1009655.ref045
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
– volume: 431
  start-page: 350
  year: 2004
  ident: pcbi.1009655.ref003
  article-title: The function of animal microRNAs
  publication-title: Nature
  doi: 10.1038/nature02871
– volume: 1
  start-page: 6
  year: 2010
  ident: pcbi.1009655.ref019
  article-title: Development of the human cancer microRNA network
  publication-title: Silence
  doi: 10.1186/1758-907X-1-6
– volume: 431
  start-page: 343
  year: 2004
  ident: pcbi.1009655.ref004
  article-title: Mechanisms of gene silencing by double-stranded RNA
  publication-title: Nature
  doi: 10.1038/nature02873
– volume: 37
  start-page: 637
  year: 2012
  ident: pcbi.1009655.ref013
  article-title: miRNA as activity markers in Parvo B19 associated heart disease
  publication-title: Herz
  doi: 10.1007/s00059-012-3656-3
– volume: 7
  start-page: 759
  year: 2008
  ident: pcbi.1009655.ref014
  article-title: The let-7 microrna reduces tumor growth in mouse models of lung cancer
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.6.5834
– volume: 9
  start-page: 617569
  year: 2021
  ident: pcbi.1009655.ref028
  article-title: SNFIMCMDA: Similarity Network Fusion and Inductive Matrix Completion for miRNA-Disease Association Prediction
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.617569
– volume: 42
  start-page: D68
  year: 2014
  ident: pcbi.1009655.ref042
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1181
– volume: 8
  start-page: 1040
  year: 2019
  ident: pcbi.1009655.ref036
  article-title: Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder.
  publication-title: Cells
  doi: 10.3390/cells8091040
– volume: 10
  start-page: 407
  year: 2009
  ident: pcbi.1009655.ref016
  article-title: Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-407
– start-page: bbaa243
  year: 2020
  ident: pcbi.1009655.ref051
  article-title: Predicting drug-disease associations through layer attention convolutional network
  publication-title: Brief Bioinform
– volume: 30
  start-page: 1112
  year: 2014
  ident: pcbi.1009655.ref012
  article-title: SNPdryad: predicting deleterious non-synonymous human SNPs using only orthologous protein sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt769
– volume: 107
  start-page: 823
  year: 2001
  ident: pcbi.1009655.ref002
  article-title: microRNAs: tiny regulators with great potential
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00616-X
– volume: 116
  start-page: 281
  year: 2004
  ident: pcbi.1009655.ref001
  article-title: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 75
  start-page: 855
  year: 1993
  ident: pcbi.1009655.ref006
  article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90530-4
– volume: 22
  start-page: 219
  year: 2021
  ident: pcbi.1009655.ref038
  article-title: SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04135-2
– volume: 65
  start-page: 7065
  year: 2005
  ident: pcbi.1009655.ref015
  article-title: MicroRNA Gene Expression Deregulation in Human Breast Cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-1783
– volume: 47
  start-page: D1013
  year: 2019
  ident: pcbi.1009655.ref041
  article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1010
– volume: 13
  start-page: e1005455
  year: 2017
  ident: pcbi.1009655.ref026
  article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005455
– volume: 4
  start-page: S2
  year: 2010
  ident: pcbi.1009655.ref020
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 33
  start-page: 1290
  year: 2005
  ident: pcbi.1009655.ref007
  article-title: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki200
SSID ssj0035896
Score 2.4658744
Snippet microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009655
SubjectTerms Algorithms
Area Under Curve
Biology and life sciences
China
Computational Biology - methods
Computer and Information Sciences
Diseases
Genetic aspects
Genetic Predisposition to Disease - genetics
Health aspects
Humans
Medicine and Health Sciences
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
Models, Genetic
Neoplasms - genetics
Neoplasms - metabolism
Neural networks
Neural Networks, Computer
Physical Sciences
Research and Analysis Methods
Risk factors
Social Sciences
Title GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
URI https://www.ncbi.nlm.nih.gov/pubmed/34890410
https://www.proquest.com/docview/2613292236
https://pubmed.ncbi.nlm.nih.gov/PMC8694430
https://doaj.org/article/d95a5fa5f5134ea2b0b8874223fe6312
Volume 17
WOSCitedRecordID wos000927176500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4k1hqQJC4hTW8SOOuXWXFlawVVRAKlwsxw-oBOmqaVfi3zNO3NIIob0gVXOoJw9_HmfG8vgbhF7o3FmBK5YyJ4uUWZhSFdc4BdOxVVVYQZlvi02I6bSYz2W5V-or5IR19MAdcEdWcs09_HhGmdOkwhXMCwZezbuctvWFCUQ928VU9w2mvGgrc4WiOCk8bh4PzVGRHcUxenVuqkXIEZB5OOa355Ra7v6_v9B7LqqfPrnnjya30a0YSCajrgN30BVX30U3utKSv-6h2duT0fjszeh1Uq7CXkzIbk5-LmbTURr3ZBL9Z2Sa5GKhk5a8Ogl56NEe4f56s14GrkvrVvfR58n408m7NNZPSE2O5TrNGa8swcSzrDKWW8OI5twRkcnCSYZ1bkJE4g2TFiB1FjtDeeVxYbzngtAH6KBe1u4RSiSlEBcKK4j3jBteQZiVgWCFh4jK6gGiWwCVieTiocbFD9XumAlYZHSwqAC7irAPULq76rwj17hE_ziMzU43UGO3f4DBqGgw6jKDGaDnYWRVIL-oQ3bNN71pGnX6capGeQHhm-QC_1Np1lN6GZX8EjprdDzRAJAFUq2e5mFPE6aw6TU_21qZCk0h7612y02jYH1LiYR3zwfoYWd1u95TVkjMMrha9OyxB0-_pV58bxnEi1wyRvHj_4HnE3SThDyfjIBLP0QH69XGPUXXzcV60ayG6KqYi1YWQ3TteDwtZ8N2qoKclB9AvhfpMGTcliBL_hW0ytOz8stv93lE8g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCAEMDA%3A+Predicting+miRNA-disease+associations+via+graph+convolutional+autoencoder&rft.jtitle=PLoS+computational+biology&rft.au=Li%2C+Lei&rft.au=Wang%2C+Yu-Tian&rft.au=Ji%2C+Cun-Mei&rft.au=Zheng%2C+Chun-Hou&rft.date=2021-12-10&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=17&rft.issue=12&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009655&rft.externalDBID=ISN&rft.externalDocID=A688939570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon