Towards agile large-scale predictive modelling in drug discovery with flow-based programming design principles

Predictive modelling in drug discovery is challenging to automate as it often contains multiple analysis steps and might involve cross-validation and parameter tuning that create complex dependencies between tasks. With large-scale data or when using computationally demanding modelling methods, e-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cheminformatics Jg. 8; H. 1; S. 67
Hauptverfasser: Lampa, Samuel, Alvarsson, Jonathan, Spjuth, Ola
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 24.11.2016
BioMed Central Ltd
Springer Nature B.V
Schlagworte:
ISSN:1758-2946, 1758-2946
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predictive modelling in drug discovery is challenging to automate as it often contains multiple analysis steps and might involve cross-validation and parameter tuning that create complex dependencies between tasks. With large-scale data or when using computationally demanding modelling methods, e-infrastructures such as high-performance or cloud computing are required, adding to the existing challenges of fault-tolerant automation. Workflow management systems can aid in many of these challenges, but the currently available systems are lacking in the functionality needed to enable agile and flexible predictive modelling. We here present an approach inspired by elements of the flow-based programming paradigm, implemented as an extension of the Luigi system which we name SciLuigi. We also discuss the experiences from using the approach when modelling a large set of biochemical interactions using a shared computer cluster. Graphical abstract .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1758-2946
1758-2946
DOI:10.1186/s13321-016-0179-6