Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph

Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this wo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of biomedical semantics Ročník 14; číslo 1; s. 18 - 19
Hlavní autori: Rabby, Gollam, D’Souza, Jennifer, Oelen, Allard, Dvorackova, Lucie, Svátek, Vojtěch, Auer, Sören
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 28.11.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:2041-1480, 2041-1480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.
AbstractList Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.
Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.
Abstract Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.
Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data. Keywords: Influential scholarly document prediction, Machine learning algorithms, Text mining, COVID-19, World health organization, Domain-independent knowledge graph
ArticleNumber 18
Audience Academic
Author Svátek, Vojtěch
Oelen, Allard
Auer, Sören
D’Souza, Jennifer
Dvorackova, Lucie
Rabby, Gollam
Author_xml – sequence: 1
  givenname: Gollam
  surname: Rabby
  fullname: Rabby, Gollam
  email: gollam.rabby@l3s.de, rabg00@vse.cz
  organization: L3S Research Center, Leibniz University Hannover, Department of Information and Knowledge Engineering, Prague University of Economics and Business
– sequence: 2
  givenname: Jennifer
  surname: D’Souza
  fullname: D’Souza, Jennifer
  organization: Leibniz Information Centre for Science and Technology
– sequence: 3
  givenname: Allard
  surname: Oelen
  fullname: Oelen, Allard
  organization: Leibniz Information Centre for Science and Technology
– sequence: 4
  givenname: Lucie
  surname: Dvorackova
  fullname: Dvorackova, Lucie
  organization: Department of Econometrics, Prague University of Economics and Business
– sequence: 5
  givenname: Vojtěch
  surname: Svátek
  fullname: Svátek, Vojtěch
  organization: Department of Information and Knowledge Engineering, Prague University of Economics and Business
– sequence: 6
  givenname: Sören
  surname: Auer
  fullname: Auer, Sören
  organization: L3S Research Center, Leibniz University Hannover, Leibniz Information Centre for Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38017587$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvpC7BAltiwSfEtscMGVcNtpErdAFvL8SXjIbGDnYDmNXhinE5pOxVqIiXWyf9_R-fkf14c-eBNUbxE8BwhXr9NiBBclxCTEkLc8JI-KU4wpKhElMOje-fj4iylLcwXIQhy8qw4JhwiVnF2UvxZD6NUEwgWrK6-rz-UqAHRJCOj2rwDEqRp1jsQPBij0U5NznfAedvPxk9O9iCpTehl7HdABzUPuZrAnBbVINXGeQP6zPJLQXqdgToM0vnSeW1Gkx9-Aj98-N0b3RnQRTluXhRPreyTObt5nxbfPn38uvpSXl59Xq8uLktVQz6VstH5gGpTSdS02BAMEeGNsopJgkxLIcfUYsts3oFuqGUNxFgr1pKG1XVFTov1nquD3IoxukHGnQjSietCiJ2QcXKqN8JmvMWUKcsZRZa1hre1pVAiyY1sUWa937PGuR2MVnmsKPsD6OEX7zaiC78EgjUnuIGZ8OaGEMPP2aRJDC4p0_fSmzAngXlT4Yo3lGTp6wfSbZijz7sSmYQRxoSwO1Un8wT5n4XcWC1QccEYrSDncGl7_h9VvrUZnMqRsy7XDwyv7k96O-K_SGUB3gtUDClFY28lCIolumIfXZGjK66jK2g28Qcm5SY5ubBsy_WPW8nemnIf35l4t41HXH8BVKECFA
CitedBy_id crossref_primary_10_1007_s43441_025_00866_z
Cites_doi 10.1609/aaai.v29i1.9513
10.1023/A:1010933404324
10.3390/ijerph17103370
10.1038/520429a
10.1186/1471-2105-15-8
10.1186/s13673-019-0192-7
10.18653/v1/D19-1410
10.1145/1557019.1557156
10.1002/hbe2.237
10.1002/asi.23623
10.1371/journal.pone.0232525
10.1007/978-1-4899-7641-3_9
10.1613/jair.953
10.1016/j.ipm.2014.09.004
10.1016/j.patrec.2017.11.020
10.1087/20130103
10.1080/21645515.2021.1886806
10.1007/s11192-020-03690-4
10.1007/s11192-022-04314-9
10.1007/978-3-642-38652-7_2
10.1145/3307339.3343255
10.1038/s41586-020-2521-4
10.3115/1220355.1220425
10.1109/ICITEED.2014.7007894
10.3233/SW-140134
10.1016/j.jobb.2020.12.002
10.1017/pan.2019.26
10.1007/s11192-021-04097-5
10.1145/2063518.2063519
10.1126/science.1251554
10.1016/j.cosrev.2018.06.001
10.18653/v1/D19-1006
10.3390/app11188438
10.1002/wics.101
10.1186/s13054-020-03219-4
10.1145/3360901.3364435
10.18653/v1/D17-1026
10.1007/978-3-030-80418-3_2
10.2196/23703
10.1002/sim.3782
10.3389/fdgth.2021.686720
10.2196/19357
10.1109/TKDE.2020.2981314
10.1088/1757-899X/336/1/012017
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s13326-023-00298-4
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Mathematics
EISSN 2041-1480
EndPage 19
ExternalDocumentID oai_doaj_org_article_f2e3f247cf8741f7be8b6f40a1a8eab1
PMC10683290
A774508800
38017587
10_1186_s13326_023_00298_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Gottfried Wilhelm Leibniz Universität Hannover (1038)
– fundername: Vysoká Škola Ekonomická v Praze
  grantid: IGA 16/2022; IGA 16/2022
  funderid: http://dx.doi.org/10.13039/501100007243
– fundername: European Commission
  grantid: CHIST-ERA-19- XAI-003
  funderid: http://dx.doi.org/10.13039/501100000780
– fundername: Vysoká Škola Ekonomická v Praze
  grantid: IGA 16/2022
– fundername: European Commission
  grantid: CHIST-ERA-19- XAI-003
– fundername: ;
– fundername: ;
  grantid: IGA 16/2022; IGA 16/2022
– fundername: ;
  grantid: CHIST-ERA-19- XAI-003
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c608t-a9dc6016e5a19b2e3201389cfc7a31eb40824f2f7f480d94f79022dc7b3976653
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001109950800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1480
IngestDate Fri Oct 03 12:44:23 EDT 2025
Tue Nov 04 02:06:25 EST 2025
Sat Nov 01 15:09:50 EDT 2025
Mon Dec 01 06:41:07 EST 2025
Sat Nov 29 14:17:37 EST 2025
Tue Nov 04 18:33:06 EST 2025
Thu Aug 28 04:24:56 EDT 2025
Sat Nov 29 06:03:07 EST 2025
Tue Nov 18 20:55:44 EST 2025
Sat Sep 06 07:20:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Text mining
COVID-19
Influential scholarly document prediction
Machine learning algorithms
World health organization
Domain-independent knowledge graph
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-a9dc6016e5a19b2e3201389cfc7a31eb40824f2f7f480d94f79022dc7b3976653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13326-023-00298-4
PMID 38017587
PQID 2902122337
PQPubID 2040220
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_f2e3f247cf8741f7be8b6f40a1a8eab1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10683290
proquest_miscellaneous_2895258943
proquest_journals_2902122337
gale_infotracmisc_A774508800
gale_infotracacademiconefile_A774508800
pubmed_primary_38017587
crossref_primary_10_1186_s13326_023_00298_4
crossref_citationtrail_10_1186_s13326_023_00298_4
springer_journals_10_1186_s13326_023_00298_4
PublicationCentury 2000
PublicationDate 2023-11-28
PublicationDateYYYYMMDD 2023-11-28
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of biomedical semantics
PublicationTitleAbbrev J Biomed Semant
PublicationTitleAlternate J Biomed Semantics
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References T Ahmad (298_CR47) 2021; 17
EJ Williamson (298_CR52) 2020; 584
BK Lee (298_CR32) 2010; 29
298_CR28
298_CR27
298_CR25
Y HaCohen-Kerner (298_CR18) 2020; 15
R Bonney (298_CR48) 2014; 343
TR Katapally (298_CR49) 2020; 22
H Abdi (298_CR23) 2010; 2
298_CR34
298_CR33
298_CR31
298_CR30
A Martn-Martn (298_CR51) 2021; 126
M Mujahid (298_CR2) 2021; 11
298_CR19
298_CR16
J Wehrmann (298_CR17) 2018; 102
298_CR14
I Martin-Loeches (298_CR37) 2020; 24
298_CR24
J Li (298_CR3) 2020; 34
298_CR21
298_CR20
P Wang (298_CR41) 2021; 3
298_CR9
298_CR6
298_CR8
A Abd-Alrazaq (298_CR42) 2021; 23
G Wang (298_CR5) 2015; 51
298_CR1
A Gupta (298_CR45) 2021; 3
NV Chawla (298_CR39) 2002; 16
L Rheault (298_CR15) 2020; 28
A Goyal (298_CR4) 2018; 29
298_CR13
S Pontis (298_CR44) 2017; 68
298_CR12
298_CR11
298_CR10
E Mbunge (298_CR43) 2021; 3
298_CR50
MB Kursa (298_CR35) 2014; 15
298_CR38
H Zhang (298_CR46) 2020; 17
298_CR36
A Liaw (298_CR29) 2002; 2
JA Hartigan (298_CR22) 1979; 28
L Breiman (298_CR7) 2001; 45
E Adie (298_CR40) 2013; 26
SW Kim (298_CR26) 2019; 9
References_xml – ident: 298_CR12
  doi: 10.1609/aaai.v29i1.9513
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 298_CR7
  publication-title: Mach Learn.
  doi: 10.1023/A:1010933404324
– volume: 17
  start-page: 3370
  issue: 10
  year: 2020
  ident: 298_CR46
  publication-title: Int J Environ Res Public Health.
  doi: 10.3390/ijerph17103370
– ident: 298_CR6
  doi: 10.1038/520429a
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 298_CR35
  publication-title: BMC bioinformatics.
  doi: 10.1186/1471-2105-15-8
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 298_CR26
  publication-title: Hum-Centric Comput Inf Sci.
  doi: 10.1186/s13673-019-0192-7
– ident: 298_CR28
  doi: 10.18653/v1/D19-1410
– ident: 298_CR1
  doi: 10.1145/1557019.1557156
– volume: 3
  start-page: 25
  issue: 1
  year: 2021
  ident: 298_CR43
  publication-title: Hum Behav Emerg Technol.
  doi: 10.1002/hbe2.237
– ident: 298_CR13
– volume: 68
  start-page: 22
  issue: 1
  year: 2017
  ident: 298_CR44
  publication-title: J Assoc Inf Sci Technol.
  doi: 10.1002/asi.23623
– volume: 15
  start-page: e0232525
  issue: 5
  year: 2020
  ident: 298_CR18
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0232525
– ident: 298_CR30
  doi: 10.1007/978-1-4899-7641-3_9
– ident: 298_CR9
– volume: 16
  start-page: 321
  year: 2002
  ident: 298_CR39
  publication-title: J Artif Intell Res.
  doi: 10.1613/jair.953
– volume: 51
  start-page: 458
  issue: 4
  year: 2015
  ident: 298_CR5
  publication-title: Inf Process Manag.
  doi: 10.1016/j.ipm.2014.09.004
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 298_CR22
  publication-title: J R Stat Soc Ser C Appl Stat.
– volume: 102
  start-page: 15
  year: 2018
  ident: 298_CR17
  publication-title: Pattern Recogn Lett.
  doi: 10.1016/j.patrec.2017.11.020
– volume: 26
  start-page: 11
  issue: 1
  year: 2013
  ident: 298_CR40
  publication-title: Learned Publ.
  doi: 10.1087/20130103
– volume: 17
  start-page: 2367
  issue: 8
  year: 2021
  ident: 298_CR47
  publication-title: Hum Vaccines Immunotherapeutics.
  doi: 10.1080/21645515.2021.1886806
– volume: 126
  start-page: 871
  issue: 1
  year: 2021
  ident: 298_CR51
  publication-title: Scientometrics.
  doi: 10.1007/s11192-020-03690-4
– ident: 298_CR10
  doi: 10.1007/s11192-022-04314-9
– ident: 298_CR8
  doi: 10.1007/978-3-642-38652-7_2
– ident: 298_CR33
  doi: 10.1145/3307339.3343255
– volume: 584
  start-page: 430
  issue: 7821
  year: 2020
  ident: 298_CR52
  publication-title: Nature.
  doi: 10.1038/s41586-020-2521-4
– ident: 298_CR20
  doi: 10.3115/1220355.1220425
– ident: 298_CR19
  doi: 10.1109/ICITEED.2014.7007894
– ident: 298_CR21
  doi: 10.3233/SW-140134
– ident: 298_CR34
– volume: 3
  start-page: 4
  issue: 1
  year: 2021
  ident: 298_CR41
  publication-title: J Biosaf Biosecurity.
  doi: 10.1016/j.jobb.2020.12.002
– volume: 28
  start-page: 112
  issue: 1
  year: 2020
  ident: 298_CR15
  publication-title: Polit Anal.
  doi: 10.1017/pan.2019.26
– ident: 298_CR25
  doi: 10.1007/s11192-021-04097-5
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 298_CR29
  publication-title: R News.
– ident: 298_CR36
  doi: 10.1145/2063518.2063519
– volume: 343
  start-page: 1436
  issue: 6178
  year: 2014
  ident: 298_CR48
  publication-title: Science.
  doi: 10.1126/science.1251554
– volume: 29
  start-page: 21
  year: 2018
  ident: 298_CR4
  publication-title: Comput Sci Rev.
  doi: 10.1016/j.cosrev.2018.06.001
– ident: 298_CR27
  doi: 10.18653/v1/D19-1006
– volume: 11
  start-page: 8438
  issue: 18
  year: 2021
  ident: 298_CR2
  publication-title: Appl Sci.
  doi: 10.3390/app11188438
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 298_CR23
  publication-title: Wiley Interdiscip Rev Comput Stat.
  doi: 10.1002/wics.101
– volume: 24
  start-page: 1
  issue: 1
  year: 2020
  ident: 298_CR37
  publication-title: Crit Care.
  doi: 10.1186/s13054-020-03219-4
– ident: 298_CR11
– ident: 298_CR50
  doi: 10.1145/3360901.3364435
– ident: 298_CR16
  doi: 10.18653/v1/D17-1026
– ident: 298_CR38
  doi: 10.1007/978-3-030-80418-3_2
– volume: 23
  start-page: e23703
  issue: 3
  year: 2021
  ident: 298_CR42
  publication-title: J Med Internet Res.
  doi: 10.2196/23703
– volume: 29
  start-page: 337
  issue: 3
  year: 2010
  ident: 298_CR32
  publication-title: Stat Med.
  doi: 10.1002/sim.3782
– volume: 3
  start-page: 686720
  year: 2021
  ident: 298_CR45
  publication-title: Front Digit Health.
  doi: 10.3389/fdgth.2021.686720
– volume: 22
  start-page: e19357
  issue: 5
  year: 2020
  ident: 298_CR49
  publication-title: J Med Internet Res.
  doi: 10.2196/19357
– ident: 298_CR31
– volume: 34
  start-page: 50
  issue: 1
  year: 2020
  ident: 298_CR3
  publication-title: IEEE Trans Knowl Data Eng.
  doi: 10.1109/TKDE.2020.2981314
– ident: 298_CR14
– ident: 298_CR24
  doi: 10.1088/1757-899X/336/1/012017
SSID ssj0000331083
Score 2.3014383
Snippet Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this...
Abstract Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Accuracy
Algorithms
Analysis
Bioinformatics
Classification
Combinatorial Libraries
Computational Biology/Bioinformatics
Computational linguistics
Computer Appl. in Life Sciences
COVID-19
Data mining
Data Mining and Knowledge Discovery
Datasets
Documents
Domain-independent knowledge graph
Embedding
Experiments
Humans
Influential scholarly document prediction
Knowledge
Knowledge representation
Language
Language processing
Learning algorithms
Machine Learning
Machine learning algorithms
Mathematics
Mathematics and Statistics
Medical research
Medicine, Experimental
Methods
Natural language interfaces
Pattern Recognition, Automated
Predictions
Scholarly periodicals
Semantics
State-of-the-art reviews
Text mining
World health organization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4lkCBRkJwQGs5uE4NrdSqKi0Khyg6s1yHLuNtE2qfSDxN_jFzDjesCkCLlxjO7I9n8cz9vgbQl6URngHOw0TnisGoKiZbOqMAXSkMiXAKhwNnM6qkxN5dqY-b6X6wpiwgR54mLh9n7vC57yyXsLm56vayRr-m5rMSGfq4PikldpypoIOLsBskcXmlYwU-0twxnKMty1YoB1nfLITBcL-39Xy1r50PWby2sVp2I-O7pDb0ZCkB8MA7pIbrrtHdmfx-HFJX9LZyJi8vE9-HIfnkLT39PDT6fF7likaiX4u3lJDA80s7Tt6tcCrGwyGpu2QwAR0wJxGJ3j-nTa9XYd3cRRj5s_pZQjHdDTmnzinpmvgh01_adqOtWOa3RUdz-9ooMl-QL4effhy-JHFfAzMilSumFGNRfYWV5pM1SCXPFxzWm8rU2SuxtzV3Oe-8lymjeK-UmAhNLaq0egRZfGQ7HR95x4Ritd7Dky9VDjBvRUK_KY6KxslZMqdaBKSbWSjbSQrx5wZcx2cFin0IE8N8tRBnpon5PXY5mqg6vhr7Xco8rEm0myHDwA-HcGn_wW-hLxCwGhUBtA9a-KbBhgk0mrpAzCu0QJO04TsTWrCIrbT4g3kdFQiS50r5N_Pi6JKyPOxGFtiYFzn-jXUkarEZcWLhOwOCB2HVID1Ae4gtJYT7E7GPC3p2otAMZ6lAlS9gn692cD8V7_-PKmP_8ekPiG3clymGWgMuUd2Vou1e0pu2m-rdrl4Ftb5T4PRVPo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLag48CF32yBgYyE4ABW89OxuaAxmKhURg8wjVPkOHZXqUtK0yLxb_AX857rZmSInbjGduSXfP78bD9_j5DnmeLWwEzDuE0lA1CUTFRlxAA6QqoMYOW2Bk7G-fGxOD2VE389uvVhlVtOdES9UXvGuG0g4WHVaNwxH8YSpcnjJMnfLr4zzCGFZ60-ocZ1soPCW-GA7ExGnybfuj2XMAFnRiTbuzOCD1tYosUYhZswJ0bO0t785GT8_ybrP2ary5GUl45T3Sx1dPv_2neH3PLeKj3YwOsuuWbqe2R37Pc4W_qCjjtZ5vY--TVydy5pY-nh55PRexZJ6tWEzt5QRZ2WLW1qulji-RBGXNPZJksKEM2c-pX2_CeFHq7d5TuKgflTeu5iPg31SS6mVNUVvLBqztWsZrMul--KdpuE1GlxPyBfjz58OfzIfNIHpnkoVkzJSqNEjMlUJMvYJLE7S9VW5yqJTIkJslMb29ymIqxkanP4VHGl8xI9K54lD8mgbmqzRyieIRrwJ0NueGo1l7A4K6OsklyEqeFVQKLtry60V0THxBzzwq2MBC828CgAHoWDR5EG5FXXZrHRA7my9jtEUFcTtbzdg2Y5LTw1FBaMtHGaayvAvbN5aUQJIydUkRJGlVFAXiL-CmQc6J5W_uIEGInaXcUBePDoZodhQPZ7NYEpdL94C73CM1VbXCAtIM-6YmyJ0Xe1adZQR8gMx26aBGR3A_jOpARcHFhzQmvRGwo9m_sl9ezM6ZhHIYf5REK_Xm9HzUW__v1RH11txmNyM8bxHAHhiH0yWC3X5gm5oX-sZu3yqaeE37Wpbp0
  priority: 102
  providerName: ProQuest
Title Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph
URI https://link.springer.com/article/10.1186/s13326-023-00298-4
https://www.ncbi.nlm.nih.gov/pubmed/38017587
https://www.proquest.com/docview/2902122337
https://www.proquest.com/docview/2895258943
https://pubmed.ncbi.nlm.nih.gov/PMC10683290
https://doaj.org/article/f2e3f247cf8741f7be8b6f40a1a8eab1
Volume 14
WOSCitedRecordID wos001109950800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RBZ
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RSV
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYxgM88DFgBEZlJAQPEJFPx-ZtG5uo1JWKQVWeLMexu0pdMjUtEv8GfzF3bhLo-JDgJQ_xObLju_Odffc7Qp6lilkDO43PbCJ8YIrc50Ue-sA6XKgU2ModDYwH2XDIJxMxapLC6jbavb2SdJraiTVnr2vwpiIMmI19hxvuJ1tkJ0W0GfTRz8bdyUoQg8nC4zZD5rddN3YhB9b_q0r-aU-6Gi955dLU7UUnt_9vFnfIrcb2pAdrZrlLrplyl-wNmhPLmj6ngw5kud4lN087SNf6HvnWd_mUtLL06P24_9YPBW2Qgs7fUEUdTi2tSnq5wLsfjKams3UFFFAic9p40fOvtKj0yiXWUQy6n9ILF89paFPAYkpVWcAHi-pCzUp_1tXpXdLuAJA6nO375NPJ8cejd35T0MHXLOBLX4lCI_yLSVUo8sjEkbsn1VZnKg5NjsWvExvZzCY8KERiMwEmRqGzHK0mlsYPyHZZleYhoXg_aMBWDJhhidVMgOOVh2khGA8SwwqPhO0CS92gnWPRjbl0Xg9ncr0SElZCupWQiUdedn0u11gff6U-RL7pKBGn272oFlPZiL20MEkbJZm2HEw3m-WG5yAVgQoVNyoPPfICuU6iNoHhadUkRcAkEZdLHoB1jiZ0EHhkf4MStIDebG75VjZaqJaRQAD_KI4zjzztmrEnRtaVploBDRcpymUSe2RvzebdlGIwX8CfhN58QwA25rzZUs7OHUZ5GDDYKwSM61UrBz_G9eef-ujfyB-TGxGKUgjKhe-T7eViZZ6Q6_rLclYvemQrm2TuyXtk5_B4OPrQc2cuPYzwHbnnGbSM-qejzz2nRL4DOL1kbw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLaqggQXdspAASOxHMDqbJmxkRAqLVWjhtBDqXozHo-dRkpnQhZQ_wY_hN_Ie56lTBG99cA1thPb-d7qtxDyvKcSa0DSsMTGggEoMsbzLGAAHS5UD2DlXAOHg3Q45EdHYn-F_GpyYTCssuGJjlHnpUYf-UYosBh5GEXp--k3hl2j8HW1aaFRwWLPnP4Ak23-rr8N_--LMNz5eLC1y-quAkwnPl8wJXKNNUhMTwUiC00Uusc6bXWqosBk2IE5tqFNbcz9XMQ2hV8Oc51mKLoT7BIBLP8KqBGh70IF91ufjh-BssSjJjeHJxtzMAFDjPKNmCt2zuKO_HNtAv4WBn9Iw_ORmueea50U3Ln5v93fLXKj1rfpZkUgt8mKKe6QtUHtpZ3Tl3TQFpae3yU_-y5rlJaWbn0-7G-zQNC6HtLxW6qoq8ZLy4JOZ_jChTHjdFz1eQFWOaG1r2BySuFGli59kGJqwYieuKhVQ-s2HSOqihy-MC9P1Lhg47Yb8YK2bk7qqonfI18u5YLuk9WiLMwDQvEV1IBG7Ccmia1OBJiXWdDLRcL92CS5R4IGTFLXNd2xtchEOtuOJ7ICoAQASgdAGXvkdbtmWlU0uXD2B8RoOxOrkbsPytlI1sxNWjikDeNUWw4Kqk0zwzOgfV8FihuVBR55hQiXyDNhe1rVqR9wSKw-JjfBBkFDwfc9st6ZCbxOd4cbcMua187lGbI98qwdxpUYP1iYcglzuOgh94kjj6xVJNUeKQIlDaxmWM07xNY5c3ekGB-7SuyBn4BEFLCvNw1dnu3r35f68OJjPCXXdg8-DeSgP9x7RK6HyD0CYJ98nawuZkvzmFzV3xfj-eyJYz-UfL1sev0N65a8uA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgIAQPXAaMwAAjIXgAa7k4js3b2KioKGXiUu3Nchy7q9QlVdMi8Tf4xRw7aVjGRUK81nZlx-fqc853EHqaKmYNaBrCLBUEiCInvMgjAqTDhUqBrPzTwGSUjcf8-Fgcnani99num5BkU9PgUJrK1d6isA2Lc7ZXg2cVu-TZhHgMcUIvoksUPBmX1PXx06R7ZQkTMF94sqmW-e3SnkbywP2_iucz-ul87uS5AKrXS4Mb_3-im-h6a5Pi_YaIbqELptxGO6P2JbPGz_CoA1-ut9G19x3Ua30bfR_6OktcWXzwYTI8JJHALYLQySussMevxVWJF0sXE3JZ1njWdEYB4TLHrXc9_4aLSq99wR12yfhTfOrzPA1uG1tMsSoL-MOiOlWzksy6_r0r3D0MYo-_fQd9Gbz5fPCWtI0eiGYhXxElCu1gYUyqIpHHJol9_FRbnakkMrlrik1tbDNLeVgIajMBpkehs9xZUyxN7qKtsirNPYRd3NCADRkyw6jVTIBDlkdpIRgPqWFFgKLNZUvdoqC7Zhxz6b0hzmRzExJuQvqbkDRAL7o1iwYD5K-zXzsa6mY6_G7_Q7WcylYcSAuHtDHNtOVg0tksNzwHbglVpLhReRSg544CpZMysD2t2mIJOKTD65L7YLU70zoMA7TbmwnSQfeHNzQsW-lUy1g4YP84SbIAPemG3UqXcVeaag1zuEgdv9IkQDsNyXdHSsCsAT8TVvMeM_TO3B8pZyceuzwKGegQAft6ueGJn_v680e9_2_TH6MrR4cDORqO3z1AV2PHVRHIH76LtlbLtXmILuuvq1m9fOSlxQ_Ljmg6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+COVID-19+research%3A+a+study+on+predicting+influential+scholarly+documents+using+machine+learning+and+a+domain-independent+knowledge+graph&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Rabby%2C+Gollam&rft.au=D%27Souza%2C+Jennifer&rft.au=Oelen%2C+Allard&rft.au=Dvorackova%2C+Lucie&rft.date=2023-11-28&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=14&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1186%2Fs13326-023-00298-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon