Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph
Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this wo...
Uložené v:
| Vydané v: | Journal of biomedical semantics Ročník 14; číslo 1; s. 18 - 19 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
28.11.2023
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 2041-1480, 2041-1480 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data. |
|---|---|
| AbstractList | Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data.Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data. Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data. Abstract Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data. Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this paper, we describe our work that attempts to go beyond bibliometric metadata to predict influential scholarly documents. Furthermore, this work also examines the influential scholarly document prediction task over categorized scholarly documents. We also introduce a new approach to enhance the document representation method with a domain-independent knowledge graph to find the influential scholarly document using categorized scholarly content. As the input collection, we use the WHO corpus with scholarly documents on the theme of COVID-19. This study examines different document representation methods for machine learning, including TF-IDF, BOW, and embedding-based language models (BERT). The TF-IDF document representation method works better than others. From various machine learning methods tested, logistic regression outperformed the other for scholarly document category classification, and the random forest algorithm obtained the best results for influential scholarly document prediction, with the help of a domain-independent knowledge graph, specifically DBpedia, to enhance the document representation method for predicting influential scholarly documents with categorical scholarly content. In this case, our study combines state-of-the-art machine learning methods with the BOW document representation method. We also enhance the BOW document representation with the direct type (RDF type) and unqualified relation from DBpedia. From this experiment, we did not find any impact of the enhanced document representation for the scholarly document category classification. We found an effect in the influential scholarly document prediction with categorical data. Keywords: Influential scholarly document prediction, Machine learning algorithms, Text mining, COVID-19, World health organization, Domain-independent knowledge graph |
| ArticleNumber | 18 |
| Audience | Academic |
| Author | Svátek, Vojtěch Oelen, Allard Auer, Sören D’Souza, Jennifer Dvorackova, Lucie Rabby, Gollam |
| Author_xml | – sequence: 1 givenname: Gollam surname: Rabby fullname: Rabby, Gollam email: gollam.rabby@l3s.de, rabg00@vse.cz organization: L3S Research Center, Leibniz University Hannover, Department of Information and Knowledge Engineering, Prague University of Economics and Business – sequence: 2 givenname: Jennifer surname: D’Souza fullname: D’Souza, Jennifer organization: Leibniz Information Centre for Science and Technology – sequence: 3 givenname: Allard surname: Oelen fullname: Oelen, Allard organization: Leibniz Information Centre for Science and Technology – sequence: 4 givenname: Lucie surname: Dvorackova fullname: Dvorackova, Lucie organization: Department of Econometrics, Prague University of Economics and Business – sequence: 5 givenname: Vojtěch surname: Svátek fullname: Svátek, Vojtěch organization: Department of Information and Knowledge Engineering, Prague University of Economics and Business – sequence: 6 givenname: Sören surname: Auer fullname: Auer, Sören organization: L3S Research Center, Leibniz University Hannover, Leibniz Information Centre for Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38017587$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhiNUREvpC7BAltiwSfEtscMGVcNtpErdAFvL8SXjIbGDnYDmNXhinE5pOxVqIiXWyf9_R-fkf14c-eBNUbxE8BwhXr9NiBBclxCTEkLc8JI-KU4wpKhElMOje-fj4iylLcwXIQhy8qw4JhwiVnF2UvxZD6NUEwgWrK6-rz-UqAHRJCOj2rwDEqRp1jsQPBij0U5NznfAedvPxk9O9iCpTehl7HdABzUPuZrAnBbVINXGeQP6zPJLQXqdgToM0vnSeW1Gkx9-Aj98-N0b3RnQRTluXhRPreyTObt5nxbfPn38uvpSXl59Xq8uLktVQz6VstH5gGpTSdS02BAMEeGNsopJgkxLIcfUYsts3oFuqGUNxFgr1pKG1XVFTov1nquD3IoxukHGnQjSietCiJ2QcXKqN8JmvMWUKcsZRZa1hre1pVAiyY1sUWa937PGuR2MVnmsKPsD6OEX7zaiC78EgjUnuIGZ8OaGEMPP2aRJDC4p0_fSmzAngXlT4Yo3lGTp6wfSbZijz7sSmYQRxoSwO1Un8wT5n4XcWC1QccEYrSDncGl7_h9VvrUZnMqRsy7XDwyv7k96O-K_SGUB3gtUDClFY28lCIolumIfXZGjK66jK2g28Qcm5SY5ubBsy_WPW8nemnIf35l4t41HXH8BVKECFA |
| CitedBy_id | crossref_primary_10_1007_s43441_025_00866_z |
| Cites_doi | 10.1609/aaai.v29i1.9513 10.1023/A:1010933404324 10.3390/ijerph17103370 10.1038/520429a 10.1186/1471-2105-15-8 10.1186/s13673-019-0192-7 10.18653/v1/D19-1410 10.1145/1557019.1557156 10.1002/hbe2.237 10.1002/asi.23623 10.1371/journal.pone.0232525 10.1007/978-1-4899-7641-3_9 10.1613/jair.953 10.1016/j.ipm.2014.09.004 10.1016/j.patrec.2017.11.020 10.1087/20130103 10.1080/21645515.2021.1886806 10.1007/s11192-020-03690-4 10.1007/s11192-022-04314-9 10.1007/978-3-642-38652-7_2 10.1145/3307339.3343255 10.1038/s41586-020-2521-4 10.3115/1220355.1220425 10.1109/ICITEED.2014.7007894 10.3233/SW-140134 10.1016/j.jobb.2020.12.002 10.1017/pan.2019.26 10.1007/s11192-021-04097-5 10.1145/2063518.2063519 10.1126/science.1251554 10.1016/j.cosrev.2018.06.001 10.18653/v1/D19-1006 10.3390/app11188438 10.1002/wics.101 10.1186/s13054-020-03219-4 10.1145/3360901.3364435 10.18653/v1/D17-1026 10.1007/978-3-030-80418-3_2 10.2196/23703 10.1002/sim.3782 10.3389/fdgth.2021.686720 10.2196/19357 10.1109/TKDE.2020.2981314 10.1088/1757-899X/336/1/012017 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1186/s13326-023-00298-4 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Languages & Literatures Mathematics |
| EISSN | 2041-1480 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_f2e3f247cf8741f7be8b6f40a1a8eab1 PMC10683290 A774508800 38017587 10_1186_s13326_023_00298_4 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GrantInformation_xml | – fundername: Gottfried Wilhelm Leibniz Universität Hannover (1038) – fundername: Vysoká Škola Ekonomická v Praze grantid: IGA 16/2022; IGA 16/2022 funderid: http://dx.doi.org/10.13039/501100007243 – fundername: European Commission grantid: CHIST-ERA-19- XAI-003 funderid: http://dx.doi.org/10.13039/501100000780 – fundername: Vysoká Škola Ekonomická v Praze grantid: IGA 16/2022 – fundername: European Commission grantid: CHIST-ERA-19- XAI-003 – fundername: ; – fundername: ; grantid: IGA 16/2022; IGA 16/2022 – fundername: ; grantid: CHIST-ERA-19- XAI-003 |
| GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ITC KQ8 L6V LK8 M1P M48 M7P M7S ML~ M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SMT SOJ TUS UKHRP AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC COVID DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c608t-a9dc6016e5a19b2e3201389cfc7a31eb40824f2f7f480d94f79022dc7b3976653 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001109950800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1480 |
| IngestDate | Fri Oct 03 12:44:23 EDT 2025 Tue Nov 04 02:06:25 EST 2025 Sat Nov 01 15:09:50 EDT 2025 Mon Dec 01 06:41:07 EST 2025 Sat Nov 29 14:17:37 EST 2025 Tue Nov 04 18:33:06 EST 2025 Thu Aug 28 04:24:56 EDT 2025 Sat Nov 29 06:03:07 EST 2025 Tue Nov 18 20:55:44 EST 2025 Sat Sep 06 07:20:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Text mining COVID-19 Influential scholarly document prediction Machine learning algorithms World health organization Domain-independent knowledge graph |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c608t-a9dc6016e5a19b2e3201389cfc7a31eb40824f2f7f480d94f79022dc7b3976653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s13326-023-00298-4 |
| PMID | 38017587 |
| PQID | 2902122337 |
| PQPubID | 2040220 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f2e3f247cf8741f7be8b6f40a1a8eab1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10683290 proquest_miscellaneous_2895258943 proquest_journals_2902122337 gale_infotracmisc_A774508800 gale_infotracacademiconefile_A774508800 pubmed_primary_38017587 crossref_primary_10_1186_s13326_023_00298_4 crossref_citationtrail_10_1186_s13326_023_00298_4 springer_journals_10_1186_s13326_023_00298_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-28 |
| PublicationDateYYYYMMDD | 2023-11-28 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Journal of biomedical semantics |
| PublicationTitleAbbrev | J Biomed Semant |
| PublicationTitleAlternate | J Biomed Semantics |
| PublicationYear | 2023 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | T Ahmad (298_CR47) 2021; 17 EJ Williamson (298_CR52) 2020; 584 BK Lee (298_CR32) 2010; 29 298_CR28 298_CR27 298_CR25 Y HaCohen-Kerner (298_CR18) 2020; 15 R Bonney (298_CR48) 2014; 343 TR Katapally (298_CR49) 2020; 22 H Abdi (298_CR23) 2010; 2 298_CR34 298_CR33 298_CR31 298_CR30 A Martn-Martn (298_CR51) 2021; 126 M Mujahid (298_CR2) 2021; 11 298_CR19 298_CR16 J Wehrmann (298_CR17) 2018; 102 298_CR14 I Martin-Loeches (298_CR37) 2020; 24 298_CR24 J Li (298_CR3) 2020; 34 298_CR21 298_CR20 P Wang (298_CR41) 2021; 3 298_CR9 298_CR6 298_CR8 A Abd-Alrazaq (298_CR42) 2021; 23 G Wang (298_CR5) 2015; 51 298_CR1 A Gupta (298_CR45) 2021; 3 NV Chawla (298_CR39) 2002; 16 L Rheault (298_CR15) 2020; 28 A Goyal (298_CR4) 2018; 29 298_CR13 S Pontis (298_CR44) 2017; 68 298_CR12 298_CR11 298_CR10 E Mbunge (298_CR43) 2021; 3 298_CR50 MB Kursa (298_CR35) 2014; 15 298_CR38 H Zhang (298_CR46) 2020; 17 298_CR36 A Liaw (298_CR29) 2002; 2 JA Hartigan (298_CR22) 1979; 28 L Breiman (298_CR7) 2001; 45 E Adie (298_CR40) 2013; 26 SW Kim (298_CR26) 2019; 9 |
| References_xml | – ident: 298_CR12 doi: 10.1609/aaai.v29i1.9513 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 298_CR7 publication-title: Mach Learn. doi: 10.1023/A:1010933404324 – volume: 17 start-page: 3370 issue: 10 year: 2020 ident: 298_CR46 publication-title: Int J Environ Res Public Health. doi: 10.3390/ijerph17103370 – ident: 298_CR6 doi: 10.1038/520429a – volume: 15 start-page: 1 issue: 1 year: 2014 ident: 298_CR35 publication-title: BMC bioinformatics. doi: 10.1186/1471-2105-15-8 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 298_CR26 publication-title: Hum-Centric Comput Inf Sci. doi: 10.1186/s13673-019-0192-7 – ident: 298_CR28 doi: 10.18653/v1/D19-1410 – ident: 298_CR1 doi: 10.1145/1557019.1557156 – volume: 3 start-page: 25 issue: 1 year: 2021 ident: 298_CR43 publication-title: Hum Behav Emerg Technol. doi: 10.1002/hbe2.237 – ident: 298_CR13 – volume: 68 start-page: 22 issue: 1 year: 2017 ident: 298_CR44 publication-title: J Assoc Inf Sci Technol. doi: 10.1002/asi.23623 – volume: 15 start-page: e0232525 issue: 5 year: 2020 ident: 298_CR18 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0232525 – ident: 298_CR30 doi: 10.1007/978-1-4899-7641-3_9 – ident: 298_CR9 – volume: 16 start-page: 321 year: 2002 ident: 298_CR39 publication-title: J Artif Intell Res. doi: 10.1613/jair.953 – volume: 51 start-page: 458 issue: 4 year: 2015 ident: 298_CR5 publication-title: Inf Process Manag. doi: 10.1016/j.ipm.2014.09.004 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 298_CR22 publication-title: J R Stat Soc Ser C Appl Stat. – volume: 102 start-page: 15 year: 2018 ident: 298_CR17 publication-title: Pattern Recogn Lett. doi: 10.1016/j.patrec.2017.11.020 – volume: 26 start-page: 11 issue: 1 year: 2013 ident: 298_CR40 publication-title: Learned Publ. doi: 10.1087/20130103 – volume: 17 start-page: 2367 issue: 8 year: 2021 ident: 298_CR47 publication-title: Hum Vaccines Immunotherapeutics. doi: 10.1080/21645515.2021.1886806 – volume: 126 start-page: 871 issue: 1 year: 2021 ident: 298_CR51 publication-title: Scientometrics. doi: 10.1007/s11192-020-03690-4 – ident: 298_CR10 doi: 10.1007/s11192-022-04314-9 – ident: 298_CR8 doi: 10.1007/978-3-642-38652-7_2 – ident: 298_CR33 doi: 10.1145/3307339.3343255 – volume: 584 start-page: 430 issue: 7821 year: 2020 ident: 298_CR52 publication-title: Nature. doi: 10.1038/s41586-020-2521-4 – ident: 298_CR20 doi: 10.3115/1220355.1220425 – ident: 298_CR19 doi: 10.1109/ICITEED.2014.7007894 – ident: 298_CR21 doi: 10.3233/SW-140134 – ident: 298_CR34 – volume: 3 start-page: 4 issue: 1 year: 2021 ident: 298_CR41 publication-title: J Biosaf Biosecurity. doi: 10.1016/j.jobb.2020.12.002 – volume: 28 start-page: 112 issue: 1 year: 2020 ident: 298_CR15 publication-title: Polit Anal. doi: 10.1017/pan.2019.26 – ident: 298_CR25 doi: 10.1007/s11192-021-04097-5 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 298_CR29 publication-title: R News. – ident: 298_CR36 doi: 10.1145/2063518.2063519 – volume: 343 start-page: 1436 issue: 6178 year: 2014 ident: 298_CR48 publication-title: Science. doi: 10.1126/science.1251554 – volume: 29 start-page: 21 year: 2018 ident: 298_CR4 publication-title: Comput Sci Rev. doi: 10.1016/j.cosrev.2018.06.001 – ident: 298_CR27 doi: 10.18653/v1/D19-1006 – volume: 11 start-page: 8438 issue: 18 year: 2021 ident: 298_CR2 publication-title: Appl Sci. doi: 10.3390/app11188438 – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 298_CR23 publication-title: Wiley Interdiscip Rev Comput Stat. doi: 10.1002/wics.101 – volume: 24 start-page: 1 issue: 1 year: 2020 ident: 298_CR37 publication-title: Crit Care. doi: 10.1186/s13054-020-03219-4 – ident: 298_CR11 – ident: 298_CR50 doi: 10.1145/3360901.3364435 – ident: 298_CR16 doi: 10.18653/v1/D17-1026 – ident: 298_CR38 doi: 10.1007/978-3-030-80418-3_2 – volume: 23 start-page: e23703 issue: 3 year: 2021 ident: 298_CR42 publication-title: J Med Internet Res. doi: 10.2196/23703 – volume: 29 start-page: 337 issue: 3 year: 2010 ident: 298_CR32 publication-title: Stat Med. doi: 10.1002/sim.3782 – volume: 3 start-page: 686720 year: 2021 ident: 298_CR45 publication-title: Front Digit Health. doi: 10.3389/fdgth.2021.686720 – volume: 22 start-page: e19357 issue: 5 year: 2020 ident: 298_CR49 publication-title: J Med Internet Res. doi: 10.2196/19357 – ident: 298_CR31 – volume: 34 start-page: 50 issue: 1 year: 2020 ident: 298_CR3 publication-title: IEEE Trans Knowl Data Eng. doi: 10.1109/TKDE.2020.2981314 – ident: 298_CR14 – ident: 298_CR24 doi: 10.1088/1757-899X/336/1/012017 |
| SSID | ssj0000331083 |
| Score | 2.3014383 |
| Snippet | Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task. In this... Abstract Multiple studies have investigated bibliometric features and uncategorized scholarly documents for the influential scholarly document prediction task.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 18 |
| SubjectTerms | Accuracy Algorithms Analysis Bioinformatics Classification Combinatorial Libraries Computational Biology/Bioinformatics Computational linguistics Computer Appl. in Life Sciences COVID-19 Data mining Data Mining and Knowledge Discovery Datasets Documents Domain-independent knowledge graph Embedding Experiments Humans Influential scholarly document prediction Knowledge Knowledge representation Language Language processing Learning algorithms Machine Learning Machine learning algorithms Mathematics Mathematics and Statistics Medical research Medicine, Experimental Methods Natural language interfaces Pattern Recognition, Automated Predictions Scholarly periodicals Semantics State-of-the-art reviews Text mining World health organization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4lkCBRkJwQGs5uE4NrdSqKi0Khyg6s1yHLuNtE2qfSDxN_jFzDjesCkCLlxjO7I9n8cz9vgbQl6URngHOw0TnisGoKiZbOqMAXSkMiXAKhwNnM6qkxN5dqY-b6X6wpiwgR54mLh9n7vC57yyXsLm56vayRr-m5rMSGfq4PikldpypoIOLsBskcXmlYwU-0twxnKMty1YoB1nfLITBcL-39Xy1r50PWby2sVp2I-O7pDb0ZCkB8MA7pIbrrtHdmfx-HFJX9LZyJi8vE9-HIfnkLT39PDT6fF7likaiX4u3lJDA80s7Tt6tcCrGwyGpu2QwAR0wJxGJ3j-nTa9XYd3cRRj5s_pZQjHdDTmnzinpmvgh01_adqOtWOa3RUdz-9ooMl-QL4effhy-JHFfAzMilSumFGNRfYWV5pM1SCXPFxzWm8rU2SuxtzV3Oe-8lymjeK-UmAhNLaq0egRZfGQ7HR95x4Ritd7Dky9VDjBvRUK_KY6KxslZMqdaBKSbWSjbSQrx5wZcx2cFin0IE8N8tRBnpon5PXY5mqg6vhr7Xco8rEm0myHDwA-HcGn_wW-hLxCwGhUBtA9a-KbBhgk0mrpAzCu0QJO04TsTWrCIrbT4g3kdFQiS50r5N_Pi6JKyPOxGFtiYFzn-jXUkarEZcWLhOwOCB2HVID1Ae4gtJYT7E7GPC3p2otAMZ6lAlS9gn692cD8V7_-PKmP_8ekPiG3clymGWgMuUd2Vou1e0pu2m-rdrl4Ftb5T4PRVPo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLag48CF32yBgYyE4ABW89OxuaAxmKhURg8wjVPkOHZXqUtK0yLxb_AX857rZmSInbjGduSXfP78bD9_j5DnmeLWwEzDuE0lA1CUTFRlxAA6QqoMYOW2Bk7G-fGxOD2VE389uvVhlVtOdES9UXvGuG0g4WHVaNwxH8YSpcnjJMnfLr4zzCGFZ60-ocZ1soPCW-GA7ExGnybfuj2XMAFnRiTbuzOCD1tYosUYhZswJ0bO0t785GT8_ybrP2ary5GUl45T3Sx1dPv_2neH3PLeKj3YwOsuuWbqe2R37Pc4W_qCjjtZ5vY--TVydy5pY-nh55PRexZJ6tWEzt5QRZ2WLW1qulji-RBGXNPZJksKEM2c-pX2_CeFHq7d5TuKgflTeu5iPg31SS6mVNUVvLBqztWsZrMul--KdpuE1GlxPyBfjz58OfzIfNIHpnkoVkzJSqNEjMlUJMvYJLE7S9VW5yqJTIkJslMb29ymIqxkanP4VHGl8xI9K54lD8mgbmqzRyieIRrwJ0NueGo1l7A4K6OsklyEqeFVQKLtry60V0THxBzzwq2MBC828CgAHoWDR5EG5FXXZrHRA7my9jtEUFcTtbzdg2Y5LTw1FBaMtHGaayvAvbN5aUQJIydUkRJGlVFAXiL-CmQc6J5W_uIEGInaXcUBePDoZodhQPZ7NYEpdL94C73CM1VbXCAtIM-6YmyJ0Xe1adZQR8gMx26aBGR3A_jOpARcHFhzQmvRGwo9m_sl9ezM6ZhHIYf5REK_Xm9HzUW__v1RH11txmNyM8bxHAHhiH0yWC3X5gm5oX-sZu3yqaeE37Wpbp0 priority: 102 providerName: ProQuest |
| Title | Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph |
| URI | https://link.springer.com/article/10.1186/s13326-023-00298-4 https://www.ncbi.nlm.nih.gov/pubmed/38017587 https://www.proquest.com/docview/2902122337 https://www.proquest.com/docview/2895258943 https://pubmed.ncbi.nlm.nih.gov/PMC10683290 https://doaj.org/article/f2e3f247cf8741f7be8b6f40a1a8eab1 |
| Volume | 14 |
| WOSCitedRecordID | wos001109950800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: RBZ dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M7S dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: RSV dateStart: 20101201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYxgM88DFgBEZlJAQPEJFPx-ZtG5uo1JWKQVWeLMexu0pdMjUtEv8GfzF3bhLo-JDgJQ_xObLju_Odffc7Qp6lilkDO43PbCJ8YIrc50Ue-sA6XKgU2ModDYwH2XDIJxMxapLC6jbavb2SdJraiTVnr2vwpiIMmI19hxvuJ1tkJ0W0GfTRz8bdyUoQg8nC4zZD5rddN3YhB9b_q0r-aU-6Gi955dLU7UUnt_9vFnfIrcb2pAdrZrlLrplyl-wNmhPLmj6ngw5kud4lN087SNf6HvnWd_mUtLL06P24_9YPBW2Qgs7fUEUdTi2tSnq5wLsfjKams3UFFFAic9p40fOvtKj0yiXWUQy6n9ILF89paFPAYkpVWcAHi-pCzUp_1tXpXdLuAJA6nO375NPJ8cejd35T0MHXLOBLX4lCI_yLSVUo8sjEkbsn1VZnKg5NjsWvExvZzCY8KERiMwEmRqGzHK0mlsYPyHZZleYhoXg_aMBWDJhhidVMgOOVh2khGA8SwwqPhO0CS92gnWPRjbl0Xg9ncr0SElZCupWQiUdedn0u11gff6U-RL7pKBGn272oFlPZiL20MEkbJZm2HEw3m-WG5yAVgQoVNyoPPfICuU6iNoHhadUkRcAkEZdLHoB1jiZ0EHhkf4MStIDebG75VjZaqJaRQAD_KI4zjzztmrEnRtaVploBDRcpymUSe2RvzebdlGIwX8CfhN58QwA25rzZUs7OHUZ5GDDYKwSM61UrBz_G9eef-ujfyB-TGxGKUgjKhe-T7eViZZ6Q6_rLclYvemQrm2TuyXtk5_B4OPrQc2cuPYzwHbnnGbSM-qejzz2nRL4DOL1kbw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLaqggQXdspAASOxHMDqbJmxkRAqLVWjhtBDqXozHo-dRkpnQhZQ_wY_hN_Ie56lTBG99cA1thPb-d7qtxDyvKcSa0DSsMTGggEoMsbzLGAAHS5UD2DlXAOHg3Q45EdHYn-F_GpyYTCssuGJjlHnpUYf-UYosBh5GEXp--k3hl2j8HW1aaFRwWLPnP4Ak23-rr8N_--LMNz5eLC1y-quAkwnPl8wJXKNNUhMTwUiC00Uusc6bXWqosBk2IE5tqFNbcz9XMQ2hV8Oc51mKLoT7BIBLP8KqBGh70IF91ufjh-BssSjJjeHJxtzMAFDjPKNmCt2zuKO_HNtAv4WBn9Iw_ORmueea50U3Ln5v93fLXKj1rfpZkUgt8mKKe6QtUHtpZ3Tl3TQFpae3yU_-y5rlJaWbn0-7G-zQNC6HtLxW6qoq8ZLy4JOZ_jChTHjdFz1eQFWOaG1r2BySuFGli59kGJqwYieuKhVQ-s2HSOqihy-MC9P1Lhg47Yb8YK2bk7qqonfI18u5YLuk9WiLMwDQvEV1IBG7Ccmia1OBJiXWdDLRcL92CS5R4IGTFLXNd2xtchEOtuOJ7ICoAQASgdAGXvkdbtmWlU0uXD2B8RoOxOrkbsPytlI1sxNWjikDeNUWw4Kqk0zwzOgfV8FihuVBR55hQiXyDNhe1rVqR9wSKw-JjfBBkFDwfc9st6ZCbxOd4cbcMua187lGbI98qwdxpUYP1iYcglzuOgh94kjj6xVJNUeKQIlDaxmWM07xNY5c3ekGB-7SuyBn4BEFLCvNw1dnu3r35f68OJjPCXXdg8-DeSgP9x7RK6HyD0CYJ98nawuZkvzmFzV3xfj-eyJYz-UfL1sev0N65a8uA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgIAQPXAaMwAAjIXgAa7k4js3b2KioKGXiUu3Nchy7q9QlVdMi8Tf4xRw7aVjGRUK81nZlx-fqc853EHqaKmYNaBrCLBUEiCInvMgjAqTDhUqBrPzTwGSUjcf8-Fgcnani99num5BkU9PgUJrK1d6isA2Lc7ZXg2cVu-TZhHgMcUIvoksUPBmX1PXx06R7ZQkTMF94sqmW-e3SnkbywP2_iucz-ul87uS5AKrXS4Mb_3-im-h6a5Pi_YaIbqELptxGO6P2JbPGz_CoA1-ut9G19x3Ua30bfR_6OktcWXzwYTI8JJHALYLQySussMevxVWJF0sXE3JZ1njWdEYB4TLHrXc9_4aLSq99wR12yfhTfOrzPA1uG1tMsSoL-MOiOlWzksy6_r0r3D0MYo-_fQd9Gbz5fPCWtI0eiGYhXxElCu1gYUyqIpHHJol9_FRbnakkMrlrik1tbDNLeVgIajMBpkehs9xZUyxN7qKtsirNPYRd3NCADRkyw6jVTIBDlkdpIRgPqWFFgKLNZUvdoqC7Zhxz6b0hzmRzExJuQvqbkDRAL7o1iwYD5K-zXzsa6mY6_G7_Q7WcylYcSAuHtDHNtOVg0tksNzwHbglVpLhReRSg544CpZMysD2t2mIJOKTD65L7YLU70zoMA7TbmwnSQfeHNzQsW-lUy1g4YP84SbIAPemG3UqXcVeaag1zuEgdv9IkQDsNyXdHSsCsAT8TVvMeM_TO3B8pZyceuzwKGegQAft6ueGJn_v680e9_2_TH6MrR4cDORqO3z1AV2PHVRHIH76LtlbLtXmILuuvq1m9fOSlxQ_Ljmg6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+COVID-19+research%3A+a+study+on+predicting+influential+scholarly+documents+using+machine+learning+and+a+domain-independent+knowledge+graph&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Rabby%2C+Gollam&rft.au=D%27Souza%2C+Jennifer&rft.au=Oelen%2C+Allard&rft.au=Dvorackova%2C+Lucie&rft.date=2023-11-28&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=14&rft.issue=1&rft.spage=18&rft_id=info:doi/10.1186%2Fs13326-023-00298-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon |