RU-Net: skull stripping in rat brain MR images after ischemic stroke with rat U-Net

Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucia...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC medical imaging Ročník 23; číslo 1; s. 44 - 14
Hlavní autori: Chang, Herng-Hua, Yeh, Shin-Joe, Chiang, Ming-Chang, Hsieh, Sung-Tsang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 27.03.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2342, 1471-2342
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net). Methods Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net. Results Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively. Conclusion The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.
AbstractList Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net).BACKGROUNDExperimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net).Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net.METHODSBased on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net.Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively.RESULTSExtensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively.The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.CONCLUSIONThe proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.
Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net). Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net. Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively. The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.
BackgroundExperimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net).MethodsBased on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net.ResultsExtensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively.ConclusionThe proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.
Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net). Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net. Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively. The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.
Abstract Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net). Methods Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net. Results Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively. Conclusion The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.
Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net). Methods Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net. Results Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively. Conclusion The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental. Keywords: Skull stripping, Brain segmentation, Deep learning, U-Net, Ischemic stroke, MRI
Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological extent. An accurate and automatic skull stripping tool for rat brain image volumes with magnetic resonance imaging (MRI) are crucial in experimental stroke analysis. Due to the deficiency of reliable rat brain segmentation methods and motivated by the demand for preclinical studies, this paper develops a new skull stripping algorithm to extract the rat brain region in MR images after stroke, which is named Rat U-Net (RU-Net). Methods Based on a U-shape like deep learning architecture, the proposed framework integrates batch normalization with the residual network to achieve efficient end-to-end segmentation. A pooling index transmission mechanism between the encoder and decoder is exploited to reinforce the spatial correlation. Two different modalities of diffusion-weighted imaging (DWI) and T2-weighted MRI (T2WI) corresponding to two in-house datasets with each consisting of 55 subjects were employed to evaluate the performance of the proposed RU-Net. Results Extensive experiments indicated great segmentation accuracy across diversified rat brain MR images. It was suggested that our rat skull stripping network outperformed several state-of-the-art methods and achieved the highest average Dice scores of 98.04% (p < 0.001) and 97.67% (p < 0.001) in the DWI and T2WI image datasets, respectively. Conclusion The proposed RU-Net is believed to be potential for advancing preclinical stroke investigation and providing an efficient tool for pathological rat brain image extraction, where accurate segmentation of the rat brain region is fundamental.
ArticleNumber 44
Audience Academic
Author Hsieh, Sung-Tsang
Chang, Herng-Hua
Chiang, Ming-Chang
Yeh, Shin-Joe
Author_xml – sequence: 1
  givenname: Herng-Hua
  surname: Chang
  fullname: Chang, Herng-Hua
  email: herbertchang@ntu.edu.tw
  organization: Computational Biomedical Engineering Laboratory (CBEL), Department of Engineering Science and Ocean Engineering, National Taiwan University
– sequence: 2
  givenname: Shin-Joe
  surname: Yeh
  fullname: Yeh, Shin-Joe
  organization: Department of Neurology and Stroke Center, National Taiwan University Hospital
– sequence: 3
  givenname: Ming-Chang
  surname: Chiang
  fullname: Chiang, Ming-Chang
  organization: Department of Biomedical Engineering, National Yang Ming Chiao Tung University
– sequence: 4
  givenname: Sung-Tsang
  surname: Hsieh
  fullname: Hsieh, Sung-Tsang
  organization: Department of Neurology and Stroke Center, National Taiwan University Hospital, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Center of Precision Medicine, College of Medicine, National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36973775$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGzYpFw_EttsUFXxqFRAKnRtOY6d8TQTD7aHqv8eZ9LSToWqLGI553zOuT6Hxd7oR1MUrxEcI8Sb9xFhzqECTCoAIWjFnxUHiDJUYULx3oP1fnEY4xIAMU7oi2KfNIIRxuqD4ufFZfXdpA9lvNoMQxlTcOu1G_vSjWVQqWyDyqtvF6Vbqd7EUtlkQumiXpiV05PeX5ny2qXFVr6FvSyeWzVE8-r2fVRcfv706_Rrdf7jy9npyXmlG-CposxiYikSTWstho52BBrUIYtV11pqW8IIUFDQYSNqaw1pOK0Z75SuiQZNjoqzmdt5tZTrkH8x3EivnNxu-NBLFZLTg5Eca6PrlhIFLQUMogHGtDWtQpwI3WTWx5m13rQr02kzpqCGHejul9EtZO__SARA63wRmfDulhD8742JSa7ymMwwqNH4TZSYCUwF45Rm6dtH0qXfhDHPSmIOWHCEaXOv6lVO4Ebr88F6gsoTRgkhNWYT6_g_qvx00wXlwliX93cMbx4m_RfxrhNZwGeBDj7GYKzULqnk_BTcDTmxnOon5_rJXD-5rZ-cZoAfWe_oT5rIbIpZPPYm3E_jCddfS6_psA
CitedBy_id crossref_primary_10_1016_j_jneumeth_2025_110545
crossref_primary_10_1007_s00395_024_01081_x
crossref_primary_10_1016_j_jneumeth_2024_110078
crossref_primary_10_3390_app15063401
crossref_primary_10_1038_s41598_025_87851_6
crossref_primary_10_1038_s41598_023_39826_8
Cites_doi 10.1002/jmri.25667
10.1109/TIP.2011.2126587
10.3389/fnins.2020.568614
10.1016/0020-0190(91)90233-8
10.1016/j.media.2016.10.004
10.1007/s12975-017-0590-y
10.1007/978-3-319-24574-4_28
10.1006/nimg.2000.0730
10.1016/j.neuroscience.2018.07.045
10.1007/s12021-022-09607-1
10.1117/12.878405
10.1007/s12021-020-09453-z
10.1016/j.neuroimage.2021.117734
10.1038/s41598-020-61656-1
10.1016/j.compmedimag.2021.101908
10.1016/j.neuroimage.2009.03.068
10.1016/j.jneumeth.2015.09.031
10.1016/j.artmed.2018.08.008
10.1016/j.jneumeth.2013.09.021
10.1016/j.neuroimage.2008.12.021
10.1016/j.jneumeth.2013.04.011
10.1109/ICCV.2015.178
10.1109/CVPR.2016.90
10.1161/STROKEAHA.110.612788
10.1109/CVPR.2015.7298965
10.1016/j.compmedimag.2021.101920
10.1109/EMBC.2016.7591619
10.1186/s12880-022-00867-6
10.1161/CIR.0000000000000746
10.1007/s10278-021-00486-7
10.1109/TMI.2012.2206398
10.2307/1932409
10.1002/hbm.24750
10.1002/mp.14201
10.1016/j.compmedimag.2020.101764
10.1002/mp.15210
10.3389/fnbeh.2018.00316
10.1007/s11886-018-0989-4
10.1371/journal.pone.0109113
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s12880-023-00994-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2342
EndPage 14
ExternalDocumentID oai_doaj_org_article_82cec5b43a0b402096077cfeba1839c6
PMC10045128
A743335274
36973775
10_1186_s12880_023_00994_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 108-2221-E-002-080-MY3; MOST 107-2320-B-002-043-MY3
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: ;
  grantid: MOST 108-2221-E-002-080-MY3; MOST 107-2320-B-002-043-MY3
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c608t-47f23f4196bff20d4d3061d1f2adbf4fb373040a0d2e95ffe3684578dac53c0c3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000958063800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2342
IngestDate Fri Oct 03 12:52:42 EDT 2025
Tue Nov 04 02:07:25 EST 2025
Fri Sep 05 11:38:52 EDT 2025
Tue Oct 07 05:35:10 EDT 2025
Tue Nov 11 10:30:25 EST 2025
Tue Nov 04 18:06:43 EST 2025
Thu Apr 03 07:06:05 EDT 2025
Tue Nov 18 21:48:02 EST 2025
Sat Nov 29 06:11:07 EST 2025
Sat Sep 06 07:26:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Brain segmentation
Skull stripping
Ischemic stroke
MRI
U-Net
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-47f23f4196bff20d4d3061d1f2adbf4fb373040a0d2e95ffe3684578dac53c0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/82cec5b43a0b402096077cfeba1839c6
PMID 36973775
PQID 2802981246
PQPubID 44833
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_82cec5b43a0b402096077cfeba1839c6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10045128
proquest_miscellaneous_2792497844
proquest_journals_2802981246
gale_infotracmisc_A743335274
gale_infotracacademiconefile_A743335274
pubmed_primary_36973775
crossref_citationtrail_10_1186_s12880_023_00994_8
crossref_primary_10_1186_s12880_023_00994_8
springer_journals_10_1186_s12880_023_00994_8
PublicationCentury 2000
PublicationDate 2023-03-27
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical imaging
PublicationTitleAbbrev BMC Med Imaging
PublicationTitleAlternate BMC Med Imaging
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 994_CR46
994_CR48
994_CR42
994_CR45
R De Feo (994_CR33) 2021; 229
J Li (994_CR13) 2013; 218
994_CR40
F Isensee (994_CR20) 2019; 40
M Kang (994_CR5) 2020; 10
S-M Huang (994_CR11) 2022; 22
W Gomez (994_CR39) 2012; 31
Y Li (994_CR6) 2017; 46
N Chou (994_CR25) 2011; 20
994_CR35
994_CR36
Z Yang (994_CR22) 2020; 47
994_CR38
994_CR32
J Bernal (994_CR23) 2019; 95
994_CR34
M Murugavel (994_CR24) 2009; 45
IA Mulder (994_CR7) 2017; 11
S Zhang (994_CR18) 2011; 14
F Fluri (994_CR3) 2015; 9
994_CR28
994_CR26
994_CR27
H-H Chang (994_CR43) 2009; 47
Y Liu (994_CR10) 2020; 18
G Rote (994_CR44) 1991; 38
I Oguz (994_CR19) 2014; 221
IL Gubskiy (994_CR4) 2018; 9
K Kamnitsas (994_CR49) 2017; 36
DW Shattuck (994_CR47) 2001; 13
994_CR17
994_CR14
X Ding (994_CR29) 2020; 84
S Mizusawa (994_CR30) 2021; 90
994_CR1
LR Dice (994_CR41) 1945; 26
R Khatri (994_CR2) 2018; 20
L-K Tsai (994_CR37) 2011; 42
994_CR8
S Lancelot (994_CR15) 2014; 9
A Aliena-Valero (994_CR9) 2018; 388
A Delora (994_CR16) 2016; 257
MJ Ali (994_CR21) 2021; 34
A Nemani (994_CR12) 2021; 48
V Abramova (994_CR31) 2021; 90
References_xml – volume: 46
  start-page: 1456
  issue: 5
  year: 2017
  ident: 994_CR6
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25667
– volume: 20
  start-page: 2554
  issue: 9
  year: 2011
  ident: 994_CR25
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2126587
– ident: 994_CR32
  doi: 10.3389/fnins.2020.568614
– volume: 38
  start-page: 123
  issue: 3
  year: 1991
  ident: 994_CR44
  publication-title: Inform Process Lett
  doi: 10.1016/0020-0190(91)90233-8
– volume: 36
  start-page: 61
  year: 2017
  ident: 994_CR49
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.004
– volume: 9
  start-page: 417
  issue: 4
  year: 2018
  ident: 994_CR4
  publication-title: Translational Stroke Research
  doi: 10.1007/s12975-017-0590-y
– ident: 994_CR28
  doi: 10.1007/978-3-319-24574-4_28
– volume: 13
  start-page: 856
  year: 2001
  ident: 994_CR47
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0730
– volume: 388
  start-page: 263
  year: 2018
  ident: 994_CR9
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.07.045
– ident: 994_CR34
  doi: 10.1007/s12021-022-09607-1
– ident: 994_CR46
– ident: 994_CR42
– ident: 994_CR14
  doi: 10.1117/12.878405
– ident: 994_CR26
– volume: 18
  start-page: 395
  issue: 3
  year: 2020
  ident: 994_CR10
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09453-z
– ident: 994_CR36
– volume: 229
  start-page: 117734
  year: 2021
  ident: 994_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117734
– volume: 9
  start-page: 3445
  year: 2015
  ident: 994_CR3
  publication-title: Drug Des Devel Ther
– volume: 10
  start-page: 4989
  issue: 1
  year: 2020
  ident: 994_CR5
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-61656-1
– volume: 90
  start-page: 101908
  year: 2021
  ident: 994_CR31
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101908
– volume: 47
  start-page: 122
  issue: 1
  year: 2009
  ident: 994_CR43
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.03.068
– volume: 257
  start-page: 185
  year: 2016
  ident: 994_CR16
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2015.09.031
– volume: 11
  start-page: 3
  year: 2017
  ident: 994_CR7
  publication-title: Front Neuroinform
– volume: 95
  start-page: 64
  year: 2019
  ident: 994_CR23
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2018.08.008
– volume: 221
  start-page: 175
  year: 2014
  ident: 994_CR19
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.09.021
– volume: 45
  start-page: 845
  issue: 3
  year: 2009
  ident: 994_CR24
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.021
– ident: 994_CR48
– volume: 218
  start-page: 72
  issue: 1
  year: 2013
  ident: 994_CR13
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.04.011
– ident: 994_CR40
  doi: 10.1109/ICCV.2015.178
– ident: 994_CR35
  doi: 10.1109/CVPR.2016.90
– volume: 42
  start-page: 2932
  issue: 10
  year: 2011
  ident: 994_CR37
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.612788
– volume: 14
  start-page: 611
  issue: Pt 3
  year: 2011
  ident: 994_CR18
  publication-title: Med Image Comput Comput Assist Interv
– ident: 994_CR27
  doi: 10.1109/CVPR.2015.7298965
– volume: 90
  start-page: 101920
  year: 2021
  ident: 994_CR30
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101920
– ident: 994_CR17
  doi: 10.1109/EMBC.2016.7591619
– volume: 22
  start-page: 136
  issue: 1
  year: 2022
  ident: 994_CR11
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-022-00867-6
– ident: 994_CR1
  doi: 10.1161/CIR.0000000000000746
– volume: 34
  start-page: 905
  issue: 4
  year: 2021
  ident: 994_CR21
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00486-7
– volume: 31
  start-page: 1889
  issue: 10
  year: 2012
  ident: 994_CR39
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2206398
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 994_CR41
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 40
  start-page: 4952
  issue: 17
  year: 2019
  ident: 994_CR20
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24750
– volume: 47
  start-page: 3263
  issue: 8
  year: 2020
  ident: 994_CR22
  publication-title: Med Phys
  doi: 10.1002/mp.14201
– volume: 84
  start-page: 101764
  year: 2020
  ident: 994_CR29
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2020.101764
– volume: 48
  start-page: 5756
  issue: 10
  year: 2021
  ident: 994_CR12
  publication-title: Med Phys
  doi: 10.1002/mp.15210
– ident: 994_CR8
  doi: 10.3389/fnbeh.2018.00316
– volume: 20
  start-page: 46
  issue: 6
  year: 2018
  ident: 994_CR2
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-018-0989-4
– ident: 994_CR38
– ident: 994_CR45
– volume: 9
  start-page: e109113
  issue: 10
  year: 2014
  ident: 994_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0109113
SSID ssj0017834
Score 2.3268502
Snippet Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of...
Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of pathological...
Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of...
BackgroundExperimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the development of...
Abstract Background Experimental ischemic stroke models play a fundamental role in interpreting the mechanism of cerebral ischemia and appraising the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Algorithms
Animal experimentation
Animals
Brain
Brain - diagnostic imaging
Brain segmentation
Coders
Datasets
Deep learning
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Ischemia
Ischemic Stroke
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine
Medicine & Public Health
MRI
Neural networks
Neuroimaging
Radiology
Rats
Rodents
Skull
Skull stripping
Stroke
Stroke (Disease)
Stroke - diagnostic imaging
Tomography
U-Net
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagINQL70egICMhcQCriePYXi6oICoOdFUVKvVmxa8SlWbLZsvvZ8abpKSIXrjGEyvOvO3xN4S8CoUHvxAq5iF4Z8I5x2aissw6bbkvChtiAnH9ouZzfXQ02-833Lq-rHKwiclQ-4XDPfJtrhEsHLyRfH_2k2HXKDxd7VtoXCc3ECWBp9K9_fEUAZtIDBdltNzuwBbrnIGXYhgYCaYnzihh9v9tmf9wTZfLJi-dnSaXtHvnfxdzl9zug1G6s5aee-RaaO-TW3v9cfsD8vXgkM3D6h3tTiBTpdjiA-EcjmnTUpAcarG_BN07oM0pmKWOpobjtIGEGUvukX5xEihu9SbyNNlDcrj76dvHz6zvwsCczPWKCRV5GQVoqo2R5154yDIKX0ReextFtCUYCZHXuedhVsUYSqkF2AFfu6p0uSsfkY120YYnhMIsvq7trIxeiTrwOkQpI0RI0kOYJvOMFAM7jOshyrFTxg-TUhUtzZqFBlhoEguNzsib8Z2zNUDHldQfkMsjJYJrpweL5bHpddVo7oKrrCjr3GJ6DUmeUi4GW2M46WRGXqOMGDQB8Hmu7m8ywCIRTMvsQFSGV9mUyMjWhBJU102HB_EwvenozIVsZOTlOIxvYjlcGxbnQKMwbVZawBSP10I5LqmUM1UqVWVET8R1subpSNt8T8DiRUIb4vCX3g6SffFd__6pT69exjOyyZPOlYyrLbKxWp6H5-Sm-7VquuWLpLG_ASHxRkM
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagINQL70egICMhcQCriePYDreCqDjQFdpS1JsVv0pUmkWbLb-fGW-ykPKQ4BqPnXg8z9j-hpBnofDgF0LFPATvTDjnWC0qy6zTlvuisCEmENf3ajbTx8f1h-FSWD-edh-3JJOlTmqt5W4PllTnDHwMw7BGMH2ZXAF3p7Fgw_zw02bvAEtHjNdjfttv4oISUv-v9vgnh3TxsOSFHdPkiPZv_N8UbpLrQ-BJ99aScotcCt1tcu1g2Fq_Qw7nR2wWVq9ofwpZKcVyHgjdcELbjoKUUIu1JOjBnLZnYIJ6moqL0xaSYzxej_SL00Dxt24iT4PdJUf7bz--eceGigvMyVyvmFCRl1GAVtoYee6Fh4yi8EXkjbdRRFuCQRB5k3se6irGUEotQOd946rS5a68R7a6RRceEAqj-KaxdRm9Ek3gTYhSRoiGpIeQTOYZKcZFMG6AI8eqGF9MSku0NGtuGeCWSdwyOiMvNn2-rsE4_kr9Gtd2Q4lA2unBYnliBr00mrvgKivKJreYSkNCp5SLwTYYOjqZkecoGQbVHT7PNcOtBZgkAmeZPYjA8NqaEhnZmVCCmrpp8yhbZjATveEaEfAhxIL3PN00Y088-taFxTnQKEyRlRYwxP21KG6mVMpalUpVGdETIZ3MedrStZ8TiHiRkIU4cOnlKKs_vuvPTH34b-SPyDZP4l4yrnbI1mp5Hh6Tq-7bqu2XT5Lefgd1CDx0
  priority: 102
  providerName: Springer Nature
Title RU-Net: skull stripping in rat brain MR images after ischemic stroke with rat U-Net
URI https://link.springer.com/article/10.1186/s12880-023-00994-8
https://www.ncbi.nlm.nih.gov/pubmed/36973775
https://www.proquest.com/docview/2802981246
https://www.proquest.com/docview/2792497844
https://pubmed.ncbi.nlm.nih.gov/PMC10045128
https://doaj.org/article/82cec5b43a0b402096077cfeba1839c6
Volume 23
WOSCitedRecordID wos000958063800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: 7RV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgILQXxDeFURkJiQewljhO7PC2oU0g0Srq2FR4seIviDZStHb8_dw5aVmGgBdeLCW-uLbvzndX278j5IVPHdgFnzMHzjsT1lpWitwwY5XhLk2NDxHE9YOcTtV8XlaXUn3hmbAOHribuF3Frbe5EVmdGIx1wOOW0gZvarTtNoJtJ7JcB1P9_gGmj1hfkVHF7hJWYZUwsE8MXSLB1MAMRbT-39fkS0bp6oHJK7um0Rgd3iG3ey-S7nW9v0uu-fYeuTXp98nvk6PZMZv61Ru6PIUQk2JuDsRh-EKblgLLqcHEEHQyo803WE-WNGYKpw1EunhWHukXp57if7SRPDb2gBwfHnx8-4716ROYLRK1YkIGngUBKmZC4IkTDsKD1KWB184EEUwG2i2SOnHcl3kIPiuUAAV2tc0zm9jsIdlqF61_TCi04uralFlwUtSe1z4URQDXpnDgXxXJiKTr2dS2xxbHFBdnOsYYqtAdBzRwQEcOaDUirzbffO-QNf5KvY9M2lAiKnZ8AbKie1nR_5KVEXmJLNaou9A9W_dXEGCQiIKl98CdwjtoUozIzoASdM4Oq9dConudX2quEM4e_CX4neebavwSz7G1fnEBNBLjXakENPGok6nNkLKilJmU-YiogbQNxjysaZuvERE8jTBBHGbp9Vowf_Xrz5P65H9M6lOyzaNiZYzLHbK1Or_wz8hN-2PVLM_H5LqcnWA5l7FUY3Jj_2BazcZRYcd41raCsso_Q031flJ9gqfZ0clPO6hBYw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGh4AX7pfAACOBeBjWEsdJXCSExmVatbaaxiaNJxPfRjVoR9OB-FP8Rs5xk44Msbc98BqfWDnOdy6-fYeQpy6xEBdcxiwk70wYY1hXZJppIzW3SaKdDySu_WI4lPv73e0l8qu5C4PHKhufGBy1nRhcI1_jEsnCIRrlr4--MawahburTQmNOSy23M8fMGWrXvXewf99xvnG-923m6yuKsBMHssZE4XnqReAPO09j62wkDUnNvG8tNoLr1MAvYjL2HLXzbx3aS4F4NqWJktNbFLo9wJZFgj2Dlne7g22Py72LbBsRXM1R-ZrFXh_GTOIiwxTMcFkK_yFKgF_x4I_guHpg5qndmtDENy49r8N33VytU636frcPm6QJTe-SS4N6gMFt8iHnT02dLOXtDqEuTjFIiZIWHFAR2MKtkE1VtCggx06-gqOt6KhpDodVSbwLKD85NBRXMwO4qGz22TvXFS6QzrjydjdIxR6sWWpu6m3hSgdL53Pcw85YG4hEc3jiCTN71emJmHHWiBfVJiMyVzNIaMAMipARsmIrC7eOZpTkJwp_QZRtZBE-vDwYDI9ULU3UpIbZzIt0jLWuIAA09iiMN7pEhNmk0fkOWJSoZODzzNlfVcDlES6MLUOeSde1itERFZakuCcTLu5gaOqnWOlTrAYkSeLZnwTD_yN3eQYZApcGCikgC7uzo1goVKad4u0KLKIyJZ5tHRut4xHnwN1ehL4lDiM0ovGkk6-69-Dev9sNR6Ty5u7g77q94ZbD8gVHuw9ZbxYIZ3Z9Ng9JBfN99momj6q_QUln87bxn4DJHulXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9goIkXvgcHA4KExANEa9O0yfE2Pk4gttO0MbS3KJ-jGvSm642_HzvtHev4kBCvFyfXuLZjN_bPhDwLuYdzIZTMg_POhHOOjUVpmXXKcp_nNsQE4rojp1N1dDTeO1fFn7Ldl1eSXU0DojQ1i61THzsVV9VWC1ZVZQzOG4YujmDqMrkiMJEe4_WDz6t7BGwjsSyV-e28wXGUUPt_tc3nDqeLiZMXbk_ToTS58f_buUmu9w4p3e4k6Ba5FJrbZH23v3K_Qw72D9k0LF7R9gSiVYptPhDS4ZjWDQXpoRZ7TNDdfVp_A9PU0tR0nNYQNGPaPdLPTgLFz72JPC12lxxO3n168571nRiYqzK1YEJGXkQB2mpj5JkXHiKN3OeRG2-jiLYAQyEyk3kexmWMoaiUAFvgjSsLl7lig6w1sybcJxRW8cbYcRG9FCZwE2JVRfCSKg-uWpWNSL58Idr1MOXYLeOrTuGKqnTHLQ3c0olbWo3Ii9Wc0w6k46_Ur_E9rygRYDv9MJsf615fteIuuNKKwmQWQ2wI9KR0MViDLqWrRuQ5SolGMwCP50xfzQCbREAtvQ2eGZazSTEimwNKUF83HF7Kme7NR6u5QmR8cL3gf56uhnEmpsQ1YXYGNBJDZ6kELHGvE8vVlopqLAspyxFRA4Ed7Hk40tRfErh4nhCHOHDp5VJufz7Xn5n64N_In5D1vbcTvfNh-vEhucaT5BeMy02ytpifhUfkqvu-qNv546TOPwCmbEg8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RU-Net%3A+skull+stripping+in+rat+brain+MR+images+after+ischemic+stroke+with+rat+U-Net&rft.jtitle=BMC+medical+imaging&rft.au=Chang%2C+Herng-Hua&rft.au=Yeh%2C+Shin-Joe&rft.au=Chiang%2C+Ming-Chang&rft.au=Hsieh%2C+Sung-Tsang&rft.date=2023-03-27&rft.eissn=1471-2342&rft.volume=23&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1186%2Fs12880-023-00994-8&rft_id=info%3Apmid%2F36973775&rft.externalDocID=36973775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2342&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2342&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2342&client=summon