A resting state network in the motor control circuit of the basal ganglia
Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in...
Uloženo v:
| Vydáno v: | BMC neuroscience Ročník 10; číslo 1; s. 137 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
23.11.2009
BioMed Central Ltd BMC |
| Témata: | |
| ISSN: | 1471-2202, 1471-2202 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond.
Results
An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 ± 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates.
Conclusion
Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved. |
|---|---|
| AbstractList | Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 [+ -] 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved. Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 ± 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved. Abstract Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 ± 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved. In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond.BACKGROUNDIn the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond.An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 +/- 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates.RESULTSAn RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 +/- 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates.Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.CONCLUSIONAlthough the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved. In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 +/- 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved. |
| ArticleNumber | 137 |
| Audience | Academic |
| Author | Basso, Gianpaolo Robinson, Simon Sailer, Uta Soldati, Nicola Kryspin-Exner, Ilse Moser, Ewald Bauer, Herbert Jovicich, Jorge Bruzzone, Lorenzo |
| AuthorAffiliation | 3 Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria 2 Telecommunication Engineering, University of Trento, Trento, Italy 1 Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento, Trento, Italy 5 Center for Biomedical Engineering and Physics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria 4 MR Center of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria |
| AuthorAffiliation_xml | – name: 4 MR Center of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria – name: 3 Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria – name: 2 Telecommunication Engineering, University of Trento, Trento, Italy – name: 5 Center for Biomedical Engineering and Physics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria – name: 1 Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento, Trento, Italy |
| Author_xml | – sequence: 1 givenname: Simon surname: Robinson fullname: Robinson, Simon email: simon.robinson@meduniwien.ac.at organization: Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento, MR Center of Excellence, Medical University of Vienna – sequence: 2 givenname: Gianpaolo surname: Basso fullname: Basso, Gianpaolo organization: Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento – sequence: 3 givenname: Nicola surname: Soldati fullname: Soldati, Nicola organization: Telecommunication Engineering, University of Trento – sequence: 4 givenname: Uta surname: Sailer fullname: Sailer, Uta organization: Faculty of Psychology, University of Vienna – sequence: 5 givenname: Jorge surname: Jovicich fullname: Jovicich, Jorge organization: Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento – sequence: 6 givenname: Lorenzo surname: Bruzzone fullname: Bruzzone, Lorenzo organization: Telecommunication Engineering, University of Trento – sequence: 7 givenname: Ilse surname: Kryspin-Exner fullname: Kryspin-Exner, Ilse organization: Faculty of Psychology, University of Vienna – sequence: 8 givenname: Herbert surname: Bauer fullname: Bauer, Herbert organization: Faculty of Psychology, University of Vienna – sequence: 9 givenname: Ewald surname: Moser fullname: Moser, Ewald organization: MR Center of Excellence, Medical University of Vienna, Center for Biomedical Engineering and Physics, Medical University of Vienna |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19930640$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kslr3DAUxk1JaZb23lPxrScn2izJl8IQugwEemnPQsuzo6ktpZLd0P--mnEyJIWgg8TT9_1423l1EmKAqnqP0SXGkl9hJnBDCCINRg2m4lV1dgydPHmfVuc57xDCQjLypjrFXUcRZ-is2m7qBHn2YajzrGeoA8z3Mf2qfajnW6inOMdU2xjmFMfa-mQXP9exP3wanfVYDzoMo9dvq9e9HjO8e7gvqp9fPv-4_tbcfP-6vd7cNJYjOTfEagNUtgYkdNJ0QnYOOseY65FgSLaEccI7h3oQwnSIEUodsZJTg5EFTS-q7cp1Ue_UXfKTTn9V1F4dAjENSqfZ2xGU7VrqkDRM9pxxR7QlvcDYYeNaJ7EprE8r624xEzgLpUw9PoM-_wn-Vg3xjyJCtpKgAvj4AEjx91IaqSafLYyjDhCXrARlmJOOs6K8XJWDLpn50McCtOU4mHzpL_S-xDcE01I9I6IYPjzN7ZjU4-yKgK8Cm2LOCXplfRmh389K-1FhpPZLovZboPZbcIjQPRn9ZzyyX7bg1ZKLNAyQ1C4uKZQ5v-z5B_HQzC8 |
| CitedBy_id | crossref_primary_10_1007_s10548_012_0272_8 crossref_primary_10_1002_hbm_24064 crossref_primary_10_1002_hbm_23256 crossref_primary_10_1038_s41598_020_61522_0 crossref_primary_10_1038_s41598_021_91853_5 crossref_primary_10_1162_jocn_a_00077 crossref_primary_10_1007_s10334_011_0290_7 crossref_primary_10_1002_uog_11119 crossref_primary_10_1016_j_neuroimage_2010_03_062 crossref_primary_10_1016_j_neuroimage_2016_10_011 crossref_primary_10_1089_brain_2017_0538 crossref_primary_10_1002_jmri_25571 crossref_primary_10_1016_j_neuroimage_2011_10_018 crossref_primary_10_1007_s00429_014_0907_5 crossref_primary_10_1016_j_neuroimage_2014_04_019 crossref_primary_10_1007_s10620_019_05766_5 crossref_primary_10_1016_j_nicl_2019_101970 crossref_primary_10_1186_s12888_018_1631_0 crossref_primary_10_3389_fnins_2020_00201 crossref_primary_10_1093_cercor_bhr062 crossref_primary_10_1002_hbm_22827 crossref_primary_10_1089_brain_2015_0411 crossref_primary_10_1371_journal_pone_0106609 crossref_primary_10_1007_s10334_010_0231_x crossref_primary_10_1016_j_bpsc_2016_07_001 crossref_primary_10_1080_10618600_2018_1530117 crossref_primary_10_3389_fnins_2017_00656 crossref_primary_10_1016_j_neucom_2025_129585 crossref_primary_10_1016_j_neuroimage_2013_04_034 crossref_primary_10_1016_j_neuroimage_2016_12_037 crossref_primary_10_1136_bmjopen_2019_034110 crossref_primary_10_1017_S1041610216000429 crossref_primary_10_3389_fneur_2017_00608 crossref_primary_10_3389_fnimg_2023_1216494 crossref_primary_10_1002_hbm_21250 crossref_primary_10_3390_s100605724 crossref_primary_10_1016_j_nicl_2016_09_019 crossref_primary_10_1089_brain_2013_0160 crossref_primary_10_3233_JIN_170006 crossref_primary_10_1371_journal_pone_0093375 crossref_primary_10_1523_JNEUROSCI_3146_13_2013 crossref_primary_10_1016_j_neuroimage_2014_12_016 crossref_primary_10_1016_j_neuroimage_2012_06_060 crossref_primary_10_1016_j_ijdevneu_2011_10_006 crossref_primary_10_3892_etm_2018_7018 crossref_primary_10_3389_fnhum_2021_739668 crossref_primary_10_1002_hbm_24504 crossref_primary_10_1002_hbm_24389 crossref_primary_10_1002_hbm_23693 crossref_primary_10_1002_hbm_23056 crossref_primary_10_1007_s11682_013_9279_3 crossref_primary_10_1089_brain_2013_0146 crossref_primary_10_1017_S095457941800072X crossref_primary_10_1016_j_parkreldis_2019_02_031 crossref_primary_10_1007_s00115_010_3023_7 crossref_primary_10_1016_j_neuroimage_2011_01_017 crossref_primary_10_1016_j_neubiorev_2016_08_035 crossref_primary_10_1016_j_neuroimage_2010_11_010 crossref_primary_10_1007_s11682_018_9824_1 crossref_primary_10_1007_s00429_021_02226_7 crossref_primary_10_1371_journal_pone_0025701 crossref_primary_10_3389_fnhum_2021_647518 crossref_primary_10_1002_hbm_21268 crossref_primary_10_1007_s10334_010_0228_5 crossref_primary_10_1371_journal_pone_0117029 crossref_primary_10_1002_hbm_23605 crossref_primary_10_1016_j_neuroimage_2015_04_065 crossref_primary_10_3389_fnins_2017_00685 crossref_primary_10_1016_j_schres_2012_11_001 crossref_primary_10_1093_ijnp_pyv092 crossref_primary_10_1016_j_jneumeth_2010_07_028 crossref_primary_10_3389_fneur_2022_847834 crossref_primary_10_1093_schbul_sbr128 crossref_primary_10_1002_gps_4342 crossref_primary_10_3389_fnins_2019_00634 crossref_primary_10_1109_ACCESS_2023_3324183 crossref_primary_10_1016_j_neuroimage_2011_11_023 crossref_primary_10_1016_j_neuroimage_2018_06_081 crossref_primary_10_1007_s10072_015_2072_x crossref_primary_10_1016_j_neubiorev_2024_105640 crossref_primary_10_1002_hbm_23715 crossref_primary_10_1093_brain_awt222 crossref_primary_10_1016_S1474_4422_11_70158_2 crossref_primary_10_1371_journal_pone_0099166 crossref_primary_10_1016_j_neuroimage_2014_04_009 crossref_primary_10_1016_j_pneurobio_2013_12_005 crossref_primary_10_1016_j_neuroimage_2015_09_021 crossref_primary_10_1371_journal_pone_0063691 crossref_primary_10_1097_RMR_0b013e3182699283 crossref_primary_10_1007_s11682_021_00510_y crossref_primary_10_1016_j_nicl_2023_103343 crossref_primary_10_1093_cercor_bhs416 crossref_primary_10_1093_schbul_sbr184 crossref_primary_10_1088_1674_1056_ad09c8 crossref_primary_10_1371_journal_pone_0120572 crossref_primary_10_1371_journal_pone_0039061 crossref_primary_10_1002_hbm_23745 crossref_primary_10_1007_s11682_016_9512_y crossref_primary_10_1016_j_pscychresns_2015_03_001 crossref_primary_10_1002_hbm_21286 crossref_primary_10_1212_WNL_0000000000000592 crossref_primary_10_1016_j_neuroimage_2014_05_022 crossref_primary_10_1016_j_pscychresns_2024_111945 crossref_primary_10_1002_hbm_22929 crossref_primary_10_1016_j_jneumeth_2012_05_007 crossref_primary_10_1371_journal_pone_0096850 crossref_primary_10_1002_hbm_24028 crossref_primary_10_1007_s13679_017_0282_7 crossref_primary_10_1212_WNL_0000000000000599 crossref_primary_10_1002_hbm_22920 crossref_primary_10_1016_j_parkreldis_2011_05_013 |
| Cites_doi | 10.1002/mrm.1910340409 10.1002/hbm.20505 10.1002/hbm.20581 10.1098/rstb.2005.1634 10.1523/JNEUROSCI.4439-05.2006 10.1109/TMI.2003.822821 10.1049/el:20092178 10.1093/cercor/bhn041 10.1016/j.neuroimage.2005.08.035 10.1038/nn1075 10.1093/brain/awf156 10.1016/j.neuroimage.2007.11.001 10.1016/j.neuroimage.2004.10.043 10.1002/hbm.20577 10.1016/j.neuroimage.2003.11.029 10.1016/j.neuroimage.2004.07.051 10.1016/0006-8993(73)90543-X 10.1109/TSMC.1978.4310039 10.1016/j.neuroimage.2008.09.036 10.1152/jn.90466.2008 10.1073/pnas.0308627101 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 10.1152/jn.1989.61.4.780 10.1159/000123779 10.1148/radiology.210.3.r99fe41759 10.1016/j.neuroimage.2008.06.030 10.1002/mrm.20261 10.1016/S1053-8119(03)00411-7 10.1073/pnas.98.2.676 10.1038/nn1616 10.1002/mds.10138 10.1016/j.neuroimage.2006.09.013 10.1146/annurev.ne.09.030186.002041 10.1016/j.neuroimage.2006.02.048 10.1016/S1053-8119(96)80307-7 10.1038/35094500 10.1162/jocn.1997.9.5.648 10.1016/S0006-8993(00)02749-9 10.1038/nrn893 10.1007/s10334-008-0128-0 10.1002/hbm.20113 10.1016/S0361-9230(00)00437-8 10.1093/cercor/bhm207 10.1016/j.neuron.2007.08.023 10.1016/j.neuroimage.2009.05.005 10.1152/jn.90463.2008 10.1006/nimg.1997.0263 10.1073/pnas.0504136102 10.1073/pnas.0601417103 10.1097/WNR.0b013e3282fb8203 10.1523/JNEUROSCI.5295-07.2008 10.1002/hbm.1048 10.1073/pnas.0135058100 10.1523/JNEUROSCI.3874-05.2006 10.1002/hbm.10022 10.1016/j.expneurol.2007.01.027 10.1007/978-1-60327-919-2_14 10.1006/nimg.1997.0315 10.1371/journal.pbio.1000033 10.1016/j.neuroimage.2009.01.010 10.1016/S0306-4522(02)00824-2 |
| ContentType | Journal Article |
| Copyright | Robinson et al; licensee BioMed Central Ltd. 2009 COPYRIGHT 2009 BioMed Central Ltd. Copyright ©2009 Robinson et al; licensee BioMed Central Ltd. 2009 Robinson et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Robinson et al; licensee BioMed Central Ltd. 2009 – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: Copyright ©2009 Robinson et al; licensee BioMed Central Ltd. 2009 Robinson et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1186/1471-2202-10-137 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1471-2202 |
| EndPage | 137 |
| ExternalDocumentID | oai_doaj_org_article_c953d08b48f646d2ac2f711d1bd5d81b PMC2785820 A213269427 19930640 10_1186_1471_2202_10_137 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Italy Austria |
| GeographicLocations_xml | – name: Austria – name: Italy |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 6PF 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ IPY ITC KQ8 LK8 M1P M2M M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM NXXTH 7X8 5PM |
| ID | FETCH-LOGICAL-c608t-2cabe385be8e98b9789de9d44df074085246269d0fe77b904233d2c863b10cea3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272419200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2202 |
| IngestDate | Fri Oct 03 12:26:56 EDT 2025 Tue Nov 04 01:49:57 EST 2025 Wed Oct 01 15:09:45 EDT 2025 Tue Nov 04 18:40:54 EST 2025 Thu Apr 03 07:03:35 EDT 2025 Tue Nov 18 22:07:43 EST 2025 Sat Nov 29 03:43:49 EST 2025 Sat Sep 06 07:27:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Functional Connectivity Supplementary Motor Area Basal Ganglion Independent Component Analysis Functional Connectivity Analysis |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c608t-2cabe385be8e98b9789de9d44df074085246269d0fe77b904233d2c863b10cea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/1471-2202-10-137 |
| PMID | 19930640 |
| PQID | 734162964 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c953d08b48f646d2ac2f711d1bd5d81b pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785820 proquest_miscellaneous_734162964 gale_infotracacademiconefile_A213269427 pubmed_primary_19930640 crossref_citationtrail_10_1186_1471_2202_10_137 crossref_primary_10_1186_1471_2202_10_137 springer_journals_10_1186_1471_2202_10_137 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-11-23 |
| PublicationDateYYYYMMDD | 2009-11-23 |
| PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-23 day: 23 |
| PublicationDecade | 2000 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC neuroscience |
| PublicationTitleAbbrev | BMC Neurosci |
| PublicationTitleAlternate | BMC Neurosci |
| PublicationYear | 2009 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | MD Fox (1141_CR6) 2006; 9 M Greicius (1141_CR5) 2003; 100 DA Gusnard (1141_CR48) 2001; 2 O Hikosaka (1141_CR57) 1989; 3 S Smith (1141_CR27) 2008; 41 MD Fox (1141_CR7) 2007; 56 K Murphy (1141_CR28) 2009; 44 E Zarahn (1141_CR53) 1997; 5 RE Passingham (1141_CR69) 2002; 3 A Di Martino (1141_CR31) 2008; 18 G Shulman (1141_CR15) 1997; 9 LQ Uddin (1141_CR49) 2008; 19 MD Greicius (1141_CR8) 2004; 101 GE Alexander (1141_CR36) 1986; 9 JS Damoiseaux (1141_CR23) 2006; 103 DA Handwerker (1141_CR50) 2004; 21 N Gelman (1141_CR46) 1999; 210 S Robinson (1141_CR67) 2008 N Soldati (1141_CR54) 2009; 45 D Zhang (1141_CR45) 2008; 100 KV Slavin (1141_CR44) 2006; 27 B Biswal (1141_CR1) 1995; 34 A Weissenbacher (1141_CR25) 2009; 47 SA Rombouts (1141_CR40) 2009; 30 SM Smith (1141_CR68) 2004; 23 E Lalo (1141_CR60) 2008; 28 JS Damoiseaux (1141_CR32) 2008; 18 NK Logothetis (1141_CR33) 2009; 45 M Zaitsev (1141_CR66) 2004; 52 S Robinson (1141_CR30) 2008 BB Biswal (1141_CR2) 1997; 10 H Kunzle (1141_CR35) 1978; 15 K Friston (1141_CR52) 2009; 7 CF Beckmann (1141_CR19) 2005; 25 D Williams (1141_CR64) 2002; 125 CW Mohler (1141_CR58) 1973; 61 D Cordes (1141_CR3) 2001; 22 MJ Lowe (1141_CR4) 1998; 7 TE Behrens (1141_CR41) 2003; 6 VD Calhoun (1141_CR20) 2001; 14 CF Beckmann (1141_CR21) 2005; 360 S Achard (1141_CR24) 2006; 26 BB Biswal (1141_CR13) 1996; 3 M Hampson (1141_CR43) 2002; 15 AM Morcom (1141_CR10) 2007; 37 T Stein (1141_CR14) 2000; 21 B Mazoyer (1141_CR17) 2001; 54 C Chang (1141_CR51) 2008; 43 MD Fox (1141_CR11) 2005; 102 BP Kolomiets (1141_CR61) 2003; 117 TW Ridler (1141_CR71) 1978; 8 MJ Jafri (1141_CR12) 2008; 39 M De Luca (1141_CR22) 2006; 29 N Mallet (1141_CR59) 2006; 26 RW Oppenheim AVaS (1141_CR70) 1989 C Dejean (1141_CR62) 2008; 100 ER Kandel (1141_CR34) 2000 CF Beckmann (1141_CR18) 2004; 23 O Hikosaka (1141_CR56) 1989; 61 VH Scholz (1141_CR55) 2000; 879 P Fransson (1141_CR42) 2005; 26 VD Calhoun (1141_CR47) 2003; 20 M Raichle (1141_CR16) 2001; 98 RM Birn (1141_CR29) 2008; 29 N Papinutto (1141_CR65) 2008 RM Birn (1141_CR26) 2006; 31 J Yelnik (1141_CR37) 2002; 17 S Robinson (1141_CR39) 2008; 21 VD Calhoun (1141_CR9) 2008; 29 S Robinson (1141_CR38) 2009 CC Chen (1141_CR63) 2007; 205 |
| References_xml | – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 1141_CR1 publication-title: Magn Reson Med doi: 10.1002/mrm.1910340409 – volume: 30 start-page: 256 issue: 1 year: 2009 ident: 1141_CR40 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20505 – volume: 29 start-page: 828 issue: 7 year: 2008 ident: 1141_CR9 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20581 – volume: 360 start-page: 1001 issue: 1457 year: 2005 ident: 1141_CR21 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 26 start-page: 3875 issue: 14 year: 2006 ident: 1141_CR59 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4439-05.2006 – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 1141_CR18 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.822821 – volume: 45 start-page: 19 issue: 1 year: 2009 ident: 1141_CR54 publication-title: Electronics Letters doi: 10.1049/el:20092178 – volume: 18 start-page: 2735 issue: 12 year: 2008 ident: 1141_CR31 publication-title: Cereb Cortex doi: 10.1093/cercor/bhn041 – volume: 29 start-page: 1359 issue: 4 year: 2006 ident: 1141_CR22 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.035 – volume: 6 start-page: 750 issue: 7 year: 2003 ident: 1141_CR41 publication-title: Nat Neurosci doi: 10.1038/nn1075 – volume: 125 start-page: 1558 issue: Pt 7 year: 2002 ident: 1141_CR64 publication-title: Brain doi: 10.1093/brain/awf156 – volume: 39 start-page: 1666 issue: 4 year: 2008 ident: 1141_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.001 – volume: 25 start-page: 294 issue: 1 year: 2005 ident: 1141_CR19 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.10.043 – volume: 29 start-page: 740 issue: 7 year: 2008 ident: 1141_CR29 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20577 – volume: 21 start-page: 1639 issue: 4 year: 2004 ident: 1141_CR50 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.029 – volume: 23 start-page: S208 issue: Supplement 1 year: 2004 ident: 1141_CR68 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 61 start-page: 385 year: 1973 ident: 1141_CR58 publication-title: Brain Res doi: 10.1016/0006-8993(73)90543-X – volume-title: 25th Congress of the European Society for Magnetic Resonance in Medicine and Biology. Valencia, Spain year: 2008 ident: 1141_CR65 – volume: 8 start-page: 630 year: 1978 ident: 1141_CR71 publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1978.4310039 – volume: 44 start-page: 893 issue: 3 year: 2009 ident: 1141_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 100 start-page: 385 issue: 1 year: 2008 ident: 1141_CR62 publication-title: J Neurophysiol doi: 10.1152/jn.90466.2008 – volume: 101 start-page: 4637 issue: 13 year: 2004 ident: 1141_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308627101 – volume: 10 start-page: 165 issue: 4-5 year: 1997 ident: 1141_CR2 publication-title: NMR Biomed doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7 – volume: 61 start-page: 780 issue: 4 year: 1989 ident: 1141_CR56 publication-title: J Neurophysiol doi: 10.1152/jn.1989.61.4.780 – volume: 15 start-page: 185 issue: 3 year: 1978 ident: 1141_CR35 publication-title: Brain, behavior and evolution doi: 10.1159/000123779 – volume: 210 start-page: 759 issue: 3 year: 1999 ident: 1141_CR46 publication-title: Radiology doi: 10.1148/radiology.210.3.r99fe41759 – volume: 43 start-page: 90 issue: 1 year: 2008 ident: 1141_CR51 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.06.030 – volume: 52 start-page: 1156 issue: 5 year: 2004 ident: 1141_CR66 publication-title: Magn Reson Med doi: 10.1002/mrm.20261 – volume: 22 start-page: 1326 issue: 7 year: 2001 ident: 1141_CR3 publication-title: AJNR Am J Neuroradiol – volume-title: Proceedings of the Sixteenth Annual Meeting of the ISMRM, Toronto year: 2008 ident: 1141_CR30 – volume: 20 start-page: 1661 issue: 3 year: 2003 ident: 1141_CR47 publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00411-7 – volume: 98 start-page: 676 issue: 2 year: 2001 ident: 1141_CR16 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.2.676 – volume: 9 start-page: 23 issue: 1 year: 2006 ident: 1141_CR6 publication-title: Nat Neurosci doi: 10.1038/nn1616 – volume: 17 start-page: S15 issue: Suppl 3 year: 2002 ident: 1141_CR37 publication-title: Mov Disord doi: 10.1002/mds.10138 – volume: 37 start-page: 1073 issue: 4 year: 2007 ident: 1141_CR10 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.013 – volume: 9 start-page: 357 year: 1986 ident: 1141_CR36 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.ne.09.030186.002041 – volume: 31 start-page: 1536 issue: 4 year: 2006 ident: 1141_CR26 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.048 – volume: 3 start-page: S305 year: 1996 ident: 1141_CR13 publication-title: NeuroImage doi: 10.1016/S1053-8119(96)80307-7 – volume: 3 start-page: 257 year: 1989 ident: 1141_CR57 publication-title: Reviews of oculomotor research – volume: 2 start-page: 685 issue: 10 year: 2001 ident: 1141_CR48 publication-title: Nat Rev Neurosci doi: 10.1038/35094500 – volume: 9 start-page: 648 issue: 3 year: 1997 ident: 1141_CR15 publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.1997.9.5.648 – volume: 879 start-page: 204 issue: 1-2 year: 2000 ident: 1141_CR55 publication-title: Brain Res doi: 10.1016/S0006-8993(00)02749-9 – volume: 3 start-page: 606 issue: 8 year: 2002 ident: 1141_CR69 publication-title: Nat Rev Neurosci doi: 10.1038/nrn893 – volume: 21 start-page: 279 issue: 4 year: 2008 ident: 1141_CR39 publication-title: MAGMA doi: 10.1007/s10334-008-0128-0 – volume: 26 start-page: 15 issue: 1 year: 2005 ident: 1141_CR42 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20113 – volume: 54 start-page: 287 issue: 3 year: 2001 ident: 1141_CR17 publication-title: Brain Res Bull doi: 10.1016/S0361-9230(00)00437-8 – volume: 18 start-page: 1856 issue: 8 year: 2008 ident: 1141_CR32 publication-title: Cereb Cortex doi: 10.1093/cercor/bhm207 – volume: 56 start-page: 171 issue: 1 year: 2007 ident: 1141_CR7 publication-title: Neuron doi: 10.1016/j.neuron.2007.08.023 – volume-title: Proceedings of the Sixteenth Annual Meeting of the ISMRM, Toronto year: 2008 ident: 1141_CR67 – volume: 41 start-page: S181 issue: Supplement 1 year: 2008 ident: 1141_CR27 publication-title: NeuroImage – volume: 47 start-page: 1408 issue: 4 year: 2009 ident: 1141_CR25 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.005 – volume: 100 start-page: 1740 issue: 4 year: 2008 ident: 1141_CR45 publication-title: J Neurophysiol doi: 10.1152/jn.90463.2008 – volume: 5 start-page: 179 issue: 3 year: 1997 ident: 1141_CR53 publication-title: NeuroImage doi: 10.1006/nimg.1997.0263 – volume: 102 start-page: 9673 issue: 27 year: 2005 ident: 1141_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504136102 – volume: 103 start-page: 13848 issue: 37 year: 2006 ident: 1141_CR23 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601417103 – volume: 19 start-page: 703 issue: 7 year: 2008 ident: 1141_CR49 publication-title: Neuroreport doi: 10.1097/WNR.0b013e3282fb8203 – volume: 28 start-page: 3008 issue: 12 year: 2008 ident: 1141_CR60 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5295-07.2008 – volume: 14 start-page: 140 issue: 3 year: 2001 ident: 1141_CR20 publication-title: Hum Brain Mapp doi: 10.1002/hbm.1048 – volume-title: Principles of Neural Science year: 2000 ident: 1141_CR34 – volume: 100 start-page: 253 issue: 1 year: 2003 ident: 1141_CR5 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0135058100 – volume: 26 start-page: 63 issue: 1 year: 2006 ident: 1141_CR24 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 27 start-page: 80 issue: 1 year: 2006 ident: 1141_CR44 publication-title: AJNR Am J Neuroradiol – volume: 15 start-page: 247 issue: 4 year: 2002 ident: 1141_CR43 publication-title: Hum Brain Mapp doi: 10.1002/hbm.10022 – volume: 205 start-page: 214 issue: 1 year: 2007 ident: 1141_CR63 publication-title: Experimental neurology doi: 10.1016/j.expneurol.2007.01.027 – volume-title: fMRI Techniques and Protocols year: 2009 ident: 1141_CR38 doi: 10.1007/978-1-60327-919-2_14 – volume: 7 start-page: 119 issue: 2 year: 1998 ident: 1141_CR4 publication-title: NeuroImage doi: 10.1006/nimg.1997.0315 – volume-title: Discrete-Time Signal Processing year: 1989 ident: 1141_CR70 – volume: 7 start-page: e33 issue: 2 year: 2009 ident: 1141_CR52 publication-title: PLoS biology doi: 10.1371/journal.pbio.1000033 – volume: 45 start-page: 1080 issue: 4 year: 2009 ident: 1141_CR33 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.010 – volume: 117 start-page: 931 issue: 4 year: 2003 ident: 1141_CR61 publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00824-2 – volume: 21 start-page: 1397 issue: 8 year: 2000 ident: 1141_CR14 publication-title: AJNR Am J Neuroradiol |
| SSID | ssj0017842 |
| Score | 2.3012447 |
| Snippet | Background
In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely... In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting... Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely... Abstract Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 137 |
| SubjectTerms | Adult Animal Models Basal Ganglia - physiology Biomedical and Life Sciences Biomedicine Brain Mapping Cerebral Cortex - physiology Female Ganglia Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Middle Aged Nerve Net - physiology Neural Pathways - physiology Neurobiology Neurosciences Patient Selection Physiological aspects Research Article Thalamus - physiology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kEfEirs_WXclBEIVmOulHkuO4uOjBxYPC3kJerQ3Ss8xjf79V6czszIp68djpV1Kpx1dUpQrgtbUtdSPnpYg-loiIBYpU1eKldko2XoXKpWYT8uJCXV7qL3utvignbCoPPBFu5nVbh0q5RvVd0wVhvegl54G70AbEXKR9K6m3zlSOH0iV2uZwVL2lEJTDMwUoVTfbjZEG4tT_fM8gpbr9v2vnPfN0O3XyVvw0maXzh_Ag40k2n9ZxDHfi-Ajufc4R88fwac6o-wa-y9LZITZOed9sGBliP4Y7tViynLDO_LD0m2HNFn26iSYOv_3d0lFf-wS-nX_4evaxzO0TSt9Val0Kb12sVeuiilo5dBd1iDo0TegRNyDUEg16MzpUfZTSaUqQqYPwqqsdr3y09VM4GhdjfA4MYSACldq2tgpNr6PtvdKK-zZlyHpVwGxLQ-NzbXFqcfHTJB9DdYaobojqaaSWBbzdvXE11dX4y7PvaVt2z1FF7DSAfGIyn5h_8UkBb2hTDcktTs3bfPwAF0gVsMxcoF_e6Ubg79h23w3KGgVQ7BgXm5WRaPI7ilMX8Gxig5u5I86joGgB8oBBDiZ9eGccfqRy3kKqFnFYAe-2rGSyHln9kSQv_gdJXsL9FBvjKA_1CRytl5t4Cnf99XpYLV8lgfoFyUofCw priority: 102 providerName: Directory of Open Access Journals |
| Title | A resting state network in the motor control circuit of the basal ganglia |
| URI | https://link.springer.com/article/10.1186/1471-2202-10-137 https://www.ncbi.nlm.nih.gov/pubmed/19930640 https://www.proquest.com/docview/734162964 https://pubmed.ncbi.nlm.nih.gov/PMC2785820 https://doaj.org/article/c953d08b48f646d2ac2f711d1bd5d81b |
| Volume | 10 |
| WOSCitedRecordID | wos000272419200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Psychology Journals customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: M2M dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5ylNKX3m3cY9FDobRgYsuHpMdNSWgedjHpwfZJ6HJiKHbw7vb3d6S1t930gPZFYEu2ZXlG88nfaAbglVKFz0aextQZFyMipqhSSYGHQnOWG24THZJNsPmcLxai2gM67oUJ3u4jJRlm6qDWvDxOcRqNKfW5OJI4zdg-HKKx4z5dw8WHz1vmgPGcjnTkb67aMT8hSv-vc_FPxuimo-QNtjQYobN7_9P9-3B3gJxkupGRB7Dn2odwezaQ6o_gfEp8gg68GQnbi0i7cQ0nTUsQHhL8mF1PBp92YprerJsV6epQiVYQ732p_G5g9Rg-nZ1-fPc-HjIsxKZM-CqmRmmX8UI77gTXuKIU1gmb57ZGaIFojOa44BE2qR1jWngfmsxSw8tMp4lxKnsCB23XuiMgiBQRy2SqUInNa-FUbbjgqSmCE63hERyPAy_NEH7cZ8H4KsMyhJfSj5D0IxTOZCyCN9srrjehN_7S9sR_y207HzQ7nOj6SznooDSiyGzCdc7rMi8tVYbWLE1tqm1hEb5H8NpLgvSqjV0zatihgC_og2TJKcWleylyio8jo7BIVEfPsajWdeulZIgKSk9lR_B0Izs_-o5Q0POmEbAdqdrp9G5N21yFiN-U8QKhWgRvR9mSw1Sz_OOQPPuXxs_hTqDJUpTR7AUcrPq1ewm3zLdVs-wnsM8WLJR8Aocnp_PqYhJ-XmA5ozNfsgprqvNZ9WUS9PE7qs8myw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VgoAX7iOcfkBCIEWNj8T244KoWtGuEBTUN8uxnRIJJSi7y-9n7E0WthwSPMaxHcee8XzWN54BeGZtGbOR05wFF3JExAxVqijxUddKCqd8UadkE3I-V6en-t0OsOkuTPJ2nyjJtFMntVbVHsVtNGcs5uIocsrlBbgo0F7FePnvP3zaMAdSCTbRkb9ptWV-UpT-X_fin4zReUfJc2xpMkL71_9n-Dfg2gg5yWwtIzdhJ3S34PLxSKrfhsMZiQk6sDOSrheRbu0aTtqOIDwkuJj9QEafduLawa3aJemb9BKtIPZ9ZuNtYHsHPu6_OXl9kI8ZFnJXFWqZM2frwFVZBxW0qvFEqX3QXgjfILRANMYEHni0L5ogZa2jDw33zKmK17RwwfK7sNv1XbgPBJEiYhluS1t40ehgG6e0oq5MTrROZbA3TbxxY_jxmAXji0nHEFWZOEMmzlAq4TKDF5sWX9ehN_5S91Vcy029GDQ7FfTDmRl10Dhdcl-oWqimEpVn1rFGUupp7UuP8D2D51ESTFRtHJqz4w0F_MEYJMvMGB7dKy0Yfo5MwmJQHSPHYrvQrxZGIiqoIpWdwb217PwYO0LByJtmILekamvQ22-69nOK-M2kKhGqZfByki0zbjWLP07Jg3-p_BSuHJwcH5mjw_nbh3A1UWYU5ZU_gt3lsAqP4ZL7tmwXw5Okbd8B7WYhvQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BQRUv3KVpOfyAhECKNnGc2H5cjhUVsKrEob5Zju20kaqkymb7-xk7ycKWQ0I8JrEdx56xv8k3ngF4rnXus5GnMXXGxYiIKapUkuOlLAVnRtikDMkm-HIpTk7k8fjDbTV5u0-U5HCmwUdpavrZha0GFRfFLMUlNabU5-VI4jTj1-EG82703lr__G3DInDB6ERN_qbW1lYUIvb_ui7_tDFddZq8wpyGDWlx538_5S7cHqEomQ-ycw-uueY-7H4ayfYHcDQnPnEHNkzCsSPSDC7jpG4IwkaCk9x2ZPR1J6buzLruSVuFh7g7Ytun2p8S1g_h6-Ldlzfv4zHzQmyKRPQxNbp0mchLJ5wUJVqa0jppGbMVQg4caMrQEJI2qRznpfS-NZmlRhRZmSbG6WwPdpq2cftAEEEixsl0rhPLKul0ZYQUqcmDc60REcymSVBmDEvus2Ocq2CeiEL5EVJ-hMKdjEfwclPjYgjJ8Zeyr_28bsr5YNrhRtudqlE3lZF5ZhNRMlEVrLBUG1rxNLVpaXOLsD6CF14qlFd57JrR48kF_EAfPEvNKZr0hWQUX0cmwVGopp570Y1r1yvFES0UnuKO4NEgRz_6jhDR86kR8C0J2-r09pOmPguRwCkXOUK4CF5NcqbGJWj1xyE5-JfCz2D3-O1CfTxafjiEW4FJS1Fcs8ew03dr9wRumsu-XnVPg-J9ByREKqE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+resting+state+network+in+the+motor+control+circuit+of+the+basal+ganglia&rft.jtitle=BMC+neuroscience&rft.au=Robinson%2C+Simon&rft.au=Basso%2C+Gianpaolo&rft.au=Soldati%2C+Nicola&rft.au=Sailer%2C+Uta&rft.date=2009-11-23&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2202-10-137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1471_2202_10_137 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon |