A resting state network in the motor control circuit of the basal ganglia

Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC neuroscience Jg. 10; H. 1; S. 137
Hauptverfasser: Robinson, Simon, Basso, Gianpaolo, Soldati, Nicola, Sailer, Uta, Jovicich, Jorge, Bruzzone, Lorenzo, Kryspin-Exner, Ilse, Bauer, Herbert, Moser, Ewald
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 23.11.2009
BioMed Central Ltd
BMC
Schlagworte:
ISSN:1471-2202, 1471-2202
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 ± 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.
AbstractList Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 [+ -] 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.
Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 ± 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.
Abstract Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. Results An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 ± 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Conclusion Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.
In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond.BACKGROUNDIn the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond.An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 +/- 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates.RESULTSAn RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 +/- 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates.Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.CONCLUSIONAlthough the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.
In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting state networks (RSNs) showing this behaviour have been documented to date. Recent studies have reported the existence of an RSN in the basal ganglia - albeit inconsistently and without the means to interpret its function. Using two large study groups with different resting state conditions and MR protocols, the reproducibility of the network across subjects, behavioural conditions and acquisition parameters is assessed. Independent Component Analysis (ICA), combined with novel analyses of temporal features, is applied to establish the basis of signal fluctuations in the network and its relation to other RSNs. Reference to prior probabilistic diffusion tractography work is used to identify the basal ganglia circuit to which these fluctuations correspond. An RSN is identified in the basal ganglia and thalamus, comprising the pallidum, putamen, subthalamic nucleus and substantia nigra, with a projection also to the supplementary motor area. Participating nuclei and thalamo-cortical connection probabilities allow this network to be identified as the motor control circuit of the basal ganglia. The network was reproducibly identified across subjects, behavioural conditions (fixation, eyes closed), field strength and echo-planar imaging parameters. It shows a frequency peak at 0.025 +/- 0.007 Hz and is most similar in spectral composition to the Default Mode (DM), a network of regions that is more active at rest than during task processing. Frequency features allow the network to be classified as an RSN rather than a physiological artefact. Fluctuations in this RSN are correlated with those in the task-positive fronto-parietal network and anticorrelated with those in the DM, whose hemodynamic response it anticipates. Although the basal ganglia RSN has not been reported in most ICA-based studies using a similar methodology, we demonstrate that it is reproducible across subjects, common resting state conditions and imaging parameters, and show that it corresponds with the motor control circuit. This characterisation of the basal ganglia network opens a potential means to investigate the motor-related neuropathologies in which the basal ganglia are involved.
ArticleNumber 137
Audience Academic
Author Basso, Gianpaolo
Robinson, Simon
Sailer, Uta
Soldati, Nicola
Kryspin-Exner, Ilse
Moser, Ewald
Bauer, Herbert
Jovicich, Jorge
Bruzzone, Lorenzo
AuthorAffiliation 3 Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
2 Telecommunication Engineering, University of Trento, Trento, Italy
1 Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
5 Center for Biomedical Engineering and Physics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
4 MR Center of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
AuthorAffiliation_xml – name: 4 MR Center of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
– name: 3 Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
– name: 2 Telecommunication Engineering, University of Trento, Trento, Italy
– name: 5 Center for Biomedical Engineering and Physics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
– name: 1 Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
Author_xml – sequence: 1
  givenname: Simon
  surname: Robinson
  fullname: Robinson, Simon
  email: simon.robinson@meduniwien.ac.at
  organization: Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento, MR Center of Excellence, Medical University of Vienna
– sequence: 2
  givenname: Gianpaolo
  surname: Basso
  fullname: Basso, Gianpaolo
  organization: Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento
– sequence: 3
  givenname: Nicola
  surname: Soldati
  fullname: Soldati, Nicola
  organization: Telecommunication Engineering, University of Trento
– sequence: 4
  givenname: Uta
  surname: Sailer
  fullname: Sailer, Uta
  organization: Faculty of Psychology, University of Vienna
– sequence: 5
  givenname: Jorge
  surname: Jovicich
  fullname: Jovicich, Jorge
  organization: Functional Neuroimaging Laboratory, Center for Mind/Brain Sciences, University of Trento
– sequence: 6
  givenname: Lorenzo
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  organization: Telecommunication Engineering, University of Trento
– sequence: 7
  givenname: Ilse
  surname: Kryspin-Exner
  fullname: Kryspin-Exner, Ilse
  organization: Faculty of Psychology, University of Vienna
– sequence: 8
  givenname: Herbert
  surname: Bauer
  fullname: Bauer, Herbert
  organization: Faculty of Psychology, University of Vienna
– sequence: 9
  givenname: Ewald
  surname: Moser
  fullname: Moser, Ewald
  organization: MR Center of Excellence, Medical University of Vienna, Center for Biomedical Engineering and Physics, Medical University of Vienna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19930640$$D View this record in MEDLINE/PubMed
BookMark eNp1kslr3DAUxk1JaZb23lPxrScn2izJl8IQugwEemnPQsuzo6ktpZLd0P--mnEyJIWgg8TT9_1423l1EmKAqnqP0SXGkl9hJnBDCCINRg2m4lV1dgydPHmfVuc57xDCQjLypjrFXUcRZ-is2m7qBHn2YajzrGeoA8z3Mf2qfajnW6inOMdU2xjmFMfa-mQXP9exP3wanfVYDzoMo9dvq9e9HjO8e7gvqp9fPv-4_tbcfP-6vd7cNJYjOTfEagNUtgYkdNJ0QnYOOseY65FgSLaEccI7h3oQwnSIEUodsZJTg5EFTS-q7cp1Ue_UXfKTTn9V1F4dAjENSqfZ2xGU7VrqkDRM9pxxR7QlvcDYYeNaJ7EprE8r624xEzgLpUw9PoM-_wn-Vg3xjyJCtpKgAvj4AEjx91IaqSafLYyjDhCXrARlmJOOs6K8XJWDLpn50McCtOU4mHzpL_S-xDcE01I9I6IYPjzN7ZjU4-yKgK8Cm2LOCXplfRmh389K-1FhpPZLovZboPZbcIjQPRn9ZzyyX7bg1ZKLNAyQ1C4uKZQ5v-z5B_HQzC8
CitedBy_id crossref_primary_10_1007_s10548_012_0272_8
crossref_primary_10_1002_hbm_24064
crossref_primary_10_1002_hbm_23256
crossref_primary_10_1038_s41598_020_61522_0
crossref_primary_10_1038_s41598_021_91853_5
crossref_primary_10_1162_jocn_a_00077
crossref_primary_10_1007_s10334_011_0290_7
crossref_primary_10_1002_uog_11119
crossref_primary_10_1016_j_neuroimage_2010_03_062
crossref_primary_10_1016_j_neuroimage_2016_10_011
crossref_primary_10_1089_brain_2017_0538
crossref_primary_10_1002_jmri_25571
crossref_primary_10_1016_j_neuroimage_2011_10_018
crossref_primary_10_1007_s00429_014_0907_5
crossref_primary_10_1016_j_neuroimage_2014_04_019
crossref_primary_10_1007_s10620_019_05766_5
crossref_primary_10_1016_j_nicl_2019_101970
crossref_primary_10_1186_s12888_018_1631_0
crossref_primary_10_3389_fnins_2020_00201
crossref_primary_10_1093_cercor_bhr062
crossref_primary_10_1002_hbm_22827
crossref_primary_10_1089_brain_2015_0411
crossref_primary_10_1371_journal_pone_0106609
crossref_primary_10_1007_s10334_010_0231_x
crossref_primary_10_1016_j_bpsc_2016_07_001
crossref_primary_10_1080_10618600_2018_1530117
crossref_primary_10_3389_fnins_2017_00656
crossref_primary_10_1016_j_neucom_2025_129585
crossref_primary_10_1016_j_neuroimage_2013_04_034
crossref_primary_10_1016_j_neuroimage_2016_12_037
crossref_primary_10_1136_bmjopen_2019_034110
crossref_primary_10_1017_S1041610216000429
crossref_primary_10_3389_fneur_2017_00608
crossref_primary_10_3389_fnimg_2023_1216494
crossref_primary_10_1002_hbm_21250
crossref_primary_10_3390_s100605724
crossref_primary_10_1016_j_nicl_2016_09_019
crossref_primary_10_1089_brain_2013_0160
crossref_primary_10_3233_JIN_170006
crossref_primary_10_1371_journal_pone_0093375
crossref_primary_10_1523_JNEUROSCI_3146_13_2013
crossref_primary_10_1016_j_neuroimage_2014_12_016
crossref_primary_10_1016_j_neuroimage_2012_06_060
crossref_primary_10_1016_j_ijdevneu_2011_10_006
crossref_primary_10_3892_etm_2018_7018
crossref_primary_10_3389_fnhum_2021_739668
crossref_primary_10_1002_hbm_24504
crossref_primary_10_1002_hbm_24389
crossref_primary_10_1002_hbm_23693
crossref_primary_10_1002_hbm_23056
crossref_primary_10_1007_s11682_013_9279_3
crossref_primary_10_1089_brain_2013_0146
crossref_primary_10_1017_S095457941800072X
crossref_primary_10_1016_j_parkreldis_2019_02_031
crossref_primary_10_1007_s00115_010_3023_7
crossref_primary_10_1016_j_neuroimage_2011_01_017
crossref_primary_10_1016_j_neubiorev_2016_08_035
crossref_primary_10_1016_j_neuroimage_2010_11_010
crossref_primary_10_1007_s11682_018_9824_1
crossref_primary_10_1007_s00429_021_02226_7
crossref_primary_10_1371_journal_pone_0025701
crossref_primary_10_3389_fnhum_2021_647518
crossref_primary_10_1002_hbm_21268
crossref_primary_10_1007_s10334_010_0228_5
crossref_primary_10_1371_journal_pone_0117029
crossref_primary_10_1002_hbm_23605
crossref_primary_10_1016_j_neuroimage_2015_04_065
crossref_primary_10_3389_fnins_2017_00685
crossref_primary_10_1016_j_schres_2012_11_001
crossref_primary_10_1093_ijnp_pyv092
crossref_primary_10_1016_j_jneumeth_2010_07_028
crossref_primary_10_3389_fneur_2022_847834
crossref_primary_10_1093_schbul_sbr128
crossref_primary_10_1002_gps_4342
crossref_primary_10_3389_fnins_2019_00634
crossref_primary_10_1109_ACCESS_2023_3324183
crossref_primary_10_1016_j_neuroimage_2011_11_023
crossref_primary_10_1016_j_neuroimage_2018_06_081
crossref_primary_10_1007_s10072_015_2072_x
crossref_primary_10_1016_j_neubiorev_2024_105640
crossref_primary_10_1002_hbm_23715
crossref_primary_10_1093_brain_awt222
crossref_primary_10_1016_S1474_4422_11_70158_2
crossref_primary_10_1371_journal_pone_0099166
crossref_primary_10_1016_j_neuroimage_2014_04_009
crossref_primary_10_1016_j_pneurobio_2013_12_005
crossref_primary_10_1016_j_neuroimage_2015_09_021
crossref_primary_10_1371_journal_pone_0063691
crossref_primary_10_1097_RMR_0b013e3182699283
crossref_primary_10_1007_s11682_021_00510_y
crossref_primary_10_1016_j_nicl_2023_103343
crossref_primary_10_1093_cercor_bhs416
crossref_primary_10_1093_schbul_sbr184
crossref_primary_10_1088_1674_1056_ad09c8
crossref_primary_10_1371_journal_pone_0120572
crossref_primary_10_1371_journal_pone_0039061
crossref_primary_10_1002_hbm_23745
crossref_primary_10_1007_s11682_016_9512_y
crossref_primary_10_1016_j_pscychresns_2015_03_001
crossref_primary_10_1002_hbm_21286
crossref_primary_10_1212_WNL_0000000000000592
crossref_primary_10_1016_j_neuroimage_2014_05_022
crossref_primary_10_1016_j_pscychresns_2024_111945
crossref_primary_10_1002_hbm_22929
crossref_primary_10_1016_j_jneumeth_2012_05_007
crossref_primary_10_1371_journal_pone_0096850
crossref_primary_10_1002_hbm_24028
crossref_primary_10_1007_s13679_017_0282_7
crossref_primary_10_1212_WNL_0000000000000599
crossref_primary_10_1002_hbm_22920
crossref_primary_10_1016_j_parkreldis_2011_05_013
Cites_doi 10.1002/mrm.1910340409
10.1002/hbm.20505
10.1002/hbm.20581
10.1098/rstb.2005.1634
10.1523/JNEUROSCI.4439-05.2006
10.1109/TMI.2003.822821
10.1049/el:20092178
10.1093/cercor/bhn041
10.1016/j.neuroimage.2005.08.035
10.1038/nn1075
10.1093/brain/awf156
10.1016/j.neuroimage.2007.11.001
10.1016/j.neuroimage.2004.10.043
10.1002/hbm.20577
10.1016/j.neuroimage.2003.11.029
10.1016/j.neuroimage.2004.07.051
10.1016/0006-8993(73)90543-X
10.1109/TSMC.1978.4310039
10.1016/j.neuroimage.2008.09.036
10.1152/jn.90466.2008
10.1073/pnas.0308627101
10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
10.1152/jn.1989.61.4.780
10.1159/000123779
10.1148/radiology.210.3.r99fe41759
10.1016/j.neuroimage.2008.06.030
10.1002/mrm.20261
10.1016/S1053-8119(03)00411-7
10.1073/pnas.98.2.676
10.1038/nn1616
10.1002/mds.10138
10.1016/j.neuroimage.2006.09.013
10.1146/annurev.ne.09.030186.002041
10.1016/j.neuroimage.2006.02.048
10.1016/S1053-8119(96)80307-7
10.1038/35094500
10.1162/jocn.1997.9.5.648
10.1016/S0006-8993(00)02749-9
10.1038/nrn893
10.1007/s10334-008-0128-0
10.1002/hbm.20113
10.1016/S0361-9230(00)00437-8
10.1093/cercor/bhm207
10.1016/j.neuron.2007.08.023
10.1016/j.neuroimage.2009.05.005
10.1152/jn.90463.2008
10.1006/nimg.1997.0263
10.1073/pnas.0504136102
10.1073/pnas.0601417103
10.1097/WNR.0b013e3282fb8203
10.1523/JNEUROSCI.5295-07.2008
10.1002/hbm.1048
10.1073/pnas.0135058100
10.1523/JNEUROSCI.3874-05.2006
10.1002/hbm.10022
10.1016/j.expneurol.2007.01.027
10.1007/978-1-60327-919-2_14
10.1006/nimg.1997.0315
10.1371/journal.pbio.1000033
10.1016/j.neuroimage.2009.01.010
10.1016/S0306-4522(02)00824-2
ContentType Journal Article
Copyright Robinson et al; licensee BioMed Central Ltd. 2009
COPYRIGHT 2009 BioMed Central Ltd.
Copyright ©2009 Robinson et al; licensee BioMed Central Ltd. 2009 Robinson et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Robinson et al; licensee BioMed Central Ltd. 2009
– notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Copyright ©2009 Robinson et al; licensee BioMed Central Ltd. 2009 Robinson et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/1471-2202-10-137
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2202
EndPage 137
ExternalDocumentID oai_doaj_org_article_c953d08b48f646d2ac2f711d1bd5d81b
PMC2785820
A213269427
19930640
10_1186_1471_2202_10_137
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Italy
Austria
GeographicLocations_xml – name: Austria
– name: Italy
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
6PF
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
LK8
M1P
M2M
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
NXXTH
7X8
5PM
ID FETCH-LOGICAL-c608t-2cabe385be8e98b9789de9d44df074085246269d0fe77b904233d2c863b10cea3
IEDL.DBID DOA
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272419200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2202
IngestDate Fri Oct 03 12:26:56 EDT 2025
Tue Nov 04 01:49:57 EST 2025
Wed Oct 01 15:09:45 EDT 2025
Tue Nov 04 18:40:54 EST 2025
Thu Apr 03 07:03:35 EDT 2025
Tue Nov 18 22:07:43 EST 2025
Sat Nov 29 03:43:49 EST 2025
Sat Sep 06 07:27:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Functional Connectivity
Supplementary Motor Area
Basal Ganglion
Independent Component Analysis
Functional Connectivity Analysis
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-2cabe385be8e98b9789de9d44df074085246269d0fe77b904233d2c863b10cea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/c953d08b48f646d2ac2f711d1bd5d81b
PMID 19930640
PQID 734162964
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c953d08b48f646d2ac2f711d1bd5d81b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785820
proquest_miscellaneous_734162964
gale_infotracacademiconefile_A213269427
pubmed_primary_19930640
crossref_citationtrail_10_1186_1471_2202_10_137
crossref_primary_10_1186_1471_2202_10_137
springer_journals_10_1186_1471_2202_10_137
PublicationCentury 2000
PublicationDate 2009-11-23
PublicationDateYYYYMMDD 2009-11-23
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-23
  day: 23
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC neuroscience
PublicationTitleAbbrev BMC Neurosci
PublicationTitleAlternate BMC Neurosci
PublicationYear 2009
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References MD Fox (1141_CR6) 2006; 9
M Greicius (1141_CR5) 2003; 100
DA Gusnard (1141_CR48) 2001; 2
O Hikosaka (1141_CR57) 1989; 3
S Smith (1141_CR27) 2008; 41
MD Fox (1141_CR7) 2007; 56
K Murphy (1141_CR28) 2009; 44
E Zarahn (1141_CR53) 1997; 5
RE Passingham (1141_CR69) 2002; 3
A Di Martino (1141_CR31) 2008; 18
G Shulman (1141_CR15) 1997; 9
LQ Uddin (1141_CR49) 2008; 19
MD Greicius (1141_CR8) 2004; 101
GE Alexander (1141_CR36) 1986; 9
JS Damoiseaux (1141_CR23) 2006; 103
DA Handwerker (1141_CR50) 2004; 21
N Gelman (1141_CR46) 1999; 210
S Robinson (1141_CR67) 2008
N Soldati (1141_CR54) 2009; 45
D Zhang (1141_CR45) 2008; 100
KV Slavin (1141_CR44) 2006; 27
B Biswal (1141_CR1) 1995; 34
A Weissenbacher (1141_CR25) 2009; 47
SA Rombouts (1141_CR40) 2009; 30
SM Smith (1141_CR68) 2004; 23
E Lalo (1141_CR60) 2008; 28
JS Damoiseaux (1141_CR32) 2008; 18
NK Logothetis (1141_CR33) 2009; 45
M Zaitsev (1141_CR66) 2004; 52
S Robinson (1141_CR30) 2008
BB Biswal (1141_CR2) 1997; 10
H Kunzle (1141_CR35) 1978; 15
K Friston (1141_CR52) 2009; 7
CF Beckmann (1141_CR19) 2005; 25
D Williams (1141_CR64) 2002; 125
CW Mohler (1141_CR58) 1973; 61
D Cordes (1141_CR3) 2001; 22
MJ Lowe (1141_CR4) 1998; 7
TE Behrens (1141_CR41) 2003; 6
VD Calhoun (1141_CR20) 2001; 14
CF Beckmann (1141_CR21) 2005; 360
S Achard (1141_CR24) 2006; 26
BB Biswal (1141_CR13) 1996; 3
M Hampson (1141_CR43) 2002; 15
AM Morcom (1141_CR10) 2007; 37
T Stein (1141_CR14) 2000; 21
B Mazoyer (1141_CR17) 2001; 54
C Chang (1141_CR51) 2008; 43
MD Fox (1141_CR11) 2005; 102
BP Kolomiets (1141_CR61) 2003; 117
TW Ridler (1141_CR71) 1978; 8
MJ Jafri (1141_CR12) 2008; 39
M De Luca (1141_CR22) 2006; 29
N Mallet (1141_CR59) 2006; 26
RW Oppenheim AVaS (1141_CR70) 1989
C Dejean (1141_CR62) 2008; 100
ER Kandel (1141_CR34) 2000
CF Beckmann (1141_CR18) 2004; 23
O Hikosaka (1141_CR56) 1989; 61
VH Scholz (1141_CR55) 2000; 879
P Fransson (1141_CR42) 2005; 26
VD Calhoun (1141_CR47) 2003; 20
M Raichle (1141_CR16) 2001; 98
RM Birn (1141_CR29) 2008; 29
N Papinutto (1141_CR65) 2008
RM Birn (1141_CR26) 2006; 31
J Yelnik (1141_CR37) 2002; 17
S Robinson (1141_CR39) 2008; 21
VD Calhoun (1141_CR9) 2008; 29
S Robinson (1141_CR38) 2009
CC Chen (1141_CR63) 2007; 205
References_xml – volume: 34
  start-page: 537
  issue: 4
  year: 1995
  ident: 1141_CR1
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340409
– volume: 30
  start-page: 256
  issue: 1
  year: 2009
  ident: 1141_CR40
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20505
– volume: 29
  start-page: 828
  issue: 7
  year: 2008
  ident: 1141_CR9
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20581
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  ident: 1141_CR21
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1634
– volume: 26
  start-page: 3875
  issue: 14
  year: 2006
  ident: 1141_CR59
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4439-05.2006
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: 1141_CR18
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 45
  start-page: 19
  issue: 1
  year: 2009
  ident: 1141_CR54
  publication-title: Electronics Letters
  doi: 10.1049/el:20092178
– volume: 18
  start-page: 2735
  issue: 12
  year: 2008
  ident: 1141_CR31
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn041
– volume: 29
  start-page: 1359
  issue: 4
  year: 2006
  ident: 1141_CR22
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.035
– volume: 6
  start-page: 750
  issue: 7
  year: 2003
  ident: 1141_CR41
  publication-title: Nat Neurosci
  doi: 10.1038/nn1075
– volume: 125
  start-page: 1558
  issue: Pt 7
  year: 2002
  ident: 1141_CR64
  publication-title: Brain
  doi: 10.1093/brain/awf156
– volume: 39
  start-page: 1666
  issue: 4
  year: 2008
  ident: 1141_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.001
– volume: 25
  start-page: 294
  issue: 1
  year: 2005
  ident: 1141_CR19
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.10.043
– volume: 29
  start-page: 740
  issue: 7
  year: 2008
  ident: 1141_CR29
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20577
– volume: 21
  start-page: 1639
  issue: 4
  year: 2004
  ident: 1141_CR50
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.029
– volume: 23
  start-page: S208
  issue: Supplement 1
  year: 2004
  ident: 1141_CR68
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 61
  start-page: 385
  year: 1973
  ident: 1141_CR58
  publication-title: Brain Res
  doi: 10.1016/0006-8993(73)90543-X
– volume-title: 25th Congress of the European Society for Magnetic Resonance in Medicine and Biology. Valencia, Spain
  year: 2008
  ident: 1141_CR65
– volume: 8
  start-page: 630
  year: 1978
  ident: 1141_CR71
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1978.4310039
– volume: 44
  start-page: 893
  issue: 3
  year: 2009
  ident: 1141_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 100
  start-page: 385
  issue: 1
  year: 2008
  ident: 1141_CR62
  publication-title: J Neurophysiol
  doi: 10.1152/jn.90466.2008
– volume: 101
  start-page: 4637
  issue: 13
  year: 2004
  ident: 1141_CR8
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308627101
– volume: 10
  start-page: 165
  issue: 4-5
  year: 1997
  ident: 1141_CR2
  publication-title: NMR Biomed
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO;2-7
– volume: 61
  start-page: 780
  issue: 4
  year: 1989
  ident: 1141_CR56
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1989.61.4.780
– volume: 15
  start-page: 185
  issue: 3
  year: 1978
  ident: 1141_CR35
  publication-title: Brain, behavior and evolution
  doi: 10.1159/000123779
– volume: 210
  start-page: 759
  issue: 3
  year: 1999
  ident: 1141_CR46
  publication-title: Radiology
  doi: 10.1148/radiology.210.3.r99fe41759
– volume: 43
  start-page: 90
  issue: 1
  year: 2008
  ident: 1141_CR51
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.06.030
– volume: 52
  start-page: 1156
  issue: 5
  year: 2004
  ident: 1141_CR66
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20261
– volume: 22
  start-page: 1326
  issue: 7
  year: 2001
  ident: 1141_CR3
  publication-title: AJNR Am J Neuroradiol
– volume-title: Proceedings of the Sixteenth Annual Meeting of the ISMRM, Toronto
  year: 2008
  ident: 1141_CR30
– volume: 20
  start-page: 1661
  issue: 3
  year: 2003
  ident: 1141_CR47
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00411-7
– volume: 98
  start-page: 676
  issue: 2
  year: 2001
  ident: 1141_CR16
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.98.2.676
– volume: 9
  start-page: 23
  issue: 1
  year: 2006
  ident: 1141_CR6
  publication-title: Nat Neurosci
  doi: 10.1038/nn1616
– volume: 17
  start-page: S15
  issue: Suppl 3
  year: 2002
  ident: 1141_CR37
  publication-title: Mov Disord
  doi: 10.1002/mds.10138
– volume: 37
  start-page: 1073
  issue: 4
  year: 2007
  ident: 1141_CR10
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.013
– volume: 9
  start-page: 357
  year: 1986
  ident: 1141_CR36
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.ne.09.030186.002041
– volume: 31
  start-page: 1536
  issue: 4
  year: 2006
  ident: 1141_CR26
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.02.048
– volume: 3
  start-page: S305
  year: 1996
  ident: 1141_CR13
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(96)80307-7
– volume: 3
  start-page: 257
  year: 1989
  ident: 1141_CR57
  publication-title: Reviews of oculomotor research
– volume: 2
  start-page: 685
  issue: 10
  year: 2001
  ident: 1141_CR48
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35094500
– volume: 9
  start-page: 648
  issue: 3
  year: 1997
  ident: 1141_CR15
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.1997.9.5.648
– volume: 879
  start-page: 204
  issue: 1-2
  year: 2000
  ident: 1141_CR55
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(00)02749-9
– volume: 3
  start-page: 606
  issue: 8
  year: 2002
  ident: 1141_CR69
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn893
– volume: 21
  start-page: 279
  issue: 4
  year: 2008
  ident: 1141_CR39
  publication-title: MAGMA
  doi: 10.1007/s10334-008-0128-0
– volume: 26
  start-page: 15
  issue: 1
  year: 2005
  ident: 1141_CR42
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20113
– volume: 54
  start-page: 287
  issue: 3
  year: 2001
  ident: 1141_CR17
  publication-title: Brain Res Bull
  doi: 10.1016/S0361-9230(00)00437-8
– volume: 18
  start-page: 1856
  issue: 8
  year: 2008
  ident: 1141_CR32
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhm207
– volume: 56
  start-page: 171
  issue: 1
  year: 2007
  ident: 1141_CR7
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.08.023
– volume-title: Proceedings of the Sixteenth Annual Meeting of the ISMRM, Toronto
  year: 2008
  ident: 1141_CR67
– volume: 41
  start-page: S181
  issue: Supplement 1
  year: 2008
  ident: 1141_CR27
  publication-title: NeuroImage
– volume: 47
  start-page: 1408
  issue: 4
  year: 2009
  ident: 1141_CR25
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.005
– volume: 100
  start-page: 1740
  issue: 4
  year: 2008
  ident: 1141_CR45
  publication-title: J Neurophysiol
  doi: 10.1152/jn.90463.2008
– volume: 5
  start-page: 179
  issue: 3
  year: 1997
  ident: 1141_CR53
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0263
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: 1141_CR11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504136102
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  ident: 1141_CR23
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601417103
– volume: 19
  start-page: 703
  issue: 7
  year: 2008
  ident: 1141_CR49
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e3282fb8203
– volume: 28
  start-page: 3008
  issue: 12
  year: 2008
  ident: 1141_CR60
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5295-07.2008
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: 1141_CR20
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1048
– volume-title: Principles of Neural Science
  year: 2000
  ident: 1141_CR34
– volume: 100
  start-page: 253
  issue: 1
  year: 2003
  ident: 1141_CR5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0135058100
– volume: 26
  start-page: 63
  issue: 1
  year: 2006
  ident: 1141_CR24
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 27
  start-page: 80
  issue: 1
  year: 2006
  ident: 1141_CR44
  publication-title: AJNR Am J Neuroradiol
– volume: 15
  start-page: 247
  issue: 4
  year: 2002
  ident: 1141_CR43
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10022
– volume: 205
  start-page: 214
  issue: 1
  year: 2007
  ident: 1141_CR63
  publication-title: Experimental neurology
  doi: 10.1016/j.expneurol.2007.01.027
– volume-title: fMRI Techniques and Protocols
  year: 2009
  ident: 1141_CR38
  doi: 10.1007/978-1-60327-919-2_14
– volume: 7
  start-page: 119
  issue: 2
  year: 1998
  ident: 1141_CR4
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0315
– volume-title: Discrete-Time Signal Processing
  year: 1989
  ident: 1141_CR70
– volume: 7
  start-page: e33
  issue: 2
  year: 2009
  ident: 1141_CR52
  publication-title: PLoS biology
  doi: 10.1371/journal.pbio.1000033
– volume: 45
  start-page: 1080
  issue: 4
  year: 2009
  ident: 1141_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.010
– volume: 117
  start-page: 931
  issue: 4
  year: 2003
  ident: 1141_CR61
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00824-2
– volume: 21
  start-page: 1397
  issue: 8
  year: 2000
  ident: 1141_CR14
  publication-title: AJNR Am J Neuroradiol
SSID ssj0017842
Score 2.301338
Snippet Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely...
In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely independent resting...
Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely...
Abstract Background In the absence of overt stimuli, the brain shows correlated fluctuations in functionally related brain regions. Approximately ten largely...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Adult
Animal Models
Basal Ganglia - physiology
Biomedical and Life Sciences
Biomedicine
Brain Mapping
Cerebral Cortex - physiology
Female
Ganglia
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Middle Aged
Nerve Net - physiology
Neural Pathways - physiology
Neurobiology
Neurosciences
Patient Selection
Physiological aspects
Research Article
Thalamus - physiology
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9QwDLaWBSFeuI9yKQ9ICKRq26TN8TggViDBCnGs9i3KuVsJtagzw-_HybQDsxwSvDZHU8eO7X6ODfBEejzx6jqWraGsbLxlpVHMlFV0rXCWWp7_dxy_FUdH8uREvd8DOt-FydHuMySZT-os1pIf1DhpSWmqxVGVNRMX4CIqO5nKNXz4eLxFDoRs6AxH_mbUjvrJWfp_PYt_UkbnAyXPoaVZCR1e-5_lX4erk8lJFhseuQF7ob8Jl99NoPoteLMgqUAHTkby9SLSb0LDSdcTNA8JbuYwkimmnbhudOtuRYaYG1EL4tynJt0GNrfh8-GrTy9fl1OFhdLxSq5K6owNTLY2yKCkRY9S-aB80_iIpgVaY7RBh0f5KgYhrEoxNMxTJzmzdeWCYXdgvx_6cA8IjjSqjlzUBj1MwW3rbMqUI0RsRFS0gIOZ8NpN6cdTFYwvOrshkutEIZ0olJ8wUcCz7Yivm9Qbf-n7Iu3ltl9Kmp0fDOOpnmRQO9UyX0nbyMgb7qlxNCKj-tr61qP5XsDTxAk6iTYuzZnphgJ-YEqSpRcUXXeuGoqvIzOzaBTHhLGYPgzrpRZoFfAEZRdwd8M7P9aOpmDCTQsQO1y1s-jdlr47yxm_qZAtmmoFPJ95S09HzfKPJLn_L50fwJUMk9XIo-wh7K_GdXgEl9y3VbccH2cJ-w5CBh75
  priority: 102
  providerName: Springer Nature
Title A resting state network in the motor control circuit of the basal ganglia
URI https://link.springer.com/article/10.1186/1471-2202-10-137
https://www.ncbi.nlm.nih.gov/pubmed/19930640
https://www.proquest.com/docview/734162964
https://pubmed.ncbi.nlm.nih.gov/PMC2785820
https://doaj.org/article/c953d08b48f646d2ac2f711d1bd5d81b
Volume 10
WOSCitedRecordID wos000272419200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: M2M
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3ZjtMw0IIFIV4QN-Go_ICEQIqaOImPxy7aFSvRKlpgVZ4sX4FIKF312O9nxklLuwh44cVSfCT2eDxHZjxDyGvpgeLleZNWhhVp6W2RGlWYNGtcJZxllsf_HRcfxWwm53NV76X6Qp-wPjxwD7ixU1XhM2lL2fCSe2Yca-DtPre-8iBzIfXNhNoqU4P9QMiYNieHiaSMoQ9Pb6CUfLyrQwqUY_7zPYYU4_b_Tp332NN118lr9tPIlk7vk3uDPEkn_ToekBuhe0juTAeL-SNyNqGYfQPG0nh3iHa93zdtOwqyH4WdWizp4LBOXbt0m3ZNF01sBBYH7_5m8KqveUy-nJ58fv8hHdInpI5ncp0yZ2woZGWDDEpaUBeVD8qXpW9AbgBRi5WgzSifNUEIq9BBpvDMSV7YPHPBFE_IUbfowjNCYaRRecNFbkB9FNxWzmIYHCGaUjSKJWS8haF2Q2xxTHHxQ0cdQ3KNUNcI9VhTiIS83Y247ONq_KXvMW7Lrh9GxI4VgCd6wBP9LzxJyBvcVI3nFqbmzHD9ABaIEbD0hIFezlXJ4HN0u-8azhoaUEwXFpuVFsDyOdqpE_K0R4Nfcwc5D42iCREHCHIw6cOWrv0ew3kzISuQwxLybotKeqAjqz-C5Pn_AMkLcjfaxnI4D8VLcrRebsIrcttdrdvVckRuirmIpRyRW8cns_p8FA8ZlFM2xVLU0FKfTeuv8HT-6eIn1XUnRA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VgoAXzgLh9AMSAilqYjs-HhdE1YrtCkGp-mb5SMpKKEHZXX4_Y2-ysOWQ4DU-4thz5hvPADxXASVeWTZ5ZSnLeXAst5rZvGh8Jb2jTqT_HadTOZupszP9fgfoeBcmRbuPkGSS1ImtldgvcdKc0liLo8hLJi_BZY76KubL__DxdIMcSMXpCEf-ZtSW-klZ-n-VxT8po4uBkhfQ0qSEDm7-z_JvwY3B5CSTNY3chp26vQNXjwdQ_S4cTUgs0IGTkXS9iLTr0HAybwmahwQPs-vJENNO_Lz3q_mSdE1qRC2Ic5_beBvY7sGng7cnbw7zocJC7kWhljn11tVMVa5WtVYOPUodah04Dw2aFmiNUY4Ojw5FU0vpdIyhYYF6JZgrC19bdg92266tHwDBkVaXjZClRQ9TCld5FzPlSNlw2Wiawf648cYP6cdjFYwvJrkhSpi4QybuUHrCZAYvNyO-rlNv_KXv63iWm34xaXZ60PXnZuBB43XFQqEcV43gIlDraYOEGkoXqoDmewYvIiWYyNq4NG-HGwr4gTFJlplQdN2F5hRfR0ZiMciOEWOxbd2tFkaiVSAilJ3B_TXt_Fg7moIRN81AblHV1qK3W9r555Txm0pVoamWwauRtswgahZ_3JKH_9L5GVw7PDmemunR7N0juJ4gsxLplT2G3WW_qp_AFf9tOV_0TxO3fQe5EiHd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagoIoX7kI4_YCEQIo2sRMfj8uxoqKsKgFV3yyfZSWUVNksv5-xkyxsOSTEq2-PZ-wZf-MxQs-Egx2vLENea0Lzyhmaa0l1XgRbc2uIYem-4-SIL5fi9FQejxdu68nbfYIkhzcNMUpT08_OXRhEXLBZCR3khMR_OYq8pPwyulJFN_porX882aIIXFRkgiZ_U2vnKEoR-3_dl386mC46TV5ATtOBtLjxv1O5ia6PqiieD7xzC13yzW20_2EE2--gwzmOH3dAwzg9O8LN4DKOVw0GtRHDIrcdHn3dsV11drPqcRtSJpyO0PaZjq-E9V30efH20-t3-fjzQm5ZIfqcWG08FbXxwkthwNKUzktXVS6AygGEJhUYQtIVwXNuZPStoY5YwagpC-s1PUB7Tdv4-whDTS3LwHipwfLkzNTWxAg6nIeKB0kyNJsWQdkxLHn8HeOrSuaJYCpSSEUKpRTKM_RiW-N8CMnxl7Kv4rpuy8Vg2imh7c7UKJvKypq6QphKBFYxR7QlARjYlcbVDtT6DD2PXKGiyMPQrB5fLsAEY_AsNSdg0jNZEegOT4yjQEwj9qIb327WioO2wCLEnaF7Ax_9GDuoiBFPzRDf4bCdQe_mNKsvKRI44aIGFS5DLyc-U-MWtP4jSR78S-GnaP_4zUIdHS7fP0TXEpJWArvSR2iv7zb-Mbpqv_WrdfckCd539pkqwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+resting+state+network+in+the+motor+control+circuit+of+the+basal+ganglia&rft.jtitle=BMC+neuroscience&rft.au=Robinson%2C+Simon&rft.au=Basso%2C+Gianpaolo&rft.au=Soldati%2C+Nicola&rft.au=Sailer%2C+Uta&rft.date=2009-11-23&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=10&rft.spage=137&rft_id=info:doi/10.1186%2F1471-2202-10-137&rft.externalDocID=A213269427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon