Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis

Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population stru...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Molecular ecology Ročník 22; číslo 23; s. 5835 - 5847
Hlavní autori: Jonker, R. M., Kraus, R. H. S., Zhang, Q., van Hooft, P., Larsson, K., van der Jeugd, H. P., Kurvers, R. H. J. M., van Wieren, S. E., Loonen, M. J. J. E., Crooijmans, R. P. M. A., Ydenberg, R. C., Groenen, M. A. M., Prins, H. H. T.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.12.2013
Blackwell
Predmet:
ISSN:0962-1083, 1365-294X, 1365-294X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 single nucleotide polymorphism (SNP) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used discriminant analysis of principal components, FST, linkage disequilibrium and a comparison of geneflow models using migrate‐n to show that there is significant population structure, but that relatively many pairs of SNPs are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations, we also show that genetic exchange occurs between all populations. The newly established nonmigratory population in the Netherlands is characterized by high emigration into other populations, which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of nonmigration probably resulted from developmental plasticity.
AbstractList Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 single nucleotide polymorphism (SNP) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used discriminant analysis of principal components, FST , linkage disequilibrium and a comparison of geneflow models using migrate-n to show that there is significant population structure, but that relatively many pairs of SNPs are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations, we also show that genetic exchange occurs between all populations. The newly established nonmigratory population in the Netherlands is characterized by high emigration into other populations, which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of nonmigration probably resulted from developmental plasticity.
Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 single nucleotide polymorphism (SNP) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used discriminant analysis of principal components, FST , linkage disequilibrium and a comparison of geneflow models using migrate-n to show that there is significant population structure, but that relatively many pairs of SNPs are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations, we also show that genetic exchange occurs between all populations. The newly established nonmigratory population in the Netherlands is characterized by high emigration into other populations, which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of nonmigration probably resulted from developmental plasticity.Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 single nucleotide polymorphism (SNP) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used discriminant analysis of principal components, FST , linkage disequilibrium and a comparison of geneflow models using migrate-n to show that there is significant population structure, but that relatively many pairs of SNPs are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations, we also show that genetic exchange occurs between all populations. The newly established nonmigratory population in the Netherlands is characterized by high emigration into other populations, which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of nonmigration probably resulted from developmental plasticity.
Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 single nucleotide polymorphism (SNP) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used discriminant analysis of principal components, FST, linkage disequilibrium and a comparison of geneflow models using migrate-n to show that there is significant population structure, but that relatively many pairs of SNPs are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations, we also show that genetic exchange occurs between all populations. The newly established nonmigratory population in the Netherlands is characterized by high emigration into other populations, which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of nonmigration probably resulted from developmental plasticity. [PUBLICATION ABSTRACT]
Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 Single Nucleotide Polymorphisms (SNP) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used Discriminant Analysis of Principal Components, FST , linkage disequilibrium and a comparison of gene flow models using migrate-n to show that there is significant population structure, but that relatively many pairs of SNPs are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations we also show that genetic exchange occurs between all populations. The newly established non-migratory population in the Netherlands is characterized by high emigration into other populations which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of non-migration likely resulted from developmental plasticity.
Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a more adequate and rapid response to rapidly changing environments. When individuals break with their migratory traditions, new population structures can emerge that may affect gene flow. Recently, the migratory traditions of the Barnacle Goose Branta leucopsis changed, and new populations differing in migratory distance emerged. Here, we investigate the population genetic structure of the Barnacle Goose to evaluate the consequences of altered migratory traditions. We used a set of 358 single nucleotide polymorphism ( SNP ) markers to genotype 418 individuals from breeding populations in Greenland, Spitsbergen, Russia, Sweden and the Netherlands, the latter two being newly emerged populations. We used discriminant analysis of principal components, F ST , linkage disequilibrium and a comparison of geneflow models using migrate ‐ n to show that there is significant population structure, but that relatively many pairs of SNP s are in linkage disequilibrium, suggesting recent admixture between these populations. Despite the assumed traditions of migration within populations, we also show that genetic exchange occurs between all populations. The newly established nonmigratory population in the Netherlands is characterized by high emigration into other populations, which suggests more exploratory behaviour, possibly as a result of shortened parental care. These results suggest that migratory traditions in populations are subject to change in geese and that such changes have population genetic consequences. We argue that the emergence of nonmigration probably resulted from developmental plasticity.
Author Larsson, K.
van der Jeugd, H. P.
Crooijmans, R. P. M. A.
Zhang, Q.
van Hooft, P.
Jonker, R. M.
Kraus, R. H. S.
Loonen, M. J. J. E.
van Wieren, S. E.
Prins, H. H. T.
Groenen, M. A. M.
Kurvers, R. H. J. M.
Ydenberg, R. C.
Author_xml – sequence: 1
  givenname: R. M.
  surname: Jonker
  fullname: Jonker, R. M.
  email: Correspondence: Rudy M. Jonker,, mrjonker@gmail.com
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
– sequence: 2
  givenname: R. H. S.
  surname: Kraus
  fullname: Kraus, R. H. S.
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
– sequence: 3
  givenname: Q.
  surname: Zhang
  fullname: Zhang, Q.
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
– sequence: 4
  givenname: P.
  surname: van Hooft
  fullname: van Hooft, P.
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
– sequence: 5
  givenname: K.
  surname: Larsson
  fullname: Larsson, K.
  organization: Kalmar Maritime Academy, Linnaeus University, 391 82, Kalmar, Sweden
– sequence: 6
  givenname: H. P.
  surname: van der Jeugd
  fullname: van der Jeugd, H. P.
  organization: Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
– sequence: 7
  givenname: R. H. J. M.
  surname: Kurvers
  fullname: Kurvers, R. H. J. M.
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
– sequence: 8
  givenname: S. E.
  surname: van Wieren
  fullname: van Wieren, S. E.
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
– sequence: 9
  givenname: M. J. J. E.
  surname: Loonen
  fullname: Loonen, M. J. J. E.
  organization: Arctic Centre, University of Groningen, Aweg 30, 9718 CW, Groningen, The Netherlands
– sequence: 10
  givenname: R. P. M. A.
  surname: Crooijmans
  fullname: Crooijmans, R. P. M. A.
  organization: Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
– sequence: 11
  givenname: R. C.
  surname: Ydenberg
  fullname: Ydenberg, R. C.
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
– sequence: 12
  givenname: M. A. M.
  surname: Groenen
  fullname: Groenen, M. A. M.
  organization: Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
– sequence: 13
  givenname: H. H. T.
  surname: Prins
  fullname: Prins, H. H. T.
  organization: Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28040873$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24118391$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-29910$$DView record from Swedish Publication Index (Linnéuniversitetet)
BookMark eNqNklFrFDEUhYNU7Lb64B-QAREUnDbJZGYzvtVt3QpVWVHbt3Anc2dJm82syQzr_nszznYfCoohEAjfudx77jkiB651SMhzRk9YPKcr1CeM50I-IhOWFXnKS3FzQCa0LHjKqMwOyVEIt5SyjOf5E3LIBWMyK9mE3MzRYWd0olsX8GePTmNI2iapPMKdcctkZZYeutZvk85DbToTwcS4pALvQFtMlogBk_ceXAeJxV6362DCU_K4ARvw2e49Jt8_XHybXaZXX-YfZ2dXqS6olGkjoGYFr_OmqbCRtWBCQ4EIEAeROfC6FiWPF7DgumK8kpmIfE2xmTYyy47Ju7HuBpboYsPolAOvTVAtGGVN5cFv1ab3ytnhWfdVUEKIQpRR_HYUhw3Gf7X2ZjXQg_Lc_DhTrV8q63rFy5LRiL8e8bVvo1WhUysTNFoLDts-KBb7LKL3WfkfaMHkNOJ5RF8-QG_bPnprRyqOS_Oh4Isd1VcrrPet3q8yAq92AAQNton7GEzYc5IKKqeDYW9GTvs2BI_NHmFUDXFSMU7qT5wie_qA1aaDIQIxC8b-S7ExFrd_L60-XczuFemoMKHDX3sF-DtVTLNprq4_z9XX8-tFKRcLdZn9BhQQ65E
CitedBy_id crossref_primary_10_1111_1365_2656_70133
crossref_primary_10_1007_s10336_025_02323_y
crossref_primary_10_1007_s10336_020_01752_1
crossref_primary_10_1007_s10336_015_1253_y
crossref_primary_10_1017_S0959270925100142
crossref_primary_10_1186_s12862_015_0366_5
crossref_primary_10_1111_oik_06468
crossref_primary_10_1186_s12862_016_0702_4
crossref_primary_10_1111_gcb_14061
crossref_primary_10_1038_s41598_020_58086_4
crossref_primary_10_7717_peerj_1161
crossref_primary_10_1186_s40657_018_0139_0
crossref_primary_10_1038_s41467_019_10293_y
crossref_primary_10_1111_1365_2435_12813
crossref_primary_10_1242_jeb_170738
crossref_primary_10_1111_cobi_12758
crossref_primary_10_1371_journal_pone_0114812
crossref_primary_10_1371_journal_pone_0304348
crossref_primary_10_1017_S0959270920000143
crossref_primary_10_3390_d14050353
crossref_primary_10_1093_beheco_arae005
crossref_primary_10_1016_j_cobeha_2016_09_003
crossref_primary_10_1002_ece3_4345
crossref_primary_10_1002_ece3_8547
crossref_primary_10_1111_mec_13622
crossref_primary_10_1016_j_bse_2017_01_014
crossref_primary_10_3390_d14121067
crossref_primary_10_1111_1755_0998_12307
crossref_primary_10_1016_j_ympev_2016_05_021
crossref_primary_10_1111_1365_2656_13638
crossref_primary_10_1016_j_livsci_2017_10_015
crossref_primary_10_1007_s10336_016_1354_2
crossref_primary_10_3389_fevo_2019_00502
crossref_primary_10_1111_gcb_14793
crossref_primary_10_1007_s10344_017_1156_8
crossref_primary_10_1111_ibi_12521
crossref_primary_10_1080_24750263_2022_2086306
Cites_doi 10.1023/A:1021347630813
10.1023/A:1013825816443
10.1016/j.ympev.2011.06.017
10.1534/genetics.109.112532
10.1641/B570211
10.5962/bhl.title.6373
10.1676/07-126.1
10.1093/genetics/163.3.1153
10.1371/journal.pone.0038412
10.1111/mec.12098
10.1023/A:1018491828875
10.1139/z95-127
10.1111/j.1474-919X.1992.tb04731.x
10.34080/os.v20.19922
10.1111/j.1755-0998.2010.02885.x
10.1126/science.193.4248.153
10.2307/3677163
10.1073/pnas.1006874107
10.1537/ase.104.209
10.1111/j.1365-294X.2010.04852.x
10.1093/beheco/arq208
10.1007/s10682-011-9514-6
10.1111/j.1365-2486.2008.01804.x
10.1111/j.2517-6161.1994.tb01956.x
10.1007/BF00172133
10.1111/j.1461-0248.2010.01576.x
10.1111/j.1600-048X.2011.05395.x
10.2307/3676556
10.1111/j.1365-294X.2008.04067.x
10.1046/j.1523-1739.1996.10061509.x
10.1186/1471-2156-12-99
10.1006/anbe.1994.1213
10.1111/j.1365-2656.2008.01493.x
10.1007/s00300-003-0535-7
10.1371/journal.pone.0011369
10.1111/j.1365-2435.2007.01283.x
10.1111/j.1471-8286.2004.00828.x
10.1073/pnas.0501844102
10.1111/j.1558-5646.2008.00345.x
10.1016/j.anbehav.2013.09.001
10.1038/334471a0
10.14430/arctic150
10.1186/1471-2164-12-150
10.2307/3800660
10.1034/j.1600-0706.2003.12042.x
10.1073/pnas.0910361107
10.1111/j.1095-8312.2012.01872.x
10.1017/CBO9780511626920.004
10.1111/j.1365-294X.2006.03197.x
10.1111/j.1365-2656.2008.01485.x
10.1093/acprof:oso/9780199568994.001.0001
10.1093/bioinformatics/btn129
10.1186/1471-2156-11-94
10.1007/978-94-009-1527-5
10.1093/beheco/13.6.786
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd
2015 INIST-CNRS
2013 John Wiley & Sons Ltd.
Copyright © 2013 John Wiley & Sons Ltd
Wageningen University & Research
Copyright_xml – notice: 2013 John Wiley & Sons Ltd
– notice: 2015 INIST-CNRS
– notice: 2013 John Wiley & Sons Ltd.
– notice: Copyright © 2013 John Wiley & Sons Ltd
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
F1W
H95
L.G
ADTPV
AOWAS
D92
QVL
DOI 10.1111/mec.12548
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
SwePub
SwePub Articles
SWEPUB Linnéuniversitetet
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
DatabaseTitleList MEDLINE
MEDLINE - Academic
Entomology Abstracts



CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 5847
ExternalDocumentID oai_library_wur_nl_wurpubs_444649
oai_DiVA_org_lnu_29910
3136265251
24118391
28040873
10_1111_mec_12548
MEC12548
ark_67375_WNG_RDWQ98QQ_H
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Svalbard
Netherlands
Sweden
Greenland
Russia
Norway, Svalbard, Spitsbergen
GeographicLocations_xml – name: Svalbard
– name: Russia
– name: Netherlands
– name: Greenland
– name: Sweden
– name: Norway, Svalbard, Spitsbergen
GrantInformation_xml – fundername: Stichting de Eik Trust
– fundername: KNJV (Royal Netherlands Hunting association)
– fundername: Faunafonds
– fundername: Netherlands Organization for Scientific Research (NWO)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
XJT
AAYXX
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
F1W
H95
L.G
ADTPV
AOWAS
D92
-
02
0R
31
3N
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
ADKFC
AGJLS
GA
HZ
IA
KM
MYA
NF
P4A
PQEST
QVL
RIG
UNR
WT
Y3
ID FETCH-LOGICAL-c6088-f4ad162d5ffbef8d414ca6eeaa13685a2dd492492ae62cb12b83462dd0ef7f833
IEDL.DBID DRFUL
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327278700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Tue Jan 05 18:02:45 EST 2021
Tue Nov 04 16:39:36 EST 2025
Tue Oct 07 07:47:11 EDT 2025
Thu Sep 04 18:59:45 EDT 2025
Mon Nov 10 02:57:42 EST 2025
Mon Jul 21 05:37:29 EDT 2025
Wed Apr 02 07:46:51 EDT 2025
Tue Nov 18 21:22:59 EST 2025
Sat Nov 29 02:38:39 EST 2025
Wed Jan 22 16:45:45 EST 2025
Mon Nov 17 15:09:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords admixture
Migration
Anatidae
Population genetics
Modeling
Vertebrata
Migratory
SNP
Branta leucopsis
migration modelling
Aves
Speciation
cultural evolution
population genetics
speciation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2013 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6088-f4ad162d5ffbef8d414ca6eeaa13685a2dd492492ae62cb12b83462dd0ef7f833
Notes Fig. S1 A geographical representation of the 7 gene-flow models. Fig. S2-S5 Schematic map of LD pairs across the 374 SNPs. Fig. S6 Distribution of within chromosome LD pairs.
Netherlands Organization for Scientific Research (NWO)
Faunafonds
ark:/67375/WNG-RDWQ98QQ-H
KNJV (Royal Netherlands Hunting association)
istex:3209EE98C8E075581D9EDA9E03A0B8404DA1A9F2
Stichting de Eik Trust
ArticleID:MEC12548
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24118391
PQID 1461346059
PQPubID 31465
PageCount 13
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_444649
swepub_primary_oai_DiVA_org_lnu_29910
proquest_miscellaneous_1492629439
proquest_miscellaneous_1461879265
proquest_journals_1461346059
pubmed_primary_24118391
pascalfrancis_primary_28040873
crossref_primary_10_1111_mec_12548
crossref_citationtrail_10_1111_mec_12548
wiley_primary_10_1111_mec_12548_MEC12548
istex_primary_ark_67375_WNG_RDWQ98QQ_H
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184-186.
Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185, 313-326.
Jacobsen F, Omland KE (2011) Species tree inference in a recent radiation of orioles (Genus Icterus): multiple markers and methods reveal cytonuclear discordance in the northern oriole group. Molecular phylogenetics and evolution, 61, 460-469.
Hartl DL, Clark AG (2007) Principles of Population Genetics. Sinauer Associates, Sunderland, MA.
McNamara JM, Dall SRX (2011) The evolution of unconditional strategies via the "multiplier effect". Ecology Letters, 14, 237-243.
Jonker RM, Zhang Q, Van Hooft P et al. (2012b) The development of a genome wide SNP set for the barnacle goose Branta leucopsis. PLoS ONE, 7, e38412.
Beerli P (2012) Tutorial: Comparison of Gene Flow Models Using Bayes Factors. Comparison of gene flow models using Bayes Factors, Tutorial.
Kraus RHS, Zeddeman A, van Hooft P et al. (2011b) Evolution and connectivity in the world-wide migration system of the mallard: inferences from mitochondrial DNA. BMC Genetics, 12, 99.
Riesch R, Barrett-Lennard LG, Ellis GM, Ford JKB, Deecke VB (2012) Cultural traditions and the evolution of reproductive isolation: ecological speciation in killer whales? Biological Journal of the Linnean Society, 106, 1-17.
Black JM, Prop J, Larsson K (2007) Wild Goose Dilemmas. Branta Press, Groningen, The Netherlands.
West-Eberhard MJ (2003) Developmental Plasticity and Evolution. Oxford University Press, Oxford, UK.
Van Der Jeugd HP, Litvin KY (2006) Travels and traditions: long-distance dispersal in the Barnacle Goose Branta leucopsis based on individual case histories. Ardea, 94, 421-432.
Feldman M, Aoki K, Kumm J (1996) Individual versus social learning: evolutionary analysis in a fluctuating environment. Anthropological Science, 104, 209-232.
Mayr E (1942) Systematics and the Origin of Species, From the Viewpoint of a Zoologist. Columbia University Press, New York.
Berthold P, Helbig AJ (1992) The genetics of bird migration: stimulus, timing, and direction. Ibis, 134, 35-40.
Lensink R (1996) De opkomst van exoten in de Nederlandse Avifauna: verleden, heden en toekomst. (in Dutch, translated as: the emergence of exots in the Netherlands avifauna: past, present and future.). Limosa, 69, 103-130.
Mills LS, Allendorf FW (1996) La regla de Un-Migrante-Por-Generación en Conservación y Manejo. Conservation Biology, 10, 1509-1518.
Palacín C, Alonso JC, Alonso JA, Magaña M, Martín CA (2011) Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. Journal of Avian Biology, 42, 301-308.
Von Essen L (1991) A note on the Lesser White-Fronted Goose Anser erythropus in Sweden and the result of a re-introduction scheme. Ardea, 79, 305-306.
Raveling DG (1979) Traditional use of migration and winter roost sites by Canada geese. Journal of Wildlife Management, 43, 229-235.
Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds. Molecular Ecology, 16, 1765-1785.
Alcaide M, Serrano D, Tella JL, Negro JJ (2009) Strong philopatry derived from capture-recapture records does not lead to fine-scale genetic differentiation in lesser kestrels. Journal Of Animal Ecology, 78, 468-475.
Kraus RHS, Kerstens HHD, Van Hooft P et al. (2011a) Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics, 12, 1-11.
McQuinn IH (1997) Metapopulations and the Atlantic herring. Reviews in Fish Biology and Fisheries, 7, 297-329.
Baker RR (1978) The Evolutionary Ecology of Animal Migration. Holmes & Meier Publishers, New York.
Milner-Gulland EJ, Fryxell JM, Sinclair ARE (2011) Animal Migration: A Synthesis. Oxford University Press, USA.
Pulido F, Berthold P (2010) Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proceedings of the National Academy of Sciences of the United States of America, 107, 7341-7346.
West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences, 102, 6543-6549.
Hochbaum HA (1955) Travels and Traditions of Waterfowl. University of Minnesota Press, Minneapolis.
Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403-1405.
Van der Jeugd HP, van der Veen IT, Larsson K (2002) Kin clustering in barnacle geese: familiarity or phenotype matching? Behavioral Ecology, 13, 786-790.
Van der Jeugd HP, Gurtovaya E, Eichhorn G et al. (2003) Breeding barnacle geese in Kolokolkova Bay, Russia: number of breeding pairs, reproductive success and morphology. Polar Biology, 26, 700-706.
Van der Jeugd HP, Eichhorn G, Litvin KE et al. (2009) Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply. Global Change Biology, 15, 1057-1071.
Warner GE, Leisch F (2002) "Genetics'', a Package for Handling Marker-Based Genetic Data within the Open-Source Statistical Package R. Available from: http://cran.r-project.org.
Corten A (2002) The role of "conservatism" in herring migrations. Reviews in Fish Biology and Fisheries, 11, 339-361.
Jonker RM, Eichhorn G, van Langevelde F, Bauer S (2010) Predation danger can explain changes in timing of migration: the case of the barnacle goose. PLoS ONE, 5, e11369.
Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 1-15.
Kraus RHS, van Hooft P, Megens H-J et al. (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Molecular Ecology, 22, 41-55.
Prop J, Black JM, Shimmings P (2003) Travel schedules to the high arctic: barnacle geese trade-off the timing of migration with accumulation of fat deposits. Oikos, 103, 403-414.
Raveling DG (1976) Migration reversal: a regular phenomenon of Canada geese. Science, 193, 153-154.
Ward DH, Dau CP, Tibbitts TL et al. (2009) Change in abundance of Pacific Brant wintering in Alaska : evidence of a climate warming effect? Arctic, 62, 301-311.
Larsson K, Forslund P, Gustafsson L, Ebbinge BS (1988) From the high Arctic to the Baltic: the successful establishment of a Barnacle Goose Branta leucopsis population on Gotland, Sweden. Ornis Scandinavica, 19, 182-189.
Eichhorn G, Drent RH, Stahl J, Leito A, Alerstam T (2008) Skipping the Baltic: the emergence of a dichotomy of alternative spring migration strategies in Russian barnacle geese. Journal of Animal Ecology, 78, 63-72.
Nelson ME (1995) Winter range arrival and departure of white-tailed deer in northeastern Minnesota. Canadian Journal of Zoology, 73, 1069-1076.
Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B (Methodological), 56, 3-48.
R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org.
Owen M (1980) Wild Geese of the World - Their Life History and Ecology. B T Batsford Ltd., London.
Prins HHT (1996) Ecology and Behaviour of the African Buffalo. Chapman & Hall, London, UK.
Kurvers RHJM, Adamczyk VMAP, Kraus RHS et al. (2013) Contrasting context-dependence of familiarity and kinship in animal social networks. Animal Behaviour. doi: 10.1016/j.anbehav.2013.09.001.
Humphries EM, Peters JL, Jónsson JE et al. (2009) Genetic differentiation between sympatric and allopatric wintering populations of snow geese. The Wilson Journal of Ornithology, 121, 730-738.
Sutherland WJ (1988) The heritability of migration. Nature, 334, 471-472.
Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics, 163, 1153-1167.
Lecomte N, Gauthier G, Giroux JF, Milot E, Bernatchez L (2009) Tug of war between continental gene flow and rearing site philopatry in a migratory bird: the sex-biased dispersal paradigm reconsidered. Molecular Ecology, 18, 593-602.
Choudhury S, Black JM (1994) Barnacle geese preferentially pair with familiar associates from early life. Animal Behaviour, 48, 81-88.
Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11, 141-145.
Guttal V, Couzin ID (2010) Social interactions, information use, and the evolution of collective migration. Proceedings of the National Academy of Sciences, 107, 16172-16177.
Jonker RM, Kuiper MW, Snijders L et al. (2011) Divergence in timing of parental care and migration in barnacle geese. Behavioral Ecology, 22, 326-331.
Helbig AJ (1991) Inheritance of migratory direction in a bird species - a cross-breeding experiment with Se-migrating and Sw-migrating blackcaps (Sylvia-Atricapilla). Behavioral Ecology and Sociobiology, 28, 9-12.
Kondo B, Peters JL, Rosensteel BB, Omland KE (2008) Coalescent analysis of multiple loci support a new route to speciation in birds. Evolution, 62, 1182-1191.
Fox AD, Ebbinge BS, Mitchell C et al. (2010) Current estimates of goose population sizes in western Europe, a gap analysis and an assassment of trends. Ornis Svecica, 20, 115-127.
Pulido F (2007) The genetics and evolution of avian migration. BioScience, 57, 165-174.
Sutherland WJ (1998) Evidence for flexibility and constraint in migration systems. Journal of Avian Biology, 29, 441-446.
Harrison XA, Tregenza T, Inger R et al. (2010) Cultural inheritance drives site fidelity and migratory connectivity in a long-distance migrant. Molecular Ecology, 19, 5484-5496.
Jonker RM, Kurvers R, van de Bilt A et al. (2012a) Rapid adaptive adjustment of parental care coincident with altered migratory behaviour. Evolutionary Ecology, 26, 657-667.
2010; 11
1995; 73
2010; 107
2013; 22
2010; 19
2002; 13
2002; 11
2011; 61
2010; 185
2008; 78
2011; 11
1970
2011; 14
1996; 104
1978
1997; 7
2010; 20
2005; 102
2011b; 12
2009; 121
1988; 334
1942
2011; 22
2008; 24
1980
1996; 69
2008; 62
2010; 5
2009; 15
2009; 18
2003; 163
2012a; 26
1998; 29
2009; 62
2006; 94
2012
1988; 19
2011
1991; 79
2009
1997
2007
1996
1994; 48
1992
2003
2002
1976; 193
2012; 106
1996; 10
2007; 57
2011a; 12
2007; 16
1955
2009; 78
1991; 28
1992; 134
2005; 5
1994; 56
2011; 42
2003; 26
2013
2003; 103
1979; 43
2012b; 7
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
Kear J (e_1_2_6_30_1) 1970
Warner GE (e_1_2_6_68_1) 2002
Mayr E (e_1_2_6_40_1) 1942
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_57_1
Jeugd HP (e_1_2_6_61_1) 2006; 94
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Baker RR (e_1_2_6_4_1) 1978
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Lensink R (e_1_2_6_38_1) 1996; 69
Owen M (e_1_2_6_49_1) 1980
e_1_2_6_50_1
R Development Core Team (e_1_2_6_55_1) 2013
Black JM (e_1_2_6_9_1) 2007
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
Anderson MG (e_1_2_6_3_1) 1992
Essen L (e_1_2_6_65_1) 1991; 79
Beerli P (e_1_2_6_6_1) 2012
e_1_2_6_8_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
Mowbray TB (e_1_2_6_46_1) 2002
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_69_1
References_xml – reference: Corten A (2002) The role of "conservatism" in herring migrations. Reviews in Fish Biology and Fisheries, 11, 339-361.
– reference: Jonker RM, Kuiper MW, Snijders L et al. (2011) Divergence in timing of parental care and migration in barnacle geese. Behavioral Ecology, 22, 326-331.
– reference: Mayr E (1942) Systematics and the Origin of Species, From the Viewpoint of a Zoologist. Columbia University Press, New York.
– reference: Sutherland WJ (1988) The heritability of migration. Nature, 334, 471-472.
– reference: Kondo B, Peters JL, Rosensteel BB, Omland KE (2008) Coalescent analysis of multiple loci support a new route to speciation in birds. Evolution, 62, 1182-1191.
– reference: Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185, 313-326.
– reference: McQuinn IH (1997) Metapopulations and the Atlantic herring. Reviews in Fish Biology and Fisheries, 7, 297-329.
– reference: Choudhury S, Black JM (1994) Barnacle geese preferentially pair with familiar associates from early life. Animal Behaviour, 48, 81-88.
– reference: Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 1-15.
– reference: Von Essen L (1991) A note on the Lesser White-Fronted Goose Anser erythropus in Sweden and the result of a re-introduction scheme. Ardea, 79, 305-306.
– reference: Sutherland WJ (1998) Evidence for flexibility and constraint in migration systems. Journal of Avian Biology, 29, 441-446.
– reference: Van der Jeugd HP, van der Veen IT, Larsson K (2002) Kin clustering in barnacle geese: familiarity or phenotype matching? Behavioral Ecology, 13, 786-790.
– reference: McNamara JM, Dall SRX (2011) The evolution of unconditional strategies via the "multiplier effect". Ecology Letters, 14, 237-243.
– reference: Harrison XA, Tregenza T, Inger R et al. (2010) Cultural inheritance drives site fidelity and migratory connectivity in a long-distance migrant. Molecular Ecology, 19, 5484-5496.
– reference: Humphries EM, Peters JL, Jónsson JE et al. (2009) Genetic differentiation between sympatric and allopatric wintering populations of snow geese. The Wilson Journal of Ornithology, 121, 730-738.
– reference: Mills LS, Allendorf FW (1996) La regla de Un-Migrante-Por-Generación en Conservación y Manejo. Conservation Biology, 10, 1509-1518.
– reference: Owen M (1980) Wild Geese of the World - Their Life History and Ecology. B T Batsford Ltd., London.
– reference: Jonker RM, Kurvers R, van de Bilt A et al. (2012a) Rapid adaptive adjustment of parental care coincident with altered migratory behaviour. Evolutionary Ecology, 26, 657-667.
– reference: Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403-1405.
– reference: Jonker RM, Eichhorn G, van Langevelde F, Bauer S (2010) Predation danger can explain changes in timing of migration: the case of the barnacle goose. PLoS ONE, 5, e11369.
– reference: Kraus RHS, Zeddeman A, van Hooft P et al. (2011b) Evolution and connectivity in the world-wide migration system of the mallard: inferences from mitochondrial DNA. BMC Genetics, 12, 99.
– reference: Beerli P (2012) Tutorial: Comparison of Gene Flow Models Using Bayes Factors. Comparison of gene flow models using Bayes Factors, Tutorial.
– reference: Van Der Jeugd HP, Litvin KY (2006) Travels and traditions: long-distance dispersal in the Barnacle Goose Branta leucopsis based on individual case histories. Ardea, 94, 421-432.
– reference: Fox AD, Ebbinge BS, Mitchell C et al. (2010) Current estimates of goose population sizes in western Europe, a gap analysis and an assassment of trends. Ornis Svecica, 20, 115-127.
– reference: Larsson K, Forslund P, Gustafsson L, Ebbinge BS (1988) From the high Arctic to the Baltic: the successful establishment of a Barnacle Goose Branta leucopsis population on Gotland, Sweden. Ornis Scandinavica, 19, 182-189.
– reference: Guttal V, Couzin ID (2010) Social interactions, information use, and the evolution of collective migration. Proceedings of the National Academy of Sciences, 107, 16172-16177.
– reference: Palacín C, Alonso JC, Alonso JA, Magaña M, Martín CA (2011) Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. Journal of Avian Biology, 42, 301-308.
– reference: Raveling DG (1979) Traditional use of migration and winter roost sites by Canada geese. Journal of Wildlife Management, 43, 229-235.
– reference: Hartl DL, Clark AG (2007) Principles of Population Genetics. Sinauer Associates, Sunderland, MA.
– reference: Jacobsen F, Omland KE (2011) Species tree inference in a recent radiation of orioles (Genus Icterus): multiple markers and methods reveal cytonuclear discordance in the northern oriole group. Molecular phylogenetics and evolution, 61, 460-469.
– reference: Kraus RHS, Kerstens HHD, Van Hooft P et al. (2011a) Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genomics, 12, 1-11.
– reference: Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11, 141-145.
– reference: Jonker RM, Zhang Q, Van Hooft P et al. (2012b) The development of a genome wide SNP set for the barnacle goose Branta leucopsis. PLoS ONE, 7, e38412.
– reference: Van der Jeugd HP, Gurtovaya E, Eichhorn G et al. (2003) Breeding barnacle geese in Kolokolkova Bay, Russia: number of breeding pairs, reproductive success and morphology. Polar Biology, 26, 700-706.
– reference: Alcaide M, Serrano D, Tella JL, Negro JJ (2009) Strong philopatry derived from capture-recapture records does not lead to fine-scale genetic differentiation in lesser kestrels. Journal Of Animal Ecology, 78, 468-475.
– reference: West-Eberhard MJ (2003) Developmental Plasticity and Evolution. Oxford University Press, Oxford, UK.
– reference: Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B (Methodological), 56, 3-48.
– reference: Feldman M, Aoki K, Kumm J (1996) Individual versus social learning: evolutionary analysis in a fluctuating environment. Anthropological Science, 104, 209-232.
– reference: Milner-Gulland EJ, Fryxell JM, Sinclair ARE (2011) Animal Migration: A Synthesis. Oxford University Press, USA.
– reference: Warner GE, Leisch F (2002) "Genetics'', a Package for Handling Marker-Based Genetic Data within the Open-Source Statistical Package R. Available from: http://cran.r-project.org.
– reference: Hochbaum HA (1955) Travels and Traditions of Waterfowl. University of Minnesota Press, Minneapolis.
– reference: Ward DH, Dau CP, Tibbitts TL et al. (2009) Change in abundance of Pacific Brant wintering in Alaska : evidence of a climate warming effect? Arctic, 62, 301-311.
– reference: Black JM, Prop J, Larsson K (2007) Wild Goose Dilemmas. Branta Press, Groningen, The Netherlands.
– reference: Pulido F (2007) The genetics and evolution of avian migration. BioScience, 57, 165-174.
– reference: Lensink R (1996) De opkomst van exoten in de Nederlandse Avifauna: verleden, heden en toekomst. (in Dutch, translated as: the emergence of exots in the Netherlands avifauna: past, present and future.). Limosa, 69, 103-130.
– reference: Van der Jeugd HP, Eichhorn G, Litvin KE et al. (2009) Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply. Global Change Biology, 15, 1057-1071.
– reference: Baker RR (1978) The Evolutionary Ecology of Animal Migration. Holmes & Meier Publishers, New York.
– reference: Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics, 163, 1153-1167.
– reference: West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences, 102, 6543-6549.
– reference: Prop J, Black JM, Shimmings P (2003) Travel schedules to the high arctic: barnacle geese trade-off the timing of migration with accumulation of fat deposits. Oikos, 103, 403-414.
– reference: Kurvers RHJM, Adamczyk VMAP, Kraus RHS et al. (2013) Contrasting context-dependence of familiarity and kinship in animal social networks. Animal Behaviour. doi: 10.1016/j.anbehav.2013.09.001.
– reference: Kraus RHS, van Hooft P, Megens H-J et al. (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Molecular Ecology, 22, 41-55.
– reference: R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org.
– reference: Pulido F, Berthold P (2010) Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proceedings of the National Academy of Sciences of the United States of America, 107, 7341-7346.
– reference: Lecomte N, Gauthier G, Giroux JF, Milot E, Bernatchez L (2009) Tug of war between continental gene flow and rearing site philopatry in a migratory bird: the sex-biased dispersal paradigm reconsidered. Molecular Ecology, 18, 593-602.
– reference: Eichhorn G, Drent RH, Stahl J, Leito A, Alerstam T (2008) Skipping the Baltic: the emergence of a dichotomy of alternative spring migration strategies in Russian barnacle geese. Journal of Animal Ecology, 78, 63-72.
– reference: Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184-186.
– reference: Prins HHT (1996) Ecology and Behaviour of the African Buffalo. Chapman & Hall, London, UK.
– reference: Berthold P, Helbig AJ (1992) The genetics of bird migration: stimulus, timing, and direction. Ibis, 134, 35-40.
– reference: Helbig AJ (1991) Inheritance of migratory direction in a bird species - a cross-breeding experiment with Se-migrating and Sw-migrating blackcaps (Sylvia-Atricapilla). Behavioral Ecology and Sociobiology, 28, 9-12.
– reference: Nelson ME (1995) Winter range arrival and departure of white-tailed deer in northeastern Minnesota. Canadian Journal of Zoology, 73, 1069-1076.
– reference: Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds. Molecular Ecology, 16, 1765-1785.
– reference: Riesch R, Barrett-Lennard LG, Ellis GM, Ford JKB, Deecke VB (2012) Cultural traditions and the evolution of reproductive isolation: ecological speciation in killer whales? Biological Journal of the Linnean Society, 106, 1-17.
– reference: Raveling DG (1976) Migration reversal: a regular phenomenon of Canada geese. Science, 193, 153-154.
– year: 2011
– volume: 12
  start-page: 1
  year: 2011a
  end-page: 11
  article-title: Genome wide SNP discovery, analysis and evaluation in mallard ( )
  publication-title: BMC Genomics
– volume: 61
  start-page: 460
  year: 2011
  end-page: 469
  article-title: Species tree inference in a recent radiation of orioles (Genus Icterus): multiple markers and methods reveal cytonuclear discordance in the northern oriole group
  publication-title: Molecular phylogenetics and evolution
– volume: 22
  start-page: 326
  year: 2011
  end-page: 331
  article-title: Divergence in timing of parental care and migration in barnacle geese
  publication-title: Behavioral Ecology
– volume: 15
  start-page: 1057
  year: 2009
  end-page: 1071
  article-title: Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply
  publication-title: Global Change Biology
– volume: 78
  start-page: 468
  year: 2009
  end-page: 475
  article-title: Strong philopatry derived from capture‐recapture records does not lead to fine‐scale genetic differentiation in lesser kestrels
  publication-title: Journal Of Animal Ecology
– volume: 24
  start-page: 1403
  year: 2008
  end-page: 1405
  article-title: Adegenet: a R package for the multivariate analysis of genetic markers
  publication-title: Bioinformatics
– volume: 62
  start-page: 1182
  year: 2008
  end-page: 1191
  article-title: Coalescent analysis of multiple loci support a new route to speciation in birds
  publication-title: Evolution
– volume: 14
  start-page: 237
  year: 2011
  end-page: 243
  article-title: The evolution of unconditional strategies via the “multiplier effect”
  publication-title: Ecology Letters
– volume: 106
  start-page: 1
  year: 2012
  end-page: 17
  article-title: Cultural traditions and the evolution of reproductive isolation: ecological speciation in killer whales?
  publication-title: Biological Journal of the Linnean Society
– volume: 334
  start-page: 471
  year: 1988
  end-page: 472
  article-title: The heritability of migration
  publication-title: Nature
– start-page: 365
  year: 1992
  end-page: 395
– volume: 7
  start-page: e38412
  year: 2012b
  article-title: The development of a genome wide SNP set for the barnacle goose
  publication-title: PLoS ONE
– volume: 20
  start-page: 115
  year: 2010
  end-page: 127
  article-title: Current estimates of goose population sizes in western Europe, a gap analysis and an assassment of trends
  publication-title: Ornis Svecica
– volume: 18
  start-page: 593
  year: 2009
  end-page: 602
  article-title: Tug of war between continental gene flow and rearing site philopatry in a migratory bird: the sex‐biased dispersal paradigm reconsidered
  publication-title: Molecular Ecology
– volume: 5
  start-page: 184
  year: 2005
  end-page: 186
  article-title: HIERFSTAT, a package for R to compute and test hierarchical F‐statistics
  publication-title: Molecular Ecology Notes
– volume: 5
  start-page: e11369
  year: 2010
  article-title: Predation danger can explain changes in timing of migration: the case of the barnacle goose
  publication-title: PLoS ONE
– year: 1942
– volume: 193
  start-page: 153
  year: 1976
  end-page: 154
  article-title: Migration reversal: a regular phenomenon of Canada geese
  publication-title: Science
– volume: 26
  start-page: 657
  year: 2012a
  end-page: 667
  article-title: Rapid adaptive adjustment of parental care coincident with altered migratory behaviour
  publication-title: Evolutionary Ecology
– volume: 56
  start-page: 3
  year: 1994
  end-page: 48
  article-title: Approximate Bayesian inference with the weighted likelihood bootstrap
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 103
  start-page: 403
  year: 2003
  end-page: 414
  article-title: Travel schedules to the high arctic: barnacle geese trade‐off the timing of migration with accumulation of fat deposits
  publication-title: Oikos
– volume: 11
  start-page: 1
  year: 2010
  end-page: 15
  article-title: Discriminant analysis of principal components: a new method for the analysis of genetically structured populations
  publication-title: BMC Genetics
– volume: 11
  start-page: 141
  year: 2011
  end-page: 145
  article-title: Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients
  publication-title: Molecular Ecology Resources
– volume: 22
  start-page: 41
  year: 2013
  end-page: 55
  article-title: Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms
  publication-title: Molecular Ecology
– year: 1997
– volume: 134
  start-page: 35
  year: 1992
  end-page: 40
  article-title: The genetics of bird migration: stimulus, timing, and direction
  publication-title: Ibis
– year: 1955
– volume: 13
  start-page: 786
  year: 2002
  end-page: 790
  article-title: Kin clustering in barnacle geese: familiarity or phenotype matching?
  publication-title: Behavioral Ecology
– volume: 163
  start-page: 1153
  year: 2003
  end-page: 1167
  article-title: Maximum‐likelihood estimation of relatedness
  publication-title: Genetics
– volume: 42
  start-page: 301
  year: 2011
  end-page: 308
  article-title: Cultural transmission and flexibility of partial migration patterns in a long‐lived bird, the great bustard Otis tarda
  publication-title: Journal of Avian Biology
– volume: 121
  start-page: 730
  year: 2009
  end-page: 738
  article-title: Genetic differentiation between sympatric and allopatric wintering populations of snow geese
  publication-title: The Wilson Journal of Ornithology
– volume: 79
  start-page: 305
  year: 1991
  end-page: 306
  article-title: A note on the Lesser White‐Fronted Goose in Sweden and the result of a re‐introduction scheme
  publication-title: Ardea
– volume: 62
  start-page: 301
  year: 2009
  end-page: 311
  article-title: Change in abundance of Pacific Brant wintering in Alaska : evidence of a climate warming effect?
  publication-title: Arctic
– volume: 7
  start-page: 297
  year: 1997
  end-page: 329
  article-title: Metapopulations and the Atlantic herring
  publication-title: Reviews in Fish Biology and Fisheries
– volume: 107
  start-page: 16172
  year: 2010
  end-page: 16177
  article-title: Social interactions, information use, and the evolution of collective migration
  publication-title: Proceedings of the National Academy of Sciences
– year: 2007
– year: 2003
– year: 1996
– volume: 69
  start-page: 103
  year: 1996
  end-page: 130
  article-title: De opkomst van exoten in de Nederlandse Avifauna: verleden, heden en toekomst. (in Dutch, translated as: the emergence of exots in the Netherlands avifauna: past, present and future.)
  publication-title: Limosa
– volume: 102
  start-page: 6543
  year: 2005
  end-page: 6549
  article-title: Developmental plasticity and the origin of species differences
  publication-title: Proceedings of the National Academy of Sciences
– volume: 185
  start-page: 313
  year: 2010
  end-page: 326
  article-title: Unified framework to evaluate panmixia and migration direction among multiple sampling locations
  publication-title: Genetics
– volume: 12
  start-page: 99
  year: 2011b
  article-title: Evolution and connectivity in the world‐wide migration system of the mallard: inferences from mitochondrial DNA
  publication-title: BMC Genetics
– volume: 10
  start-page: 1509
  year: 1996
  end-page: 1518
  article-title: La regla de Un‐Migrante‐Por‐Generación en Conservación y Manejo
  publication-title: Conservation Biology
– volume: 107
  start-page: 7341
  year: 2010
  end-page: 7346
  article-title: Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 94
  start-page: 421
  year: 2006
  end-page: 432
  article-title: Travels and traditions: long‐distance dispersal in the Barnacle Goose based on individual case histories
  publication-title: Ardea
– volume: 104
  start-page: 209
  year: 1996
  end-page: 232
  article-title: Individual versus social learning: evolutionary analysis in a fluctuating environment
  publication-title: Anthropological Science
– year: 2012
– start-page: 42
  year: 2009
  end-page: 79
– volume: 19
  start-page: 182
  year: 1988
  end-page: 189
  article-title: From the high Arctic to the Baltic: the successful establishment of a Barnacle Goose population on Gotland, Sweden
  publication-title: Ornis Scandinavica
– start-page: 492
  year: 1970
– year: 1980
– volume: 78
  start-page: 63
  year: 2008
  end-page: 72
  article-title: Skipping the Baltic: the emergence of a dichotomy of alternative spring migration strategies in Russian barnacle geese
  publication-title: Journal of Animal Ecology
– volume: 43
  start-page: 229
  year: 1979
  end-page: 235
  article-title: Traditional use of migration and winter roost sites by Canada geese
  publication-title: Journal of Wildlife Management
– year: 2002
– volume: 73
  start-page: 1069
  year: 1995
  end-page: 1076
  article-title: Winter range arrival and departure of white‐tailed deer in northeastern Minnesota
  publication-title: Canadian Journal of Zoology
– volume: 11
  start-page: 339
  year: 2002
  end-page: 361
  article-title: The role of “conservatism” in herring migrations
  publication-title: Reviews in Fish Biology and Fisheries
– year: 2013
  article-title: Contrasting context‐dependence of familiarity and kinship in animal social networks
  publication-title: Animal Behaviour
– volume: 29
  start-page: 441
  year: 1998
  end-page: 446
  article-title: Evidence for flexibility and constraint in migration systems
  publication-title: Journal of Avian Biology
– volume: 26
  start-page: 700
  year: 2003
  end-page: 706
  article-title: Breeding barnacle geese in Kolokolkova Bay, Russia: number of breeding pairs, reproductive success and morphology
  publication-title: Polar Biology
– year: 1978
– volume: 16
  start-page: 1765
  year: 2007
  end-page: 1785
  article-title: Mechanisms of population differentiation in seabirds
  publication-title: Molecular Ecology
– volume: 19
  start-page: 5484
  year: 2010
  end-page: 5496
  article-title: Cultural inheritance drives site fidelity and migratory connectivity in a long‐distance migrant
  publication-title: Molecular Ecology
– volume: 28
  start-page: 9
  year: 1991
  end-page: 12
  article-title: Inheritance of migratory direction in a bird species ‐ a cross‐breeding experiment with Se‐migrating and Sw‐migrating blackcaps (Sylvia‐Atricapilla)
  publication-title: Behavioral Ecology and Sociobiology
– volume: 57
  start-page: 165
  year: 2007
  end-page: 174
  article-title: The genetics and evolution of avian migration
  publication-title: BioScience
– volume: 48
  start-page: 81
  year: 1994
  end-page: 88
  article-title: Barnacle geese preferentially pair with familiar associates from early life
  publication-title: Animal Behaviour
– year: 2013
– start-page: 492
  volume-title: Social Behavior in Birds and Mammals
  year: 1970
  ident: e_1_2_6_30_1
– ident: e_1_2_6_11_1
  doi: 10.1023/A:1021347630813
– ident: e_1_2_6_19_1
  doi: 10.1023/A:1013825816443
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ympev.2011.06.017
– ident: e_1_2_6_7_1
  doi: 10.1534/genetics.109.112532
– ident: e_1_2_6_53_1
  doi: 10.1641/B570211
– ident: e_1_2_6_21_1
  doi: 10.5962/bhl.title.6373
– ident: e_1_2_6_22_1
  doi: 10.1676/07-126.1
– ident: e_1_2_6_43_1
  doi: 10.1093/genetics/163.3.1153
– ident: e_1_2_6_29_1
  doi: 10.1371/journal.pone.0038412
– ident: e_1_2_6_34_1
  doi: 10.1111/mec.12098
– ident: e_1_2_6_42_1
  doi: 10.1023/A:1018491828875
– ident: e_1_2_6_47_1
  doi: 10.1139/z95-127
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1474-919X.1992.tb04731.x
– volume-title: Tutorial: Comparison of Gene Flow Models Using Bayes Factors
  year: 2012
  ident: e_1_2_6_6_1
– ident: e_1_2_6_14_1
  doi: 10.34080/os.v20.19922
– ident: e_1_2_6_66_1
  doi: 10.1111/j.1755-0998.2010.02885.x
– ident: e_1_2_6_56_1
  doi: 10.1126/science.193.4248.153
– ident: e_1_2_6_60_1
  doi: 10.2307/3677163
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.1006874107
– ident: e_1_2_6_13_1
  doi: 10.1537/ase.104.209
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-294X.2010.04852.x
– ident: e_1_2_6_27_1
  doi: 10.1093/beheco/arq208
– ident: e_1_2_6_28_1
  doi: 10.1007/s10682-011-9514-6
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1365-2486.2008.01804.x
– volume: 94
  start-page: 421
  year: 2006
  ident: e_1_2_6_61_1
  article-title: Travels and traditions: long‐distance dispersal in the Barnacle Goose Branta leucopsis based on individual case histories
  publication-title: Ardea
– ident: e_1_2_6_48_1
  doi: 10.1111/j.2517-6161.1994.tb01956.x
– volume: 79
  start-page: 305
  year: 1991
  ident: e_1_2_6_65_1
  article-title: A note on the Lesser White‐Fronted Goose Anser erythropus in Sweden and the result of a re‐introduction scheme
  publication-title: Ardea
– ident: e_1_2_6_20_1
  doi: 10.1007/BF00172133
– volume-title: “Genetics’’, a Package for Handling Marker‐Based Genetic Data within the Open‐Source Statistical Package R
  year: 2002
  ident: e_1_2_6_68_1
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1461-0248.2010.01576.x
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1600-048X.2011.05395.x
– volume-title: Systematics and the Origin of Species, From the Viewpoint of a Zoologist
  year: 1942
  ident: e_1_2_6_40_1
– ident: e_1_2_6_36_1
  doi: 10.2307/3676556
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1365-294X.2008.04067.x
– ident: e_1_2_6_44_1
  doi: 10.1046/j.1523-1739.1996.10061509.x
– ident: e_1_2_6_33_1
  doi: 10.1186/1471-2156-12-99
– ident: e_1_2_6_10_1
  doi: 10.1006/anbe.1994.1213
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-2656.2008.01493.x
– ident: e_1_2_6_63_1
  doi: 10.1007/s00300-003-0535-7
– ident: e_1_2_6_26_1
  doi: 10.1371/journal.pone.0011369
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1365-2435.2007.01283.x
– volume-title: Wild Goose Dilemmas
  year: 2007
  ident: e_1_2_6_9_1
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1471-8286.2004.00828.x
– ident: e_1_2_6_70_1
  doi: 10.1073/pnas.0501844102
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1558-5646.2008.00345.x
– ident: e_1_2_6_35_1
  doi: 10.1016/j.anbehav.2013.09.001
– ident: e_1_2_6_59_1
  doi: 10.1038/334471a0
– ident: e_1_2_6_67_1
  doi: 10.14430/arctic150
– ident: e_1_2_6_39_1
– volume-title: The Evolutionary Ecology of Animal Migration
  year: 1978
  ident: e_1_2_6_4_1
– ident: e_1_2_6_32_1
  doi: 10.1186/1471-2164-12-150
– ident: e_1_2_6_57_1
  doi: 10.2307/3800660
– ident: e_1_2_6_52_1
  doi: 10.1034/j.1600-0706.2003.12042.x
– ident: e_1_2_6_54_1
  doi: 10.1073/pnas.0910361107
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1095-8312.2012.01872.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_6_55_1
– ident: e_1_2_6_5_1
  doi: 10.1017/CBO9780511626920.004
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1365-294X.2006.03197.x
– volume: 69
  start-page: 103
  year: 1996
  ident: e_1_2_6_38_1
  article-title: De opkomst van exoten in de Nederlandse Avifauna: verleden, heden en toekomst. (in Dutch, translated as: the emergence of exots in the Netherlands avifauna: past, present and future.)
  publication-title: Limosa
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-2656.2008.01485.x
– start-page: 365
  volume-title: Ecology and Management of Breeding Waterfowl
  year: 1992
  ident: e_1_2_6_3_1
– ident: e_1_2_6_45_1
  doi: 10.1093/acprof:oso/9780199568994.001.0001
– ident: e_1_2_6_24_1
  doi: 10.1093/bioinformatics/btn129
– ident: e_1_2_6_25_1
  doi: 10.1186/1471-2156-11-94
– ident: e_1_2_6_51_1
  doi: 10.1007/978-94-009-1527-5
– volume-title: The Birds of North America Online
  year: 2002
  ident: e_1_2_6_46_1
– volume-title: Wild Geese of the World ‐ Their Life History and Ecology
  year: 1980
  ident: e_1_2_6_49_1
– ident: e_1_2_6_62_1
  doi: 10.1093/beheco/13.6.786
SSID ssj0013255
Score 2.2992017
Snippet Cultural transmission of migratory traditions enables species to deal with their environment based on experiences from earlier generations. Also, it allows a...
SourceID wageningen
swepub
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5835
SubjectTerms admixture
Animal Migration
Animal, plant and microbial ecology
Animals
Aquatic birds
Biological and medical sciences
Biological evolution
bird
Branta leucopsis
canada geese
connectivity
cultural evolution
differentiation
direction
Discriminant Analysis
Emigration
Environmental changes
evolution
Evolutionary Biology
Evolutionsbiologi
Fundamental and applied biological sciences. Psychology
Geese - genetics
Gene Flow
General aspects. Techniques
Genetic structure
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Genetics, Population
Genotype
Greenland
inheritance
Linkage Disequilibrium
Methods and techniques (sampling, tagging, trapping, modelling...)
migration modelling
Migratory species
Models, Genetic
Netherlands
parental care
Polymorphism, Single Nucleotide
population
population genetics
Population genetics, reproduction patterns
Population structure
Principal Component Analysis
relatedness
Russia
SNP
speciation
Svalbard
Sweden
Traditions
Wildfowl
Title Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis
URI https://api.istex.fr/ark:/67375/WNG-RDWQ98QQ-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.12548
https://www.ncbi.nlm.nih.gov/pubmed/24118391
https://www.proquest.com/docview/1461346059
https://www.proquest.com/docview/1461879265
https://www.proquest.com/docview/1492629439
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-29910
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F444649
Volume 22
WOSCitedRecordID wos000327278700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tLUjjgd9sgVEZBGgvQU3iJI54GmvLHkZFJ7b1zbITu6ro0ilpGfvvOTtp1koDIfEUS_niJOe78zm-fAfwztBLpqGnXJlk1KU6i1yGvtKVIhFeoAOd2Nyc85N4OGTjcfJtCz6t_oWp-CGaD27GMqy_NgYuZLlm5Jcq_YizM2Xb0PZRb8MWtHung7OTtU0EW_QUg3QfvQ0LamIhk8jTXLwxHbWNZH-Z9EhRooR0VdrirtizIRZ9ADvXaPi5_RNqM8C1M9Tg0X-922N4WAem5LDSpCewpfKncL8qVXmDrb6lt755BmPDVI0gkq4lYpO5Jri4tqWtyOV0Um3ek0UhsionjExzIgXeAjsnE6VKRT7jiy8EmallOr8qp-VzOBv0vx8du3V9BjeN0Dm5morMi_ws1FoqzTLq0VRESgkc5YiFws8yapZ3vlCRn0rPlyygiM-6SseaBcELaOXzXO0BYZGkvicw1vSwVylFxpRKmE5jJlLdlQ4crIaJpzV5uamhMeOrRQyKjFuROfC2gV5VjB13gT7YsW4QovhhUtzikF8Mv_DT3sUoYaMRP3ags6EMzQU-Q_fH4sCB_ZV28Nr8S7Oe8gKz45w48KY5jYZrdmNErubLCsPixI_Cv2EMnWOCQaMDu5Xm3T4A9Ux06znwvlLF5oxhDO9Nzw_5vJjwWb7kGHJ4XQeCW03lualUVVporZD8elnwfGYO2FnJKaURxfseWEX9syj51_6Rbbz8d-gr2PFNWRGbFrQPrUWxVK_hXvpzMS2LDmzHY9aprfk3t_xOVw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFcR44PsjMIZBDO0lqE7cxJF4GWtLEV1Fp330zXISu6ro0ilpGfvvOTtp1koDIfGUSLk4yfl357N9-R3Ae0MvmbSocuMoZS7TaeBy9JVuLCNJfe3ryObmnPbDwYCPRtH3Dfi0_Bem5IeoF9yMZVh_bQzcLEivWPm5Sj7i8Mz4LWgwhBHiu9E-6p70V3YRbNVTjNI9dDfcr5iFTCZPffPaeNQwqv1l8iNlgSrSZW2Lm4LPmln0HmxdouVn9leo9QjXDlHdB__3cQ_hfhWakv0SS49gQ2WP4U5ZrPIKzzqW4PrqCYwMVzUKkWQlFZvMNMHptS1uRc4n43L7nsxzmZZZYWSSkVjiI7BxMlaqUOQzfvlckqlaJLOLYlI8hZNu5_ig51YVGtwkQPfkaiZTGnhpS-tYaZ4yyhIZKCWxnwPekl6aMjPB86QKvCSmXsx9hvJpU-lQc99_BpvZLFMvgPAgZh6VGG1SbDWOZcqVirhOQi4T3Ywd2Fv2k0gq-nJTRWMqltMYVJmwKnPgXS16UXJ23CT0wXZ2LSHzHybJLWyJs8EXcdQ-G0Z8OBQ9B3bW0FDf4HF0gDz0HdhewkNUDqAwMyrqmz3nyIG39WU0XbMfIzM1W5QyPIy8oPU3GUPoGGHY6MDzEnrXL8CoiW-pA7slFusrhjO8PTndF7N8LKbZQmDQQZsO-NdQFZmpVVVY0QqR4nKRi2xqDthYIRhjAcPn7lmk_lmV4rBzYE9e_rvoG7jbOz7si_7XwbdXsOWZIiM2SWgbNuf5Qr2G28nP-aTIdyqj_g23AlFf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFtB44PsjMIZBgPYS1CRu4ki8jLVliFKtE9v6ZjmxXVV0aZW0jP33nJ00a6WBkHiKpfziJOe78zm-_A7graGXTNuecpNYUpdqGboMfaWbiFh4gQ50bHNzTvvRYMBGo_hoCz6u_oUp-SHqD27GMqy_Ngau5lKvWfm5Sj_g9EzZDWhSU0SmAc3Oce-kv7aLYKueYpTuo7thQcUsZDJ56os35qOmEe0vkx8pChSRLmtbXBd81syid2D7Ai0_s79CbUa4dorq3fu_l7sPd6vQlOyXuvQAtlT2EG6VxSovsdW1BNeXj2BkuKoRRNK1VGwy0wSX17a4FTmfjMvte7LIhSyzwsgkI4nAW2DnZKxUocgnfPOFIFO1TGfzYlI8hpNe9_vBoVtVaHDTEN2Tq6mQXujLttaJ0kxSj6YiVErgOIesLXwpqVng-UKFfpp4fsICinjZUjrSLAieQCObZeoZEBYm1PcERpse9pokQjKlYqbTiIlUtxIH9lbjxNOKvtxU0Zjy1TIGRcatyBx4U0PnJWfHdaD3drBrhMh_mCS3qM3PBp_5cedsGLPhkB86sLuhDfUFPkMHyKLAgZ2VevDKARRmReUFZs85duB1fRpN1-zHiEzNliWGRbEftv-GMYSOMYaNDjwtVe_qAahn4lvPgXelLtZnDGd4Z3K6z2f5mE-zJcegw2s5EFypKs9MrarCQiuN5BfLnGdTc8DOCk4pDSned89q6p9Fyb91D2zj-b9DX8Hto06P978Mvr6Abd_UGLE5QjvQWORL9RJupj8XkyLfrWz6N86ZUNo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+consequences+of+breaking+migratory+traditions+in+barnacle+geese+Branta+leucopsis&rft.jtitle=Molecular+ecology&rft.au=Jonker%2C+R+M&rft.au=Kraus%2C+R+H+S&rft.au=Zhang%2C+Q&rft.au=van+Hooft%2C+P&rft.date=2013-12-01&rft.issn=1365-294X&rft.eissn=1365-294X&rft.volume=22&rft.issue=23&rft.spage=5835&rft_id=info:doi/10.1111%2Fmec.12548&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon