Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism

Background Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and prog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cachexia, sarcopenia and muscle Jg. 10; H. 1; S. 140 - 154
Hauptverfasser: Pin, Fabrizio, Barreto, Rafael, Couch, Marion E., Bonetto, Andrea, O'Connell, Thomas M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany John Wiley & Sons, Inc 01.02.2019
John Wiley and Sons Inc
Wiley
Schlagworte:
ISSN:2190-5991, 2190-6009, 2190-6009
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer‐induced and chemotherapy‐induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments. Methods The murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer‐induced cachexia. In vivo administration of Folfiri (5‐fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy‐induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance‐based and mass spectrometry‐based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling. Results The study involved four groups of CD2F1 male mice (n = 4–5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (−3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (−38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (−47% in CC vs. V; P < 0.001) and depletion of liver glucose (−51% in CC vs. V; P < 0.001) and glycogen (−74% in CC vs. V; P < 0.001). The cancer‐induced and chemotherapy‐induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β‐oxidation pathways. Cancer‐induced cachexia was uniquely characterized by a dramatic elevation in low‐density lipoprotein particles (+6.9‐fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001). Conclusions The results of this study demonstrated for the first time that cancer‐induced and chemotherapy‐induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer‐induced and chemotherapy‐induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.
AbstractList Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer-induced and chemotherapy-induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments. The murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer-induced cachexia. In vivo administration of Folfiri (5-fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy-induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance-based and mass spectrometry-based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling. The study involved four groups of CD2F1 male mice (n = 4-5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (-3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (-38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (-47% in CC vs. V; P < 0.001) and depletion of liver glucose (-51% in CC vs. V; P < 0.001) and glycogen (-74% in CC vs. V; P < 0.001). The cancer-induced and chemotherapy-induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β-oxidation pathways. Cancer-induced cachexia was uniquely characterized by a dramatic elevation in low-density lipoprotein particles (+6.9-fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001). The results of this study demonstrated for the first time that cancer-induced and chemotherapy-induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer-induced and chemotherapy-induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.
Abstract Background Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer‐induced and chemotherapy‐induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments. Methods The murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer‐induced cachexia. In vivo administration of Folfiri (5‐fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy‐induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance‐based and mass spectrometry‐based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling. Results The study involved four groups of CD2F1 male mice (n = 4–5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (−3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (−38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (−47% in CC vs. V; P < 0.001) and depletion of liver glucose (−51% in CC vs. V; P < 0.001) and glycogen (−74% in CC vs. V; P < 0.001). The cancer‐induced and chemotherapy‐induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β‐oxidation pathways. Cancer‐induced cachexia was uniquely characterized by a dramatic elevation in low‐density lipoprotein particles (+6.9‐fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001). Conclusions The results of this study demonstrated for the first time that cancer‐induced and chemotherapy‐induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer‐induced and chemotherapy‐induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.
BackgroundCancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer‐induced and chemotherapy‐induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments.MethodsThe murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer‐induced cachexia. In vivo administration of Folfiri (5‐fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy‐induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance‐based and mass spectrometry‐based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling.ResultsThe study involved four groups of CD2F1 male mice (n = 4–5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (−3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (−38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (−47% in CC vs. V; P < 0.001) and depletion of liver glucose (−51% in CC vs. V; P < 0.001) and glycogen (−74% in CC vs. V; P < 0.001). The cancer‐induced and chemotherapy‐induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β‐oxidation pathways. Cancer‐induced cachexia was uniquely characterized by a dramatic elevation in low‐density lipoprotein particles (+6.9‐fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001).ConclusionsThe results of this study demonstrated for the first time that cancer‐induced and chemotherapy‐induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer‐induced and chemotherapy‐induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.
Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer-induced and chemotherapy-induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments.BACKGROUNDCancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer-induced and chemotherapy-induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments.The murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer-induced cachexia. In vivo administration of Folfiri (5-fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy-induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance-based and mass spectrometry-based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling.METHODSThe murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer-induced cachexia. In vivo administration of Folfiri (5-fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy-induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance-based and mass spectrometry-based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling.The study involved four groups of CD2F1 male mice (n = 4-5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (-3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (-38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (-47% in CC vs. V; P < 0.001) and depletion of liver glucose (-51% in CC vs. V; P < 0.001) and glycogen (-74% in CC vs. V; P < 0.001). The cancer-induced and chemotherapy-induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β-oxidation pathways. Cancer-induced cachexia was uniquely characterized by a dramatic elevation in low-density lipoprotein particles (+6.9-fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001).RESULTSThe study involved four groups of CD2F1 male mice (n = 4-5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (-3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (-38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (-47% in CC vs. V; P < 0.001) and depletion of liver glucose (-51% in CC vs. V; P < 0.001) and glycogen (-74% in CC vs. V; P < 0.001). The cancer-induced and chemotherapy-induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β-oxidation pathways. Cancer-induced cachexia was uniquely characterized by a dramatic elevation in low-density lipoprotein particles (+6.9-fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001).The results of this study demonstrated for the first time that cancer-induced and chemotherapy-induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer-induced and chemotherapy-induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.CONCLUSIONSThe results of this study demonstrated for the first time that cancer-induced and chemotherapy-induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer-induced and chemotherapy-induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.
Background Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer‐induced and chemotherapy‐induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments. Methods The murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer‐induced cachexia. In vivo administration of Folfiri (5‐fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy‐induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance‐based and mass spectrometry‐based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling. Results The study involved four groups of CD2F1 male mice (n = 4–5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (−3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (−38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (−47% in CC vs. V; P < 0.001) and depletion of liver glucose (−51% in CC vs. V; P < 0.001) and glycogen (−74% in CC vs. V; P < 0.001). The cancer‐induced and chemotherapy‐induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β‐oxidation pathways. Cancer‐induced cachexia was uniquely characterized by a dramatic elevation in low‐density lipoprotein particles (+6.9‐fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001). Conclusions The results of this study demonstrated for the first time that cancer‐induced and chemotherapy‐induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer‐induced and chemotherapy‐induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.
Author Bonetto, Andrea
Pin, Fabrizio
Barreto, Rafael
O'Connell, Thomas M.
Couch, Marion E.
AuthorAffiliation 3 Department of Surgery Indiana University School of Medicine Indianapolis USA
5 Simon Cancer Center Indiana University School of Medicine Indianapolis USA
2 Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis USA
1 Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis USA
4 Department of Otolaryngology–Head & Neck Surgery Indiana University School of Medicine Indianapolis USA
6 IUPUI Center for Cachexia Research, Innovation and Therapy Indiana University School of Medicine Indianapolis USA
AuthorAffiliation_xml – name: 1 Department of Anatomy and Cell Biology Indiana University School of Medicine Indianapolis USA
– name: 5 Simon Cancer Center Indiana University School of Medicine Indianapolis USA
– name: 6 IUPUI Center for Cachexia Research, Innovation and Therapy Indiana University School of Medicine Indianapolis USA
– name: 2 Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis USA
– name: 3 Department of Surgery Indiana University School of Medicine Indianapolis USA
– name: 4 Department of Otolaryngology–Head & Neck Surgery Indiana University School of Medicine Indianapolis USA
Author_xml – sequence: 1
  givenname: Fabrizio
  surname: Pin
  fullname: Pin, Fabrizio
  organization: Indiana University School of Medicine
– sequence: 2
  givenname: Rafael
  surname: Barreto
  fullname: Barreto, Rafael
  organization: Indiana University School of Medicine
– sequence: 3
  givenname: Marion E.
  surname: Couch
  fullname: Couch, Marion E.
  organization: Indiana University School of Medicine
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0002-3235-1871
  surname: Bonetto
  fullname: Bonetto, Andrea
  email: abonetto@iu.edu
  organization: Indiana University School of Medicine
– sequence: 5
  givenname: Thomas M.
  orcidid: 0000-0003-4342-9539
  surname: O'Connell
  fullname: O'Connell, Thomas M.
  email: thoconnell@iu.edu
  organization: Indiana University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30680954$$D View this record in MEDLINE/PubMed
BookMark eNp9kkuLFDEQgBtZcdd1L_4ACXgRYdY8utOTi7AMPlZWPKhHCXlUz2ToTsYkrfa_NzM9K-4i5pIi9dVHkarH1YkPHqrqKcGXBGP6amvScEko4_hBdUaJwAuOsTg5xo0Q5LS6SGmLy6k54Q1-VJ0yzJdYNPVZ9W2lzAZ-OYWct6MBi_SEjPIGIlLeopIcQt5AVLsJTQ56i6xL2XmT0Q5iHqNW2QWfUA4IPMT1hAbISofepeFJ9bBTfYKL431efX375svq_eLm07vr1dXNwnC8xAvR6c7UQDnY1grBtMK8gVoLW0IC2lBlMWZWi0axWnfWmo6RFihuMVG0ZufV9ey1QW3lLrpBxUkG5eThIcS1VDE704O0ura66bhuaVNTzZamw1Yzvewa1XGjiuv17NqNegBrwOeo-jvSuxnvNnIdfkhesyWrmyJ4cRTE8H2ElOXgkoG-Vx7CmCQlrSgYpbigz--h2zBGX75KUkZFy1jL9tSzvzv608rtFAuAZ8DEkFKEThqXD2MpDbpeEiz3uyL3uyIPu1JKXt4rubX-EyYz_NP1MP2HlB9Wnz_ONb8BqMDRnw
CitedBy_id crossref_primary_10_1016_j_critrevonc_2023_103989
crossref_primary_10_1002_jcsm_12657
crossref_primary_10_3389_fphar_2025_1503785
crossref_primary_10_1093_jncimonographs_lgad006
crossref_primary_10_1007_s11306_021_01781_8
crossref_primary_10_1016_j_clnu_2024_01_006
crossref_primary_10_1016_j_ejphar_2024_176538
crossref_primary_10_1096_fj_201802799R
crossref_primary_10_1038_s41598_023_30927_y
crossref_primary_10_3390_ijms21051867
crossref_primary_10_1016_j_biopha_2023_115906
crossref_primary_10_1002_jcsm_12498
crossref_primary_10_1002_jcsm_13465
crossref_primary_10_1371_journal_pone_0283806
crossref_primary_10_1111_ajco_13669
crossref_primary_10_1016_j_tem_2024_12_005
crossref_primary_10_1152_ajpcell_00773_2024
crossref_primary_10_1002_jcsm_12528
crossref_primary_10_3390_metabo11060404
crossref_primary_10_1016_j_phymed_2023_155269
crossref_primary_10_3389_fcell_2021_720096
crossref_primary_10_1002_jcsm_12804
crossref_primary_10_1002_jcsm_12524
crossref_primary_10_1002_jcsm_12645
crossref_primary_10_1002_jcsm_13734
crossref_primary_10_3390_cancers11091222
crossref_primary_10_1002_jcsm_12886
crossref_primary_10_3390_biomedicines11030905
crossref_primary_10_3390_cancers13040850
crossref_primary_10_3390_microorganisms13061356
crossref_primary_10_1152_ajpcell_00327_2024
crossref_primary_10_3390_cancers13143615
crossref_primary_10_1177_10732748241292784
crossref_primary_10_3390_antiox12040945
crossref_primary_10_3389_fnut_2020_601329
crossref_primary_10_1038_s41574_024_00992_y
crossref_primary_10_2147_IJGM_S351241
crossref_primary_10_3233_JND_230064
crossref_primary_10_3390_jcm10153436
crossref_primary_10_14814_phy2_14927
crossref_primary_10_3389_fonc_2019_00348
crossref_primary_10_1002_jcsm_12638
crossref_primary_10_1002_jcsm_12637
crossref_primary_10_1177_10499091221123049
crossref_primary_10_1002_cnr2_70290
crossref_primary_10_1155_2024_5339292
crossref_primary_10_1016_j_tranon_2022_101398
crossref_primary_10_1089_ars_2022_0149
crossref_primary_10_3390_cancers14122894
crossref_primary_10_3390_nu13061980
crossref_primary_10_3390_ijms22094501
crossref_primary_10_1002_cbf_3652
crossref_primary_10_3390_biomedicines12112528
crossref_primary_10_1016_j_carbpol_2020_117545
crossref_primary_10_1016_j_heliyon_2023_e17411
crossref_primary_10_3390_cancers14143500
crossref_primary_10_1016_j_nut_2024_112462
crossref_primary_10_1016_j_phrs_2024_107476
crossref_primary_10_1177_10732748211038445
crossref_primary_10_3389_fmolb_2022_789889
crossref_primary_10_3390_cancers11040571
crossref_primary_10_3390_cells10113150
crossref_primary_10_1371_journal_pone_0301379
crossref_primary_10_3390_cancers12123810
crossref_primary_10_1002_cbf_70120
crossref_primary_10_1038_s42003_025_07770_0
crossref_primary_10_1007_s00280_020_04060_w
crossref_primary_10_3390_metabo10040161
crossref_primary_10_1007_s00380_024_02379_5
crossref_primary_10_1038_s42003_023_04479_w
crossref_primary_10_1038_s41389_020_00288_6
crossref_primary_10_1152_ajpcell_00374_2025
crossref_primary_10_3390_cancers12113221
crossref_primary_10_1002_jcsm_13151
crossref_primary_10_3390_diagnostics11010116
crossref_primary_10_3390_ijms21228592
crossref_primary_10_1002_jcsm_13035
crossref_primary_10_1007_s00330_021_07899_6
crossref_primary_10_1096_fj_202200848R
crossref_primary_10_1172_JCI191934
crossref_primary_10_1080_14796694_2024_2341576
crossref_primary_10_3390_biomedicines10020388
crossref_primary_10_1111_ggi_14770
crossref_primary_10_14814_phy2_16003
crossref_primary_10_1186_s13045_022_01349_6
crossref_primary_10_1371_journal_pcbi_1009505
crossref_primary_10_1016_j_radcr_2020_10_022
crossref_primary_10_1096_fj_202200460R
crossref_primary_10_1016_j_chroma_2023_463856
crossref_primary_10_1089_ars_2020_8041
crossref_primary_10_1152_ajpregu_00035_2025
crossref_primary_10_1002_jcsm_13422
crossref_primary_10_1002_jcsm_12698
crossref_primary_10_1016_j_jep_2022_115944
crossref_primary_10_1002_cncr_35204
crossref_primary_10_3390_cancers14205075
crossref_primary_10_1007_s00018_021_03888_6
crossref_primary_10_1007_s43440_020_00179_y
crossref_primary_10_1155_2022_2567150
crossref_primary_10_3390_metabo11120831
crossref_primary_10_1210_endocr_bqad176
crossref_primary_10_3390_ijms24108772
crossref_primary_10_1007_s11864_019_0691_9
crossref_primary_10_1016_j_partic_2023_02_021
crossref_primary_10_1152_japplphysiol_00622_2019
crossref_primary_10_3389_fcell_2022_861622
crossref_primary_10_1016_j_job_2024_100595
crossref_primary_10_3390_cancers14133137
crossref_primary_10_3389_fdsfr_2025_1528468
crossref_primary_10_3390_cells12040644
crossref_primary_10_1016_j_smhs_2024_01_006
crossref_primary_10_1002_jcsm_12684
crossref_primary_10_3389_fphys_2022_879263
crossref_primary_10_1111_febs_16040
crossref_primary_10_3390_nu12030836
crossref_primary_10_3390_ijms22062890
crossref_primary_10_1002_ehf2_13052
crossref_primary_10_1002_jcsm_12440
crossref_primary_10_1080_17460441_2020_1724954
crossref_primary_10_3389_fphar_2022_914597
crossref_primary_10_3390_cancers16132364
crossref_primary_10_3389_fonc_2020_581814
crossref_primary_10_1002_jcsm_12678
crossref_primary_10_1016_j_jff_2023_105542
crossref_primary_10_1038_s41598_024_57747_y
crossref_primary_10_1007_s00281_020_00798_w
crossref_primary_10_1016_j_jpba_2023_115533
crossref_primary_10_1038_s41401_021_00669_6
crossref_primary_10_3390_life13010008
crossref_primary_10_3389_fonc_2023_1104594
crossref_primary_10_3390_cells10030516
crossref_primary_10_3390_ijms222413575
crossref_primary_10_1093_function_zqae011
crossref_primary_10_1002_rco2_50
crossref_primary_10_1136_bmjopen_2021_052373
crossref_primary_10_3390_ijms22126310
crossref_primary_10_3390_nu12072106
crossref_primary_10_3390_nu13092969
crossref_primary_10_1002_jcsm_12674
crossref_primary_10_1016_j_jlr_2023_100387
crossref_primary_10_1016_j_tem_2021_03_007
crossref_primary_10_1080_01635581_2024_2381271
crossref_primary_10_1016_j_bbcan_2020_188359
crossref_primary_10_15252_emmm_202013591
crossref_primary_10_1007_s11538_024_01278_0
crossref_primary_10_1016_j_nut_2019_03_012
crossref_primary_10_3389_fphar_2024_1455805
crossref_primary_10_1038_s41467_022_30926_z
crossref_primary_10_1016_j_jgo_2022_09_011
crossref_primary_10_1097_XCS_0000000000000535
crossref_primary_10_3390_biomedicines9060698
crossref_primary_10_1016_j_cellimm_2021_104312
crossref_primary_10_1016_j_ygcen_2024_114513
crossref_primary_10_3390_ijms232112926
Cites_doi 10.1007/s11306-012-0485-6
10.1016/S0014-5793(98)01178-8
10.1016/j.febslet.2005.02.017
10.1177/1099800414558087
10.1038/sj.embor.7400532
10.1371/journal.pone.0165615
10.1152/physiol.00046.2010
10.1152/japplphysiol.01138.2006
10.1097/MCO.0000000000000164
10.1002/jcsm.12261
10.1152/physrev.00031.2007
10.1152/japplphysiol.01318.2003
10.1093/jnci/92.4.321
10.3389/fphys.2016.00472
10.1089/ars.2011.3965
10.1186/s13075-016-0982-5
10.1038/nprot.2007.376
10.1007/BF00917463
10.1038/nrc927
10.3892/ijo.2013.1998
10.1016/0300-9084(91)90081-B
10.1002/ijc.23754
10.1021/pr1002774
10.1016/j.bbrc.2003.07.013
10.1038/sj.bjc.6600074
10.1046/j.1523-1755.2003.00281.x
10.1016/S1470-2045(10)70218-7
10.1172/JCI118657
10.1016/S0261-5614(96)80028-8
10.1038/bonekey.2015.101
10.1007/s13539-012-0101-7
10.3389/fphys.2014.00503
10.1152/ajpendo.00039.2012
10.1038/ki.1997.263
10.1002/jcsm.12023
10.1038/nm.4093
10.1016/j.cmet.2006.02.002
10.1200/JCO.20.2.371
10.1016/0014-5793(87)80168-0
10.2337/db11-1355
10.1371/journal.pone.0022538
10.1016/j.cmet.2007.10.013
10.1097/MCO.0000000000000106
10.1172/JCI114421
10.1038/sj.bjc.6600101
10.1210/en.2013-1179
10.18632/oncotarget.6439
10.1016/j.cll.2006.07.006
10.1007/s11306-008-0113-7
10.1016/0026-0495(95)90040-3
10.1373/clinchem.2014.232918
10.1242/dmm.008839
10.1016/S0168-8278(97)80124-9
10.1016/j.clnu.2008.06.013
10.18632/oncotarget.9779
ContentType Journal Article
Copyright 2019 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders
2019 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders
– notice: 2019 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/jcsm.12360
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Metabolic changes in cachexia from cancer or chemotherapy
EISSN 2190-6009
EndPage 154
ExternalDocumentID oai_doaj_org_article_db4db5f6b72542b38cf0db3b8f5af6ca
PMC6438345
30680954
10_1002_jcsm_12360
JCSM12360
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: V Foundation for Cancer Research
  funderid: V2017‐021
– fundername: IUSCC
– fundername: V Foundation for Cancer Research
  grantid: V2017‐021
GroupedDBID ---
0R~
1OC
24P
2VQ
4.4
40G
53G
5VS
7X7
8FI
8FJ
AAHHS
AAKDD
AAZKR
ABUWG
ACCFJ
ACCMX
ACXQS
ADBBV
ADINQ
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AHBYD
AHSBF
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMKLP
AOIJS
AVUZU
AZFZN
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
M48
M~E
O9-
OK1
OVD
OVEED
PIMPY
PQQKQ
PROAC
RPM
RSV
SMD
SOJ
U2A
UKHRP
WIN
ZOVNA
AAFWJ
AAMMB
AAYXX
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c6080-9fbfc4e26ed7d993ba065e4b9d3ba1ebc2ad003db95a34bfddcf317e20701a243
IEDL.DBID BENPR
ISICitedReferencesCount 169
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462626100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2190-5991
2190-6009
IngestDate Tue Oct 14 19:01:41 EDT 2025
Tue Nov 04 01:55:13 EST 2025
Sun Nov 09 09:28:21 EST 2025
Tue Oct 07 06:51:35 EDT 2025
Mon Jul 21 06:02:45 EDT 2025
Tue Nov 18 22:28:51 EST 2025
Sat Nov 29 04:06:37 EST 2025
Wed Jan 22 16:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metabolomics
Chemotherapy
Cachexia
Metabolism
Muscle wasting
Cancer
Language English
License Attribution-NonCommercial
2019 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6080-9fbfc4e26ed7d993ba065e4b9d3ba1ebc2ad003db95a34bfddcf317e20701a243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3235-1871
0000-0003-4342-9539
OpenAccessLink https://www.proquest.com/docview/2329733730?pq-origsite=%requestingapplication%
PMID 30680954
PQID 2329733730
PQPubID 4370305
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_db4db5f6b72542b38cf0db3b8f5af6ca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438345
proquest_miscellaneous_2179453220
proquest_journals_2329733730
pubmed_primary_30680954
crossref_citationtrail_10_1002_jcsm_12360
crossref_primary_10_1002_jcsm_12360
wiley_primary_10_1002_jcsm_12360_JCSM12360
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Heidelberg
– name: Hoboken
PublicationTitle Journal of cachexia, sarcopenia and muscle
PublicationTitleAlternate J Cachexia Sarcopenia Muscle
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2012; 61
2001; 50
2007; 102
2017; 8
2012; 2012
2013; 4
2005; 579
2008; 7
2000; 92
2011; 12
2011; 15
1998; 436
2008; 4
1989; 49
2013; 9
1990; 85
2014; 5
1997; 51
2002; 86
2008; 27
2006; 26
2016; 117
2013; 154
2007; 2
2011; 26
2014; 17
2011; 27
2010; 9
2015; 6
2015; 17
2015; 4
2015; 18
2013; 43
2008; 18
1997; 26
1991; 73
2002; 2
2006; 3
2008; 123
2016; 18
2011; 6
2012; 303
1996; 15
1996; 97
2016; 11
2004; 96
2016; 7
2004; 313
1987; 215
2002; 20
2015; 61
1995; 44
2005; 6
2008; 88
1994; 1
2012; 5
2003; 64
2016; 22
2005; 14
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
Constantinou C (e_1_2_9_37_1) 2011; 27
e_1_2_9_54_1
Damrauer JS (e_1_2_9_11_1) 2008; 18
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
Holecek M (e_1_2_9_32_1) 2001; 50
e_1_2_9_41_1
DeJong CH (e_1_2_9_62_1) 2005; 14
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
ultani M (e_1_2_9_15_1) 2012; 2012
Beck SA (e_1_2_9_30_1) 1989; 49
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
Bonetto A (e_1_2_9_19_1) 2016; 117
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 73
  start-page: 99
  year: 1991
  end-page: 104
  article-title: Variations of plasma sialic acid and ‐acetylglucosamine levels in cancer, inflammatory diseases and bone marrow transplantation: a proton NMR spectroscopy study
  publication-title: Biochimie
– volume: 4
  start-page: 216
  year: 2008
  end-page: 225
  article-title: Metabolomic analysis of cancer cachexia reveals distinct lipid and glucose alterations
  publication-title: Metabolomics
– volume: 14
  start-page: 257
  year: 2005
  end-page: 263
  article-title: Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia
  publication-title: Oncol Rep
– volume: 49
  start-page: 3800
  year: 1989
  end-page: 3804
  article-title: Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice
  publication-title: Cancer Res
– volume: 15
  start-page: 91
  year: 1996
  end-page: 93
  article-title: Leucine metabolism in fasted and tumor necrosis factor‐treated rats
  publication-title: Clin Nutr
– volume: 64
  start-page: 1780
  year: 2003
  end-page: 1786
  article-title: Protein restriction and AST‐120 improve lipoprotein lipase and VLDL receptor in focal glomerulosclerosis
  publication-title: Kidney Int
– volume: 7
  start-page: 472
  year: 2016
  article-title: Cancer and chemotherapy contribute to muscle loss by activating common signaling pathways
  publication-title: Front Physiol.
– volume: 51
  start-page: 1933
  year: 1997
  end-page: 1937
  article-title: Down‐regulation of hepatic lipase expression in experimental nephrotic syndrome
  publication-title: Kidney Int
– volume: 303
  start-page: E410
  year: 2012
  end-page: E421
  article-title: JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL‐6 and in experimental cancer cachexia
  publication-title: Am J Physiol Endocrinol Metab
– volume: 18
  start-page: 139
  year: 2008
  end-page: 148
  article-title: Chemotherapy‐induced muscle wasting: association with NF‐κB and cancer cachexia
  publication-title: Basic Applied Myology
– volume: 7
  start-page: 45
  year: 2008
  end-page: 56
  article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
  publication-title: Cell Metab
– volume: 11
  year: 2016
  article-title: Association of N‐linked glycoprotein acetyls and colorectal cancer incidence and mortality
  publication-title: PloS one
– volume: 50
  start-page: 25
  year: 2001
  end-page: 33
  article-title: Metabolism of branched‐chain amino acids in starved rats: the role of hepatic tissue
  publication-title: Physiol Res
– volume: 6
  start-page: 132
  year: 2015
  end-page: 143
  article-title: Ghrelin prevents tumour‐ and cisplatin‐induced muscle wasting: characterization of multiple mechanisms involved
  publication-title: J Cachexia Sarcopenia Muscle
– volume: 44
  start-page: 1340
  year: 1995
  end-page: 1348
  article-title: Negative impact of cancer chemotherapy on protein metabolism in healthy and tumor‐bearing rats
  publication-title: Metabolism: clinical and experimental
– volume: 22
  start-page: 666
  year: 2016
  end-page: 671
  article-title: Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia
  publication-title: Nat Med
– volume: 96
  start-page: 2082
  issue: 6
  year: 2004
  end-page: 2087
  article-title: Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting
  publication-title: J Appl Physiol
– volume: 5
  start-page: 503
  year: 2014
  article-title: Mitochondria dysfunction in lung cancer‐induced muscle wasting in C2C12 myotubes
  publication-title: Front Physiol
– volume: 9
  start-page: 4545
  year: 2010
  end-page: 4553
  article-title: 1H NMR spectroscopy‐based interventional metabolic phenotyping: a cohort study of rheumatoid arthritis patients
  publication-title: J Proteome Res
– volume: 27
  start-page: 15
  year: 2011
  end-page: 24
  article-title: Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia
  publication-title: Int J Mol Med
– volume: 92
  start-page: 321
  year: 2000
  end-page: 328
  article-title: Randomized clinical trial of adenosine 5′‐triphosphate in patients with advanced non‐small‐cell lung cancer
  publication-title: J Natl Cancer Inst
– volume: 27
  start-page: 793
  year: 2008
  end-page: 799
  article-title: Cachexia: a new definition
  publication-title: Clin Nutr
– volume: 5
  start-page: 533
  year: 2012
  end-page: 545
  article-title: Importance of functional and metabolic impairments in the characterization of the C‐26 murine model of cancer cachexia
  publication-title: Dis Model Mech
– volume: 117
  year: 2016
  article-title: The Colon‐26 carcinoma tumor‐bearing mouse as a model for the study of cancer cachexia
  publication-title: Journal of visualized experiments: JoVE
– volume: 2
  start-page: 2692
  issue: 11
  year: 2007
  end-page: 703
  article-title: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts
  publication-title: Nat Protoc.
– volume: 313
  start-page: 417
  year: 2004
  end-page: 422
  article-title: Regulation of protein synthesis by branched‐chain amino acids
  publication-title: Biochem Biophys Res Commun
– volume: 436
  start-page: 415
  year: 1998
  end-page: 418
  article-title: Skeletal muscle UCP2 and UCP3 gene expression in a rat cancer cachexia model
  publication-title: FEBS Lett
– volume: 17
  start-page: 509
  year: 2014
  end-page: 514
  article-title: The energy balance in cancer cachexia revisited
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 2012
  start-page: 490804
  year: 2012
  article-title: Anti‐inflammatory cytokines: important immunoregulatory factors contributing to chemotherapy‐induced gastrointestinal mucositis
  publication-title: Chemother Res Pract
– volume: 88
  start-page: 1243
  year: 2008
  end-page: 1276
  article-title: Exercise‐induced oxidative stress: cellular mechanisms and impact on muscle force production
  publication-title: Physiol Rev
– volume: 4
  start-page: 145
  year: 2013
  end-page: 155
  article-title: Metabolic derangements in the gastrocnemius and the effect of compound A therapy in a murine model of cancer cachexia
  publication-title: J Cachexia Sarcopenia Muscle
– volume: 26
  start-page: 1141
  year: 1997
  end-page: 1147
  article-title: Leucine metabolism in partially hepatectomized rats
  publication-title: J Hepatol
– volume: 18
  start-page: 86
  year: 2016
  article-title: A novel inflammatory biomarker, GlycA, associates with disease activity in rheumatoid arthritis and cardio‐metabolic risk in BMI‐matched controls
  publication-title: Arthritis Res Ther
– volume: 20
  start-page: 371
  year: 2002
  end-page: 378
  article-title: Beneficial effects of adenosine triphosphate on nutritional status in advanced lung cancer patients: a randomized clinical trial
  publication-title: J Clin Oncol
– volume: 18
  start-page: 221
  year: 2015
  end-page: 225
  article-title: Muscle wasting in cancer: the role of mitochondria
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 4
  start-page: 732
  year: 2015
  article-title: Assessment of muscle mass and strength in mice
  publication-title: Bonekey Rep
– volume: 3
  start-page: 177
  year: 2006
  end-page: 185
  article-title: HIF‐1‐mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
  publication-title: Cell Metab
– volume: 123
  start-page: 1227
  year: 2008
  end-page: 1239
  article-title: Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials
  publication-title: Int J Cancer
– volume: 7
  start-page: 43442
  year: 2016
  end-page: 43460
  article-title: Chemotherapy‐related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs
  publication-title: Oncotarget.
– volume: 17
  start-page: 549
  year: 2015
  end-page: 557
  article-title: Induction of IL‐6 by cytotoxic chemotherapy is associated with loss of lean body and fat mass in tumor‐free female mice
  publication-title: Biol Res Nurs
– volume: 86
  start-page: 612
  year: 2002
  end-page: 618
  article-title: Expression of uncoupling proteins‐1, ‐2 and ‐3 mRNA is induced by an adenocarcinoma‐derived lipid‐mobilizing factor
  publication-title: Br J Cancer
– volume: 86
  start-page: 372
  year: 2002
  end-page: 375
  article-title: Muscle UCP‐3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans
  publication-title: Br J Cancer
– volume: 102
  start-page: 2056
  year: 2007
  end-page: 2063
  article-title: Free radical‐mediated skeletal muscle dysfunction in inflammatory conditions
  publication-title: J Appl Physiol
– volume: 61
  start-page: 714
  year: 2015
  end-page: 723
  article-title: GlycA: a composite nuclear magnetic resonance biomarker of systemic inflammation
  publication-title: Clin Chem
– volume: 8
  start-page: 1081
  year: 2017
  end-page: 1083
  article-title: Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2017
  publication-title: J Cachexia Sarcopenia Muscle
– volume: 6
  start-page: e22538
  year: 2011
  article-title: STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia
  publication-title: PloS one.
– volume: 12
  start-page: 489
  year: 2011
  end-page: 495
  article-title: Definition and classification of cancer cachexia: an international consensus
  publication-title: Lancet Oncol
– volume: 9
  start-page: 730
  year: 2013
  end-page: 739
  article-title: Cancer cachexia's metabolic signature in a murine model confirms a distinct entity
  publication-title: Metabolomics.
– volume: 6
  start-page: 917
  year: 2005
  end-page: 921
  article-title: Uncoupling proteins: current status and therapeutic prospects
  publication-title: EMBO Rep
– volume: 26
  start-page: 847
  year: 2006
  end-page: 870
  article-title: Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy
  publication-title: Clin Lab Med
– volume: 43
  start-page: 886
  year: 2013
  end-page: 894
  article-title: Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model
  publication-title: Int J Oncol
– volume: 215
  start-page: 311
  year: 1987
  end-page: 315
  article-title: Assignment of resonances for ‘acute‐phase’ glycoproteins in high resolution proton NMR spectra of human blood plasma
  publication-title: FEBS Lett
– volume: 2
  start-page: 862
  year: 2002
  end-page: 871
  article-title: Cachexia in cancer patients
  publication-title: Nat Rev Cancer
– volume: 1
  start-page: 5
  year: 1994
  end-page: 14
  article-title: Changes in glycosylation of acute‐phase proteins in health and disease: occurence, regulation and function
  publication-title: Glycoconj J
– volume: 26
  start-page: 192
  year: 2011
  end-page: 205
  article-title: The regulation and physiology of mitochondrial proton leak
  publication-title: Physiology (Bethesda)
– volume: 61
  start-page: 1372
  year: 2012
  end-page: 1380
  article-title: Metabolic signatures of insulin resistance in 7,098 young adults
  publication-title: Diabetes
– volume: 154
  start-page: 3118
  year: 2013
  end-page: 3129
  article-title: Inhibition of cisplatin‐induced lipid catabolism and weight loss by ghrelin in male mice
  publication-title: Endocrinology
– volume: 85
  start-page: 256
  year: 1990
  end-page: 263
  article-title: Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched‐chain alpha‐keto acid dehydrogenase
  publication-title: J Clin Invest
– volume: 579
  start-page: 1646
  year: 2005
  end-page: 1652
  article-title: Both oxidative and nitrosative stress are associated with muscle wasting in tumour‐bearing rats
  publication-title: FEBS Lett
– volume: 97
  start-page: 2167
  year: 1996
  end-page: 2173
  article-title: Abnormalities in hepatic lipase in chronic renal failure: role of excess parathyroid hormone
  publication-title: J Clin Invest
– volume: 15
  start-page: 2543
  year: 2011
  end-page: 2563
  article-title: Chemotherapy‐induced weakness and fatigue in skeletal muscle: the role of oxidative stress
  publication-title: Antioxid Redox Signal
– volume: 6
  start-page: 43202
  year: 2015
  end-page: 43215
  article-title: Combination of exercise training and erythropoietin prevents cancer‐induced muscle alterations
  publication-title: Oncotarget
– ident: e_1_2_9_26_1
  doi: 10.1007/s11306-012-0485-6
– ident: e_1_2_9_41_1
  doi: 10.1016/S0014-5793(98)01178-8
– ident: e_1_2_9_49_1
  doi: 10.1016/j.febslet.2005.02.017
– ident: e_1_2_9_61_1
  doi: 10.1177/1099800414558087
– ident: e_1_2_9_43_1
  doi: 10.1038/sj.embor.7400532
– ident: e_1_2_9_56_1
  doi: 10.1371/journal.pone.0165615
– volume: 14
  start-page: 257
  year: 2005
  ident: e_1_2_9_62_1
  article-title: Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia
  publication-title: Oncol Rep
– volume: 27
  start-page: 15
  year: 2011
  ident: e_1_2_9_37_1
  article-title: Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia
  publication-title: Int J Mol Med
– ident: e_1_2_9_42_1
  doi: 10.1152/physiol.00046.2010
– ident: e_1_2_9_52_1
  doi: 10.1152/japplphysiol.01138.2006
– ident: e_1_2_9_8_1
  doi: 10.1097/MCO.0000000000000164
– ident: e_1_2_9_63_1
  doi: 10.1002/jcsm.12261
– ident: e_1_2_9_51_1
  doi: 10.1152/physrev.00031.2007
– ident: e_1_2_9_28_1
  doi: 10.1152/japplphysiol.01318.2003
– ident: e_1_2_9_44_1
  doi: 10.1093/jnci/92.4.321
– ident: e_1_2_9_6_1
  doi: 10.3389/fphys.2016.00472
– ident: e_1_2_9_14_1
  doi: 10.1089/ars.2011.3965
– ident: e_1_2_9_60_1
  doi: 10.1186/s13075-016-0982-5
– volume: 49
  start-page: 3800
  year: 1989
  ident: e_1_2_9_30_1
  article-title: Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice
  publication-title: Cancer Res
– ident: e_1_2_9_22_1
  doi: 10.1038/nprot.2007.376
– ident: e_1_2_9_59_1
  doi: 10.1007/BF00917463
– ident: e_1_2_9_3_1
  doi: 10.1038/nrc927
– ident: e_1_2_9_29_1
  doi: 10.3892/ijo.2013.1998
– ident: e_1_2_9_55_1
  doi: 10.1016/0300-9084(91)90081-B
– volume: 2012
  start-page: 490804
  year: 2012
  ident: e_1_2_9_15_1
  article-title: Anti‐inflammatory cytokines: important immunoregulatory factors contributing to chemotherapy‐induced gastrointestinal mucositis
  publication-title: Chemother Res Pract
– ident: e_1_2_9_50_1
  doi: 10.1002/ijc.23754
– ident: e_1_2_9_54_1
  doi: 10.1021/pr1002774
– ident: e_1_2_9_31_1
  doi: 10.1016/j.bbrc.2003.07.013
– ident: e_1_2_9_40_1
  doi: 10.1038/sj.bjc.6600074
– ident: e_1_2_9_48_1
  doi: 10.1046/j.1523-1755.2003.00281.x
– ident: e_1_2_9_2_1
  doi: 10.1016/S1470-2045(10)70218-7
– ident: e_1_2_9_46_1
  doi: 10.1172/JCI118657
– ident: e_1_2_9_33_1
  doi: 10.1016/S0261-5614(96)80028-8
– ident: e_1_2_9_21_1
  doi: 10.1038/bonekey.2015.101
– ident: e_1_2_9_17_1
  doi: 10.1007/s13539-012-0101-7
– volume: 18
  start-page: 139
  year: 2008
  ident: e_1_2_9_11_1
  article-title: Chemotherapy‐induced muscle wasting: association with NF‐κB and cancer cachexia
  publication-title: Basic Applied Myology
– volume: 50
  start-page: 25
  year: 2001
  ident: e_1_2_9_32_1
  article-title: Metabolism of branched‐chain amino acids in starved rats: the role of hepatic tissue
  publication-title: Physiol Res
– ident: e_1_2_9_38_1
  doi: 10.3389/fphys.2014.00503
– ident: e_1_2_9_58_1
  doi: 10.1152/ajpendo.00039.2012
– ident: e_1_2_9_47_1
  doi: 10.1038/ki.1997.263
– ident: e_1_2_9_12_1
  doi: 10.1002/jcsm.12023
– ident: e_1_2_9_18_1
  doi: 10.1038/nm.4093
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cmet.2006.02.002
– ident: e_1_2_9_45_1
  doi: 10.1200/JCO.20.2.371
– ident: e_1_2_9_53_1
  doi: 10.1016/0014-5793(87)80168-0
– ident: e_1_2_9_57_1
  doi: 10.2337/db11-1355
– ident: e_1_2_9_20_1
  doi: 10.1371/journal.pone.0022538
– ident: e_1_2_9_36_1
  doi: 10.1016/j.cmet.2007.10.013
– ident: e_1_2_9_9_1
  doi: 10.1097/MCO.0000000000000106
– ident: e_1_2_9_35_1
  doi: 10.1172/JCI114421
– volume: 117
  year: 2016
  ident: e_1_2_9_19_1
  article-title: The Colon‐26 carcinoma tumor‐bearing mouse as a model for the study of cancer cachexia
  publication-title: Journal of visualized experiments: JoVE
– ident: e_1_2_9_39_1
  doi: 10.1038/sj.bjc.6600101
– ident: e_1_2_9_13_1
  doi: 10.1210/en.2013-1179
– ident: e_1_2_9_5_1
  doi: 10.18632/oncotarget.6439
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cll.2006.07.006
– ident: e_1_2_9_16_1
  doi: 10.1007/s11306-008-0113-7
– ident: e_1_2_9_10_1
  doi: 10.1016/0026-0495(95)90040-3
– ident: e_1_2_9_24_1
  doi: 10.1373/clinchem.2014.232918
– ident: e_1_2_9_25_1
  doi: 10.1242/dmm.008839
– ident: e_1_2_9_34_1
  doi: 10.1016/S0168-8278(97)80124-9
– ident: e_1_2_9_4_1
  doi: 10.1016/j.clnu.2008.06.013
– ident: e_1_2_9_7_1
  doi: 10.18632/oncotarget.9779
SSID ssj0000461650
Score 2.552991
Snippet Background Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment...
Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for...
BackgroundCancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment...
Abstract Background Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 140
SubjectTerms Animals
Anorexia
Antineoplastic Agents - adverse effects
Antineoplastic Combined Chemotherapy Protocols - adverse effects
Cachexia
Cachexia - chemically induced
Cachexia - metabolism
Cachexia - pathology
Camptothecin - adverse effects
Camptothecin - analogs & derivatives
Cancer
Cancer therapies
Cell Line, Tumor
Chemotherapy
Dehydrogenases
Energy Metabolism
Fluorouracil - adverse effects
Glucose - metabolism
Laboratory animals
Leucovorin - adverse effects
Lipids
Liver
Liver - drug effects
Liver - metabolism
Male
Metabolism
Metabolites
Metabolomics
Mice
Muscle Strength
Muscle wasting
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Musculoskeletal system
Neoplasms - chemically induced
Neoplasms - metabolism
Neoplasms - pathology
Nitrogen
NMR
Nuclear magnetic resonance
Original
Oxidative stress
Reactive Oxygen Species - metabolism
Receptors, LDL - metabolism
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA-liPgiVquuVom0Lwpru_ncPOrRIkKLoEJfJOQTT3p75W4r3n_fSbJd7rDUF9_CZmBnJzOTXzbJbxA6oE4AaBCiVsyRmqnG1aYRoW4pjZyIwKUvxSbk2Vl7fq6-rJX6SmfCCj1wMdyht8xbHoWVsJQhlrYuHnlLbRu5icJlaASoZ20xlXMwE43I5VlJuivNAQWN3KTk8Jdbzt4n2pGjjdkok_bfhjT_PjC5DmTzTHTyCD0cICT-UFTfQVuhe4zunw6b5E_Qj0kiaf4zNRjW2zByHtsVdml0F9h0HkPnbLh3tcKrdIIN-xTpnevxZVjAHGTLbzzcz3HIdwPxLPTgLRfT5WwXfT85_jb5VA9VFGonwDC1ijY6FsDuXnpAI9YA6gjMKg_NJlhHjIfQ9lZxQ5mN3rsIoCIQSAaNIYw-RdvdvAvPEaZgcmUDsU42jAdrvOCESU8lDW2IokJvb6yp3UAxnipdXOhCjkx0srzOlq_Q_ih7WYg1bpX6mAZllEhk2PkBuIgeXET_y0UqtHczpHqI0KUGJKkkBc3hHW_GboittGFiujC_ApmUrTikPJB5Vjxg1ISmoiWKswrJDd_YUHWzp5v-zPzdItHDMl6hd9mL7vh8_Xny9TS3XvwPQ7xEDwDvqXLofA9t94ur8Ardc7_76XLxOkfQNWeEIz8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access (WRLC)
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB5KFfHFuzZaZURfFGLNXDPgiy4WEVoKKvRFhrnqlm62JKm4_94zk2zqYhHEt5A5IXM558w3l_MdhJ5TJwA0CFEq5kjJVOVKU4lQ1pRGTkTg0g_JJuThYX18rI620Jt1LMzADzFtuCXLyP46Gbix3d4FaeiJ6xavEncILNivVBWtU-IGwo6mHZZEJS5yilaS4qU5IKGJn5TsXXy-MSNl4v7L0OaflyZ_B7N5Ntq_-X_tuIVujCgUvx3U5jbaCs0ddO1gPGe_i77OEs_zz7nBsGSHwffYrrBLCtJi03gMhYsxdGuFV-kSHPbJWTSux2ehhWnMDjuBuF_ikMML8SL0oHCn825xD33Zf_959qEcEzGUTgCiLFW00bEAQ-elB0BjDQCXwKzy8FgF64jx4B28VdxQZqP3LgIuCQT8SWUIo_fRdrNswg7ClJuobCDWyYrxYI0XnDDpqaShDlEU6MV6MLQbWcpTsoxTPfArE536S-f-KtCzSfZs4Oa4VOpdGtNJIvFp5xfL9psezVN7y7zlUVgJC2Ziae3ia2-prSPUVzhToN21RujRyDsNYFRJCjWHfzydisE805mLacLyHGSSw-PgNUHmwaBAU01oynuiOCuQ3FCtjapuljTz75kCXCSGWcYL9DKr1l-arz_OPh3kp4f_IvwIXQdoqIb76btou2_Pw2N01f3o5137JBvaL-qCLhI
  priority: 102
  providerName: Wiley-Blackwell
Title Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcsm.12360
https://www.ncbi.nlm.nih.gov/pubmed/30680954
https://www.proquest.com/docview/2329733730
https://www.proquest.com/docview/2179453220
https://pubmed.ncbi.nlm.nih.gov/PMC6438345
https://doaj.org/article/db4db5f6b72542b38cf0db3b8f5af6ca
Volume 10
WOSCitedRecordID wos000462626100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: 7X7
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: BENPR
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: PIMPY
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: WIN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2190-6009
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461650
  issn: 2190-5991
  databaseCode: 24P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXYS48H4ElsoILiBld-tXkhNiq12xSK0qHqIcUORXoGiblraL6L9n7LiBitVeuEROPAc7Mx5_HtvfADxnRiJokDItuKEpL3omVT3p0pyxSlDpRGabZBPZcJiPx8UoBtyW8VjlxicGR21nxsfID3DmLzLG0CBfzX-kPmuU312NKTR2YNczlfEO7B4dD0fv2iiLpxOXIU0r9XemBaKhlqOUHnw3y-m-px853JqVAnn_RYjz34OTfwPaMCOd3PzfvtyCGxGLkteN8dyGK66-A9cGcbf9Lnzpe7bnXxNFcOGOJmCJXhPjzWRBVG0JVk7jBa41WfujcMR6l1GbFZm7BU5muokHktWMuHDJkEzdCs3ubLKc3oOPJ8cf-m_SmI4hNRJxZVpUujLcoQJtZhHWaIXwxXFdWCz2nDZUWfQRVhdCMa4ra02F6MRR9Co9RTm7D516VruHQJhQVaEd1SbrceG0slJQnln8JS53lUzgxUYdpYlc5T5lxlnZsCzT0quuDKpL4FkrO28YOi6UOvJabSU8q3b4MFt8LeMgLa3mVotK6gyXzVSz3FSHVjOdV9heaVQCext9lnGoL8s_ykzgaVuNg9TvvKjazc5Rxrs9gb4TZR40JtS2hPnsJ4XgCWRbxrXV1O2aevItEIFLzzPLRQIvgxle0v3ybf_9IJQeXd6Hx3AdIWHRnEvfg85qce6ewFXzczVZLrqwQ_kIn9k4C8-8GwdcN8Qy8G10Ohh9xrdPp8PfukU3Dg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoAL74ehwCLgAJLbZp_xASEIVC1tIiRaKRfk7ssQ1DghSYH8KX4js2vHEFH11gO3lXdk7Xq_eXh39huAp8xKDBqkTDNuacqzlk11S_q0zVghqPRCuarYhOr12v1-9mEFfi3uwoS0yoVNjIbajWzYI99Az58pxhCQr8bf0lA1KpyuLkpoVLDY9fMf-Ms2fbnzFtf3GaVb7_Y722ldVSC1EsOjNCtMYbnHcTjl0DsbjV7Yc5M5bLa8sVQ7hLozmdCMm8I5W6CT9RSVo6UpZ_jec3Ae7bgKKWSqr5o9nUBeLmNRWBpuaAuMvRpGVLrx1U6H64HsZHPJB8ZSASfFt_-maf4dPkf_t3X1f_ty1-BKHWmT15VqXIcVX96Ai906l-AmfOoELuufA00GpUOAO2LmxAYlmBBdOoKdw_p62pzMQ6IfccEglnZGxn6CrtpUu51kNiI-XqEkQz9DpToaTIe34OBMJncbVstR6e8CYUIXmfHUWNXiwhvtpKBcOVwC3_aFTOD5YvlzWzOxh4IgR3nFIU3zAJU8QiWBJ43suOIfOVHqTUBRIxE4w-OD0eRzXpug3BnujCikUVRwaljbFpvOMNMucLzS6gTWFvjJa0M2zf-AJ4HHTTeaoHCupEs_OkaZYNQFegaUuVNBthkJC7VdMsETUEtgXhrqck85-BJpzmVg0eUigRcR9qdMP3_f-diNrXunz-ERXNre7-7lezu93ftwGYPfrMrAX4PV2eTYP4AL9vtsMJ08jIpN4PCs9eE3FkqOzg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFlVceD8MBRYBB5BMmn05PiAEKRGhJIoESOWAzD4hqHGCkwL5a_w6Zm3HEFH11gM3yzuKduPvmxmvZ78BeMCMxKRByjjlhsY8bZtYtaWLO4x5QaUTia2aTSTDYefgIB1twK_VWZhQVrnyiaWjtlMT9shbGPnThDEEZMvXZRGjvd6z2bc4dJAKX1pX7TQqiOy75Q98fZs_7e_hs35Iae_lu-6ruO4wEBuJqVKceu0Ndzgnm1iM1FphRHZcpxYv204bqizC3upUKMa1t9Z4DLiOIlHainKGv3sGtjAl58ixrVF_MPrQ7PAEKXNZtoil4by2wEys0Uelra9mPnkSpE921yJi2TjguGz336LNv5PpMhr2LvzP_-NFOF_n4OR5RZpLsOHyy7A9qKsMrsDHblC5_jlWZJxbhL4leklMoEdBVG4JDk7qg2tLsgwlgMQGV5mbBZm5AoO4rvZByWJKXHm4kkzcAul2OJ5PrsL7U1ncNdjMp7m7AYQJ5VPtqDZJmwunlZWC8sTi43Ad52UEj1ZQyEyt0R5ahRxmlbo0zQJsshI2EdxvbGeVMsmxVi8CohqLoCZe3pgWn7PaOWVWc6uFlzqhglPNOsbvWs10x-N8pVER7KywlNUubp79AVIE95phdE7hi5PK3fQIbYK7Fxgz0OZ6Bd9mJix0fUkFjyBZA_baVNdH8vGXUgBdBn1dLiJ4XFLghOVnr7tvB-XVzZPXcBe2kQbZm_5w_xacw6w4rUrzd2BzURy523DWfF-M58WdmuUEPp02IX4D0niZHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cachexia+induced+by+cancer+and+chemotherapy+yield+distinct+perturbations+to+energy+metabolism&rft.jtitle=Journal+of+cachexia%2C+sarcopenia+and+muscle&rft.au=Pin%2C+Fabrizio&rft.au=Barreto%2C+Rafael&rft.au=Couch%2C+Marion+E&rft.au=Bonetto%2C+Andrea&rft.date=2019-02-01&rft.issn=2190-6009&rft.eissn=2190-6009&rft.volume=10&rft.issue=1&rft.spage=140&rft_id=info:doi/10.1002%2Fjcsm.12360&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-5991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-5991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-5991&client=summon