Excessive reactive oxygen species induce transcription-dependent replication stress

Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 14; H. 1; S. 1791 - 15
Hauptverfasser: Andrs, Martin, Stoy, Henriette, Boleslavska, Barbora, Chappidi, Nagaraja, Kanagaraj, Radhakrishnan, Nascakova, Zuzana, Menon, Shruti, Rao, Satyajeet, Oravetzova, Anna, Dobrovolna, Jana, Surendranath, Kalpana, Lopes, Massimo, Janscak, Pavel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 30.03.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer. Excessive oxidative stress is widely perceived as a key factor in cancer progression. Here, the authors reveal that oxidative stress induces transcription-dependent replication fork stalling that appears to be a major source of chromosomal rearrangements found in human cancers.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37341-y