Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness
Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate...
Gespeichert in:
| Veröffentlicht in: | Journal of neuroengineering and rehabilitation Jg. 20; H. 1; S. 23 - 28 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
19.02.2023
BioMed Central Ltd Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1743-0003, 1743-0003 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.
Methods
Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.
Results
(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.
Conclusions
Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies. |
|---|---|
| AbstractList | Abstract Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Methods Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. Results (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies. In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.BACKGROUNDIn the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.METHODSFour databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.RESULTS(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.CONCLUSIONSDespite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies. In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies. Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Methods Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. Results (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies. BackgroundIn the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.MethodsFour databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.Results(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.ConclusionsDespite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies. Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Methods Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. Results (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies. Keywords: Powered exoskeleton, Gait rehabilitation, Lower limb, Brain injury, Stroke, Cerebral palsy, Literature synthesis In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies. |
| ArticleNumber | 23 |
| Audience | Academic |
| Author | Font-Llagunes, Josep M. de Miguel-Fernández, Jesús Prinsen, Erik Lobo-Prat, Joan Marchal-Crespo, Laura |
| Author_xml | – sequence: 1 givenname: Jesús orcidid: 0000-0001-8651-1642 surname: de Miguel-Fernández fullname: de Miguel-Fernández, Jesús organization: Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Institut de Recerca Sant Joan de Déu – sequence: 2 givenname: Joan orcidid: 0000-0003-4197-1391 surname: Lobo-Prat fullname: Lobo-Prat, Joan organization: ABLE Human Motion – sequence: 3 givenname: Erik surname: Prinsen fullname: Prinsen, Erik organization: Roessingh Research and Development – sequence: 4 givenname: Josep M. orcidid: 0000-0002-7192-2980 surname: Font-Llagunes fullname: Font-Llagunes, Josep M. organization: Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Institut de Recerca Sant Joan de Déu – sequence: 5 givenname: Laura orcidid: 0000-0002-8008-5803 surname: Marchal-Crespo fullname: Marchal-Crespo, Laura email: laura.marchal@unibe.ch organization: Cognitive Robotics Department, Delft University of Technology, Motor Learning and Neurorehabilitation Lab, ARTORG Center for Biomedical Engineering Research, University of Bern, Department of Rehabilitation Medicine, Erasmus MC University Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36805777$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kttu1DAQhiNURA_wAlwgS9xwsyVO7NjhAqmqOFSqxA1cWxNnvPXitYudbdlH4W2Z7W7pQaiKrNiT7_-dGf2H1V5MEavqNa-POdfd-8KbXotZ3bSzmnMhZvJZdcCVoGNdt3v39vvVYSkL2ohaihfVftvpWiqlDqo_pylOOQVWpgwTzj0Wtio4Mh9ZSNeYWfDLgeHvVH5iwCnFwlzKbA5-YhkvYPDBTzD5FBm4ifghA2l9XKzy-gMDVtZlwiURlvgrj9cM4kgLwrr4wpJjNvjoLQSGzqGd_BVGLOVl9dxBKPhq9z6qfnz-9P306-z825ez05Pzme1qNc2Gzsqm1tCQGOigR-mUVaOzjXUcNcdGqN6hE1SXSg5Satm1onUc-lHw9qg62_qOCRbmMvsl5LVJ4M1NIeW5gUx_H9D0GsANUttBCCGxBddoMSLniLwbQZPXx63X5WpY4miRZgvhgenDL9FfmHm6Mn3f6r7fGLzbGeT0a4VlMktfLIYAEdOqmEYp3atWa0no20foIq0yjXVDaS2I4c0dNQdqwEeX6F67MTUnqlV9q7quJur4PxQ9Iy69pdQ5T_UHgjf3G_3X4W2wCNBbwOZUSkZn7C4m5OyD4bXZZNhsM2wow-Ymw2bTWPNIeuv-pKjdigrBcY75bhpPqP4C6pkHKg |
| CitedBy_id | crossref_primary_10_1186_s12984_024_01531_6 crossref_primary_10_3389_fneur_2024_1292587 crossref_primary_10_3389_fnins_2024_1355052 crossref_primary_10_1186_s12984_024_01510_x crossref_primary_10_1109_TNSRE_2024_3479283 crossref_primary_10_1038_s41598_023_47430_z crossref_primary_10_1109_ACCESS_2025_3577700 crossref_primary_10_3390_act12090353 crossref_primary_10_3390_app15116053 crossref_primary_10_1109_TNSRE_2023_3303777 crossref_primary_10_1109_ACCESS_2025_3607679 crossref_primary_10_1109_ACCESS_2024_3414175 crossref_primary_10_1002_aisy_202400039 crossref_primary_10_1007_s42235_024_00537_z crossref_primary_10_3390_s25154571 crossref_primary_10_3390_act14030108 crossref_primary_10_1109_TNSRE_2025_3547361 crossref_primary_10_3390_jcm12237220 crossref_primary_10_3389_fbioe_2023_1208561 crossref_primary_10_1016_j_bspc_2024_106347 crossref_primary_10_1111_jocn_70082 crossref_primary_10_3390_bioengineering10111328 crossref_primary_10_3390_prosthesis5020040 crossref_primary_10_3390_s24030964 crossref_primary_10_4103_jmss_jmss_49_24 crossref_primary_10_1016_j_bbe_2025_06_004 crossref_primary_10_3390_robotics13010011 crossref_primary_10_12688_f1000research_157134_1 crossref_primary_10_1016_j_compbiomed_2024_108839 crossref_primary_10_1007_s42235_023_00397_z crossref_primary_10_1109_ACCESS_2024_3443066 crossref_primary_10_1177_1045389X241263878 crossref_primary_10_3389_fnhum_2023_1179418 crossref_primary_10_3389_fnins_2025_1569148 crossref_primary_10_3390_brainsci13040612 crossref_primary_10_1016_j_bspc_2025_108282 crossref_primary_10_3389_fnbot_2023_1186175 crossref_primary_10_52326_jes_utm_2025_32_1__06 crossref_primary_10_3390_robotics13080120 crossref_primary_10_1109_ACCESS_2025_3552757 crossref_primary_10_25100_iyc_v27i1_14594 crossref_primary_10_3389_fbioe_2024_1391322 |
| Cites_doi | 10.1109/CCAC.2019.8921278 10.1097/PEP.0b013e318227bbc6 10.1016/j.ejpn.2010.01.002 10.1109/RoboSoft48309.2020.9116050 10.1007/s10439-020-02454-8 10.1186/s12984-016-0158-1 10.1310/tsr1503-200 10.1109/LRA.2020.2965072 10.1101/2021.02.19.431882 10.1186/s12984-020-00703-4 10.1016/j.mechatronics.2018.03.002 10.1371/journal.pone.0178636 10.1109/ICORR.2017.8009248 10.1007/s11517-011-0816-1 10.1186/s12984-021-00906-3 10.1109/JSEN.2020.2975790 10.1016/j.pmr.2019.09.011 10.1109/ICORR.2019.8779554 10.3390/app9010164 10.3233/NRE-161325 10.1037/0278-7393.15.2.352 10.3233/NRE-161424 10.1109/LRA.2022.3183799 10.1109/TOH.2021.3104518 10.1109/LRA.2019.2955946 10.1016/j.robot.2020.103514 10.1016/j.apmr.2005.12.042 10.3233/RNN-170734 10.1016/j.dhjo.2019.01.005 10.3389/fnins.2018.00276 10.3389/fnins.2017.00400 10.1371/journal.pone.0229707 10.1155/2018/2892065 10.3109/17483107.2013.873489 10.1109/TNSRE.2018.2817647 10.1016/b978-0-323-55381-0.00002-0 10.3389/fnbot.2018.00010 10.1115/DSCC2010-4204 10.1186/s12984-017-0340-0 10.23736/S1973-9087.19.05574-6 10.1016/j.humov.2015.05.010 10.1016/S0140-6736(11)60325-5 10.1186/1743-0003-11-98 10.1109/EMBC.2018.8512807 10.1016/S1052-3057(03)00042-9 10.1111/j.1469-8749.2008.03150.x 10.1310/JB16-V04F-JAL5-H1UV 10.3390/s20143972 10.1371/journal.pone.0137910 10.1177/1729881417743554 10.1186/s12984-020-00762-7 10.1016/j.jns.2021.118583 10.1097/MRR.0000000000000132 10.1145/3197768.3197779 10.3389/fnbot.2021.659876 10.3389/fnins.2019.00259 10.1109/TNSRE.2016.2521160 10.1186/1743-0003-10-75 10.1177/1545968314521004 10.1016/j.bspc.2017.05.011 10.1007/s11948-020-00268-4 10.1109/BIOROB.2008.4762796 10.1161/STR.0000000000000098 10.3233/TAD-2010-0306 10.1109/TBME.2016.2604340 10.1109/TNSRE.2020.2965029 10.1177/0278364917706743 10.1109/TNSRE.2020.2977339 10.1109/TNSRE.2010.2079334 10.1161/01.STR.0000127785.73065.34 10.1088/1741-2552/aaa8c0 10.1161/STROKEAHA.119.025950 10.1097/PHM.0000000000000776 10.1161/01.STR.0000254607.48765.cb 10.3390/s19214804 10.1161/STROKEAHA.107.504779 10.1186/1743-0003-12-1 10.3389/fbioe.2020.00770 10.3233/NRE-172408 10.1177/1545968307300697 10.1109/JSYST.2014.2351491 10.1016/j.jbiomech.2006.12.006 10.1136/jnnp-2016-313361 10.1097/01.wco.0000200544.29915.cc 10.1177/1747493016643553 10.1109/TNSRE.2014.2346193 10.1016/S1474-4422(19)30034-1 10.1186/s12984-015-0015-7 10.1177/0954411918755828 10.1186/s12984-016-0162-5 10.1109/TNSRE.2020.3003860 10.1155/2018/9712926 10.1093/brain/awr039 10.1016/j.mechatronics.2015.04.005 10.1186/s12984-019-0523-y 10.1038/s41394-020-0269-6 10.1186/s12984-015-0048-y 10.1016/j.conengprac.2019.06.003 10.1097/00002060-199703000-00008 10.1109/TNSRE.2017.2703586 10.1109/TMECH.2017.2704521 10.1186/s12984-019-0630-9 10.1088/1361-665X/aa9315 10.1186/1743-0003-11-111 10.1186/s12984-020-00702-5 10.1016/j.ejpn.2019.05.003 10.1016/j.gaitpost.2012.07.032 10.2147/NDT.S114102 10.1159/000500747 10.1016/S1474-4422(19)30321-7 10.1109/TCDS.2019.2954289 10.3389/fnins.2016.00359 10.1016/j.gaitpost.2013.03.011 10.1097/00002060-200005000-00006 10.1002/pri.1786 10.1186/1743-0003-8-14 10.1016/j.rehab.2020.02.008 10.1126/science.aal5054 10.1016/j.gaitpost.2021.02.031 10.1016/j.ejpn.2017.01.012 10.1126/scitranslmed.aam9145 10.3233/NRE-141054 10.23736/S1973-9087.17.04591-9 10.1109/MRA.2019.2955669 10.1186/s12984-016-0206-x 10.3233/NRE-171459 10.1186/s12984-020-00690-6 10.1177/1747493017711816 10.1177/107110079401500610 10.1109/EMBC.2016.7591169 10.1310/B3JD-NML4-V1FB-5YHG 10.1016/j.pmr.2018.12.012 10.1109/TNSRE.2003.823266 10.1007/978-3-642-31534-3_28 10.1109/BIOROB.2008.4762885 10.1136/adc.2008.145458 10.1109/RBME.2016.2552201 10.1186/s12984-017-0244-z 10.1088/1741-2560/13/3/031001 10.3389/fnhum.2018.00312 10.1111/dmcn.12865 10.1109/BioRob49111.2020.9224365 10.1016/j.gaitpost.2008.10.062 10.1109/TMECH.2015.2465849 10.3390/s20092452 10.1145/1328491.1328521 10.1016/j.apmr.2014.07.002 10.1109/LRA.2019.2908491 10.1016/S0140-6736(20)32340-0 10.1186/s12984-019-0517-9 10.1109/TASE.2021.3066403 10.1186/s12984-018-0412-9 10.3389/fnbot.2021.730965 10.1088/1741-2552/ac1176 10.1186/s12984-019-0559-z 10.1163/016918611X588907 10.1186/1471-2377-11-116 10.1186/s12984-015-0062-0 10.1146/annurev-control-060117-104856 10.2147/MDER.S107134 10.1109/TRO.2009.2019788 10.1186/1743-0003-6-20 10.1155/2012/123579 10.1111/j.1469-8749.2008.03089.x 10.1109/IROS.2011.6095025 10.1109/TNSRE.2020.3009317 10.1016/j.jocn.2020.04.121 10.1177/107385840100700514 10.1109/TBME.2007.910683 10.3171/2017.10.JNS17352 10.1097/PEP.0000000000000661 10.3389/fneur.2020.00553 10.3390/app9132627 10.1109/IEMBS.2010.5626191 10.1186/1743-0003-5-21 10.1126/scirobotics.abf1078 10.1109/EMBC.2015.7319468 10.1186/1743-0003-11-92 10.1177/0954411914567213 10.1109/TMECH.2021.3053226 10.1109/IEMBS.2011.6092107 10.1186/s12984-021-00954-9 10.2471/BLT.16.181636 10.1016/S0960-9822(01)00581-4 10.1186/s12984-022-01088-2 10.1109/IEMBS.2009.5333698 10.1016/j.robot.2014.09.032 10.3389/fnins.2019.01389 10.2176/nmc.oa.2014-0431 10.1016/j.gaitpost.2011.01.004 10.1016/j.robot.2019.06.009 10.1109/TEVC.2019.2921598 10.1097/PHM.0000000000000914 10.3109/02699052.2011.607782 10.1109/LRA.2020.3007480 10.1109/TMRB.2020.2982004 10.1186/1743-0003-10-3 10.3233/RNN-170745 10.1186/1743-0003-7-4 10.1109/ACCESS.2020.2991812 10.1109/TNSRE.2019.2944665 10.1016/j.robot.2015.09.015 10.1186/1743-0003-9-57 10.1093/brain/awg079 10.1016/j.gaitpost.2017.11.007 10.1109/TBME.2014.2313867 10.1109/TNSRE.2017.2651404 10.1016/j.apmr.2012.11.016 10.1155/2017/3595461 10.1109/MRA.2008.927689 10.1109/TNSRE.2009.2033061 10.2522/ptj.20120492 10.21203/rs.3.rs-1629984/v1 10.1109/ACCESS.2021.3110595 10.1186/s12984-021-00815-5 10.3389/fnbot.2019.00063 10.3390/s21082727 10.1097/TGR.0000000000000098 10.3233/NRE-161393 10.1109/TBME.2019.2912466 10.1109/TBME.2018.2817688 10.23919/ACC.1984.4788393 10.3389/fbioe.2020.00113 10.1155/2017/3731802 10.1016/S0003-9993(95)80038-7 10.1001/jama.1993.03510170086037 10.1016/S1047-9651(03)00124-4 10.1109/EMBC.2013.6610899 10.3389/fnbot.2020.00019 10.1109/ICORR.2007.4428426 10.1186/s12984-018-0394-7 10.1109/TRO.2021.3084466 10.1017/CBO9780511995590.049 10.1109/70.768179 10.15761/PRR.1000128 10.1186/1471-2377-13-141 10.1016/j.gaitpost.2019.05.003 10.1080/10749357.2016.1275304 10.2176/nmc.53.287 10.1109/TBME.2018.2840848 10.1109/MCS.2018.2866605 10.1016/j.apmr.2013.12.021 10.2340/16501977-2505 10.1186/s10033-019-0389-8 10.3389/fnbot.2019.00057 10.1016/j.clinbiomech.2019.05.011 10.1242/jeb.168815 10.1177/0269215520932964 10.1109/ICORR.2017.8009267 10.5535/arm.2016.40.2.183 10.1002/14651858.CD006185.pub5 10.1109/TNSRE.2018.2832657 10.1186/1743-0003-6-18 10.1016/j.jstrokecerebrovasdis.2020.105176 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TB 7TK 7TS 7X7 7XB 88C 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 L6V LK8 M0S M0T M1P M7P M7S NAPCQ P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1186/s12984-023-01144-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Physical Education Index ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central (New) (NC LIVE) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Healthcare Administration Database PML(ProQuest Medical Library) Biological Science Database ProQuest Engineering Database (NC LIVE) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
| EISSN | 1743-0003 |
| EndPage | 28 |
| ExternalDocumentID | oai_doaj_org_article_98aafb58cb4445e3af284de11ee16da8 PMC9938998 A737937660 36805777 10_1186_s12984_023_01144_5 |
| Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GrantInformation_xml | – fundername: Agencia Estatal de Investigación grantid: PTQ2018-010227 funderid: http://dx.doi.org/10.13039/501100011033 – fundername: Swiss National Science Foundation (CH) grantid: PP00P2163800 – fundername: Dutch Research Council (NWO) Talent Program (NL) grantid: VIDI TTW 2020 – fundername: Agència de Gestió d’Ajuts Universitaris i de Recerca grantid: 2020 FI_B 00331 funderid: http://dx.doi.org/10.13039/501100003030 – fundername: Swiss National Science Foundation grantid: PP00P2163800 – fundername: ; grantid: PP00P2163800 – fundername: ; grantid: 2020 FI_B 00331 – fundername: ; grantid: VIDI TTW 2020 – fundername: ; grantid: PTQ2018-010227 |
| GroupedDBID | --- 0R~ 29L 2QV 2WC 53G 5GY 5VS 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO IHR INH INR IPY ITC KQ8 L6V LK8 M0T M1P M48 M7P M7S ML0 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7TB 7TK 7TS 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c607t-b6c5208a2effab6c8d5f7c7dfc2cf1e81e2479fef45f7575b55856343f1a9d413 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000934515400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1743-0003 |
| IngestDate | Fri Oct 03 12:53:46 EDT 2025 Tue Nov 04 02:06:48 EST 2025 Thu Sep 04 17:37:25 EDT 2025 Sat Oct 18 23:49:08 EDT 2025 Tue Nov 11 10:39:59 EST 2025 Tue Nov 04 17:58:50 EST 2025 Mon Jul 21 05:57:36 EDT 2025 Sat Nov 29 03:36:24 EST 2025 Tue Nov 18 21:38:47 EST 2025 Sat Sep 06 07:18:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Powered exoskeleton Gait rehabilitation Cerebral palsy Stroke Lower limb Literature synthesis Brain injury |
| Language | English |
| License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c607t-b6c5208a2effab6c8d5f7c7dfc2cf1e81e2479fef45f7575b55856343f1a9d413 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Undefined-1 ObjectType-Review-4 content type line 23 |
| ORCID | 0000-0003-4197-1391 0000-0002-7192-2980 0000-0002-8008-5803 0000-0001-8651-1642 |
| OpenAccessLink | https://link.springer.com/10.1186/s12984-023-01144-5 |
| PMID | 36805777 |
| PQID | 2788488512 |
| PQPubID | 55356 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_98aafb58cb4445e3af284de11ee16da8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9938998 proquest_miscellaneous_2778973885 proquest_journals_2788488512 gale_infotracmisc_A737937660 gale_infotracacademiconefile_A737937660 pubmed_primary_36805777 crossref_citationtrail_10_1186_s12984_023_01144_5 crossref_primary_10_1186_s12984_023_01144_5 springer_journals_10_1186_s12984_023_01144_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-19 |
| PublicationDateYYYYMMDD | 2023-02-19 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Journal of neuroengineering and rehabilitation |
| PublicationTitleAbbrev | J NeuroEngineering Rehabil |
| PublicationTitleAlternate | J Neuroeng Rehabil |
| PublicationYear | 2023 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | M Goffredo (1144_CR30) 2019; 9 JA Blaya (1144_CR157) 2004; 12 JN Vargus-Adams (1144_CR78) 2019; 31 1144_CR91 S Hesse (1144_CR88) 2008; 5 HS Jørgensen (1144_CR9) 1995; 76 Y-H Bae (1144_CR260) 2017; 24 MJ Highsmith (1144_CR183) 2010; 22 Y He (1144_CR111) 2017; 10 Y-H Bae (1144_CR257) 2016; 32 K Bhakta (1144_CR181) 2020; 5 D Debuse (1144_CR75) 2011; 23 SS Fricke (1144_CR98) 2020; 17 1144_CR169 A Rodríguez-Fernández (1144_CR40) 2021; 18 KL Poggensee (1144_CR104) 2021 G Puyuelo-Quintana (1144_CR107) 2020; 17 W Liang (1144_CR140) 2018 L Marchal-Crespo (1144_CR54) 2009; 6 B Chen (1144_CR57) 2019; 20 B Shi (1144_CR59) 2019; 13 N Trushkova (1144_CR35) 2021; 429 S Nomura (1144_CR115) 2019; 9 F Dierick (1144_CR248) 2017; 12 SA Murray (1144_CR14) 2014; 23 A Fleming (1144_CR222) 2021; 18 C Siviy (1144_CR103) 2020; 5 ZF Lerner (1144_CR164) 2017; 9 DJ Reinkensmeyer (1144_CR89) 2014; 37 DC Kerrigan (1144_CR166) 2000; 79 RJ Adams (1144_CR144) 1999; 15 TG Hornby (1144_CR246) 2008; 39 M Tariq (1144_CR210) 2018; 12 1144_CR176 T Ueba (1144_CR268) 2013; 53 F Molteni (1144_CR69) 2017; 53 SS Fricke (1144_CR97) 2020; 17 D-H Bang (1144_CR261) 2016; 38 M Goffredo (1144_CR238) 2019; 55 1144_CR178 BL Patritti (1144_CR272) 2010; 22 A Meyer-Heim (1144_CR276) 2009; 94 D Oeffinger (1144_CR74) 2008; 50 A Wall (1144_CR66) 2020; 15 1144_CR194 RM Visscher (1144_CR218) 2021; 86 W Johnson (1144_CR3) 2016; 94 AL Benabid (1144_CR135) 2019; 18 E López-Larraz (1144_CR213) 2016; 10 JS Park (1144_CR187) 2020; 20 EJ Roth (1144_CR34) 1997; 76 SJ Kim (1144_CR191) 2020; 28 JW Krakauer (1144_CR27) 2006; 19 X Zhang (1144_CR38) 2017 A Duschau-Wicke (1144_CR173) 2009; 18 BS Rupal (1144_CR179) 2017; 14 A Calanca (1144_CR189) 2012; 9 CK Tan (1144_CR134) 2018; 12 H Kawamoto (1144_CR227) 2013; 13 M Wu (1144_CR270) 2017; 96 1144_CR188 JS Tedla (1144_CR31) 2019; 81 A Nilsson (1144_CR64) 2014; 11 BC Conner (1144_CR152) 2020; 48 G Orekhov (1144_CR100) 2021; 18 R Hidayah (1144_CR174) 2020; 28 CK Tan (1144_CR233) 2020; 8 A Cecilia Villa-Parra (1144_CR159) 2020; 20 J De La Fuente (1144_CR121) 2020; 128 HTT Vu (1144_CR180) 2020; 20 KE Gordon (1144_CR132) 2007; 40 EM McCain (1144_CR133) 2019; 16 P-Y Lin (1144_CR13) 2006; 87 DR Louie (1144_CR53) 2016; 13 MR Tucker (1144_CR55) 2015; 12 LW Forrester (1144_CR229) 2014; 28 A Martínez (1144_CR193) 2020; 28 MJ Escalona (1144_CR147) 2020; 6 MPM Van Nunen (1144_CR65) 2015; 10 Z Lu (1144_CR243) 2018; 66 1144_CR198 G Morone (1144_CR51) 2017; 13 1144_CR197 I Borggraefe (1144_CR274) 2010; 46 F Chrif (1144_CR39) 2017; 38 Y Li (1144_CR96) 2018; 15 B Kim (1144_CR25) 2017; 36 PC Kao (1144_CR155) 2015; 2 SB O’Sullivan (1144_CR208) 1994 K Gui (1144_CR109) 2017; 25 1144_CR127 RA Schmidt (1144_CR149) 1989; 15 SF Atashzar (1144_CR102) 2019; 57 MC Dewan (1144_CR6) 2018; 130 J Mehrholz (1144_CR29) 2020 G Asin-Prieto (1144_CR154) 2020 D Wei (1144_CR177) 2019; 13 C Jung (1144_CR172) 2018; 72 1144_CR242 1144_CR126 L Marchal-Crespo (1144_CR36) 2018 SW Lee (1144_CR241) 2010; 19 BC Conner (1144_CR90) 2020; 48 M Bortole (1144_CR190) 2015; 12 H Zhou (1144_CR244) 2021; 15 E García-Cossio (1144_CR224) 2015; 10 I Borggraefe (1144_CR269) 2010; 14 H Tanaka (1144_CR256) 2019; 71 D Marks (1144_CR37) 2019; 2 SJ Harkema (1144_CR87) 2001; 7 M Gandolla (1144_CR99) 2018; 12 M Wu (1144_CR253) 2014; 95 M Sczesny-Kaiser (1144_CR33) 2019; 13 E Basalp (1144_CR81) 2021; 14 M Hassan (1144_CR105) 2018; 26 KZ Takahashi (1144_CR204) 2015; 12 1144_CR254 R Fluit (1144_CR185) 2019; 67 H Vallery (1144_CR209) 2008; 15 1144_CR130 MD Lewek (1144_CR167) 2019; 67 J Schröder (1144_CR21) 2019; 51 C Krishnan (1144_CR247) 2013; 94 1144_CR255 A Schicketmueller (1144_CR124) 2019; 19 Y Li (1144_CR200) 2017; 26 D Leon (1144_CR67) 2017; 35 M Lotze (1144_CR151) 2003; 126 LN Awad (1144_CR266) 2020; 17 SM Woolley (1144_CR16) 2001; 7 A Esquenazi (1144_CR48) 2019; 30 K Van Kammen (1144_CR221) 2017; 14 J Bae (1144_CR220) 2018 R Weinberger (1144_CR271) 2019; 23 M Kelly-Hayes (1144_CR8) 2003; 12 OM Alaoui (1144_CR112) 2020; 2 W-Z Li (1144_CR42) 2021; 9 1144_CR265 D Shi (1144_CR45) 2019; 32 1144_CR142 M Grimmer (1144_CR110) 2019; 13 1144_CR141 1144_CR267 1144_CR145 JE Sullivan (1144_CR72) 2013; 93 S-C Yen (1144_CR153) 2015; 42 SL Crichton (1144_CR7) 2016; 87 H Watanabe (1144_CR230) 2020 CO Johnson (1144_CR2) 2019; 18 A Cieza (1144_CR1) 2020; 396 V Knox (1144_CR76) 2019; 24 M Xiloyannis (1144_CR61) 2021; 38 S Yang (1144_CR219) 2013; 37 L Wallard (1144_CR273) 2017; 21 A Basteris (1144_CR80) 2014; 11 R Baud (1144_CR41) 2021 V Arnez-Paniagua (1144_CR158) 2019; 90 HG Seo (1144_CR171) 2017; 35 J Ward (1144_CR195) 2011; 25 JS Sulzer (1144_CR163) 2009; 25 W Huo (1144_CR47) 2014; 10 J Kwon (1144_CR196) 2019; 4 D Hebert (1144_CR18) 2016; 11 LM Weber (1144_CR52) 2018; 43 T Gurriet (1144_CR116) 2019; 5 1144_CR19 1144_CR203 1144_CR201 1144_CR20 L Wallard (1144_CR275) 2018; 60 JL Emken (1144_CR129) 2007; 55 M del Carmen Sanchez-Villamañan (1144_CR50) 2019; 16 M Ferre-Fernández (1144_CR77) 2020; 32 1144_CR217 GH Guyatt (1144_CR71) 1993; 270 T Seel (1144_CR125) 2014; 59 1144_CR28 AJ Young (1144_CR43) 2016; 25 G Lv (1144_CR150) 2018; 38 RJ Palisano (1144_CR63) 2008; 50 C Buesing (1144_CR168) 2015; 12 X Tan (1144_CR186) 2021; 19 S Hirano (1144_CR279) 2017; 41 AA Frolov (1144_CR212) 2017; 11 S Taki (1144_CR232) 2020; 29 C Trompetto (1144_CR251) 2013; 38 C Bayón (1144_CR277) 2018; 15 A Kapeller (1144_CR278) 2020; 26 B Laschowski (1144_CR117) 2021 1144_CR108 MK Shepherd (1144_CR82) 2017; 22 CJ Winstein (1144_CR10) 2016; 47 SC Cramer (1144_CR146) 2011; 134 A Mayr (1144_CR239) 2007; 21 F Patane (1144_CR202) 2017; 25 H Zhu (1144_CR106) 2021; 26 J de Miguel-Fernández (1144_CR101) 2022; 7 1144_CR223 A Calanca (1144_CR137) 2015; 21 B Koopman (1144_CR156) 2013; 10 B Hobbs (1144_CR60) 2020; 14 H-J Lee (1144_CR170) 2019; 50 C Huang (1144_CR123) 2019; 24 H Watanabe (1144_CR236) 2014; 95 A Tura (1144_CR182) 2010; 7 PM Rossini (1144_CR85) 2004; 15 SJ Lawrence (1144_CR205) 1994; 15 LF Yeung (1144_CR160) 2018; 15 B Chen (1144_CR49) 2016; 5 1144_CR114 J Bernhardt (1144_CR17) 2017; 12 SY Gordleeva (1144_CR131) 2020; 8 R Teasell (1144_CR11) 2014 S Maeshima (1144_CR215) 2011; 11 MS Madhav (1144_CR62) 2020; 3 T Yan (1144_CR56) 2015; 64 R Ronsse (1144_CR122) 2011; 49 DE Uçar (1144_CR258) 2014; 34 RB Haynes (1144_CR70) 1997; 157 G Chen (1144_CR113) 2016; 64 P Langhorne (1144_CR23) 2011; 377 K Oyake (1144_CR148) 2020; 11 C Krishnan (1144_CR249) 2012; 9 DO McGuire (1144_CR4) 2019; 12 B Cesqui (1144_CR240) 2013; 10 N Vanicek (1144_CR184) 2009; 29 S Balasubramanian (1144_CR214) 2018; 65 RW Nuckols (1144_CR263) 2020; 17 MM Ouellette (1144_CR94) 2004; 35 M Li (1144_CR58) 2018; 232 A Esquenazi (1144_CR226) 2017; 9 JL Contreras-Vidal (1144_CR46) 2016; 13 K Nakagawa (1144_CR192) 2020; 77 C Bushnell (1144_CR73) 2015; 8 G Aguirre-Ollinger (1144_CR118) 2019; 27 SJ Kim (1144_CR237) 2016; 40 I Wiszomirska (1144_CR15) 2017 G Durandau (1144_CR264) 2019 H Prasanth (1144_CR216) 2021; 21 T Yoshimoto (1144_CR228) 2015; 38 H Watanabe (1144_CR234) 2017; 40 Y He (1144_CR211) 2018; 15 MB dos Santos (1144_CR259) 2018 L Kwah (1144_CR22) 2018 G Aguirre-Ollinger (1144_CR120) 2015; 229 J Veldema (1144_CR93) 2020; 34 G Moucheboeuf (1144_CR32) 2020; 63 W Meng (1144_CR44) 2015; 31 K Yoshikawa (1144_CR235) 2017; 40 N Lamberti (1144_CR95) 2016; 53 JL Contreras-Vidal (1144_CR252) 2018; 97 U Nagarajan (1144_CR139) 2016; 75 N Mizukami (1144_CR161) 2018; 26 JE Sullivan (1144_CR207) 2008; 15 C Bayón (1144_CR175) 2016; 13 BE Fisher (1144_CR26) 2001; 8 E Sellier (1144_CR5) 2016; 58 A Koenig (1144_CR24) 2011; 8 R Xu (1144_CR136) 2014; 61 N Lotti (1144_CR143) 2020; 27 G Orekhov (1144_CR162) 2020; 28 AK Blanchette (1144_CR92) 2014; 11 M Burnfield (1144_CR206) 2010; 9 1144_CR86 1144_CR83 1144_CR84 B Husemann (1144_CR68) 2007; 38 E Marder (1144_CR119) 2001; 11 H Fukuda (1144_CR231) 2015; 55 M Sczesny-Kaiser (1144_CR245) 2019 KP Westlake (1144_CR250) 2009; 6 LW Forrester (1144_CR199) 2016; 13 SA Roelker (1144_CR12) 2018 J Zhang (1144_CR262) 2017; 356 N Lapitskaya (1144_CR225) 2011; 25 M Schumacher (1144_CR138) 2019; 119 JS Lora-Millan (1144_CR128) 2021; 19 T Proietti (1144_CR79) 2016; 9 JL Allen (1144_CR165) 2011; 33 |
| References_xml | – ident: 1144_CR130 doi: 10.1109/CCAC.2019.8921278 – volume: 23 start-page: 221 issue: 3 year: 2011 ident: 1144_CR75 publication-title: Pediatr Phys Ther doi: 10.1097/PEP.0b013e318227bbc6 – volume: 14 start-page: 496 issue: 6 year: 2010 ident: 1144_CR269 publication-title: Eur J Paediatr Neurol doi: 10.1016/j.ejpn.2010.01.002 – ident: 1144_CR84 doi: 10.1109/RoboSoft48309.2020.9116050 – volume: 48 start-page: 1309 issue: 4 year: 2020 ident: 1144_CR152 publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02454-8 – volume: 22 start-page: 26 issue: 1 year: 2010 ident: 1144_CR183 publication-title: JPO – volume: 13 start-page: 51 issue: 1 year: 2016 ident: 1144_CR199 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-016-0158-1 – volume: 15 start-page: 200 issue: 3 year: 2008 ident: 1144_CR207 publication-title: Top Stroke Rehabil doi: 10.1310/tsr1503-200 – volume: 5 start-page: 828 issue: 2 year: 2020 ident: 1144_CR103 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2020.2965072 – ident: 1144_CR127 doi: 10.1101/2021.02.19.431882 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 1144_CR263 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-020-00703-4 – volume: 57 start-page: 1 year: 2019 ident: 1144_CR102 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.03.002 – volume: 12 start-page: e0178636 issue: 6 year: 2017 ident: 1144_CR248 publication-title: PLoS ONE doi: 10.1371/journal.pone.0178636 – ident: 1144_CR197 doi: 10.1109/ICORR.2017.8009248 – volume: 49 start-page: 1173 issue: 10 year: 2011 ident: 1144_CR122 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-011-0816-1 – year: 2021 ident: 1144_CR41 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-021-00906-3 – volume: 46 start-page: 125 issue: 2 year: 2010 ident: 1144_CR274 publication-title: Eur J Phys Rehabil Med – volume: 20 start-page: 6516 issue: 12 year: 2020 ident: 1144_CR187 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.2975790 – volume: 31 start-page: 131 issue: 1 year: 2019 ident: 1144_CR78 publication-title: Phys Med Rehabil Clin N Am doi: 10.1016/j.pmr.2019.09.011 – ident: 1144_CR217 doi: 10.1109/ICORR.2019.8779554 – volume: 9 start-page: 164 issue: 1 year: 2019 ident: 1144_CR115 publication-title: Appl Sci doi: 10.3390/app9010164 – volume: 38 start-page: 343 issue: 4 year: 2016 ident: 1144_CR261 publication-title: NeuroRehabilitation doi: 10.3233/NRE-161325 – volume: 8 start-page: 163 issue: 6–suppl–3 year: 2015 ident: 1144_CR73 publication-title: Circ Cardiovasc Qual Outcomes – volume: 15 start-page: 352 issue: 2 year: 1989 ident: 1144_CR149 publication-title: J Exp Psychol Learn Mem Cognit doi: 10.1037/0278-7393.15.2.352 – volume: 40 start-page: 363 issue: 3 year: 2017 ident: 1144_CR234 publication-title: NeuroRehabilitation doi: 10.3233/NRE-161424 – volume: 7 start-page: 7574 issue: 3 year: 2022 ident: 1144_CR101 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2022.3183799 – volume: 14 start-page: 722 issue: 4 year: 2021 ident: 1144_CR81 publication-title: IEEE Trans Haptics doi: 10.1109/TOH.2021.3104518 – volume: 5 start-page: 266 issue: 1 year: 2019 ident: 1144_CR116 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2019.2955946 – volume: 128 year: 2020 ident: 1144_CR121 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2020.103514 – volume-title: Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: a review year: 2018 ident: 1144_CR12 – volume: 87 start-page: 562 issue: 4 year: 2006 ident: 1144_CR13 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2005.12.042 – volume: 35 start-page: 377 issue: 4 year: 2017 ident: 1144_CR67 publication-title: Restor Neurol Neurosci doi: 10.3233/RNN-170734 – volume-title: Davis PT collection year: 1994 ident: 1144_CR208 – volume: 12 start-page: 443 issue: 3 year: 2019 ident: 1144_CR4 publication-title: Disabil Health J doi: 10.1016/j.dhjo.2019.01.005 – volume: 12 start-page: 276 year: 2018 ident: 1144_CR134 publication-title: Front Neurosci doi: 10.3389/fnins.2018.00276 – volume: 11 start-page: 400 year: 2017 ident: 1144_CR212 publication-title: Front Neurosci doi: 10.3389/fnins.2017.00400 – volume: 15 start-page: 0229707 issue: 2 year: 2020 ident: 1144_CR66 publication-title: PLoS ONE doi: 10.1371/journal.pone.0229707 – year: 2018 ident: 1144_CR259 publication-title: Behav Neurol doi: 10.1155/2018/2892065 – volume: 10 start-page: 141 issue: 2 year: 2015 ident: 1144_CR65 publication-title: Disabil Rehabil Assist Technol doi: 10.3109/17483107.2013.873489 – volume: 26 start-page: 1011 issue: 5 year: 2018 ident: 1144_CR161 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2018.2817647 – start-page: 23 volume-title: Stroke rehabilitation year: 2018 ident: 1144_CR22 doi: 10.1016/b978-0-323-55381-0.00002-0 – volume: 12 start-page: 1 issue: MAR year: 2018 ident: 1144_CR99 publication-title: Front Neurorobot doi: 10.3389/fnbot.2018.00010 – ident: 1144_CR201 doi: 10.1115/DSCC2010-4204 – volume: 15 start-page: 1 issue: 1 year: 2018 ident: 1144_CR96 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-017-0340-0 – volume: 55 start-page: 710 issue: 6 year: 2019 ident: 1144_CR238 publication-title: Eur J Phys Rehabil Med doi: 10.23736/S1973-9087.19.05574-6 – volume: 42 start-page: 212 year: 2015 ident: 1144_CR153 publication-title: Hum Mov Sci doi: 10.1016/j.humov.2015.05.010 – volume: 377 start-page: 1693 issue: 9778 year: 2011 ident: 1144_CR23 publication-title: Lancet doi: 10.1016/S0140-6736(11)60325-5 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 1144_CR92 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-11-98 – ident: 1144_CR142 doi: 10.1109/EMBC.2018.8512807 – volume: 12 start-page: 119 issue: 3 year: 2003 ident: 1144_CR8 publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/S1052-3057(03)00042-9 – volume: 50 start-page: 918 issue: 12 year: 2008 ident: 1144_CR74 publication-title: Dev Med Child Neurol doi: 10.1111/j.1469-8749.2008.03150.x – volume: 7 start-page: 1 issue: 4 year: 2001 ident: 1144_CR16 publication-title: Top Stroke Rehabil doi: 10.1310/JB16-V04F-JAL5-H1UV – volume: 20 start-page: 3972 issue: 14 year: 2020 ident: 1144_CR180 publication-title: Sensors doi: 10.3390/s20143972 – volume: 10 start-page: 0137910 issue: 12 year: 2015 ident: 1144_CR224 publication-title: PLoS ONE doi: 10.1371/journal.pone.0137910 – volume: 14 start-page: 172988141774355 issue: 6 year: 2017 ident: 1144_CR179 publication-title: Int J Adv Robot Syst doi: 10.1177/1729881417743554 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 1144_CR97 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-020-00762-7 – volume: 429 year: 2021 ident: 1144_CR35 publication-title: J Neurol Sci doi: 10.1016/j.jns.2021.118583 – volume: 38 start-page: 338 issue: 4 year: 2015 ident: 1144_CR228 publication-title: Int J Rehabil Res doi: 10.1097/MRR.0000000000000132 – ident: 1144_CR203 doi: 10.1145/3197768.3197779 – volume: 15 start-page: 50 year: 2021 ident: 1144_CR244 publication-title: Front Neurorobot doi: 10.3389/fnbot.2021.659876 – volume: 13 start-page: 259 year: 2019 ident: 1144_CR33 publication-title: Front Neurosci doi: 10.3389/fnins.2019.00259 – volume: 25 start-page: 171 issue: 2 year: 2016 ident: 1144_CR43 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2521160 – volume: 2 start-page: 1066 issue: 9 year: 2015 ident: 1144_CR155 publication-title: Phys Med Rehabil Int – volume: 10 start-page: 1 issue: 1 year: 2013 ident: 1144_CR240 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-10-75 – volume: 59 start-page: 795 year: 2014 ident: 1144_CR125 publication-title: Biomed Tech – volume: 28 start-page: 678 issue: 7 year: 2014 ident: 1144_CR229 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968314521004 – ident: 1144_CR28 – volume: 38 start-page: 119 year: 2017 ident: 1144_CR39 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.05.011 – volume: 26 start-page: 1 year: 2020 ident: 1144_CR278 publication-title: Sci Eng Ethics doi: 10.1007/s11948-020-00268-4 – ident: 1144_CR86 doi: 10.1109/BIOROB.2008.4762796 – volume: 47 start-page: 98 issue: 6 year: 2016 ident: 1144_CR10 publication-title: Stroke doi: 10.1161/STR.0000000000000098 – volume: 22 start-page: 215 issue: 4 year: 2010 ident: 1144_CR272 publication-title: Technol Disabil doi: 10.3233/TAD-2010-0306 – volume: 64 start-page: 1345 issue: 6 year: 2016 ident: 1144_CR113 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2604340 – volume: 28 start-page: 461 issue: 2 year: 2020 ident: 1144_CR162 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.2965029 – volume: 36 start-page: 414 issue: 4 year: 2017 ident: 1144_CR25 publication-title: Int J Robot Res doi: 10.1177/0278364917706743 – volume: 28 start-page: 934 issue: 4 year: 2020 ident: 1144_CR193 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.2977339 – volume: 19 start-page: 558 issue: 5 year: 2010 ident: 1144_CR241 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2010.2079334 – volume: 35 start-page: 1404 issue: 6 year: 2004 ident: 1144_CR94 publication-title: Stroke doi: 10.1161/01.STR.0000127785.73065.34 – volume: 15 issue: 2 year: 2018 ident: 1144_CR211 publication-title: J Neural Eng doi: 10.1088/1741-2552/aaa8c0 – volume: 20 start-page: 4 year: 2019 ident: 1144_CR57 publication-title: J Orthop Transl – volume: 50 start-page: 3545 issue: 12 year: 2019 ident: 1144_CR170 publication-title: Stroke doi: 10.1161/STROKEAHA.119.025950 – volume: 96 start-page: 765 issue: 11 year: 2017 ident: 1144_CR270 publication-title: Am J Phys Med Rehabil doi: 10.1097/PHM.0000000000000776 – volume: 38 start-page: 349 issue: 2 year: 2007 ident: 1144_CR68 publication-title: Stroke doi: 10.1161/01.STR.0000254607.48765.cb – volume: 19 start-page: 4804 issue: 21 year: 2019 ident: 1144_CR124 publication-title: Sensors doi: 10.3390/s19214804 – volume: 39 start-page: 1786 issue: 6 year: 2008 ident: 1144_CR246 publication-title: Stroke doi: 10.1161/STROKEAHA.107.504779 – volume: 12 start-page: 1 issue: 1 year: 2015 ident: 1144_CR55 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-12-1 – volume: 8 start-page: 770 year: 2020 ident: 1144_CR233 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00770 – volume: 43 start-page: 99 issue: 1 year: 2018 ident: 1144_CR52 publication-title: NeuroRehabilitation doi: 10.3233/NRE-172408 – volume: 21 start-page: 307 issue: 4 year: 2007 ident: 1144_CR239 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968307300697 – volume: 10 start-page: 1068 issue: 3 year: 2014 ident: 1144_CR47 publication-title: IEEE Syst J doi: 10.1109/JSYST.2014.2351491 – volume: 40 start-page: 2636 issue: 12 year: 2007 ident: 1144_CR132 publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.12.006 – volume: 87 start-page: 1091 issue: 10 year: 2016 ident: 1144_CR7 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2016-313361 – volume: 19 start-page: 84 issue: 1 year: 2006 ident: 1144_CR27 publication-title: Curr Opin Neurol doi: 10.1097/01.wco.0000200544.29915.cc – volume: 11 start-page: 459 issue: 4 year: 2016 ident: 1144_CR18 publication-title: Int J Stroke doi: 10.1177/1747493016643553 – volume: 23 start-page: 441 issue: 3 year: 2014 ident: 1144_CR14 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2014.2346193 – volume: 18 start-page: 439 issue: 5 year: 2019 ident: 1144_CR2 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(19)30034-1 – volume: 12 start-page: 1 issue: 1 year: 2015 ident: 1144_CR204 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-015-0015-7 – volume: 232 start-page: 344 issue: 4 year: 2018 ident: 1144_CR58 publication-title: Proc Inst Mech Eng H J Eng Med doi: 10.1177/0954411918755828 – volume: 13 start-page: 53 issue: 1 year: 2016 ident: 1144_CR53 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-016-0162-5 – volume: 28 start-page: 1781 issue: 8 year: 2020 ident: 1144_CR191 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3003860 – year: 2018 ident: 1144_CR140 publication-title: J Healthc Eng doi: 10.1155/2018/9712926 – volume: 134 start-page: 1591 issue: 6 year: 2011 ident: 1144_CR146 publication-title: Brain doi: 10.1093/brain/awr039 – volume: 31 start-page: 132 year: 2015 ident: 1144_CR44 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.04.005 – volume: 16 start-page: 1 year: 2019 ident: 1144_CR133 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0523-y – volume: 6 start-page: 1 issue: 1 year: 2020 ident: 1144_CR147 publication-title: Spinal Cord Ser Cases doi: 10.1038/s41394-020-0269-6 – volume: 12 start-page: 1 issue: 1 year: 2015 ident: 1144_CR190 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-015-0048-y – volume: 90 start-page: 207 year: 2019 ident: 1144_CR158 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2019.06.003 – volume: 76 start-page: 128 issue: 2 year: 1997 ident: 1144_CR34 publication-title: Am J Phys Med Rehabil doi: 10.1097/00002060-199703000-00008 – volume: 25 start-page: 2054 issue: 11 year: 2017 ident: 1144_CR109 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2017.2703586 – volume: 22 start-page: 1695 issue: 4 year: 2017 ident: 1144_CR82 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2017.2704521 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 1144_CR98 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0630-9 – volume: 26 start-page: 125003 issue: 12 year: 2017 ident: 1144_CR200 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa9315 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 1144_CR80 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-11-111 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 1144_CR266 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-020-00702-5 – volume: 23 start-page: 581 issue: 4 year: 2019 ident: 1144_CR271 publication-title: Eur J Paediatr Neurol doi: 10.1016/j.ejpn.2019.05.003 – volume: 37 start-page: 354 issue: 3 year: 2013 ident: 1144_CR219 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.07.032 – volume: 13 start-page: 1303 year: 2017 ident: 1144_CR51 publication-title: Neuropsychiatr Dis Treat doi: 10.2147/NDT.S114102 – volume: 81 start-page: 1 year: 2019 ident: 1144_CR31 publication-title: Eur Neurol doi: 10.1159/000500747 – volume: 157 start-page: 788 issue: 6 year: 1997 ident: 1144_CR70 publication-title: Can Med Assoc J – volume: 18 start-page: 1112 issue: 12 year: 2019 ident: 1144_CR135 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(19)30321-7 – volume: 13 start-page: 57 issue: 1 year: 2019 ident: 1144_CR177 publication-title: IEEE Trans Cogn Dev Syst doi: 10.1109/TCDS.2019.2954289 – volume: 10 start-page: 359 year: 2016 ident: 1144_CR213 publication-title: Front Neurosci doi: 10.3389/fnins.2016.00359 – volume: 38 start-page: 729 issue: 4 year: 2013 ident: 1144_CR251 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.03.011 – volume: 79 start-page: 247 issue: 3 year: 2000 ident: 1144_CR166 publication-title: Am J Phys Med Rehabil doi: 10.1097/00002060-200005000-00006 – volume: 24 start-page: 1786 issue: 4 year: 2019 ident: 1144_CR76 publication-title: Physiother Res Int doi: 10.1002/pri.1786 – volume: 8 start-page: 1 issue: 1 year: 2011 ident: 1144_CR24 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-8-14 – ident: 1144_CR126 – volume: 63 start-page: 518 issue: 6 year: 2020 ident: 1144_CR32 publication-title: Ann Phys Rehabil Med doi: 10.1016/j.rehab.2020.02.008 – start-page: 227 volume-title: Robot-assisted gait training year: 2018 ident: 1144_CR36 – volume: 356 start-page: 1280 issue: 6344 year: 2017 ident: 1144_CR262 publication-title: Science doi: 10.1126/science.aal5054 – volume: 86 start-page: 64 year: 2021 ident: 1144_CR218 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2021.02.031 – volume: 21 start-page: 557 issue: 3 year: 2017 ident: 1144_CR273 publication-title: Eur J Paediatr Neurol doi: 10.1016/j.ejpn.2017.01.012 – volume: 9 start-page: 9145 issue: 404 year: 2017 ident: 1144_CR164 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aam9145 – volume: 34 start-page: 447 issue: 3 year: 2014 ident: 1144_CR258 publication-title: NeuroRehabilitation doi: 10.3233/NRE-141054 – volume: 53 start-page: 676 issue: 5 year: 2017 ident: 1144_CR69 publication-title: Eur J Phys Rehabil Med doi: 10.23736/S1973-9087.17.04591-9 – volume: 27 start-page: 43 issue: 1 year: 2020 ident: 1144_CR143 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2019.2955669 – volume: 13 start-page: 1 issue: 1 year: 2016 ident: 1144_CR175 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-016-0206-x – year: 2019 ident: 1144_CR245 publication-title: Front Neurosci doi: 10.3389/fnins.2019.00259 – volume: 41 start-page: 77 issue: 1 year: 2017 ident: 1144_CR279 publication-title: NeuroRehabilitation doi: 10.3233/NRE-171459 – volume: 17 start-page: 1 issue: 1 year: 2020 ident: 1144_CR107 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-020-00690-6 – volume: 12 start-page: 444 issue: 5 year: 2017 ident: 1144_CR17 publication-title: Int J Stroke doi: 10.1177/1747493017711816 – volume: 15 start-page: 340 issue: 6 year: 1994 ident: 1144_CR205 publication-title: Foot Ankle Int doi: 10.1177/107110079401500610 – ident: 1144_CR83 doi: 10.1109/EMBC.2016.7591169 – volume: 8 start-page: 31 issue: 3 year: 2001 ident: 1144_CR26 publication-title: Top Stroke Rehabil doi: 10.1310/B3JD-NML4-V1FB-5YHG – volume: 30 start-page: 385 issue: 2 year: 2019 ident: 1144_CR48 publication-title: Phys Med Rehabil Clin doi: 10.1016/j.pmr.2018.12.012 – volume: 12 start-page: 24 issue: 1 year: 2004 ident: 1144_CR157 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2003.823266 – ident: 1144_CR255 doi: 10.1007/978-3-642-31534-3_28 – ident: 1144_CR176 doi: 10.1109/BIOROB.2008.4762885 – volume: 94 start-page: 615 issue: 8 year: 2009 ident: 1144_CR276 publication-title: Arch Dis Childhood doi: 10.1136/adc.2008.145458 – volume: 9 start-page: 4 year: 2016 ident: 1144_CR79 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2016.2552201 – volume: 14 start-page: 1 issue: 1 year: 2017 ident: 1144_CR221 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-017-0244-z – volume: 13 issue: 3 year: 2016 ident: 1144_CR46 publication-title: J Neural Eng doi: 10.1088/1741-2560/13/3/031001 – volume: 12 start-page: 312 year: 2018 ident: 1144_CR210 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2018.00312 – volume: 58 start-page: 85 issue: 1 year: 2016 ident: 1144_CR5 publication-title: Dev Med Child Neurol doi: 10.1111/dmcn.12865 – ident: 1144_CR265 doi: 10.1109/BioRob49111.2020.9224365 – volume: 29 start-page: 415 issue: 3 year: 2009 ident: 1144_CR184 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.10.062 – volume: 21 start-page: 613 issue: 2 year: 2015 ident: 1144_CR137 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2015.2465849 – volume: 20 start-page: 2452 issue: 9 year: 2020 ident: 1144_CR159 publication-title: Sensors doi: 10.3390/s20092452 – ident: 1144_CR198 doi: 10.1145/1328491.1328521 – volume: 95 start-page: 2006 issue: 11 year: 2014 ident: 1144_CR236 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2014.07.002 – volume: 4 start-page: 2547 issue: 3 year: 2019 ident: 1144_CR196 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2019.2908491 – volume: 53 start-page: 228 issue: 2 year: 2016 ident: 1144_CR95 publication-title: Eur J Phys Rehabil Med – volume: 396 start-page: 2006 issue: 10267 year: 2020 ident: 1144_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(20)32340-0 – volume: 16 start-page: 55 issue: 1 year: 2019 ident: 1144_CR50 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0517-9 – volume: 19 start-page: 2108 issue: 3 year: 2021 ident: 1144_CR186 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2021.3066403 – volume: 15 start-page: 1 issue: 1 year: 2018 ident: 1144_CR277 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-018-0412-9 – year: 2021 ident: 1144_CR117 publication-title: bioRxiv doi: 10.3389/fnbot.2021.730965 – volume: 18 start-page: 041004 issue: 4 year: 2021 ident: 1144_CR222 publication-title: J Neural Eng doi: 10.1088/1741-2552/ac1176 – year: 2019 ident: 1144_CR264 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0559-z – volume: 25 start-page: 1879 issue: 15 year: 2011 ident: 1144_CR195 publication-title: Adv Robot doi: 10.1163/016918611X588907 – volume: 11 start-page: 116 issue: 1 year: 2011 ident: 1144_CR215 publication-title: BMC Neurol doi: 10.1186/1471-2377-11-116 – volume: 12 start-page: 1 issue: 1 year: 2015 ident: 1144_CR168 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-015-0062-0 – volume: 3 start-page: 243 year: 2020 ident: 1144_CR62 publication-title: Annu Rev Control Robot Auton Syst doi: 10.1146/annurev-control-060117-104856 – volume: 10 start-page: 89 year: 2017 ident: 1144_CR111 publication-title: Med Devices doi: 10.2147/MDER.S107134 – volume: 25 start-page: 539 issue: 3 year: 2009 ident: 1144_CR163 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2009.2019788 – volume: 6 start-page: 20 issue: 1 year: 2009 ident: 1144_CR54 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-6-20 – volume: 9 start-page: 15 issue: 1 year: 2012 ident: 1144_CR189 publication-title: Appl Bionics Biomech doi: 10.1155/2012/123579 – volume: 50 start-page: 744 issue: 10 year: 2008 ident: 1144_CR63 publication-title: Dev Med Child Neurol doi: 10.1111/j.1469-8749.2008.03089.x – ident: 1144_CR19 – ident: 1144_CR194 doi: 10.1109/IROS.2011.6095025 – volume: 48 start-page: 1 year: 2020 ident: 1144_CR90 publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02454-8 – volume: 28 start-page: 1984 issue: 9 year: 2020 ident: 1144_CR174 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3009317 – volume: 77 start-page: 142 year: 2020 ident: 1144_CR192 publication-title: J Clin Neurosci doi: 10.1016/j.jocn.2020.04.121 – volume: 7 start-page: 455 issue: 5 year: 2001 ident: 1144_CR87 publication-title: Neuroscientist doi: 10.1177/107385840100700514 – volume: 55 start-page: 322 issue: 1 year: 2007 ident: 1144_CR129 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.910683 – volume: 9 start-page: 839 issue: 9 year: 2017 ident: 1144_CR226 publication-title: PM &R – volume: 130 start-page: 1080 issue: 4 year: 2018 ident: 1144_CR6 publication-title: J Neurosurg doi: 10.3171/2017.10.JNS17352 – volume: 32 start-page: 12 issue: 1 year: 2020 ident: 1144_CR77 publication-title: Pediatr Phys Ther doi: 10.1097/PEP.0000000000000661 – volume: 11 start-page: 553 year: 2020 ident: 1144_CR148 publication-title: Front Neurol doi: 10.3389/fneur.2020.00553 – volume: 9 start-page: 353 issue: 2 year: 2010 ident: 1144_CR206 publication-title: J Sports Sci Med – volume: 9 start-page: 2627 issue: 13 year: 2019 ident: 1144_CR30 publication-title: Appl Sci doi: 10.3390/app9132627 – volume: 72 start-page: 407 issue: 4 year: 2018 ident: 1144_CR172 publication-title: Acta Med Okayama – ident: 1144_CR108 doi: 10.1109/IEMBS.2010.5626191 – volume: 5 start-page: 1 issue: 1 year: 2008 ident: 1144_CR88 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-5-21 – year: 2021 ident: 1144_CR104 publication-title: bioRxiv doi: 10.1126/scirobotics.abf1078 – ident: 1144_CR169 doi: 10.1109/EMBC.2015.7319468 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 1144_CR64 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-11-92 – volume: 229 start-page: 52 issue: 1 year: 2015 ident: 1144_CR120 publication-title: Proc Inst Mech Eng H J Eng Med doi: 10.1177/0954411914567213 – volume: 26 start-page: 3104 issue: 6 year: 2021 ident: 1144_CR106 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2021.3053226 – ident: 1144_CR254 doi: 10.1109/IEMBS.2011.6092107 – volume: 18 start-page: 1 issue: 1 year: 2021 ident: 1144_CR100 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-021-00954-9 – volume: 94 start-page: 634 issue: 9 year: 2016 ident: 1144_CR3 publication-title: Bull World Health Organ doi: 10.2471/BLT.16.181636 – ident: 1144_CR178 – volume: 11 start-page: 986 issue: 23 year: 2001 ident: 1144_CR119 publication-title: Curr Biol doi: 10.1016/S0960-9822(01)00581-4 – volume: 19 start-page: 109 issue: 1 year: 2021 ident: 1144_CR128 publication-title: J NeuroEng Rehabil doi: 10.1186/s12984-022-01088-2 – ident: 1144_CR188 doi: 10.1109/IEMBS.2009.5333698 – volume: 64 start-page: 120 year: 2015 ident: 1144_CR56 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2014.09.032 – year: 2020 ident: 1144_CR230 publication-title: Front Neurosci doi: 10.3389/fnins.2019.01389 – volume: 55 start-page: 487 issue: 6 year: 2015 ident: 1144_CR231 publication-title: Neurologia Medico-Chirurgica doi: 10.2176/nmc.oa.2014-0431 – ident: 1144_CR20 – volume: 33 start-page: 538 issue: 4 year: 2011 ident: 1144_CR165 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.01.004 – volume: 119 start-page: 185 year: 2019 ident: 1144_CR138 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2019.06.009 – volume: 24 start-page: 201 issue: 2 year: 2019 ident: 1144_CR123 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2921598 – volume: 97 start-page: 541 issue: 8 year: 2018 ident: 1144_CR252 publication-title: Am J Phys Med Rehabil doi: 10.1097/PHM.0000000000000914 – volume: 25 start-page: 1070 issue: 11 year: 2011 ident: 1144_CR225 publication-title: Brain Injury doi: 10.3109/02699052.2011.607782 – volume: 5 start-page: 5393 issue: 4 year: 2020 ident: 1144_CR181 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2020.3007480 – ident: 1144_CR223 – volume: 2 start-page: 236 issue: 2 year: 2020 ident: 1144_CR112 publication-title: IEEE Trans Med Robot Bionics doi: 10.1109/TMRB.2020.2982004 – volume: 10 start-page: 1 issue: 1 year: 2013 ident: 1144_CR156 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-10-3 – volume: 35 start-page: 527 issue: 5 year: 2017 ident: 1144_CR171 publication-title: Restor Neurol Neurosci doi: 10.3233/RNN-170745 – volume: 7 start-page: 1 issue: 1 year: 2010 ident: 1144_CR182 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-7-4 – volume: 8 start-page: 84070 year: 2020 ident: 1144_CR131 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991812 – volume: 27 start-page: 2305 issue: 11 year: 2019 ident: 1144_CR118 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2019.2944665 – volume: 75 start-page: 310 year: 2016 ident: 1144_CR139 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2015.09.015 – volume: 9 start-page: 57 year: 2012 ident: 1144_CR249 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-9-57 – volume: 5 start-page: 26 year: 2016 ident: 1144_CR49 publication-title: J Orthop Transl – volume: 126 start-page: 866 issue: 4 year: 2003 ident: 1144_CR151 publication-title: Brain doi: 10.1093/brain/awg079 – volume: 60 start-page: 55 year: 2018 ident: 1144_CR275 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2017.11.007 – volume: 61 start-page: 2092 issue: 7 year: 2014 ident: 1144_CR136 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2313867 – volume: 25 start-page: 906 issue: 7 year: 2017 ident: 1144_CR202 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2017.2651404 – volume: 94 start-page: 1202 issue: 6 year: 2013 ident: 1144_CR247 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2012.11.016 – year: 2017 ident: 1144_CR15 publication-title: Appl Bionics Biomech doi: 10.1155/2017/3595461 – volume: 15 start-page: 60 issue: 3 year: 2008 ident: 1144_CR209 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2008.927689 – volume: 18 start-page: 38 issue: 1 year: 2009 ident: 1144_CR173 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2009.2033061 – volume: 93 start-page: 1383 issue: 10 year: 2013 ident: 1144_CR72 publication-title: Phys Ther doi: 10.2522/ptj.20120492 – ident: 1144_CR267 doi: 10.21203/rs.3.rs-1629984/v1 – volume: 9 start-page: 123040 year: 2021 ident: 1144_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110595 – volume: 18 start-page: 1 issue: 1 year: 2021 ident: 1144_CR40 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-021-00815-5 – volume: 13 start-page: 63 year: 2019 ident: 1144_CR59 publication-title: Front Neurorobot doi: 10.3389/fnbot.2019.00063 – volume: 21 start-page: 2727 issue: 8 year: 2021 ident: 1144_CR216 publication-title: Sensors doi: 10.3390/s21082727 – volume: 32 start-page: 119 issue: 2 year: 2016 ident: 1144_CR257 publication-title: Top Geriatr Rehabil doi: 10.1097/TGR.0000000000000098 – volume: 40 start-page: 87 issue: 1 year: 2017 ident: 1144_CR235 publication-title: NeuroRehabilitation doi: 10.3233/NRE-161393 – volume: 67 start-page: 277 issue: 1 year: 2019 ident: 1144_CR185 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2019.2912466 – volume: 65 start-page: 2790 issue: 12 year: 2018 ident: 1144_CR214 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2817688 – ident: 1144_CR91 – ident: 1144_CR145 doi: 10.23919/ACC.1984.4788393 – year: 2020 ident: 1144_CR154 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00113 – year: 2017 ident: 1144_CR38 publication-title: Behav Neurol doi: 10.1155/2017/3731802 – volume: 76 start-page: 27 issue: 1 year: 1995 ident: 1144_CR9 publication-title: Arch Phys Med Rehabil doi: 10.1016/S0003-9993(95)80038-7 – volume: 270 start-page: 2096 issue: 17 year: 1993 ident: 1144_CR71 publication-title: JAMA doi: 10.1001/jama.1993.03510170086037 – volume: 15 start-page: 263 issue: 1 year: 2004 ident: 1144_CR85 publication-title: Phys Med Rehabil Clin doi: 10.1016/S1047-9651(03)00124-4 – ident: 1144_CR242 doi: 10.1109/EMBC.2013.6610899 – volume: 14 start-page: 19 year: 2020 ident: 1144_CR60 publication-title: Front Neurorobot doi: 10.3389/fnbot.2020.00019 – ident: 1144_CR141 doi: 10.1109/ICORR.2007.4428426 – volume: 15 start-page: 1 issue: 1 year: 2018 ident: 1144_CR160 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-018-0394-7 – volume: 38 start-page: 1343 issue: 3 year: 2021 ident: 1144_CR61 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2021.3084466 – start-page: 601 volume-title: Textbook of neural repair and rehabilitation year: 2014 ident: 1144_CR11 doi: 10.1017/CBO9780511995590.049 – volume: 15 start-page: 465 issue: 3 year: 1999 ident: 1144_CR144 publication-title: IEEE Trans Robot Autom doi: 10.1109/70.768179 – volume: 2 start-page: 1 year: 2019 ident: 1144_CR37 publication-title: Physiother Res Rep doi: 10.15761/PRR.1000128 – volume: 13 start-page: 141 year: 2013 ident: 1144_CR227 publication-title: BMC Neurol doi: 10.1186/1471-2377-13-141 – volume: 71 start-page: 205 year: 2019 ident: 1144_CR256 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2019.05.003 – volume: 24 start-page: 309 issue: 4 year: 2017 ident: 1144_CR260 publication-title: Top Stroke Rehabil doi: 10.1080/10749357.2016.1275304 – volume: 53 start-page: 287 issue: 5 year: 2013 ident: 1144_CR268 publication-title: Neurologia medico-chirurgica doi: 10.2176/nmc.53.287 – volume: 66 start-page: 365 issue: 2 year: 2018 ident: 1144_CR243 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2840848 – volume: 38 start-page: 88 issue: 6 year: 2018 ident: 1144_CR150 publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2018.2866605 – volume: 95 start-page: 799 issue: 5 year: 2014 ident: 1144_CR253 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2013.12.021 – volume: 51 start-page: 78 issue: 2 year: 2019 ident: 1144_CR21 publication-title: J Rehabil Med doi: 10.2340/16501977-2505 – volume: 32 start-page: 1 issue: 1 year: 2019 ident: 1144_CR45 publication-title: Chin J Mech Eng doi: 10.1186/s10033-019-0389-8 – volume: 13 start-page: 57 year: 2019 ident: 1144_CR110 publication-title: Front Neurorobot doi: 10.3389/fnbot.2019.00057 – volume: 67 start-page: 115 year: 2019 ident: 1144_CR167 publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2019.05.011 – year: 2018 ident: 1144_CR220 publication-title: J Exp Biol doi: 10.1242/jeb.168815 – volume: 34 start-page: 1173 issue: 9 year: 2020 ident: 1144_CR93 publication-title: Clin Rehabil doi: 10.1177/0269215520932964 – ident: 1144_CR114 doi: 10.1109/ICORR.2017.8009267 – volume: 40 start-page: 183 issue: 2 year: 2016 ident: 1144_CR237 publication-title: Ann Rehabil Med doi: 10.5535/arm.2016.40.2.183 – year: 2020 ident: 1144_CR29 publication-title: Cochrane Database Syst Rev doi: 10.1002/14651858.CD006185.pub5 – volume: 37 start-page: 653 issue: 6 year: 2014 ident: 1144_CR89 publication-title: J Rehabil Res Dev – volume: 26 start-page: 1233 issue: 6 year: 2018 ident: 1144_CR105 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2018.2832657 – volume: 6 start-page: 18 year: 2009 ident: 1144_CR250 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-6-18 – volume: 29 start-page: 105176 issue: 10 year: 2020 ident: 1144_CR232 publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2020.105176 |
| SSID | ssj0034054 |
| Score | 2.597093 |
| SecondaryResourceType | review_article |
| Snippet | Background
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should... In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with... Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should... BackgroundIn the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should... Abstract Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 23 |
| SubjectTerms | Adaptive algorithms Adaptive control Algorithms Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain Brain Injuries Brain injury Brain research Care and treatment Cerebral palsy Control systems Controllers Disability Effectiveness Exoskeleton Exoskeleton Device Exoskeletons Gait Gait disorders Gait recognition Gait rehabilitation Head injuries Heterogeneity Humans Injuries Injury analysis Intervention Literature reviews Lower limb Neurological Rehabilitation Neurology Neurosciences Parameters Patients Powered exoskeleton Questions Rehabilitation Rehabilitation Medicine Review Robotics Robots Self-help devices for the disabled Standardization Stroke Systematic review Therapeutics, Experimental Tracking control Training Trajectory control Traumatic brain injury Treatment Outcome Walking |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiE48FhegYIGiccBrG4Sx3a4lYqKC1WFitSb5ThOWViyaLOL-Cv8W8Z2st0UARcOOSQeR358mYfi-QbgaUYqz-TCMGW5ZFxWKavqacmEKGsppLFGmVBsQh4dqdPT8nir1Jc_ExbpgePC7ZXKmKYqlK0454XLTUNvr12aOpeK2oQ036ksh2Aq6uCc3BA-pMgosdeRVVOckX1iPgDgrBiZocDW_7tO3jJKFw9MXvhrGozR4U243nuRuB9HfwsuuXYC17a4BSdw5X3_13wCz7aphPEk8gjgc_wwYumewI3jftMGmdvw8yAeZcduNXBK4LpzNc5anPsCaziffa3Q_Vh0X8iAkSPZIbnBeGZmK1yO3o-hHDlWviYFdf9Mm_kaDZ5TSWNMo0HT1nRFrhRcNDgkb2I8e9Kr5zvw8fDtycE71ldzYFZM5YpVwhbZVJmMhA3dqLpopJV1YzPbpE6lLuOybFzD6Tk5kVVBkYzIed6kpqzJ1t6FnXbRuvuA0maV57BSVhkyrlK5igIzipxqUii8KRJIh83Vtp-kr7gx1yHkUUJHQGgChA6A0NTn5abPt0j08VfpNx4zG0lP0h0eEHR1D139L-gm8MIjTntVQsOzps-IoEl6Ui69L3PPXijENIHdkSSpADtuHjCrexXU6UwqRdqZHLoEnmyafU9_rK51i7WXkaqUOUklcC9CfDOlXCjy5aVMQI7AP5rzuKWdfQoE5eTz-jA-gVfDZ3I-rD-v6YP_saYP4WoWPvOMpeUu7KyWa_cILtvvq1m3fByUxC_XUm5I priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB3BghAcWChfgQUNEh8HsLZJHNvhgpYVKy6sVmiR9mY5jrMUSro0LeKv8G8ZJ07bLGIvHHpoPK4y6fMbj2O_AXiWEOWZVBimLJeMyyJmRTnOmRB5KYU01ijTFpuQh4fq5CQ_CgtuTdhW2XNiS9TlzPo18t2EcjUCG8Wnt2c_mK8a5d-uhhIal-GKL5vtcS5PVglXSpMR3h-UUWK3odimOKMoxXwawFk2CEatZv_fzLwRms5vmzz37rQNSQfb_-vMLbgZJqO416HnNlxy9QhubEgUjuDax_DyfQTPNxWJ8biTI8AX-Gkg9j2C7aPw3_c2d-D3frcjHptFL02By8aVOKlx6uu04XTyvUD3a9Z8ozhI89EGaTaNp2aywPng97Gtao6FL21B3b8SJt6gwbUiNXancdDUJX06yRWcVdifAcVuC0tg-bvw-eD98f4HFopCMCvGcsEKYbNkrExCxoa-qDKrpJVlZRNbxU7FLuEyr1zF6TrNRYuMEiKR8rSKTV5SyL4HW_Wsdg8ApU0KL4WlrDIUo6VyBeV3lICVxEu8yiKIe3RoG5z0hTumus2clNAdojQhSreI0tTn1arPWacXcqH1Ow-6laXX-m4vzOanOlCHzpUxVZEpW3DOM5eaisZX6eLYuViURkXw0kNWe0ai27MmHKwgJ722l96TqRdBFGIcwc7AkpjEDpt7tOrAZI1eQzWCp6tm39PvzqvdbOltpMplSlYR3O_GyMqlVChKCaSMQA5Gz8DnYUs9-dLqnNPU2a8GRPC6H2fr2_r3M314sReP4HrSMkDC4nwHthbzpXsMV-3PxaSZP2n54w-REnsq priority: 102 providerName: ProQuest |
| Title | Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness |
| URI | https://link.springer.com/article/10.1186/s12984-023-01144-5 https://www.ncbi.nlm.nih.gov/pubmed/36805777 https://www.proquest.com/docview/2788488512 https://www.proquest.com/docview/2778973885 https://pubmed.ncbi.nlm.nih.gov/PMC9938998 https://doaj.org/article/98aafb58cb4445e3af284de11ee16da8 |
| Volume | 20 |
| WOSCitedRecordID | wos000934515400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: RBZ dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Healthcare Administration Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M0T dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthmanagement providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: 7RV dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database (NC LIVE) customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M7S dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: RSV dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSF4YFC-AqMyEh8PENEkju3wtk2b4KFV1JVpPFmO44xCSVHTIv4V_lvOTtI140OCh1hKfI7i2ve7u9r-HcDTECFPRUz5QlPuU54FfpYPEp-xJOeMK62Ecskm-Ggkzs6StDkUVrW73dslSYfUTq0Fe12hZRLURxvjWyee-vEW7MSWbcbG6CenLf5G6ILQ9njMb9t1TJBj6v8VjzcM0uXNkpdWTJ0hOt79vy7cgpuN40n265lyG66Ysgc3NugIe3Bt2Cy09-DZJvswmdTUA-Q5GXeIvXuwmzbj3MrcgR-H9e53Ui1bGgqyqkxOpiWZ2ZxsZDb9khHzfV59RpuHvmdF0HMm52q6JIvO-4nLYE4ym8YCm3_C8X9DFLlgnyb1yRuiyhyvml6FzAvSnvck9XaVBtHvwvvjo8nhW79JAOFrNuBLP2M6DgdChSis8EbkccE1zwsd6iIwIjAh5UlhCorP0e_MYgx-WESjIlBJjub5HmyX89I8AMJ1mFnaK6GFQnvMhckwlsNgK0cMokXsQdDOCambTtokHTPpoiTBZD14EgdPusGT2Oblus3Xmhvkr9IHdqqtJS2vt3swX5zLBiZkIpQqsljojFIam0gVqEu5CQJjApYr4cELO1GlRR_8PK2aQxTYScvjJfd5ZAkPGRt4sNeRRNTQ3ep2qssGtSoZciEQ0NEH9ODJutq2tDvxSjNfWRkuUOdQyoP7tWasuxQxge4_5x7wjs50-tytKacfHac5usk28vfgVas5F5_159_04b-JP4LroVO-0A-SPdheLlbmMVzV35bTatGHLT4-teUZd6Xow87B0Sgd990fNVgOBxNb8tSVJ1ifvhumH_oOf34CgnN7IA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFPE4UAgvQ4FFonAAq7G93l0jIVQKVaM2VYSCVE7Ler0ugeCUOOHxU_gT_EZm_UjiInrrgUMO8c5aXnvmmxl79huARz5CngqYcoWm3KU89tw46UQuY1HCGVdaCVU0m-AHB-LwMOqvwO96L4wtq6wxsQDqZKztO_JNH3M1VDb0Ty-Pv7q2a5T9ulq30CjVYs_8_I4pW_6i-xqf74bv77wZbO-6VVcBV7MOn7ox06HfEco3aarwj0jClGuepNrXqWeEZ3zKo9SkFI9jMBOHGFGzgAapp6IEMR_Pew5WKSp7pwWr_W6v_77G_gDDH1pvzRFsM0dvKqiLftG1iQd1w4b7K7oE_O0LlpzhyULNE19rCye4s_a_3b6rcKUKt8lWaR_XYMVkbbi8RMLYhgu9qrygDRvLnMtkUBIukMfkbYPOvA1r_Uq7a5nr8Gu7rPkn-bQm3yCz3CRkmJGR7URHRsMvMTE_xvln9PQYcecE8wVypIZTMmmcnxR920lsm3fg9E-o9c-JIgvObVLuNyIqS_BXksqQcUrqXa6kLNKp_NgNeHcmd_gmtLJxZm4D4dqPLdmX0EJhFMKFiTGDxRQzQeSlaeiAV2uj1NUibWuSkSxyQ8FkqcESNVgWGixxztP5nOOSEeVU6VdWyeeSls28ODCeHMkKHGUklErjUOiYUhqaQKWIIInxPGM8lijhwBNrItJiLl6eVtXWEVykZS-TWzywNI-MdRxYb0giVurmcG0dssLqXC5Mw4GH82E709YfZmY8szJcRDxAKQdulTY5X1LABCY9nDvAG9baWHNzJBt-LJjcMTmw7zsceFbb9eKy_n1P75y-igdwcXfQ25f73YO9u3DJL9DHd71oHVrTyczcg_P623SYT-5X6EXgw1lb_B853NtV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BglZwYKG8AgsMEo8DRNskju1wWxYqEFBVy4L2ZjmOsxRKumpSxF_h3zLOo9ssDwlx6CHxuIrjecYz3wA8CEnl6YhrXxomfCbSwE-zYeJznmSCC2201HWzCTEey8PDZLJWxV9nu3dHkk1Ng0NpKqqd4yxvRFzynZKslGQ-2RvfOfTMj8_COUaRjEvq2n__sdPFEbkjrCuV-e28njmqUft_1c1rxul04uSp09PaKI22_n85l-FS65DibsNBV-CMLQZwcQ2mcACb79oD-AE8XEclxoMGkgAf4X4P8HsAW5N2_zuaq_Bjr8mKx7Lq4ClwWdoMpwXOXK82nE2_pmi_z8svZAvJJy2RPGo80tMKF73_x7qzOaauvQVN_0x88Qw1nqBSY1ORg7rI6NfAruA8x64OFJs0llbTX4MPo5cHe6_8tjGEb_hQVH7KTRwOpQ6JWNOFzOJcGJHlJjR5YGVgQyaS3OaM7pM_msYUFPGIRXmgk4zM9nXYKOaFvQkoTJg6OCxppCY7LaRNKcajICwj3cTy2IOg4w9l2kW65h0zVUdPkqtm8xRtnqo3T9GcJ6s5xw1myF-pnzu2W1E6vO_6xnxxpFr1oRKpdZ7G0qSMsdhGOicZy2wQWBvwTEsPHjumVU4r0eMZ3RZX0CIdvpfaFZEDQuR86MF2j5K0iekPd2yvWm1WqlBISYqefEMP7q-G3UyXoVfY-dLRCJmIiKg8uNFIyWpJEZcUFgjhgejJT2_N_ZFi-qnGOif32X0R8OBpJ0Unj_Xnd3rr38jvwebkxUi9fT1-cxsuhLUchn6QbMNGtVjaO3DefKum5eJurVx-AlLmfPk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+strategies+used+in+lower+limb+exoskeletons+for+gait+rehabilitation+after+brain+injury%3A+a+systematic+review+and+analysis+of+clinical+effectiveness&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=de+Miguel-Fern%C3%A1ndez%2C+Jes%C3%BAs&rft.au=Lobo-Prat%2C+Joan&rft.au=Prinsen%2C+Erik&rft.au=Font-Llagunes%2C+Josep+M.&rft.date=2023-02-19&rft.pub=BioMed+Central&rft.eissn=1743-0003&rft.volume=20&rft_id=info:doi/10.1186%2Fs12984-023-01144-5&rft.externalDocID=PMC9938998 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |