Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness

Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroengineering and rehabilitation Jg. 20; H. 1; S. 23 - 28
Hauptverfasser: de Miguel-Fernández, Jesús, Lobo-Prat, Joan, Prinsen, Erik, Font-Llagunes, Josep M., Marchal-Crespo, Laura
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 19.02.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1743-0003, 1743-0003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Methods Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. Results (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies.
AbstractList Abstract Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Methods Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. Results (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies.
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.BACKGROUNDIn the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.METHODSFour databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.RESULTS(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.CONCLUSIONSDespite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.
Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Methods Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. Results (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies.
BackgroundIn the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.MethodsFour databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.Results(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.ConclusionsDespite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients’ specific pathology outperform current control strategies.
Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Methods Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. Results (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Conclusions Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies. Keywords: Powered exoskeleton, Gait rehabilitation, Lower limb, Brain injury, Stroke, Cerebral palsy, Literature synthesis
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.
ArticleNumber 23
Audience Academic
Author Font-Llagunes, Josep M.
de Miguel-Fernández, Jesús
Prinsen, Erik
Lobo-Prat, Joan
Marchal-Crespo, Laura
Author_xml – sequence: 1
  givenname: Jesús
  orcidid: 0000-0001-8651-1642
  surname: de Miguel-Fernández
  fullname: de Miguel-Fernández, Jesús
  organization: Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Institut de Recerca Sant Joan de Déu
– sequence: 2
  givenname: Joan
  orcidid: 0000-0003-4197-1391
  surname: Lobo-Prat
  fullname: Lobo-Prat, Joan
  organization: ABLE Human Motion
– sequence: 3
  givenname: Erik
  surname: Prinsen
  fullname: Prinsen, Erik
  organization: Roessingh Research and Development
– sequence: 4
  givenname: Josep M.
  orcidid: 0000-0002-7192-2980
  surname: Font-Llagunes
  fullname: Font-Llagunes, Josep M.
  organization: Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Institut de Recerca Sant Joan de Déu
– sequence: 5
  givenname: Laura
  orcidid: 0000-0002-8008-5803
  surname: Marchal-Crespo
  fullname: Marchal-Crespo, Laura
  email: laura.marchal@unibe.ch
  organization: Cognitive Robotics Department, Delft University of Technology, Motor Learning and Neurorehabilitation Lab, ARTORG Center for Biomedical Engineering Research, University of Bern, Department of Rehabilitation Medicine, Erasmus MC University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36805777$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhiNURA_wAlwgS9xwsyVO7NjhAqmqOFSqxA1cWxNnvPXitYudbdlH4W2Z7W7pQaiKrNiT7_-dGf2H1V5MEavqNa-POdfd-8KbXotZ3bSzmnMhZvJZdcCVoGNdt3v39vvVYSkL2ohaihfVftvpWiqlDqo_pylOOQVWpgwTzj0Wtio4Mh9ZSNeYWfDLgeHvVH5iwCnFwlzKbA5-YhkvYPDBTzD5FBm4ifghA2l9XKzy-gMDVtZlwiURlvgrj9cM4kgLwrr4wpJjNvjoLQSGzqGd_BVGLOVl9dxBKPhq9z6qfnz-9P306-z825ez05Pzme1qNc2Gzsqm1tCQGOigR-mUVaOzjXUcNcdGqN6hE1SXSg5Satm1onUc-lHw9qg62_qOCRbmMvsl5LVJ4M1NIeW5gUx_H9D0GsANUttBCCGxBddoMSLniLwbQZPXx63X5WpY4miRZgvhgenDL9FfmHm6Mn3f6r7fGLzbGeT0a4VlMktfLIYAEdOqmEYp3atWa0no20foIq0yjXVDaS2I4c0dNQdqwEeX6F67MTUnqlV9q7quJur4PxQ9Iy69pdQ5T_UHgjf3G_3X4W2wCNBbwOZUSkZn7C4m5OyD4bXZZNhsM2wow-Ymw2bTWPNIeuv-pKjdigrBcY75bhpPqP4C6pkHKg
CitedBy_id crossref_primary_10_1186_s12984_024_01531_6
crossref_primary_10_3389_fneur_2024_1292587
crossref_primary_10_3389_fnins_2024_1355052
crossref_primary_10_1186_s12984_024_01510_x
crossref_primary_10_1109_TNSRE_2024_3479283
crossref_primary_10_1038_s41598_023_47430_z
crossref_primary_10_1109_ACCESS_2025_3577700
crossref_primary_10_3390_act12090353
crossref_primary_10_3390_app15116053
crossref_primary_10_1109_TNSRE_2023_3303777
crossref_primary_10_1109_ACCESS_2025_3607679
crossref_primary_10_1109_ACCESS_2024_3414175
crossref_primary_10_1002_aisy_202400039
crossref_primary_10_1007_s42235_024_00537_z
crossref_primary_10_3390_s25154571
crossref_primary_10_3390_act14030108
crossref_primary_10_1109_TNSRE_2025_3547361
crossref_primary_10_3390_jcm12237220
crossref_primary_10_3389_fbioe_2023_1208561
crossref_primary_10_1016_j_bspc_2024_106347
crossref_primary_10_1111_jocn_70082
crossref_primary_10_3390_bioengineering10111328
crossref_primary_10_3390_prosthesis5020040
crossref_primary_10_3390_s24030964
crossref_primary_10_4103_jmss_jmss_49_24
crossref_primary_10_1016_j_bbe_2025_06_004
crossref_primary_10_3390_robotics13010011
crossref_primary_10_12688_f1000research_157134_1
crossref_primary_10_1016_j_compbiomed_2024_108839
crossref_primary_10_1007_s42235_023_00397_z
crossref_primary_10_1109_ACCESS_2024_3443066
crossref_primary_10_1177_1045389X241263878
crossref_primary_10_3389_fnhum_2023_1179418
crossref_primary_10_3389_fnins_2025_1569148
crossref_primary_10_3390_brainsci13040612
crossref_primary_10_1016_j_bspc_2025_108282
crossref_primary_10_3389_fnbot_2023_1186175
crossref_primary_10_52326_jes_utm_2025_32_1__06
crossref_primary_10_3390_robotics13080120
crossref_primary_10_1109_ACCESS_2025_3552757
crossref_primary_10_25100_iyc_v27i1_14594
crossref_primary_10_3389_fbioe_2024_1391322
Cites_doi 10.1109/CCAC.2019.8921278
10.1097/PEP.0b013e318227bbc6
10.1016/j.ejpn.2010.01.002
10.1109/RoboSoft48309.2020.9116050
10.1007/s10439-020-02454-8
10.1186/s12984-016-0158-1
10.1310/tsr1503-200
10.1109/LRA.2020.2965072
10.1101/2021.02.19.431882
10.1186/s12984-020-00703-4
10.1016/j.mechatronics.2018.03.002
10.1371/journal.pone.0178636
10.1109/ICORR.2017.8009248
10.1007/s11517-011-0816-1
10.1186/s12984-021-00906-3
10.1109/JSEN.2020.2975790
10.1016/j.pmr.2019.09.011
10.1109/ICORR.2019.8779554
10.3390/app9010164
10.3233/NRE-161325
10.1037/0278-7393.15.2.352
10.3233/NRE-161424
10.1109/LRA.2022.3183799
10.1109/TOH.2021.3104518
10.1109/LRA.2019.2955946
10.1016/j.robot.2020.103514
10.1016/j.apmr.2005.12.042
10.3233/RNN-170734
10.1016/j.dhjo.2019.01.005
10.3389/fnins.2018.00276
10.3389/fnins.2017.00400
10.1371/journal.pone.0229707
10.1155/2018/2892065
10.3109/17483107.2013.873489
10.1109/TNSRE.2018.2817647
10.1016/b978-0-323-55381-0.00002-0
10.3389/fnbot.2018.00010
10.1115/DSCC2010-4204
10.1186/s12984-017-0340-0
10.23736/S1973-9087.19.05574-6
10.1016/j.humov.2015.05.010
10.1016/S0140-6736(11)60325-5
10.1186/1743-0003-11-98
10.1109/EMBC.2018.8512807
10.1016/S1052-3057(03)00042-9
10.1111/j.1469-8749.2008.03150.x
10.1310/JB16-V04F-JAL5-H1UV
10.3390/s20143972
10.1371/journal.pone.0137910
10.1177/1729881417743554
10.1186/s12984-020-00762-7
10.1016/j.jns.2021.118583
10.1097/MRR.0000000000000132
10.1145/3197768.3197779
10.3389/fnbot.2021.659876
10.3389/fnins.2019.00259
10.1109/TNSRE.2016.2521160
10.1186/1743-0003-10-75
10.1177/1545968314521004
10.1016/j.bspc.2017.05.011
10.1007/s11948-020-00268-4
10.1109/BIOROB.2008.4762796
10.1161/STR.0000000000000098
10.3233/TAD-2010-0306
10.1109/TBME.2016.2604340
10.1109/TNSRE.2020.2965029
10.1177/0278364917706743
10.1109/TNSRE.2020.2977339
10.1109/TNSRE.2010.2079334
10.1161/01.STR.0000127785.73065.34
10.1088/1741-2552/aaa8c0
10.1161/STROKEAHA.119.025950
10.1097/PHM.0000000000000776
10.1161/01.STR.0000254607.48765.cb
10.3390/s19214804
10.1161/STROKEAHA.107.504779
10.1186/1743-0003-12-1
10.3389/fbioe.2020.00770
10.3233/NRE-172408
10.1177/1545968307300697
10.1109/JSYST.2014.2351491
10.1016/j.jbiomech.2006.12.006
10.1136/jnnp-2016-313361
10.1097/01.wco.0000200544.29915.cc
10.1177/1747493016643553
10.1109/TNSRE.2014.2346193
10.1016/S1474-4422(19)30034-1
10.1186/s12984-015-0015-7
10.1177/0954411918755828
10.1186/s12984-016-0162-5
10.1109/TNSRE.2020.3003860
10.1155/2018/9712926
10.1093/brain/awr039
10.1016/j.mechatronics.2015.04.005
10.1186/s12984-019-0523-y
10.1038/s41394-020-0269-6
10.1186/s12984-015-0048-y
10.1016/j.conengprac.2019.06.003
10.1097/00002060-199703000-00008
10.1109/TNSRE.2017.2703586
10.1109/TMECH.2017.2704521
10.1186/s12984-019-0630-9
10.1088/1361-665X/aa9315
10.1186/1743-0003-11-111
10.1186/s12984-020-00702-5
10.1016/j.ejpn.2019.05.003
10.1016/j.gaitpost.2012.07.032
10.2147/NDT.S114102
10.1159/000500747
10.1016/S1474-4422(19)30321-7
10.1109/TCDS.2019.2954289
10.3389/fnins.2016.00359
10.1016/j.gaitpost.2013.03.011
10.1097/00002060-200005000-00006
10.1002/pri.1786
10.1186/1743-0003-8-14
10.1016/j.rehab.2020.02.008
10.1126/science.aal5054
10.1016/j.gaitpost.2021.02.031
10.1016/j.ejpn.2017.01.012
10.1126/scitranslmed.aam9145
10.3233/NRE-141054
10.23736/S1973-9087.17.04591-9
10.1109/MRA.2019.2955669
10.1186/s12984-016-0206-x
10.3233/NRE-171459
10.1186/s12984-020-00690-6
10.1177/1747493017711816
10.1177/107110079401500610
10.1109/EMBC.2016.7591169
10.1310/B3JD-NML4-V1FB-5YHG
10.1016/j.pmr.2018.12.012
10.1109/TNSRE.2003.823266
10.1007/978-3-642-31534-3_28
10.1109/BIOROB.2008.4762885
10.1136/adc.2008.145458
10.1109/RBME.2016.2552201
10.1186/s12984-017-0244-z
10.1088/1741-2560/13/3/031001
10.3389/fnhum.2018.00312
10.1111/dmcn.12865
10.1109/BioRob49111.2020.9224365
10.1016/j.gaitpost.2008.10.062
10.1109/TMECH.2015.2465849
10.3390/s20092452
10.1145/1328491.1328521
10.1016/j.apmr.2014.07.002
10.1109/LRA.2019.2908491
10.1016/S0140-6736(20)32340-0
10.1186/s12984-019-0517-9
10.1109/TASE.2021.3066403
10.1186/s12984-018-0412-9
10.3389/fnbot.2021.730965
10.1088/1741-2552/ac1176
10.1186/s12984-019-0559-z
10.1163/016918611X588907
10.1186/1471-2377-11-116
10.1186/s12984-015-0062-0
10.1146/annurev-control-060117-104856
10.2147/MDER.S107134
10.1109/TRO.2009.2019788
10.1186/1743-0003-6-20
10.1155/2012/123579
10.1111/j.1469-8749.2008.03089.x
10.1109/IROS.2011.6095025
10.1109/TNSRE.2020.3009317
10.1016/j.jocn.2020.04.121
10.1177/107385840100700514
10.1109/TBME.2007.910683
10.3171/2017.10.JNS17352
10.1097/PEP.0000000000000661
10.3389/fneur.2020.00553
10.3390/app9132627
10.1109/IEMBS.2010.5626191
10.1186/1743-0003-5-21
10.1126/scirobotics.abf1078
10.1109/EMBC.2015.7319468
10.1186/1743-0003-11-92
10.1177/0954411914567213
10.1109/TMECH.2021.3053226
10.1109/IEMBS.2011.6092107
10.1186/s12984-021-00954-9
10.2471/BLT.16.181636
10.1016/S0960-9822(01)00581-4
10.1186/s12984-022-01088-2
10.1109/IEMBS.2009.5333698
10.1016/j.robot.2014.09.032
10.3389/fnins.2019.01389
10.2176/nmc.oa.2014-0431
10.1016/j.gaitpost.2011.01.004
10.1016/j.robot.2019.06.009
10.1109/TEVC.2019.2921598
10.1097/PHM.0000000000000914
10.3109/02699052.2011.607782
10.1109/LRA.2020.3007480
10.1109/TMRB.2020.2982004
10.1186/1743-0003-10-3
10.3233/RNN-170745
10.1186/1743-0003-7-4
10.1109/ACCESS.2020.2991812
10.1109/TNSRE.2019.2944665
10.1016/j.robot.2015.09.015
10.1186/1743-0003-9-57
10.1093/brain/awg079
10.1016/j.gaitpost.2017.11.007
10.1109/TBME.2014.2313867
10.1109/TNSRE.2017.2651404
10.1016/j.apmr.2012.11.016
10.1155/2017/3595461
10.1109/MRA.2008.927689
10.1109/TNSRE.2009.2033061
10.2522/ptj.20120492
10.21203/rs.3.rs-1629984/v1
10.1109/ACCESS.2021.3110595
10.1186/s12984-021-00815-5
10.3389/fnbot.2019.00063
10.3390/s21082727
10.1097/TGR.0000000000000098
10.3233/NRE-161393
10.1109/TBME.2019.2912466
10.1109/TBME.2018.2817688
10.23919/ACC.1984.4788393
10.3389/fbioe.2020.00113
10.1155/2017/3731802
10.1016/S0003-9993(95)80038-7
10.1001/jama.1993.03510170086037
10.1016/S1047-9651(03)00124-4
10.1109/EMBC.2013.6610899
10.3389/fnbot.2020.00019
10.1109/ICORR.2007.4428426
10.1186/s12984-018-0394-7
10.1109/TRO.2021.3084466
10.1017/CBO9780511995590.049
10.1109/70.768179
10.15761/PRR.1000128
10.1186/1471-2377-13-141
10.1016/j.gaitpost.2019.05.003
10.1080/10749357.2016.1275304
10.2176/nmc.53.287
10.1109/TBME.2018.2840848
10.1109/MCS.2018.2866605
10.1016/j.apmr.2013.12.021
10.2340/16501977-2505
10.1186/s10033-019-0389-8
10.3389/fnbot.2019.00057
10.1016/j.clinbiomech.2019.05.011
10.1242/jeb.168815
10.1177/0269215520932964
10.1109/ICORR.2017.8009267
10.5535/arm.2016.40.2.183
10.1002/14651858.CD006185.pub5
10.1109/TNSRE.2018.2832657
10.1186/1743-0003-6-18
10.1016/j.jstrokecerebrovasdis.2020.105176
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12984-023-01144-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central (New) (NC LIVE)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Engineering Database (NC LIVE)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 28
ExternalDocumentID oai_doaj_org_article_98aafb58cb4445e3af284de11ee16da8
PMC9938998
A737937660
36805777
10_1186_s12984_023_01144_5
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: Agencia Estatal de Investigación
  grantid: PTQ2018-010227
  funderid: http://dx.doi.org/10.13039/501100011033
– fundername: Swiss National Science Foundation (CH)
  grantid: PP00P2163800
– fundername: Dutch Research Council (NWO) Talent Program (NL)
  grantid: VIDI TTW 2020
– fundername: Agència de Gestió d’Ajuts Universitaris i de Recerca
  grantid: 2020 FI_B 00331
  funderid: http://dx.doi.org/10.13039/501100003030
– fundername: Swiss National Science Foundation
  grantid: PP00P2163800
– fundername: ;
  grantid: PP00P2163800
– fundername: ;
  grantid: 2020 FI_B 00331
– fundername: ;
  grantid: VIDI TTW 2020
– fundername: ;
  grantid: PTQ2018-010227
GroupedDBID ---
0R~
29L
2QV
2WC
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c607t-b6c5208a2effab6c8d5f7c7dfc2cf1e81e2479fef45f7575b55856343f1a9d413
IEDL.DBID RSV
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000934515400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1743-0003
IngestDate Fri Oct 03 12:53:46 EDT 2025
Tue Nov 04 02:06:48 EST 2025
Thu Sep 04 17:37:25 EDT 2025
Sat Oct 18 23:49:08 EDT 2025
Tue Nov 11 10:39:59 EST 2025
Tue Nov 04 17:58:50 EST 2025
Mon Jul 21 05:57:36 EDT 2025
Sat Nov 29 03:36:24 EST 2025
Tue Nov 18 21:38:47 EST 2025
Sat Sep 06 07:18:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Powered exoskeleton
Gait rehabilitation
Cerebral palsy
Stroke
Lower limb
Literature synthesis
Brain injury
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-b6c5208a2effab6c8d5f7c7dfc2cf1e81e2479fef45f7575b55856343f1a9d413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Undefined-1
ObjectType-Review-4
content type line 23
ORCID 0000-0003-4197-1391
0000-0002-7192-2980
0000-0002-8008-5803
0000-0001-8651-1642
OpenAccessLink https://link.springer.com/10.1186/s12984-023-01144-5
PMID 36805777
PQID 2788488512
PQPubID 55356
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_98aafb58cb4445e3af284de11ee16da8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9938998
proquest_miscellaneous_2778973885
proquest_journals_2788488512
gale_infotracmisc_A737937660
gale_infotracacademiconefile_A737937660
pubmed_primary_36805777
crossref_citationtrail_10_1186_s12984_023_01144_5
crossref_primary_10_1186_s12984_023_01144_5
springer_journals_10_1186_s12984_023_01144_5
PublicationCentury 2000
PublicationDate 2023-02-19
PublicationDateYYYYMMDD 2023-02-19
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References M Goffredo (1144_CR30) 2019; 9
JA Blaya (1144_CR157) 2004; 12
JN Vargus-Adams (1144_CR78) 2019; 31
1144_CR91
S Hesse (1144_CR88) 2008; 5
HS Jørgensen (1144_CR9) 1995; 76
Y-H Bae (1144_CR260) 2017; 24
MJ Highsmith (1144_CR183) 2010; 22
Y He (1144_CR111) 2017; 10
Y-H Bae (1144_CR257) 2016; 32
K Bhakta (1144_CR181) 2020; 5
D Debuse (1144_CR75) 2011; 23
SS Fricke (1144_CR98) 2020; 17
1144_CR169
A Rodríguez-Fernández (1144_CR40) 2021; 18
KL Poggensee (1144_CR104) 2021
G Puyuelo-Quintana (1144_CR107) 2020; 17
W Liang (1144_CR140) 2018
L Marchal-Crespo (1144_CR54) 2009; 6
B Chen (1144_CR57) 2019; 20
B Shi (1144_CR59) 2019; 13
N Trushkova (1144_CR35) 2021; 429
S Nomura (1144_CR115) 2019; 9
F Dierick (1144_CR248) 2017; 12
SA Murray (1144_CR14) 2014; 23
A Fleming (1144_CR222) 2021; 18
C Siviy (1144_CR103) 2020; 5
ZF Lerner (1144_CR164) 2017; 9
DJ Reinkensmeyer (1144_CR89) 2014; 37
DC Kerrigan (1144_CR166) 2000; 79
RJ Adams (1144_CR144) 1999; 15
TG Hornby (1144_CR246) 2008; 39
M Tariq (1144_CR210) 2018; 12
1144_CR176
T Ueba (1144_CR268) 2013; 53
F Molteni (1144_CR69) 2017; 53
SS Fricke (1144_CR97) 2020; 17
D-H Bang (1144_CR261) 2016; 38
M Goffredo (1144_CR238) 2019; 55
1144_CR178
BL Patritti (1144_CR272) 2010; 22
A Meyer-Heim (1144_CR276) 2009; 94
D Oeffinger (1144_CR74) 2008; 50
A Wall (1144_CR66) 2020; 15
1144_CR194
RM Visscher (1144_CR218) 2021; 86
W Johnson (1144_CR3) 2016; 94
AL Benabid (1144_CR135) 2019; 18
E López-Larraz (1144_CR213) 2016; 10
JS Park (1144_CR187) 2020; 20
EJ Roth (1144_CR34) 1997; 76
SJ Kim (1144_CR191) 2020; 28
JW Krakauer (1144_CR27) 2006; 19
X Zhang (1144_CR38) 2017
A Duschau-Wicke (1144_CR173) 2009; 18
BS Rupal (1144_CR179) 2017; 14
A Calanca (1144_CR189) 2012; 9
CK Tan (1144_CR134) 2018; 12
H Kawamoto (1144_CR227) 2013; 13
M Wu (1144_CR270) 2017; 96
1144_CR188
JS Tedla (1144_CR31) 2019; 81
A Nilsson (1144_CR64) 2014; 11
BC Conner (1144_CR152) 2020; 48
G Orekhov (1144_CR100) 2021; 18
R Hidayah (1144_CR174) 2020; 28
CK Tan (1144_CR233) 2020; 8
A Cecilia Villa-Parra (1144_CR159) 2020; 20
J De La Fuente (1144_CR121) 2020; 128
HTT Vu (1144_CR180) 2020; 20
KE Gordon (1144_CR132) 2007; 40
EM McCain (1144_CR133) 2019; 16
P-Y Lin (1144_CR13) 2006; 87
DR Louie (1144_CR53) 2016; 13
MR Tucker (1144_CR55) 2015; 12
LW Forrester (1144_CR229) 2014; 28
A Martínez (1144_CR193) 2020; 28
MJ Escalona (1144_CR147) 2020; 6
MPM Van Nunen (1144_CR65) 2015; 10
Z Lu (1144_CR243) 2018; 66
1144_CR198
G Morone (1144_CR51) 2017; 13
1144_CR197
I Borggraefe (1144_CR274) 2010; 46
F Chrif (1144_CR39) 2017; 38
Y Li (1144_CR96) 2018; 15
B Kim (1144_CR25) 2017; 36
PC Kao (1144_CR155) 2015; 2
SB O’Sullivan (1144_CR208) 1994
K Gui (1144_CR109) 2017; 25
1144_CR127
RA Schmidt (1144_CR149) 1989; 15
SF Atashzar (1144_CR102) 2019; 57
MC Dewan (1144_CR6) 2018; 130
J Mehrholz (1144_CR29) 2020
G Asin-Prieto (1144_CR154) 2020
D Wei (1144_CR177) 2019; 13
C Jung (1144_CR172) 2018; 72
1144_CR242
1144_CR126
L Marchal-Crespo (1144_CR36) 2018
SW Lee (1144_CR241) 2010; 19
BC Conner (1144_CR90) 2020; 48
M Bortole (1144_CR190) 2015; 12
H Zhou (1144_CR244) 2021; 15
E García-Cossio (1144_CR224) 2015; 10
I Borggraefe (1144_CR269) 2010; 14
H Tanaka (1144_CR256) 2019; 71
D Marks (1144_CR37) 2019; 2
SJ Harkema (1144_CR87) 2001; 7
M Gandolla (1144_CR99) 2018; 12
M Wu (1144_CR253) 2014; 95
M Sczesny-Kaiser (1144_CR33) 2019; 13
E Basalp (1144_CR81) 2021; 14
M Hassan (1144_CR105) 2018; 26
KZ Takahashi (1144_CR204) 2015; 12
1144_CR254
R Fluit (1144_CR185) 2019; 67
H Vallery (1144_CR209) 2008; 15
1144_CR130
MD Lewek (1144_CR167) 2019; 67
J Schröder (1144_CR21) 2019; 51
C Krishnan (1144_CR247) 2013; 94
1144_CR255
A Schicketmueller (1144_CR124) 2019; 19
Y Li (1144_CR200) 2017; 26
D Leon (1144_CR67) 2017; 35
M Lotze (1144_CR151) 2003; 126
LN Awad (1144_CR266) 2020; 17
SM Woolley (1144_CR16) 2001; 7
A Esquenazi (1144_CR48) 2019; 30
K Van Kammen (1144_CR221) 2017; 14
J Bae (1144_CR220) 2018
R Weinberger (1144_CR271) 2019; 23
M Kelly-Hayes (1144_CR8) 2003; 12
OM Alaoui (1144_CR112) 2020; 2
W-Z Li (1144_CR42) 2021; 9
1144_CR265
D Shi (1144_CR45) 2019; 32
1144_CR142
M Grimmer (1144_CR110) 2019; 13
1144_CR141
1144_CR267
1144_CR145
JE Sullivan (1144_CR72) 2013; 93
S-C Yen (1144_CR153) 2015; 42
SL Crichton (1144_CR7) 2016; 87
H Watanabe (1144_CR230) 2020
CO Johnson (1144_CR2) 2019; 18
A Cieza (1144_CR1) 2020; 396
V Knox (1144_CR76) 2019; 24
M Xiloyannis (1144_CR61) 2021; 38
S Yang (1144_CR219) 2013; 37
L Wallard (1144_CR273) 2017; 21
A Basteris (1144_CR80) 2014; 11
R Baud (1144_CR41) 2021
V Arnez-Paniagua (1144_CR158) 2019; 90
HG Seo (1144_CR171) 2017; 35
J Ward (1144_CR195) 2011; 25
JS Sulzer (1144_CR163) 2009; 25
W Huo (1144_CR47) 2014; 10
J Kwon (1144_CR196) 2019; 4
D Hebert (1144_CR18) 2016; 11
LM Weber (1144_CR52) 2018; 43
T Gurriet (1144_CR116) 2019; 5
1144_CR19
1144_CR203
1144_CR201
1144_CR20
L Wallard (1144_CR275) 2018; 60
JL Emken (1144_CR129) 2007; 55
M del Carmen Sanchez-Villamañan (1144_CR50) 2019; 16
M Ferre-Fernández (1144_CR77) 2020; 32
1144_CR217
GH Guyatt (1144_CR71) 1993; 270
T Seel (1144_CR125) 2014; 59
1144_CR28
AJ Young (1144_CR43) 2016; 25
G Lv (1144_CR150) 2018; 38
RJ Palisano (1144_CR63) 2008; 50
C Buesing (1144_CR168) 2015; 12
X Tan (1144_CR186) 2021; 19
S Hirano (1144_CR279) 2017; 41
AA Frolov (1144_CR212) 2017; 11
S Taki (1144_CR232) 2020; 29
C Trompetto (1144_CR251) 2013; 38
C Bayón (1144_CR277) 2018; 15
A Kapeller (1144_CR278) 2020; 26
B Laschowski (1144_CR117) 2021
1144_CR108
MK Shepherd (1144_CR82) 2017; 22
CJ Winstein (1144_CR10) 2016; 47
SC Cramer (1144_CR146) 2011; 134
A Mayr (1144_CR239) 2007; 21
F Patane (1144_CR202) 2017; 25
H Zhu (1144_CR106) 2021; 26
J de Miguel-Fernández (1144_CR101) 2022; 7
1144_CR223
A Calanca (1144_CR137) 2015; 21
B Koopman (1144_CR156) 2013; 10
B Hobbs (1144_CR60) 2020; 14
H-J Lee (1144_CR170) 2019; 50
C Huang (1144_CR123) 2019; 24
H Watanabe (1144_CR236) 2014; 95
A Tura (1144_CR182) 2010; 7
PM Rossini (1144_CR85) 2004; 15
SJ Lawrence (1144_CR205) 1994; 15
LF Yeung (1144_CR160) 2018; 15
B Chen (1144_CR49) 2016; 5
1144_CR114
J Bernhardt (1144_CR17) 2017; 12
SY Gordleeva (1144_CR131) 2020; 8
R Teasell (1144_CR11) 2014
S Maeshima (1144_CR215) 2011; 11
MS Madhav (1144_CR62) 2020; 3
T Yan (1144_CR56) 2015; 64
R Ronsse (1144_CR122) 2011; 49
DE Uçar (1144_CR258) 2014; 34
RB Haynes (1144_CR70) 1997; 157
G Chen (1144_CR113) 2016; 64
P Langhorne (1144_CR23) 2011; 377
K Oyake (1144_CR148) 2020; 11
C Krishnan (1144_CR249) 2012; 9
DO McGuire (1144_CR4) 2019; 12
B Cesqui (1144_CR240) 2013; 10
N Vanicek (1144_CR184) 2009; 29
S Balasubramanian (1144_CR214) 2018; 65
RW Nuckols (1144_CR263) 2020; 17
MM Ouellette (1144_CR94) 2004; 35
M Li (1144_CR58) 2018; 232
A Esquenazi (1144_CR226) 2017; 9
JL Contreras-Vidal (1144_CR46) 2016; 13
K Nakagawa (1144_CR192) 2020; 77
C Bushnell (1144_CR73) 2015; 8
G Aguirre-Ollinger (1144_CR118) 2019; 27
SJ Kim (1144_CR237) 2016; 40
I Wiszomirska (1144_CR15) 2017
G Durandau (1144_CR264) 2019
H Prasanth (1144_CR216) 2021; 21
T Yoshimoto (1144_CR228) 2015; 38
H Watanabe (1144_CR234) 2017; 40
Y He (1144_CR211) 2018; 15
MB dos Santos (1144_CR259) 2018
L Kwah (1144_CR22) 2018
G Aguirre-Ollinger (1144_CR120) 2015; 229
J Veldema (1144_CR93) 2020; 34
G Moucheboeuf (1144_CR32) 2020; 63
W Meng (1144_CR44) 2015; 31
K Yoshikawa (1144_CR235) 2017; 40
N Lamberti (1144_CR95) 2016; 53
JL Contreras-Vidal (1144_CR252) 2018; 97
U Nagarajan (1144_CR139) 2016; 75
N Mizukami (1144_CR161) 2018; 26
JE Sullivan (1144_CR207) 2008; 15
C Bayón (1144_CR175) 2016; 13
BE Fisher (1144_CR26) 2001; 8
E Sellier (1144_CR5) 2016; 58
A Koenig (1144_CR24) 2011; 8
R Xu (1144_CR136) 2014; 61
N Lotti (1144_CR143) 2020; 27
G Orekhov (1144_CR162) 2020; 28
AK Blanchette (1144_CR92) 2014; 11
M Burnfield (1144_CR206) 2010; 9
1144_CR86
1144_CR83
1144_CR84
B Husemann (1144_CR68) 2007; 38
E Marder (1144_CR119) 2001; 11
H Fukuda (1144_CR231) 2015; 55
M Sczesny-Kaiser (1144_CR245) 2019
KP Westlake (1144_CR250) 2009; 6
LW Forrester (1144_CR199) 2016; 13
SA Roelker (1144_CR12) 2018
J Zhang (1144_CR262) 2017; 356
N Lapitskaya (1144_CR225) 2011; 25
M Schumacher (1144_CR138) 2019; 119
JS Lora-Millan (1144_CR128) 2021; 19
T Proietti (1144_CR79) 2016; 9
JL Allen (1144_CR165) 2011; 33
References_xml – ident: 1144_CR130
  doi: 10.1109/CCAC.2019.8921278
– volume: 23
  start-page: 221
  issue: 3
  year: 2011
  ident: 1144_CR75
  publication-title: Pediatr Phys Ther
  doi: 10.1097/PEP.0b013e318227bbc6
– volume: 14
  start-page: 496
  issue: 6
  year: 2010
  ident: 1144_CR269
  publication-title: Eur J Paediatr Neurol
  doi: 10.1016/j.ejpn.2010.01.002
– ident: 1144_CR84
  doi: 10.1109/RoboSoft48309.2020.9116050
– volume: 48
  start-page: 1309
  issue: 4
  year: 2020
  ident: 1144_CR152
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-020-02454-8
– volume: 22
  start-page: 26
  issue: 1
  year: 2010
  ident: 1144_CR183
  publication-title: JPO
– volume: 13
  start-page: 51
  issue: 1
  year: 2016
  ident: 1144_CR199
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-016-0158-1
– volume: 15
  start-page: 200
  issue: 3
  year: 2008
  ident: 1144_CR207
  publication-title: Top Stroke Rehabil
  doi: 10.1310/tsr1503-200
– volume: 5
  start-page: 828
  issue: 2
  year: 2020
  ident: 1144_CR103
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.2965072
– ident: 1144_CR127
  doi: 10.1101/2021.02.19.431882
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 1144_CR263
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-020-00703-4
– volume: 57
  start-page: 1
  year: 2019
  ident: 1144_CR102
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.03.002
– volume: 12
  start-page: e0178636
  issue: 6
  year: 2017
  ident: 1144_CR248
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178636
– ident: 1144_CR197
  doi: 10.1109/ICORR.2017.8009248
– volume: 49
  start-page: 1173
  issue: 10
  year: 2011
  ident: 1144_CR122
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-011-0816-1
– year: 2021
  ident: 1144_CR41
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-021-00906-3
– volume: 46
  start-page: 125
  issue: 2
  year: 2010
  ident: 1144_CR274
  publication-title: Eur J Phys Rehabil Med
– volume: 20
  start-page: 6516
  issue: 12
  year: 2020
  ident: 1144_CR187
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.2975790
– volume: 31
  start-page: 131
  issue: 1
  year: 2019
  ident: 1144_CR78
  publication-title: Phys Med Rehabil Clin N Am
  doi: 10.1016/j.pmr.2019.09.011
– ident: 1144_CR217
  doi: 10.1109/ICORR.2019.8779554
– volume: 9
  start-page: 164
  issue: 1
  year: 2019
  ident: 1144_CR115
  publication-title: Appl Sci
  doi: 10.3390/app9010164
– volume: 38
  start-page: 343
  issue: 4
  year: 2016
  ident: 1144_CR261
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-161325
– volume: 8
  start-page: 163
  issue: 6–suppl–3
  year: 2015
  ident: 1144_CR73
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 15
  start-page: 352
  issue: 2
  year: 1989
  ident: 1144_CR149
  publication-title: J Exp Psychol Learn Mem Cognit
  doi: 10.1037/0278-7393.15.2.352
– volume: 40
  start-page: 363
  issue: 3
  year: 2017
  ident: 1144_CR234
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-161424
– volume: 7
  start-page: 7574
  issue: 3
  year: 2022
  ident: 1144_CR101
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2022.3183799
– volume: 14
  start-page: 722
  issue: 4
  year: 2021
  ident: 1144_CR81
  publication-title: IEEE Trans Haptics
  doi: 10.1109/TOH.2021.3104518
– volume: 5
  start-page: 266
  issue: 1
  year: 2019
  ident: 1144_CR116
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2019.2955946
– volume: 128
  year: 2020
  ident: 1144_CR121
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2020.103514
– volume-title: Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: a review
  year: 2018
  ident: 1144_CR12
– volume: 87
  start-page: 562
  issue: 4
  year: 2006
  ident: 1144_CR13
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2005.12.042
– volume: 35
  start-page: 377
  issue: 4
  year: 2017
  ident: 1144_CR67
  publication-title: Restor Neurol Neurosci
  doi: 10.3233/RNN-170734
– volume-title: Davis PT collection
  year: 1994
  ident: 1144_CR208
– volume: 12
  start-page: 443
  issue: 3
  year: 2019
  ident: 1144_CR4
  publication-title: Disabil Health J
  doi: 10.1016/j.dhjo.2019.01.005
– volume: 12
  start-page: 276
  year: 2018
  ident: 1144_CR134
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00276
– volume: 11
  start-page: 400
  year: 2017
  ident: 1144_CR212
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00400
– volume: 15
  start-page: 0229707
  issue: 2
  year: 2020
  ident: 1144_CR66
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0229707
– year: 2018
  ident: 1144_CR259
  publication-title: Behav Neurol
  doi: 10.1155/2018/2892065
– volume: 10
  start-page: 141
  issue: 2
  year: 2015
  ident: 1144_CR65
  publication-title: Disabil Rehabil Assist Technol
  doi: 10.3109/17483107.2013.873489
– volume: 26
  start-page: 1011
  issue: 5
  year: 2018
  ident: 1144_CR161
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2817647
– start-page: 23
  volume-title: Stroke rehabilitation
  year: 2018
  ident: 1144_CR22
  doi: 10.1016/b978-0-323-55381-0.00002-0
– volume: 12
  start-page: 1
  issue: MAR
  year: 2018
  ident: 1144_CR99
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2018.00010
– ident: 1144_CR201
  doi: 10.1115/DSCC2010-4204
– volume: 15
  start-page: 1
  issue: 1
  year: 2018
  ident: 1144_CR96
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-017-0340-0
– volume: 55
  start-page: 710
  issue: 6
  year: 2019
  ident: 1144_CR238
  publication-title: Eur J Phys Rehabil Med
  doi: 10.23736/S1973-9087.19.05574-6
– volume: 42
  start-page: 212
  year: 2015
  ident: 1144_CR153
  publication-title: Hum Mov Sci
  doi: 10.1016/j.humov.2015.05.010
– volume: 377
  start-page: 1693
  issue: 9778
  year: 2011
  ident: 1144_CR23
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60325-5
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 1144_CR92
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-98
– ident: 1144_CR142
  doi: 10.1109/EMBC.2018.8512807
– volume: 12
  start-page: 119
  issue: 3
  year: 2003
  ident: 1144_CR8
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/S1052-3057(03)00042-9
– volume: 50
  start-page: 918
  issue: 12
  year: 2008
  ident: 1144_CR74
  publication-title: Dev Med Child Neurol
  doi: 10.1111/j.1469-8749.2008.03150.x
– volume: 7
  start-page: 1
  issue: 4
  year: 2001
  ident: 1144_CR16
  publication-title: Top Stroke Rehabil
  doi: 10.1310/JB16-V04F-JAL5-H1UV
– volume: 20
  start-page: 3972
  issue: 14
  year: 2020
  ident: 1144_CR180
  publication-title: Sensors
  doi: 10.3390/s20143972
– volume: 10
  start-page: 0137910
  issue: 12
  year: 2015
  ident: 1144_CR224
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0137910
– volume: 14
  start-page: 172988141774355
  issue: 6
  year: 2017
  ident: 1144_CR179
  publication-title: Int J Adv Robot Syst
  doi: 10.1177/1729881417743554
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 1144_CR97
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-020-00762-7
– volume: 429
  year: 2021
  ident: 1144_CR35
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2021.118583
– volume: 38
  start-page: 338
  issue: 4
  year: 2015
  ident: 1144_CR228
  publication-title: Int J Rehabil Res
  doi: 10.1097/MRR.0000000000000132
– ident: 1144_CR203
  doi: 10.1145/3197768.3197779
– volume: 15
  start-page: 50
  year: 2021
  ident: 1144_CR244
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2021.659876
– volume: 13
  start-page: 259
  year: 2019
  ident: 1144_CR33
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00259
– volume: 25
  start-page: 171
  issue: 2
  year: 2016
  ident: 1144_CR43
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2521160
– volume: 2
  start-page: 1066
  issue: 9
  year: 2015
  ident: 1144_CR155
  publication-title: Phys Med Rehabil Int
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 1144_CR240
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-10-75
– volume: 59
  start-page: 795
  year: 2014
  ident: 1144_CR125
  publication-title: Biomed Tech
– volume: 28
  start-page: 678
  issue: 7
  year: 2014
  ident: 1144_CR229
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968314521004
– ident: 1144_CR28
– volume: 38
  start-page: 119
  year: 2017
  ident: 1144_CR39
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.05.011
– volume: 26
  start-page: 1
  year: 2020
  ident: 1144_CR278
  publication-title: Sci Eng Ethics
  doi: 10.1007/s11948-020-00268-4
– ident: 1144_CR86
  doi: 10.1109/BIOROB.2008.4762796
– volume: 47
  start-page: 98
  issue: 6
  year: 2016
  ident: 1144_CR10
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000098
– volume: 22
  start-page: 215
  issue: 4
  year: 2010
  ident: 1144_CR272
  publication-title: Technol Disabil
  doi: 10.3233/TAD-2010-0306
– volume: 64
  start-page: 1345
  issue: 6
  year: 2016
  ident: 1144_CR113
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2604340
– volume: 28
  start-page: 461
  issue: 2
  year: 2020
  ident: 1144_CR162
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.2965029
– volume: 36
  start-page: 414
  issue: 4
  year: 2017
  ident: 1144_CR25
  publication-title: Int J Robot Res
  doi: 10.1177/0278364917706743
– volume: 28
  start-page: 934
  issue: 4
  year: 2020
  ident: 1144_CR193
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.2977339
– volume: 19
  start-page: 558
  issue: 5
  year: 2010
  ident: 1144_CR241
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2010.2079334
– volume: 35
  start-page: 1404
  issue: 6
  year: 2004
  ident: 1144_CR94
  publication-title: Stroke
  doi: 10.1161/01.STR.0000127785.73065.34
– volume: 15
  issue: 2
  year: 2018
  ident: 1144_CR211
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aaa8c0
– volume: 20
  start-page: 4
  year: 2019
  ident: 1144_CR57
  publication-title: J Orthop Transl
– volume: 50
  start-page: 3545
  issue: 12
  year: 2019
  ident: 1144_CR170
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.025950
– volume: 96
  start-page: 765
  issue: 11
  year: 2017
  ident: 1144_CR270
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/PHM.0000000000000776
– volume: 38
  start-page: 349
  issue: 2
  year: 2007
  ident: 1144_CR68
  publication-title: Stroke
  doi: 10.1161/01.STR.0000254607.48765.cb
– volume: 19
  start-page: 4804
  issue: 21
  year: 2019
  ident: 1144_CR124
  publication-title: Sensors
  doi: 10.3390/s19214804
– volume: 39
  start-page: 1786
  issue: 6
  year: 2008
  ident: 1144_CR246
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.504779
– volume: 12
  start-page: 1
  issue: 1
  year: 2015
  ident: 1144_CR55
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-12-1
– volume: 8
  start-page: 770
  year: 2020
  ident: 1144_CR233
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00770
– volume: 43
  start-page: 99
  issue: 1
  year: 2018
  ident: 1144_CR52
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-172408
– volume: 21
  start-page: 307
  issue: 4
  year: 2007
  ident: 1144_CR239
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968307300697
– volume: 10
  start-page: 1068
  issue: 3
  year: 2014
  ident: 1144_CR47
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2014.2351491
– volume: 40
  start-page: 2636
  issue: 12
  year: 2007
  ident: 1144_CR132
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.12.006
– volume: 87
  start-page: 1091
  issue: 10
  year: 2016
  ident: 1144_CR7
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp-2016-313361
– volume: 19
  start-page: 84
  issue: 1
  year: 2006
  ident: 1144_CR27
  publication-title: Curr Opin Neurol
  doi: 10.1097/01.wco.0000200544.29915.cc
– volume: 11
  start-page: 459
  issue: 4
  year: 2016
  ident: 1144_CR18
  publication-title: Int J Stroke
  doi: 10.1177/1747493016643553
– volume: 23
  start-page: 441
  issue: 3
  year: 2014
  ident: 1144_CR14
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2014.2346193
– volume: 18
  start-page: 439
  issue: 5
  year: 2019
  ident: 1144_CR2
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(19)30034-1
– volume: 12
  start-page: 1
  issue: 1
  year: 2015
  ident: 1144_CR204
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-015-0015-7
– volume: 232
  start-page: 344
  issue: 4
  year: 2018
  ident: 1144_CR58
  publication-title: Proc Inst Mech Eng H J Eng Med
  doi: 10.1177/0954411918755828
– volume: 13
  start-page: 53
  issue: 1
  year: 2016
  ident: 1144_CR53
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-016-0162-5
– volume: 28
  start-page: 1781
  issue: 8
  year: 2020
  ident: 1144_CR191
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3003860
– year: 2018
  ident: 1144_CR140
  publication-title: J Healthc Eng
  doi: 10.1155/2018/9712926
– volume: 134
  start-page: 1591
  issue: 6
  year: 2011
  ident: 1144_CR146
  publication-title: Brain
  doi: 10.1093/brain/awr039
– volume: 31
  start-page: 132
  year: 2015
  ident: 1144_CR44
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.04.005
– volume: 16
  start-page: 1
  year: 2019
  ident: 1144_CR133
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0523-y
– volume: 6
  start-page: 1
  issue: 1
  year: 2020
  ident: 1144_CR147
  publication-title: Spinal Cord Ser Cases
  doi: 10.1038/s41394-020-0269-6
– volume: 12
  start-page: 1
  issue: 1
  year: 2015
  ident: 1144_CR190
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-015-0048-y
– volume: 90
  start-page: 207
  year: 2019
  ident: 1144_CR158
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2019.06.003
– volume: 76
  start-page: 128
  issue: 2
  year: 1997
  ident: 1144_CR34
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/00002060-199703000-00008
– volume: 25
  start-page: 2054
  issue: 11
  year: 2017
  ident: 1144_CR109
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2017.2703586
– volume: 22
  start-page: 1695
  issue: 4
  year: 2017
  ident: 1144_CR82
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2017.2704521
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 1144_CR98
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0630-9
– volume: 26
  start-page: 125003
  issue: 12
  year: 2017
  ident: 1144_CR200
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa9315
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 1144_CR80
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-111
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 1144_CR266
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-020-00702-5
– volume: 23
  start-page: 581
  issue: 4
  year: 2019
  ident: 1144_CR271
  publication-title: Eur J Paediatr Neurol
  doi: 10.1016/j.ejpn.2019.05.003
– volume: 37
  start-page: 354
  issue: 3
  year: 2013
  ident: 1144_CR219
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.07.032
– volume: 13
  start-page: 1303
  year: 2017
  ident: 1144_CR51
  publication-title: Neuropsychiatr Dis Treat
  doi: 10.2147/NDT.S114102
– volume: 81
  start-page: 1
  year: 2019
  ident: 1144_CR31
  publication-title: Eur Neurol
  doi: 10.1159/000500747
– volume: 157
  start-page: 788
  issue: 6
  year: 1997
  ident: 1144_CR70
  publication-title: Can Med Assoc J
– volume: 18
  start-page: 1112
  issue: 12
  year: 2019
  ident: 1144_CR135
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(19)30321-7
– volume: 13
  start-page: 57
  issue: 1
  year: 2019
  ident: 1144_CR177
  publication-title: IEEE Trans Cogn Dev Syst
  doi: 10.1109/TCDS.2019.2954289
– volume: 10
  start-page: 359
  year: 2016
  ident: 1144_CR213
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2016.00359
– volume: 38
  start-page: 729
  issue: 4
  year: 2013
  ident: 1144_CR251
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.03.011
– volume: 79
  start-page: 247
  issue: 3
  year: 2000
  ident: 1144_CR166
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/00002060-200005000-00006
– volume: 24
  start-page: 1786
  issue: 4
  year: 2019
  ident: 1144_CR76
  publication-title: Physiother Res Int
  doi: 10.1002/pri.1786
– volume: 8
  start-page: 1
  issue: 1
  year: 2011
  ident: 1144_CR24
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-8-14
– ident: 1144_CR126
– volume: 63
  start-page: 518
  issue: 6
  year: 2020
  ident: 1144_CR32
  publication-title: Ann Phys Rehabil Med
  doi: 10.1016/j.rehab.2020.02.008
– start-page: 227
  volume-title: Robot-assisted gait training
  year: 2018
  ident: 1144_CR36
– volume: 356
  start-page: 1280
  issue: 6344
  year: 2017
  ident: 1144_CR262
  publication-title: Science
  doi: 10.1126/science.aal5054
– volume: 86
  start-page: 64
  year: 2021
  ident: 1144_CR218
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.02.031
– volume: 21
  start-page: 557
  issue: 3
  year: 2017
  ident: 1144_CR273
  publication-title: Eur J Paediatr Neurol
  doi: 10.1016/j.ejpn.2017.01.012
– volume: 9
  start-page: 9145
  issue: 404
  year: 2017
  ident: 1144_CR164
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aam9145
– volume: 34
  start-page: 447
  issue: 3
  year: 2014
  ident: 1144_CR258
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-141054
– volume: 53
  start-page: 676
  issue: 5
  year: 2017
  ident: 1144_CR69
  publication-title: Eur J Phys Rehabil Med
  doi: 10.23736/S1973-9087.17.04591-9
– volume: 27
  start-page: 43
  issue: 1
  year: 2020
  ident: 1144_CR143
  publication-title: IEEE Robot Autom Mag
  doi: 10.1109/MRA.2019.2955669
– volume: 13
  start-page: 1
  issue: 1
  year: 2016
  ident: 1144_CR175
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-016-0206-x
– year: 2019
  ident: 1144_CR245
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00259
– volume: 41
  start-page: 77
  issue: 1
  year: 2017
  ident: 1144_CR279
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-171459
– volume: 17
  start-page: 1
  issue: 1
  year: 2020
  ident: 1144_CR107
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-020-00690-6
– volume: 12
  start-page: 444
  issue: 5
  year: 2017
  ident: 1144_CR17
  publication-title: Int J Stroke
  doi: 10.1177/1747493017711816
– volume: 15
  start-page: 340
  issue: 6
  year: 1994
  ident: 1144_CR205
  publication-title: Foot Ankle Int
  doi: 10.1177/107110079401500610
– ident: 1144_CR83
  doi: 10.1109/EMBC.2016.7591169
– volume: 8
  start-page: 31
  issue: 3
  year: 2001
  ident: 1144_CR26
  publication-title: Top Stroke Rehabil
  doi: 10.1310/B3JD-NML4-V1FB-5YHG
– volume: 30
  start-page: 385
  issue: 2
  year: 2019
  ident: 1144_CR48
  publication-title: Phys Med Rehabil Clin
  doi: 10.1016/j.pmr.2018.12.012
– volume: 12
  start-page: 24
  issue: 1
  year: 2004
  ident: 1144_CR157
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2003.823266
– ident: 1144_CR255
  doi: 10.1007/978-3-642-31534-3_28
– ident: 1144_CR176
  doi: 10.1109/BIOROB.2008.4762885
– volume: 94
  start-page: 615
  issue: 8
  year: 2009
  ident: 1144_CR276
  publication-title: Arch Dis Childhood
  doi: 10.1136/adc.2008.145458
– volume: 9
  start-page: 4
  year: 2016
  ident: 1144_CR79
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2016.2552201
– volume: 14
  start-page: 1
  issue: 1
  year: 2017
  ident: 1144_CR221
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-017-0244-z
– volume: 13
  issue: 3
  year: 2016
  ident: 1144_CR46
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/3/031001
– volume: 12
  start-page: 312
  year: 2018
  ident: 1144_CR210
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2018.00312
– volume: 58
  start-page: 85
  issue: 1
  year: 2016
  ident: 1144_CR5
  publication-title: Dev Med Child Neurol
  doi: 10.1111/dmcn.12865
– ident: 1144_CR265
  doi: 10.1109/BioRob49111.2020.9224365
– volume: 29
  start-page: 415
  issue: 3
  year: 2009
  ident: 1144_CR184
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.10.062
– volume: 21
  start-page: 613
  issue: 2
  year: 2015
  ident: 1144_CR137
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2015.2465849
– volume: 20
  start-page: 2452
  issue: 9
  year: 2020
  ident: 1144_CR159
  publication-title: Sensors
  doi: 10.3390/s20092452
– ident: 1144_CR198
  doi: 10.1145/1328491.1328521
– volume: 95
  start-page: 2006
  issue: 11
  year: 2014
  ident: 1144_CR236
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2014.07.002
– volume: 4
  start-page: 2547
  issue: 3
  year: 2019
  ident: 1144_CR196
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2019.2908491
– volume: 53
  start-page: 228
  issue: 2
  year: 2016
  ident: 1144_CR95
  publication-title: Eur J Phys Rehabil Med
– volume: 396
  start-page: 2006
  issue: 10267
  year: 2020
  ident: 1144_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32340-0
– volume: 16
  start-page: 55
  issue: 1
  year: 2019
  ident: 1144_CR50
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0517-9
– volume: 19
  start-page: 2108
  issue: 3
  year: 2021
  ident: 1144_CR186
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2021.3066403
– volume: 15
  start-page: 1
  issue: 1
  year: 2018
  ident: 1144_CR277
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-018-0412-9
– year: 2021
  ident: 1144_CR117
  publication-title: bioRxiv
  doi: 10.3389/fnbot.2021.730965
– volume: 18
  start-page: 041004
  issue: 4
  year: 2021
  ident: 1144_CR222
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac1176
– year: 2019
  ident: 1144_CR264
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0559-z
– volume: 25
  start-page: 1879
  issue: 15
  year: 2011
  ident: 1144_CR195
  publication-title: Adv Robot
  doi: 10.1163/016918611X588907
– volume: 11
  start-page: 116
  issue: 1
  year: 2011
  ident: 1144_CR215
  publication-title: BMC Neurol
  doi: 10.1186/1471-2377-11-116
– volume: 12
  start-page: 1
  issue: 1
  year: 2015
  ident: 1144_CR168
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-015-0062-0
– volume: 3
  start-page: 243
  year: 2020
  ident: 1144_CR62
  publication-title: Annu Rev Control Robot Auton Syst
  doi: 10.1146/annurev-control-060117-104856
– volume: 10
  start-page: 89
  year: 2017
  ident: 1144_CR111
  publication-title: Med Devices
  doi: 10.2147/MDER.S107134
– volume: 25
  start-page: 539
  issue: 3
  year: 2009
  ident: 1144_CR163
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2009.2019788
– volume: 6
  start-page: 20
  issue: 1
  year: 2009
  ident: 1144_CR54
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-6-20
– volume: 9
  start-page: 15
  issue: 1
  year: 2012
  ident: 1144_CR189
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2012/123579
– volume: 50
  start-page: 744
  issue: 10
  year: 2008
  ident: 1144_CR63
  publication-title: Dev Med Child Neurol
  doi: 10.1111/j.1469-8749.2008.03089.x
– ident: 1144_CR19
– ident: 1144_CR194
  doi: 10.1109/IROS.2011.6095025
– volume: 48
  start-page: 1
  year: 2020
  ident: 1144_CR90
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-020-02454-8
– volume: 28
  start-page: 1984
  issue: 9
  year: 2020
  ident: 1144_CR174
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3009317
– volume: 77
  start-page: 142
  year: 2020
  ident: 1144_CR192
  publication-title: J Clin Neurosci
  doi: 10.1016/j.jocn.2020.04.121
– volume: 7
  start-page: 455
  issue: 5
  year: 2001
  ident: 1144_CR87
  publication-title: Neuroscientist
  doi: 10.1177/107385840100700514
– volume: 55
  start-page: 322
  issue: 1
  year: 2007
  ident: 1144_CR129
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.910683
– volume: 9
  start-page: 839
  issue: 9
  year: 2017
  ident: 1144_CR226
  publication-title: PM &R
– volume: 130
  start-page: 1080
  issue: 4
  year: 2018
  ident: 1144_CR6
  publication-title: J Neurosurg
  doi: 10.3171/2017.10.JNS17352
– volume: 32
  start-page: 12
  issue: 1
  year: 2020
  ident: 1144_CR77
  publication-title: Pediatr Phys Ther
  doi: 10.1097/PEP.0000000000000661
– volume: 11
  start-page: 553
  year: 2020
  ident: 1144_CR148
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.00553
– volume: 9
  start-page: 353
  issue: 2
  year: 2010
  ident: 1144_CR206
  publication-title: J Sports Sci Med
– volume: 9
  start-page: 2627
  issue: 13
  year: 2019
  ident: 1144_CR30
  publication-title: Appl Sci
  doi: 10.3390/app9132627
– volume: 72
  start-page: 407
  issue: 4
  year: 2018
  ident: 1144_CR172
  publication-title: Acta Med Okayama
– ident: 1144_CR108
  doi: 10.1109/IEMBS.2010.5626191
– volume: 5
  start-page: 1
  issue: 1
  year: 2008
  ident: 1144_CR88
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-5-21
– year: 2021
  ident: 1144_CR104
  publication-title: bioRxiv
  doi: 10.1126/scirobotics.abf1078
– ident: 1144_CR169
  doi: 10.1109/EMBC.2015.7319468
– volume: 11
  start-page: 1
  issue: 1
  year: 2014
  ident: 1144_CR64
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-92
– volume: 229
  start-page: 52
  issue: 1
  year: 2015
  ident: 1144_CR120
  publication-title: Proc Inst Mech Eng H J Eng Med
  doi: 10.1177/0954411914567213
– volume: 26
  start-page: 3104
  issue: 6
  year: 2021
  ident: 1144_CR106
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2021.3053226
– ident: 1144_CR254
  doi: 10.1109/IEMBS.2011.6092107
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: 1144_CR100
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-021-00954-9
– volume: 94
  start-page: 634
  issue: 9
  year: 2016
  ident: 1144_CR3
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.16.181636
– ident: 1144_CR178
– volume: 11
  start-page: 986
  issue: 23
  year: 2001
  ident: 1144_CR119
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00581-4
– volume: 19
  start-page: 109
  issue: 1
  year: 2021
  ident: 1144_CR128
  publication-title: J NeuroEng Rehabil
  doi: 10.1186/s12984-022-01088-2
– ident: 1144_CR188
  doi: 10.1109/IEMBS.2009.5333698
– volume: 64
  start-page: 120
  year: 2015
  ident: 1144_CR56
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2014.09.032
– year: 2020
  ident: 1144_CR230
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.01389
– volume: 55
  start-page: 487
  issue: 6
  year: 2015
  ident: 1144_CR231
  publication-title: Neurologia Medico-Chirurgica
  doi: 10.2176/nmc.oa.2014-0431
– ident: 1144_CR20
– volume: 33
  start-page: 538
  issue: 4
  year: 2011
  ident: 1144_CR165
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.01.004
– volume: 119
  start-page: 185
  year: 2019
  ident: 1144_CR138
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2019.06.009
– volume: 24
  start-page: 201
  issue: 2
  year: 2019
  ident: 1144_CR123
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2921598
– volume: 97
  start-page: 541
  issue: 8
  year: 2018
  ident: 1144_CR252
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/PHM.0000000000000914
– volume: 25
  start-page: 1070
  issue: 11
  year: 2011
  ident: 1144_CR225
  publication-title: Brain Injury
  doi: 10.3109/02699052.2011.607782
– volume: 5
  start-page: 5393
  issue: 4
  year: 2020
  ident: 1144_CR181
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.3007480
– ident: 1144_CR223
– volume: 2
  start-page: 236
  issue: 2
  year: 2020
  ident: 1144_CR112
  publication-title: IEEE Trans Med Robot Bionics
  doi: 10.1109/TMRB.2020.2982004
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: 1144_CR156
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-10-3
– volume: 35
  start-page: 527
  issue: 5
  year: 2017
  ident: 1144_CR171
  publication-title: Restor Neurol Neurosci
  doi: 10.3233/RNN-170745
– volume: 7
  start-page: 1
  issue: 1
  year: 2010
  ident: 1144_CR182
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-7-4
– volume: 8
  start-page: 84070
  year: 2020
  ident: 1144_CR131
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991812
– volume: 27
  start-page: 2305
  issue: 11
  year: 2019
  ident: 1144_CR118
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2944665
– volume: 75
  start-page: 310
  year: 2016
  ident: 1144_CR139
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2015.09.015
– volume: 9
  start-page: 57
  year: 2012
  ident: 1144_CR249
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-9-57
– volume: 5
  start-page: 26
  year: 2016
  ident: 1144_CR49
  publication-title: J Orthop Transl
– volume: 126
  start-page: 866
  issue: 4
  year: 2003
  ident: 1144_CR151
  publication-title: Brain
  doi: 10.1093/brain/awg079
– volume: 60
  start-page: 55
  year: 2018
  ident: 1144_CR275
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.11.007
– volume: 61
  start-page: 2092
  issue: 7
  year: 2014
  ident: 1144_CR136
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2313867
– volume: 25
  start-page: 906
  issue: 7
  year: 2017
  ident: 1144_CR202
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2017.2651404
– volume: 94
  start-page: 1202
  issue: 6
  year: 2013
  ident: 1144_CR247
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2012.11.016
– year: 2017
  ident: 1144_CR15
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2017/3595461
– volume: 15
  start-page: 60
  issue: 3
  year: 2008
  ident: 1144_CR209
  publication-title: IEEE Robot Autom Mag
  doi: 10.1109/MRA.2008.927689
– volume: 18
  start-page: 38
  issue: 1
  year: 2009
  ident: 1144_CR173
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2009.2033061
– volume: 93
  start-page: 1383
  issue: 10
  year: 2013
  ident: 1144_CR72
  publication-title: Phys Ther
  doi: 10.2522/ptj.20120492
– ident: 1144_CR267
  doi: 10.21203/rs.3.rs-1629984/v1
– volume: 9
  start-page: 123040
  year: 2021
  ident: 1144_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110595
– volume: 18
  start-page: 1
  issue: 1
  year: 2021
  ident: 1144_CR40
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-021-00815-5
– volume: 13
  start-page: 63
  year: 2019
  ident: 1144_CR59
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2019.00063
– volume: 21
  start-page: 2727
  issue: 8
  year: 2021
  ident: 1144_CR216
  publication-title: Sensors
  doi: 10.3390/s21082727
– volume: 32
  start-page: 119
  issue: 2
  year: 2016
  ident: 1144_CR257
  publication-title: Top Geriatr Rehabil
  doi: 10.1097/TGR.0000000000000098
– volume: 40
  start-page: 87
  issue: 1
  year: 2017
  ident: 1144_CR235
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-161393
– volume: 67
  start-page: 277
  issue: 1
  year: 2019
  ident: 1144_CR185
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2019.2912466
– volume: 65
  start-page: 2790
  issue: 12
  year: 2018
  ident: 1144_CR214
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2817688
– ident: 1144_CR91
– ident: 1144_CR145
  doi: 10.23919/ACC.1984.4788393
– year: 2020
  ident: 1144_CR154
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00113
– year: 2017
  ident: 1144_CR38
  publication-title: Behav Neurol
  doi: 10.1155/2017/3731802
– volume: 76
  start-page: 27
  issue: 1
  year: 1995
  ident: 1144_CR9
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/S0003-9993(95)80038-7
– volume: 270
  start-page: 2096
  issue: 17
  year: 1993
  ident: 1144_CR71
  publication-title: JAMA
  doi: 10.1001/jama.1993.03510170086037
– volume: 15
  start-page: 263
  issue: 1
  year: 2004
  ident: 1144_CR85
  publication-title: Phys Med Rehabil Clin
  doi: 10.1016/S1047-9651(03)00124-4
– ident: 1144_CR242
  doi: 10.1109/EMBC.2013.6610899
– volume: 14
  start-page: 19
  year: 2020
  ident: 1144_CR60
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2020.00019
– ident: 1144_CR141
  doi: 10.1109/ICORR.2007.4428426
– volume: 15
  start-page: 1
  issue: 1
  year: 2018
  ident: 1144_CR160
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-018-0394-7
– volume: 38
  start-page: 1343
  issue: 3
  year: 2021
  ident: 1144_CR61
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2021.3084466
– start-page: 601
  volume-title: Textbook of neural repair and rehabilitation
  year: 2014
  ident: 1144_CR11
  doi: 10.1017/CBO9780511995590.049
– volume: 15
  start-page: 465
  issue: 3
  year: 1999
  ident: 1144_CR144
  publication-title: IEEE Trans Robot Autom
  doi: 10.1109/70.768179
– volume: 2
  start-page: 1
  year: 2019
  ident: 1144_CR37
  publication-title: Physiother Res Rep
  doi: 10.15761/PRR.1000128
– volume: 13
  start-page: 141
  year: 2013
  ident: 1144_CR227
  publication-title: BMC Neurol
  doi: 10.1186/1471-2377-13-141
– volume: 71
  start-page: 205
  year: 2019
  ident: 1144_CR256
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2019.05.003
– volume: 24
  start-page: 309
  issue: 4
  year: 2017
  ident: 1144_CR260
  publication-title: Top Stroke Rehabil
  doi: 10.1080/10749357.2016.1275304
– volume: 53
  start-page: 287
  issue: 5
  year: 2013
  ident: 1144_CR268
  publication-title: Neurologia medico-chirurgica
  doi: 10.2176/nmc.53.287
– volume: 66
  start-page: 365
  issue: 2
  year: 2018
  ident: 1144_CR243
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2840848
– volume: 38
  start-page: 88
  issue: 6
  year: 2018
  ident: 1144_CR150
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2018.2866605
– volume: 95
  start-page: 799
  issue: 5
  year: 2014
  ident: 1144_CR253
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2013.12.021
– volume: 51
  start-page: 78
  issue: 2
  year: 2019
  ident: 1144_CR21
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-2505
– volume: 32
  start-page: 1
  issue: 1
  year: 2019
  ident: 1144_CR45
  publication-title: Chin J Mech Eng
  doi: 10.1186/s10033-019-0389-8
– volume: 13
  start-page: 57
  year: 2019
  ident: 1144_CR110
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2019.00057
– volume: 67
  start-page: 115
  year: 2019
  ident: 1144_CR167
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2019.05.011
– year: 2018
  ident: 1144_CR220
  publication-title: J Exp Biol
  doi: 10.1242/jeb.168815
– volume: 34
  start-page: 1173
  issue: 9
  year: 2020
  ident: 1144_CR93
  publication-title: Clin Rehabil
  doi: 10.1177/0269215520932964
– ident: 1144_CR114
  doi: 10.1109/ICORR.2017.8009267
– volume: 40
  start-page: 183
  issue: 2
  year: 2016
  ident: 1144_CR237
  publication-title: Ann Rehabil Med
  doi: 10.5535/arm.2016.40.2.183
– year: 2020
  ident: 1144_CR29
  publication-title: Cochrane Database Syst Rev
  doi: 10.1002/14651858.CD006185.pub5
– volume: 37
  start-page: 653
  issue: 6
  year: 2014
  ident: 1144_CR89
  publication-title: J Rehabil Res Dev
– volume: 26
  start-page: 1233
  issue: 6
  year: 2018
  ident: 1144_CR105
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2832657
– volume: 6
  start-page: 18
  year: 2009
  ident: 1144_CR250
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-6-18
– volume: 29
  start-page: 105176
  issue: 10
  year: 2020
  ident: 1144_CR232
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2020.105176
SSID ssj0034054
Score 2.597093
SecondaryResourceType review_article
Snippet Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should...
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with...
Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should...
BackgroundIn the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should...
Abstract Background In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms Adaptive algorithms
Adaptive control
Algorithms
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain
Brain Injuries
Brain injury
Brain research
Care and treatment
Cerebral palsy
Control systems
Controllers
Disability
Effectiveness
Exoskeleton
Exoskeleton Device
Exoskeletons
Gait
Gait disorders
Gait recognition
Gait rehabilitation
Head injuries
Heterogeneity
Humans
Injuries
Injury analysis
Intervention
Literature reviews
Lower limb
Neurological Rehabilitation
Neurology
Neurosciences
Parameters
Patients
Powered exoskeleton
Questions
Rehabilitation
Rehabilitation Medicine
Review
Robotics
Robots
Self-help devices for the disabled
Standardization
Stroke
Systematic review
Therapeutics, Experimental
Tracking control
Training
Trajectory control
Traumatic brain injury
Treatment Outcome
Walking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiE48FhegYIGiccBrG4Sx3a4lYqKC1WFitSb5ThOWViyaLOL-Cv8W8Z2st0UARcOOSQeR358mYfi-QbgaUYqz-TCMGW5ZFxWKavqacmEKGsppLFGmVBsQh4dqdPT8nir1Jc_ExbpgePC7ZXKmKYqlK0454XLTUNvr12aOpeK2oQ036ksh2Aq6uCc3BA-pMgosdeRVVOckX1iPgDgrBiZocDW_7tO3jJKFw9MXvhrGozR4U243nuRuB9HfwsuuXYC17a4BSdw5X3_13wCz7aphPEk8gjgc_wwYumewI3jftMGmdvw8yAeZcduNXBK4LpzNc5anPsCaziffa3Q_Vh0X8iAkSPZIbnBeGZmK1yO3o-hHDlWviYFdf9Mm_kaDZ5TSWNMo0HT1nRFrhRcNDgkb2I8e9Kr5zvw8fDtycE71ldzYFZM5YpVwhbZVJmMhA3dqLpopJV1YzPbpE6lLuOybFzD6Tk5kVVBkYzIed6kpqzJ1t6FnXbRuvuA0maV57BSVhkyrlK5igIzipxqUii8KRJIh83Vtp-kr7gx1yHkUUJHQGgChA6A0NTn5abPt0j08VfpNx4zG0lP0h0eEHR1D139L-gm8MIjTntVQsOzps-IoEl6Ui69L3PPXijENIHdkSSpADtuHjCrexXU6UwqRdqZHLoEnmyafU9_rK51i7WXkaqUOUklcC9CfDOlXCjy5aVMQI7AP5rzuKWdfQoE5eTz-jA-gVfDZ3I-rD-v6YP_saYP4WoWPvOMpeUu7KyWa_cILtvvq1m3fByUxC_XUm5I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB3BghAcWChfgQUNEh8HsLZJHNvhgpYVKy6sVmiR9mY5jrMUSro0LeKv8G8ZJ07bLGIvHHpoPK4y6fMbj2O_AXiWEOWZVBimLJeMyyJmRTnOmRB5KYU01ijTFpuQh4fq5CQ_CgtuTdhW2XNiS9TlzPo18t2EcjUCG8Wnt2c_mK8a5d-uhhIal-GKL5vtcS5PVglXSpMR3h-UUWK3odimOKMoxXwawFk2CEatZv_fzLwRms5vmzz37rQNSQfb_-vMLbgZJqO416HnNlxy9QhubEgUjuDax_DyfQTPNxWJ8biTI8AX-Gkg9j2C7aPw3_c2d-D3frcjHptFL02By8aVOKlx6uu04XTyvUD3a9Z8ozhI89EGaTaNp2aywPng97Gtao6FL21B3b8SJt6gwbUiNXancdDUJX06yRWcVdifAcVuC0tg-bvw-eD98f4HFopCMCvGcsEKYbNkrExCxoa-qDKrpJVlZRNbxU7FLuEyr1zF6TrNRYuMEiKR8rSKTV5SyL4HW_Wsdg8ApU0KL4WlrDIUo6VyBeV3lICVxEu8yiKIe3RoG5z0hTumus2clNAdojQhSreI0tTn1arPWacXcqH1Ow-6laXX-m4vzOanOlCHzpUxVZEpW3DOM5eaisZX6eLYuViURkXw0kNWe0ai27MmHKwgJ722l96TqRdBFGIcwc7AkpjEDpt7tOrAZI1eQzWCp6tm39PvzqvdbOltpMplSlYR3O_GyMqlVChKCaSMQA5Gz8DnYUs9-dLqnNPU2a8GRPC6H2fr2_r3M314sReP4HrSMkDC4nwHthbzpXsMV-3PxaSZP2n54w-REnsq
  priority: 102
  providerName: ProQuest
Title Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness
URI https://link.springer.com/article/10.1186/s12984-023-01144-5
https://www.ncbi.nlm.nih.gov/pubmed/36805777
https://www.proquest.com/docview/2788488512
https://www.proquest.com/docview/2778973885
https://pubmed.ncbi.nlm.nih.gov/PMC9938998
https://doaj.org/article/98aafb58cb4445e3af284de11ee16da8
Volume 20
WOSCitedRecordID wos000934515400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M0T
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7RV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Engineering Database (NC LIVE)
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RSV
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSF4YFC-AqMyEh8PENEkju3wtk2b4KFV1JVpPFmO44xCSVHTIv4V_lvOTtI140OCh1hKfI7i2ve7u9r-HcDTECFPRUz5QlPuU54FfpYPEp-xJOeMK62Ecskm-Ggkzs6StDkUVrW73dslSYfUTq0Fe12hZRLURxvjWyee-vEW7MSWbcbG6CenLf5G6ILQ9njMb9t1TJBj6v8VjzcM0uXNkpdWTJ0hOt79vy7cgpuN40n265lyG66Ysgc3NugIe3Bt2Cy09-DZJvswmdTUA-Q5GXeIvXuwmzbj3MrcgR-H9e53Ui1bGgqyqkxOpiWZ2ZxsZDb9khHzfV59RpuHvmdF0HMm52q6JIvO-4nLYE4ym8YCm3_C8X9DFLlgnyb1yRuiyhyvml6FzAvSnvck9XaVBtHvwvvjo8nhW79JAOFrNuBLP2M6DgdChSis8EbkccE1zwsd6iIwIjAh5UlhCorP0e_MYgx-WESjIlBJjub5HmyX89I8AMJ1mFnaK6GFQnvMhckwlsNgK0cMokXsQdDOCambTtokHTPpoiTBZD14EgdPusGT2Oblus3Xmhvkr9IHdqqtJS2vt3swX5zLBiZkIpQqsljojFIam0gVqEu5CQJjApYr4cELO1GlRR_8PK2aQxTYScvjJfd5ZAkPGRt4sNeRRNTQ3ep2qssGtSoZciEQ0NEH9ODJutq2tDvxSjNfWRkuUOdQyoP7tWasuxQxge4_5x7wjs50-tytKacfHac5usk28vfgVas5F5_159_04b-JP4LroVO-0A-SPdheLlbmMVzV35bTatGHLT4-teUZd6Xow87B0Sgd990fNVgOBxNb8tSVJ1ifvhumH_oOf34CgnN7IA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFPE4UAgvQ4FFonAAq7G93l0jIVQKVaM2VYSCVE7Ler0ugeCUOOHxU_gT_EZm_UjiInrrgUMO8c5aXnvmmxl79huARz5CngqYcoWm3KU89tw46UQuY1HCGVdaCVU0m-AHB-LwMOqvwO96L4wtq6wxsQDqZKztO_JNH3M1VDb0Ty-Pv7q2a5T9ulq30CjVYs_8_I4pW_6i-xqf74bv77wZbO-6VVcBV7MOn7ox06HfEco3aarwj0jClGuepNrXqWeEZ3zKo9SkFI9jMBOHGFGzgAapp6IEMR_Pew5WKSp7pwWr_W6v_77G_gDDH1pvzRFsM0dvKqiLftG1iQd1w4b7K7oE_O0LlpzhyULNE19rCye4s_a_3b6rcKUKt8lWaR_XYMVkbbi8RMLYhgu9qrygDRvLnMtkUBIukMfkbYPOvA1r_Uq7a5nr8Gu7rPkn-bQm3yCz3CRkmJGR7URHRsMvMTE_xvln9PQYcecE8wVypIZTMmmcnxR920lsm3fg9E-o9c-JIgvObVLuNyIqS_BXksqQcUrqXa6kLNKp_NgNeHcmd_gmtLJxZm4D4dqPLdmX0EJhFMKFiTGDxRQzQeSlaeiAV2uj1NUibWuSkSxyQ8FkqcESNVgWGixxztP5nOOSEeVU6VdWyeeSls28ODCeHMkKHGUklErjUOiYUhqaQKWIIInxPGM8lijhwBNrItJiLl6eVtXWEVykZS-TWzywNI-MdRxYb0giVurmcG0dssLqXC5Mw4GH82E709YfZmY8szJcRDxAKQdulTY5X1LABCY9nDvAG9baWHNzJBt-LJjcMTmw7zsceFbb9eKy_n1P75y-igdwcXfQ25f73YO9u3DJL9DHd71oHVrTyczcg_P623SYT-5X6EXgw1lb_B853NtV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BglZwYKG8AgsMEo8DRNskju1wWxYqEFBVy4L2ZjmOsxRKumpSxF_h3zLOo9ssDwlx6CHxuIrjecYz3wA8CEnl6YhrXxomfCbSwE-zYeJznmSCC2201HWzCTEey8PDZLJWxV9nu3dHkk1Ng0NpKqqd4yxvRFzynZKslGQ-2RvfOfTMj8_COUaRjEvq2n__sdPFEbkjrCuV-e28njmqUft_1c1rxul04uSp09PaKI22_n85l-FS65DibsNBV-CMLQZwcQ2mcACb79oD-AE8XEclxoMGkgAf4X4P8HsAW5N2_zuaq_Bjr8mKx7Lq4ClwWdoMpwXOXK82nE2_pmi_z8svZAvJJy2RPGo80tMKF73_x7qzOaauvQVN_0x88Qw1nqBSY1ORg7rI6NfAruA8x64OFJs0llbTX4MPo5cHe6_8tjGEb_hQVH7KTRwOpQ6JWNOFzOJcGJHlJjR5YGVgQyaS3OaM7pM_msYUFPGIRXmgk4zM9nXYKOaFvQkoTJg6OCxppCY7LaRNKcajICwj3cTy2IOg4w9l2kW65h0zVUdPkqtm8xRtnqo3T9GcJ6s5xw1myF-pnzu2W1E6vO_6xnxxpFr1oRKpdZ7G0qSMsdhGOicZy2wQWBvwTEsPHjumVU4r0eMZ3RZX0CIdvpfaFZEDQuR86MF2j5K0iekPd2yvWm1WqlBISYqefEMP7q-G3UyXoVfY-dLRCJmIiKg8uNFIyWpJEZcUFgjhgejJT2_N_ZFi-qnGOif32X0R8OBpJ0Unj_Xnd3rr38jvwebkxUi9fT1-cxsuhLUchn6QbMNGtVjaO3DefKum5eJurVx-AlLmfPk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+strategies+used+in+lower+limb+exoskeletons+for+gait+rehabilitation+after+brain+injury%3A+a+systematic+review+and+analysis+of+clinical+effectiveness&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=de+Miguel-Fern%C3%A1ndez%2C+Jes%C3%BAs&rft.au=Lobo-Prat%2C+Joan&rft.au=Prinsen%2C+Erik&rft.au=Font-Llagunes%2C+Josep+M.&rft.date=2023-02-19&rft.pub=BioMed+Central&rft.eissn=1743-0003&rft.volume=20&rft_id=info:doi/10.1186%2Fs12984-023-01144-5&rft.externalDocID=PMC9938998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon