Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials
Highlights Detailed summary of current trends in the advancement of flexible EMI shielding materials. The theoretical shielding mechanisms and the latest concept of "green shielding" index (g s ) are outlined. Functional applications of flexible EMI shielding materials are introduced from...
Uložené v:
| Vydané v: | Nano-micro letters Ročník 14; číslo 1; s. 80 - 31 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Nature Singapore
01.12.2022
Springer Nature B.V Springer Singapore SpringerOpen |
| Predmet: | |
| ISSN: | 2311-6706, 2150-5551, 2150-5551 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Highlights
Detailed summary of current trends in the advancement of flexible EMI shielding materials.
The theoretical shielding mechanisms and the latest concept of "green shielding" index (g
s
) are outlined.
Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions.
Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided.
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials. |
|---|---|
| AbstractList | Detailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept of "green shielding" index (gs) are outlined.Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions.Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided.
With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials. With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials.With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials. Abstract With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials. With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials. Highlights Detailed summary of current trends in the advancement of flexible EMI shielding materials. The theoretical shielding mechanisms and the latest concept of "green shielding" index (g s ) are outlined. Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions. Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided. With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials. HighlightsDetailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept of "green shielding" index (gs) are outlined.Functional applications of flexible EMI shielding materials are introduced from thermal conductivity, hydrophobicity to transparency, sensing even multiple functions.Exclusive insights in challenges and future design strategies opportunities for flexible EMI shielding materials are provided.With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in recent years, where the development of corresponding EMI shielding materials against detrimental electromagnetic radiation plays an essential role. Meanwhile, the EMI shielding materials with high flexibility and functional integrity are highly demanded for emerging shielding applications. Hitherto, a variety of flexible EMI shielding materials with lightweight and multifunctionalities have been developed. In this review, we not only introduce the recent development of flexible EMI shielding materials, but also elaborate the EMI shielding mechanisms and the index for "green EMI shielding" performance. In addition, the construction strategies for sophisticated multifunctionalities of flexible shielding materials are summarized. Finally, we propose several possible research directions for flexible EMI shielding materials in near future, which could be inspirational to the fast-growing next-generation flexible electronic devices with reliable and multipurpose protections as offered by EMI shielding materials. |
| ArticleNumber | 80 |
| Author | Raza, Hassan Wu, Jinyi Zhang, Deqing Li, Chuanbing Ullah, Sana Che, Renchao Cao, Qi Zheng, Qingbin Xiong, Yingfei Cheng, Junye Zheng, Guangping Zhang, Huibin |
| Author_xml | – sequence: 1 givenname: Junye surname: Cheng fullname: Cheng, Junye organization: School of Science and Engineering, The Chinese University of Hong Kong – sequence: 2 givenname: Chuanbing surname: Li fullname: Li, Chuanbing organization: School of Science and Engineering, The Chinese University of Hong Kong – sequence: 3 givenname: Yingfei surname: Xiong fullname: Xiong, Yingfei organization: School of Materials Science and Engineering, Qiqihar University – sequence: 4 givenname: Huibin surname: Zhang fullname: Zhang, Huibin organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University – sequence: 5 givenname: Hassan surname: Raza fullname: Raza, Hassan organization: Department of Mechanical Engineering, Hong Kong Polytechnic University – sequence: 6 givenname: Sana surname: Ullah fullname: Ullah, Sana organization: Department of Mechanical Engineering, Hong Kong Polytechnic University – sequence: 7 givenname: Jinyi surname: Wu fullname: Wu, Jinyi organization: School of Science and Engineering, The Chinese University of Hong Kong – sequence: 8 givenname: Guangping surname: Zheng fullname: Zheng, Guangping organization: Department of Mechanical Engineering, Hong Kong Polytechnic University – sequence: 9 givenname: Qi surname: Cao fullname: Cao, Qi email: qicao@seu.edu.cn organization: Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University – sequence: 10 givenname: Deqing surname: Zhang fullname: Zhang, Deqing organization: School of Materials Science and Engineering, Qiqihar University – sequence: 11 givenname: Qingbin surname: Zheng fullname: Zheng, Qingbin email: zhengqingbin@cuhk.edu.cn organization: School of Science and Engineering, The Chinese University of Hong Kong – sequence: 12 givenname: Renchao surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35333993$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9PFjEQxjcGI4h8AQ9mEy9eVvt_dy8mBEHfBGIiem667XQp6dti2yXw7e3LiygcOM2kfZ5fpzPzutkJMUDTvMXoI0ao_5QZGgjqECEdqhnt-hfNHsEcdZxzvFNzinEneiR2m4Oc3YQ4YT3pOXvV7FJOKR1Hutfc_AANobSH5loFDbl1of0C2c2hPS9JFZhdPVTBtGeLL84uQRcXg_Ku3LbRticebtzkoT32oEuKazUHKE63q1AgWUhQqe35hQNvXJjbs4pMTvn8pnlpa4CD-7jf_Do5_nn0rTv9_nV1dHjaaYH60qkJjwzpiQKxWGMxMdZrbjhCuhd6mrRFILRVAxNiGCk1WljCBZ04wkwJoPvNass1UV3Kq-TWKt3KqJy8O4hplirVgj1Ig42djAHCe8s0hmHE3OgKsWDYpMfK-rxlXS3TGsymcUn5R9DHN8FdyDley2Hkoh9oBXy4B6T4e4Fc5NplDd6rAHHJkgjGEMED30jfP5FexiXVxt-pKCYMj6Kq3v1f0UMpfwdcBWQr0CnmnMA-SDCSm0WS20WSdZHk3SLJvpqGJybtitrMvf7K-eetdGvN9Z0wQ_pX9jOuP7pN37E |
| CitedBy_id | crossref_primary_10_1016_j_cej_2023_147446 crossref_primary_10_1016_j_indcrop_2024_119310 crossref_primary_10_1016_j_jre_2023_12_007 crossref_primary_10_1002_mame_202300167 crossref_primary_10_1002_adfm_202425506 crossref_primary_10_1016_j_jece_2024_112579 crossref_primary_10_1039_D5MH00577A crossref_primary_10_1007_s40820_023_01203_5 crossref_primary_10_1039_D5NR01172H crossref_primary_10_1016_j_carbon_2023_118716 crossref_primary_10_1016_j_jelechem_2023_117394 crossref_primary_10_1002_adfm_202518265 crossref_primary_10_1016_j_polymer_2024_127175 crossref_primary_10_1007_s11468_024_02695_6 crossref_primary_10_1007_s10854_025_15244_6 crossref_primary_10_1016_j_jcis_2023_07_054 crossref_primary_10_1016_j_mtcomm_2025_111996 crossref_primary_10_1016_j_jallcom_2024_175170 crossref_primary_10_1002_adfm_202422487 crossref_primary_10_1016_j_mtphys_2024_101521 crossref_primary_10_1007_s42114_023_00792_4 crossref_primary_10_3390_electronics14071350 crossref_primary_10_1002_adem_202402030 crossref_primary_10_1016_j_mtcomm_2024_108506 crossref_primary_10_1002_adfm_202415921 crossref_primary_10_1016_j_mtcomm_2023_106267 crossref_primary_10_1007_s40843_022_2269_0 crossref_primary_10_1007_s10965_024_04207_w crossref_primary_10_1016_j_carbon_2024_119420 crossref_primary_10_1080_25740881_2024_2419644 crossref_primary_10_1016_j_carbon_2023_118610 crossref_primary_10_1016_j_ccr_2024_215964 crossref_primary_10_1002_adfm_202210456 crossref_primary_10_1007_s40820_024_01398_1 crossref_primary_10_1016_j_compositesb_2022_110402 crossref_primary_10_1109_TDEI_2023_3314704 crossref_primary_10_1002_advs_202510078 crossref_primary_10_3390_electronics12234780 crossref_primary_10_1016_j_jmst_2025_02_011 crossref_primary_10_1002_smtd_202300112 crossref_primary_10_1109_TCPMT_2024_3451730 crossref_primary_10_1016_j_jcis_2025_01_207 crossref_primary_10_1002_adfm_202404824 crossref_primary_10_1016_j_esci_2025_100407 crossref_primary_10_1039_D4MH00273C crossref_primary_10_1002_adem_202501259 crossref_primary_10_3390_nano13050787 crossref_primary_10_3390_ma16072728 crossref_primary_10_1016_j_jallcom_2023_171644 crossref_primary_10_1016_j_jallcom_2025_179969 crossref_primary_10_1002_adfm_202417215 crossref_primary_10_1016_j_jcis_2022_10_083 crossref_primary_10_1080_10408436_2023_2214577 crossref_primary_10_3390_polym15224469 crossref_primary_10_1016_j_est_2024_111937 crossref_primary_10_1016_j_carbon_2022_06_026 crossref_primary_10_1016_j_wees_2024_07_003 crossref_primary_10_1016_j_compscitech_2024_110589 crossref_primary_10_1049_mna2_12204 crossref_primary_10_1016_j_compscitech_2024_110582 crossref_primary_10_1016_j_polymer_2024_126890 crossref_primary_10_1016_j_apsusc_2022_155707 crossref_primary_10_1016_j_ijbiomac_2024_138557 crossref_primary_10_1016_j_ceramint_2025_07_314 crossref_primary_10_3390_polym16131837 crossref_primary_10_1007_s10965_023_03843_y crossref_primary_10_1002_smll_202410283 crossref_primary_10_1080_15583724_2024_2335504 crossref_primary_10_1007_s10570_023_05202_y crossref_primary_10_1002_adfm_202420292 crossref_primary_10_1016_j_carbon_2025_120327 crossref_primary_10_1007_s12598_025_03548_9 crossref_primary_10_1016_j_apsusc_2022_155142 crossref_primary_10_1002_pc_70401 crossref_primary_10_1016_j_cej_2023_143960 crossref_primary_10_1016_j_cej_2023_147643 crossref_primary_10_1016_j_compositesa_2023_107536 crossref_primary_10_1016_j_compositesa_2025_108860 crossref_primary_10_1016_j_eurpolymj_2023_112029 crossref_primary_10_1016_j_compositesa_2025_109154 crossref_primary_10_1016_j_cej_2024_159114 crossref_primary_10_1002_smll_202405950 crossref_primary_10_1016_j_ijbiomac_2024_133891 crossref_primary_10_1016_j_jcis_2023_06_041 crossref_primary_10_1016_j_cej_2022_138011 crossref_primary_10_1016_j_cej_2024_159112 crossref_primary_10_1021_acsami_5c08956 crossref_primary_10_1016_j_mser_2024_100795 crossref_primary_10_1007_s11664_022_10074_2 crossref_primary_10_1016_j_jallcom_2023_172679 crossref_primary_10_1002_adfm_202506746 crossref_primary_10_1016_j_carbon_2025_120432 crossref_primary_10_1002_adfm_202315722 crossref_primary_10_1016_j_matchemphys_2024_129143 crossref_primary_10_1007_s40820_022_00926_1 crossref_primary_10_1002_admt_202501239 crossref_primary_10_1016_j_compscitech_2025_111159 crossref_primary_10_1016_j_apsusc_2024_159613 crossref_primary_10_1021_acsnano_4c00819 crossref_primary_10_1016_j_mtphys_2024_101440 crossref_primary_10_1016_j_jmst_2024_08_022 crossref_primary_10_1016_j_ceramint_2024_12_469 crossref_primary_10_1016_j_coco_2025_102294 crossref_primary_10_1007_s40820_023_01280_6 crossref_primary_10_1088_2058_8585_acc879 crossref_primary_10_3390_coatings13101670 crossref_primary_10_1007_s13399_024_06330_6 crossref_primary_10_1016_j_compositesb_2025_112167 crossref_primary_10_1039_D5RA04475H crossref_primary_10_1016_j_jmrt_2025_06_005 crossref_primary_10_1016_j_jallcom_2023_171593 crossref_primary_10_1016_j_carbon_2023_118655 crossref_primary_10_1002_adma_202511099 crossref_primary_10_1038_s41467_024_51732_9 crossref_primary_10_1007_s41127_023_00056_4 crossref_primary_10_1016_j_compstruct_2025_119496 crossref_primary_10_1016_j_progpolymsci_2025_101990 crossref_primary_10_1002_smll_202408570 crossref_primary_10_1007_s40820_023_01061_1 crossref_primary_10_1016_j_flatc_2025_100909 crossref_primary_10_1016_j_indcrop_2025_121018 crossref_primary_10_1016_j_jmst_2024_10_006 crossref_primary_10_3390_nano15171346 crossref_primary_10_1016_j_compstruct_2022_116543 crossref_primary_10_1016_j_conbuildmat_2023_132385 crossref_primary_10_1016_j_susmat_2024_e01088 crossref_primary_10_1016_j_jallcom_2025_180988 crossref_primary_10_1039_D5TA04606H crossref_primary_10_1007_s11082_023_05285_8 crossref_primary_10_1007_s12633_025_03392_7 crossref_primary_10_1002_smll_202304327 crossref_primary_10_1016_j_carbon_2024_119592 crossref_primary_10_1108_PRT_11_2023_0101 crossref_primary_10_1016_j_mtcomm_2024_110351 crossref_primary_10_1016_j_cej_2023_142049 crossref_primary_10_1088_1361_6528_ada3dc crossref_primary_10_1016_j_compositesb_2025_112735 crossref_primary_10_1016_j_compscitech_2024_110780 crossref_primary_10_1007_s40820_024_01494_2 crossref_primary_10_1016_j_coco_2024_102217 crossref_primary_10_1007_s10904_025_03597_8 crossref_primary_10_1016_j_cej_2024_153586 crossref_primary_10_1016_j_ijbiomac_2024_134162 crossref_primary_10_1016_j_materresbull_2024_112672 crossref_primary_10_1007_s40820_022_00990_7 crossref_primary_10_1016_j_carbon_2024_119244 crossref_primary_10_1149_2162_8777_adedb5 crossref_primary_10_1016_j_mtcomm_2024_110119 crossref_primary_10_1007_s40820_023_01122_5 crossref_primary_10_3390_ijerph20054388 crossref_primary_10_1016_j_cej_2023_142042 crossref_primary_10_1016_j_carbon_2023_118435 crossref_primary_10_1016_j_matchemphys_2023_127553 crossref_primary_10_1016_j_matlet_2025_138489 crossref_primary_10_1016_j_carbon_2023_118315 crossref_primary_10_1007_s10854_024_12084_8 crossref_primary_10_1002_advs_202501540 crossref_primary_10_1007_s00226_024_01588_5 crossref_primary_10_1016_j_diamond_2025_112244 crossref_primary_10_1016_j_nxmate_2024_100242 crossref_primary_10_1016_j_carbon_2024_119809 crossref_primary_10_1016_j_coco_2024_102029 crossref_primary_10_1016_j_compositesa_2023_107694 crossref_primary_10_1016_j_jcis_2023_06_087 crossref_primary_10_1016_j_jmst_2023_08_055 crossref_primary_10_1038_s41467_024_50541_4 crossref_primary_10_1364_OME_548069 crossref_primary_10_1016_j_cej_2023_141749 crossref_primary_10_1002_adma_202312596 crossref_primary_10_1007_s10853_024_09543_2 crossref_primary_10_1007_s40843_024_3329_0 crossref_primary_10_1016_j_jallcom_2024_174256 crossref_primary_10_1002_adfm_202506308 crossref_primary_10_1007_s40820_023_01039_z crossref_primary_10_1016_j_cej_2023_146992 crossref_primary_10_1016_j_cej_2024_149186 crossref_primary_10_1021_acs_biomac_5c01374 crossref_primary_10_26599_NR_2025_94907500 crossref_primary_10_1016_j_carbon_2023_01_007 crossref_primary_10_1016_j_colsurfa_2023_131746 crossref_primary_10_1016_j_carbon_2023_118425 crossref_primary_10_3390_ma17112767 crossref_primary_10_1007_s40820_024_01591_2 crossref_primary_10_1007_s40820_023_01158_7 crossref_primary_10_1038_s41598_025_04531_1 crossref_primary_10_1002_adma_202311135 crossref_primary_10_1002_adfm_202415640 crossref_primary_10_1007_s40820_023_01295_z crossref_primary_10_1016_j_carbon_2024_119386 crossref_primary_10_1016_j_ijbiomac_2025_142054 crossref_primary_10_1007_s12613_023_2795_2 crossref_primary_10_1016_j_mseb_2025_118539 crossref_primary_10_1016_j_cej_2023_145409 crossref_primary_10_1002_adfm_202517665 crossref_primary_10_1016_j_surfin_2023_103825 crossref_primary_10_1016_j_indcrop_2023_117713 crossref_primary_10_1016_j_apmt_2024_102500 crossref_primary_10_1002_marc_202400585 crossref_primary_10_1016_j_carbon_2024_119155 crossref_primary_10_1016_j_diamond_2022_109374 crossref_primary_10_3390_nano14070647 crossref_primary_10_1016_j_cej_2025_159382 crossref_primary_10_1016_j_jcis_2023_05_076 crossref_primary_10_1021_acsaenm_4c00709 crossref_primary_10_1016_j_apsusc_2025_162294 crossref_primary_10_1007_s12221_025_01063_3 crossref_primary_10_1007_s40820_024_01588_x crossref_primary_10_1016_j_cej_2024_152696 crossref_primary_10_1016_j_coco_2024_102011 crossref_primary_10_1016_j_jallcom_2024_175119 crossref_primary_10_1016_j_compscitech_2024_110988 crossref_primary_10_1016_j_ijhydene_2025_01_379 crossref_primary_10_1007_s12274_022_4512_2 crossref_primary_10_1016_j_ijleo_2023_170696 crossref_primary_10_1021_acsami_5c07554 crossref_primary_10_1016_j_jclepro_2024_143636 crossref_primary_10_1016_j_matlet_2024_137751 crossref_primary_10_1016_j_mtphys_2024_101617 crossref_primary_10_1039_D2NR05047A crossref_primary_10_1109_ACCESS_2025_3529280 crossref_primary_10_1002_adfm_202407439 crossref_primary_10_1016_j_cej_2023_146834 crossref_primary_10_1007_s13391_025_00585_5 crossref_primary_10_1007_s10854_024_13176_1 crossref_primary_10_1002_admt_202401998 crossref_primary_10_1007_s40820_024_01454_w crossref_primary_10_1016_j_ceramint_2022_10_323 crossref_primary_10_1063_5_0171437 crossref_primary_10_1016_j_surfin_2024_104819 crossref_primary_10_1016_j_jallcom_2025_183166 crossref_primary_10_3390_jfb16050166 crossref_primary_10_3390_mi15020187 crossref_primary_10_1016_j_mtnano_2025_100583 crossref_primary_10_1016_j_mtcomm_2024_109500 crossref_primary_10_1016_j_apmt_2024_102565 crossref_primary_10_1002_adem_202401304 crossref_primary_10_1002_pi_6528 crossref_primary_10_1002_app_54658 crossref_primary_10_1016_j_carbon_2025_120831 crossref_primary_10_1016_j_ceramint_2024_03_140 crossref_primary_10_1016_j_talanta_2024_127085 crossref_primary_10_1002_admi_202300440 crossref_primary_10_1016_j_inoche_2025_115078 crossref_primary_10_1016_j_compscitech_2023_110067 crossref_primary_10_1016_j_jallcom_2025_182523 crossref_primary_10_1016_j_jmst_2025_08_009 crossref_primary_10_1039_D5TA05467B crossref_primary_10_1016_j_cej_2024_151359 crossref_primary_10_1016_j_jallcom_2025_182404 crossref_primary_10_1016_j_mser_2024_100823 crossref_primary_10_26599_NR_2025_94907531 crossref_primary_10_1016_j_jallcom_2023_173019 crossref_primary_10_1016_j_diamond_2022_109422 crossref_primary_10_1016_j_carbon_2024_119189 crossref_primary_10_1016_j_carbon_2025_120700 crossref_primary_10_1002_pi_6514 crossref_primary_10_1016_j_cej_2023_145296 crossref_primary_10_1080_15583724_2024_2319585 crossref_primary_10_1002_adfm_202509048 crossref_primary_10_1016_j_compositesa_2023_107476 crossref_primary_10_62638_ZasMat1215 crossref_primary_10_1016_j_synthmet_2024_117687 crossref_primary_10_3390_polym16243549 crossref_primary_10_1002_mame_202300301 crossref_primary_10_1016_j_compscitech_2024_110490 crossref_primary_10_1016_j_materresbull_2023_112630 crossref_primary_10_1016_j_cej_2024_157311 crossref_primary_10_1007_s10973_023_12793_y crossref_primary_10_1016_j_jmst_2024_01_008 crossref_primary_10_1016_S1872_5805_24_60840_1 crossref_primary_10_1016_j_jallcom_2023_170872 crossref_primary_10_1016_j_carbon_2025_120250 crossref_primary_10_1016_j_cej_2025_163716 crossref_primary_10_1016_j_jcis_2022_09_003 crossref_primary_10_1016_j_mtcomm_2023_107862 crossref_primary_10_1039_D4QI02776K crossref_primary_10_3390_en15124455 crossref_primary_10_1016_j_diamond_2024_111688 crossref_primary_10_1016_j_chemosphere_2023_139441 crossref_primary_10_1016_j_carbon_2023_118380 crossref_primary_10_1021_acsanm_5c03629 crossref_primary_10_1016_j_jestch_2024_101838 crossref_primary_10_1016_j_carbon_2023_118245 crossref_primary_10_1016_j_carbon_2024_119875 crossref_primary_10_1039_D5NR02300A crossref_primary_10_1002_smll_202501879 crossref_primary_10_1016_j_ijbiomac_2024_133347 crossref_primary_10_1177_15280837251364519 crossref_primary_10_3390_nano14131099 crossref_primary_10_1016_j_compositesa_2022_107063 crossref_primary_10_3390_fib11120110 crossref_primary_10_1016_j_mtcomm_2022_104608 crossref_primary_10_1016_j_compositesb_2024_112041 crossref_primary_10_1016_j_jallcom_2024_174627 crossref_primary_10_1007_s40820_024_01540_z crossref_primary_10_1111_jace_19642 crossref_primary_10_1016_j_cej_2024_154954 crossref_primary_10_1002_slct_202204132 crossref_primary_10_1021_acsapm_4c03385 crossref_primary_10_1016_j_colsurfa_2024_135109 crossref_primary_10_1021_acsanm_5c01451 crossref_primary_10_3390_ma16206736 crossref_primary_10_1002_smll_202304278 |
| Cites_doi | 10.3390/polym10121319 10.1016/j.jpcs.2019.05.041 10.1021/am508527s 10.1039/C6TC04780G 10.1039/C4NR05547K 10.1016/j.jmst.2021.05.001 10.1039/C4TC01285B 10.1039/C5TC02512E 10.1007/s12274-017-1758-1 10.1002/adfm.201806819 10.1002/adma.201503149 10.1002/adma.201403735 10.1002/adfm.202108194 10.1016/j.carbon.2013.10.070 10.1021/acsami.5b11715 10.1002/adma.201908496 10.1016/j.jmst.2021.08.005 10.1002/adma.201504438 10.1021/acsami.8b22212 10.1016/j.compscitech.2006.06.015 10.1007/s10570-017-1373-z 10.1063/5.0075019 10.1021/acsami.6b15826 10.1021/am508683p 10.1016/j.envres.2018.01.037 10.1016/j.compositesb.2017.03.022 10.1016/j.carbon.2009.02.030 10.1002/adma.201204196 10.1007/s10853-016-0702-1 10.1002/app.1253 10.1016/j.apsusc.2018.08.152 10.1039/C3NR06092F 10.1016/j.jmat.2021.09.003 10.1016/j.compositesa.2019.05.031 10.1021/acsnano.8b05739 10.1021/acsami.0c05688 10.1016/j.envint.2018.08.064 10.1093/toxsci/kfx221 10.1016/j.carbon.2018.03.023 10.1039/C9TC03309B 10.1021/cm103441u 10.1016/j.carbon.2013.04.008 10.1016/j.carbon.2016.07.015 10.1002/masy.201800097 10.1016/j.cej.2020.124608 10.1002/adma.200306460 10.1016/j.apsusc.2018.07.107 10.1021/acsami.9b17513 10.1016/j.apsusc.2017.03.293 10.1021/jp4058498 10.1016/j.carbon.2013.08.043 10.1038/nmat3001 10.1016/j.carbon.2018.03.061 10.1021/am502103u 10.1002/adma.201907499 10.1021/acsami.9b06509 10.1016/j.nanoen.2020.104741 10.1021/acsaelm.0c00490 10.1038/s41528-019-0050-8 10.1088/1361-6528/ab35fa 10.1016/j.compositesa.2020.106229 10.1016/j.carbon.2012.04.030 10.1126/science.aag2421 10.1021/acsami.6b11989 10.1016/j.carbon.2017.05.100 10.1016/j.polymer.2021.124413 10.1021/acsami.0c04482 10.1016/j.scriptamat.2009.03.048 10.1016/j.scib.2019.10.011 10.1016/j.carbon.2019.01.030 10.1007/s10854-018-9068-2 10.1002/smll.201800534 10.1073/pnas.2105838118 10.1002/aelm.201900796 10.1063/1.3152764 10.1002/pssr.201409151 10.1002/adfm.202000883 10.1016/j.carbon.2014.05.014 10.1063/1.4809675 10.3390/nano10040702 10.1016/j.carbon.2018.09.014 10.1002/adma.201304138 10.1002/adom.201900267 10.1016/j.carbon.2018.04.086 10.1016/j.carbon.2015.10.101 10.1016/j.actamat.2017.03.031 10.1002/adfm.201403809 10.1002/adfm.202102812 10.1016/j.carbon.2019.02.068 10.1039/C9RA08679J 10.1126/science.aad1080 10.1016/j.jmat.2021.02.017 10.1016/j.compositesb.2019.107123 10.1016/j.compscitech.2020.107995 10.1002/adma.201405788 10.1002/mame.201900482 10.1021/acsami.6b06455 10.1063/1.1532540 10.1016/j.apsusc.2020.147052 10.1016/j.carbon.2018.10.056 10.1039/C9TC05462F 10.1002/admt.201900761 10.1007/s00339-019-2430-2 10.1007/s40145-019-0328-2 10.1016/j.jallcom.2018.01.081 10.1002/anie.201908402 10.1016/j.cej.2018.11.051 10.1002/adfm.201903960 10.1021/acsomega.9b03641 10.1016/j.carbon.2016.12.092 10.1016/j.carbon.2019.01.009 10.1063/1.2210187 10.1039/C7NR07346A 10.1002/adma.201702367 10.1002/adfm.201901448 10.1007/s10853-014-8429-3 10.1016/j.jallcom.2020.154531 10.1016/j.carbon.2018.02.084 10.1002/adma.201305293 10.1002/em.22343 10.1021/am502412q 10.1021/acsami.0c07122 10.1039/D0TA11040J 10.1002/smll.202100970 10.1016/j.envres.2015.11.011 10.1016/j.matdes.2016.05.005 10.1016/j.cej.2019.122625 10.1039/C5TA01457C 10.1021/acsami.8b21671 10.1021/acsanm.8b02150 10.1016/j.carbon.2017.11.055 10.1016/j.jallcom.2019.02.294 10.1155/2013/591893 10.1021/am502910d 10.1039/C8TA09800J 10.1016/j.jmmm.2007.10.030 10.1088/1361-6528/28/4/045710 10.1007/s10854-017-6664-5 10.1021/acsami.7b01017 10.1016/j.cej.2019.03.295 10.1016/j.compositesa.2016.03.009 10.1021/acsami.6b02652 10.1021/nl0602589 10.1039/C6TC01619G 10.1007/s12274-017-1664-6 10.1021/acsnano.0c02401 10.1088/1361-6528/ab8b8d 10.1021/cr068112h 10.1039/D1TA00417D 10.1016/j.carbon.2020.11.089 10.1016/j.carbon.2015.05.033 10.1016/j.jallcom.2011.01.058 10.1039/C8NR07351A 10.1016/j.polymertesting.2017.02.021 10.1039/C7NR05951E 10.1021/acsami.7b04602 10.1016/j.carbon.2016.02.040 10.1016/s1470-2045(11)70147-4 10.1039/C3NR04565J 10.1007/s10854-019-01315-y 10.1016/j.matdes.2018.02.047 10.1039/C3NR05313J |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1007/s40820-022-00823-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Collection (ProQuest) Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2150-5551 |
| EndPage | 31 |
| ExternalDocumentID | oai_doaj_org_article_d1dfbdde257f4c1e8915dca6efed4bc9 PMC8956783 35333993 10_1007_s40820_022_00823_7 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
| GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c607t-ab1940cb3e2f1c16b447c5d500c76cbbcf0e6cfa84668933dc6f2563b5014a6e3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 424 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782151100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2311-6706 2150-5551 |
| IngestDate | Fri Oct 03 12:50:57 EDT 2025 Tue Nov 04 02:00:36 EST 2025 Sun Nov 09 13:21:03 EST 2025 Sat Oct 18 22:52:56 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 Tue Nov 18 21:18:49 EST 2025 Sat Nov 29 02:07:26 EST 2025 Fri Feb 21 02:45:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Multifunctionalities Flexible shielding materials Green shielding index EMI shielding mechanism |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c607t-ab1940cb3e2f1c16b447c5d500c76cbbcf0e6cfa84668933dc6f2563b5014a6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s40820-022-00823-7 |
| PMID | 35333993 |
| PQID | 2643124196 |
| PQPubID | 2044332 |
| PageCount | 31 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d1dfbdde257f4c1e8915dca6efed4bc9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8956783 proquest_miscellaneous_2644021853 proquest_journals_2643124196 pubmed_primary_35333993 crossref_primary_10_1007_s40820_022_00823_7 crossref_citationtrail_10_1007_s40820_022_00823_7 springer_journals_10_1007_s40820_022_00823_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
| PublicationTitle | Nano-micro letters |
| PublicationTitleAbbrev | Nano-Micro Lett |
| PublicationTitleAlternate | Nanomicro Lett |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore Springer Nature B.V Springer Singapore SpringerOpen |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: Springer Singapore – name: SpringerOpen |
| References | MaZKangSMaJShaoLZhangYUltraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shieldingACS Nano20201478368838210.1021/acsnano.0c02401 LuBDongXLHuangHZhangXFZhuXGMicrowave absorption properties of the core/shell-type iron and nickel nanoparticlesJ. Magn. Magn. Mater.200832061106111110.1016/j.jmmm.2007.10.030 LinSLiuJWangQZuDWangHHighly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shieldingAdv. Mater. Technol.202052190076110.1002/admt.201900761 ZhaoSGaoZChenCWangGZhangBAlternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption propertyCarbon20169819620310.1016/j.carbon.2015.10.101 WangYGuFQNiLJLiangKMarcusKEasily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shieldingNanoscale2017946183181832510.1039/C7NR05951E Smith-RoeSLWydeMEStoutMDWintersJWHobbsCAEvaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposureEnviron. Mol. Mutagen.202061227629010.1002/em.22343 GonzálezMBaselgaJPozueloJModulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogelsCarbon2019147273410.1016/j.carbon.2019.02.068 XiongRHuKGrantAMMaRXuWUltrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivityAdv. Opt. Mater.20162871501150910.1002/adma.201504438 WangLHuangMQianXLiuLYouWConfined magnetic-dielectric balance boosted electromagnetic wave absorptionSmall20211730210097010.1002/smll.202100970 WangBLiWDengJChiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallizationJ. Mater. Sci.20175284575458610.1007/s10853-016-0702-1 ZhanYOlivieroMWangJSorrentinoABuonocoreGGEnhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networksNanoscale20191131011102010.1039/C8NR07351A WangQWZhangHBLiuJZhaoSXieXMultifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performancesAdv. Funct. Mater.2019297180681910.1002/adfm.201806819 LiXWenCYangLZhangRLiXMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon202117550951810.1016/j.carbon.2020.11.089 ChengYHuPZhouSYanLSunBAchieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foamCarbon201813243044310.1016/j.carbon.2018.02.084 HanMYinXWuHHouZSongCTi3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-bandACS Appl. Mater. Interfaces2016832210112101910.1021/acsami.6b06455 ZhangDQLiuTTShuJCLiangSWangXXSelf-assembly construction of WS2–rGO architecture with green EMI shieldingACS Appl. Mater. Interfaces20191130268072681610.1021/acsami.9b06509 HanMYinXHantanasirisakulKLiXIqbalAAnisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorptionAdv. Opt. Mater.2019710190026710.1002/adom.201900267 SongWLCaoMSFanLZLuMMLiYHighly ordered porous carbon/wax composites for effective electromagnetic attenuation and shieldingCarbon20147713014210.1016/j.carbon.2014.05.014 SunGDongBCaoMWeiBHuCHierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorptionChem. Mater.20112361587159310.1021/cm103441u SongWLGuanXTFanLZCaoWQWangCYTuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shieldingCarbon20159315116010.1016/j.carbon.2015.05.033 ZhouQYinXYeFMoRTangZOptically transparent and flexible broadband microwave metamaterial absorber with sandwich structureJ. Appl. Phys. A2019125213110.1007/s00339-019-2430-2 KwonSMaRKimUChoiHRBaikSFlexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubberCarbon20146811812410.1016/j.carbon.2013.10.070 ShangTLinZQiCLiuXLiP3D macroscopic architectures from self-assembled MXene hydrogelsAdv. Funct. Mater.20192933190396010.1002/adfm.201903960 HuDHuangXLiSJiangPFlexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shieldingCompos. Sci. Technol.202018810.1016/j.compscitech.2020.107995 NguyenVTMinBKYiYKimSJChoiCGMXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skinsChem. Eng. J.202039310.1016/j.cej.2020.124608 LiuBChengJPengHQChenDCuiXIn situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolutionJ. Mater. Chem. A20197277578210.1039/C8TA09800J The 3GPP specification. https://www.3gpp.org/DynaReport/38-series.htm BianRLinRWangGLuGZhiW3D assembly of Ti3C2-MXene directed by water/oil interfacesNanoscale20181083621362510.1039/C7NR07346A KongLYinXXuHYuanXWangTPowerful absorbing and lightweight electromagnetic shielding CNTs/rGO compositeCarbon2019145616610.1016/j.carbon.2019.01.009 ZhanZSongQZhouZLuCUltrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shieldingJ. Mater. Chem. C20197329820982910.1039/C9TC03309B ZhangDLiuTChengJChaiJYangXLight-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxidesNanotechnology2019304410.1088/1361-6528/ab35fa ChengYLiZLiYDaiSJiGRationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorptionCarbon201812764365210.1016/j.carbon.2017.11.055 ChengJZhangHXiongYGaoLWenBConstruction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a reviewJ. Materiomics2021761233126310.1016/j.jmat.2021.02.017 LiRLinHLanPGaoJHuangYLightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shieldingPolymers20181012131910.3390/polym10121319 SongWLCaoMSHouZLFangXYShiXLHigh dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-bandAppl. Phys. Lett.2009942310.1063/1.3152764 ChenZRenWGaoLLiuBPeiSThree-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour depositionNat. Mater.201110642442810.1038/nmat3001 FengXNingJWangBGuoHXiaMFunctional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXeneNano Energy20207210.1016/j.nanoen.2020.104741 JiaLCLiYKYanDXFlexible and efficient electromagnetic interference shielding materials from ground tire rubberCarbon201712126727310.1016/j.carbon.2017.05.100 ChaudharyATeotiaSKumarRGuptaVDhakateSRMulti-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performanceCompos. B Eng.201917610.1016/j.compositesb.2019.107123 NaguibMMochalinVNBarsoumMWGogotsiY25th anniversary article: MXenes: a new family of two-dimensional materialsAdv. Mater.2014267992100510.1002/adma.201304138 ZhangYWangXCaoMConfinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorptionNano Res.20181131426143610.1007/s12274-017-1758-1 CrespoMGonzálezMElíasALRajukumarLPBaselgaJUltra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz rangePhys. Status Solidi RRL20148869870410.1002/pssr.201409151 ZhaoBZengSLiXGuoXBaiZFlexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiationJ. Mater. Chem. C20208250050910.1039/C9TC05462F WangWMaXShaoYQiXYangJFlexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistanceJ. Mater. Chem. A2021985033504410.1039/D0TA11040J ZengZJiangFYueYHanDLinLFlexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shieldingAdv. Mater.20203219190849610.1002/adma.201908496 TanYJLiJGaoYLiJGuoSA facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shieldingAppl. Surf. Sci.201845823624410.1016/j.apsusc.2018.07.107 BianXMLiuLLiHBWangCYXieQConstruction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shieldingNanotechnology201628410.1088/1361-6528/28/4/045710 ShahzadFAlhabebMHatterCBAnasoriBHongSMElectromagnetic interference shielding with 2D transition metal carbides (MXenes)Science201635363041137114010.1126/science.aag2421 RaagulanKKimBMChaiKYRecent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel compositesNanomaterials202010470210.3390/nano10040702 ChenYZhangHZengGTunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structureCarbon201814049450310.1016/j.carbon.2018.09.014 LiangCRuanKZhangYGuJMultifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performancesACS Appl. Mater. Interfaces20201215180231803110.1021/acsami.0c04482 LiuQCaoQZhao T Shang (823_CR104) 2019; 29 X Liu (823_CR46) 2017; 130 P Li (823_CR127) 2016; 4 H Xu (823_CR91) 2017; 9 D Hu (823_CR122) 2020; 188 J Chai (823_CR34) 2020; 829 R Qiang (823_CR62) 2015; 3 M Naguib (823_CR59) 2014; 26 B Wang (823_CR57) 2017; 52 B Shen (823_CR112) 2016; 8 Z Wu (823_CR158) 2019; 29 K Qian (823_CR106) 2021; 141 M Peng (823_CR79) 2021; 130 S Ghosh (823_CR19) 2018; 29 M Han (823_CR77) 2016; 8 Y Zhang (823_CR12) 2017; 9 Q Liu (823_CR149) 2015; 7 H Zhang (823_CR37) 2021 G Sun (823_CR68) 2011; 23 Z Chen (823_CR135) 2011; 10 C Zhou (823_CR78) 2019; 370 P Liu (823_CR159) 2021; 31 Y Du (823_CR63) 2014; 6 F Shahzad (823_CR58) 2016; 353 D Zhang (823_CR72) 2018; 740 S Kwon (823_CR42) 2014; 68 J Liu (823_CR105) 2017; 29 M Han (823_CR47) 2017; 9 H Danker-Hopfe (823_CR3) 2016; 145 DX Yan (823_CR48) 2015; 25 D Lu (823_CR118) 2018; 133 QW Wang (823_CR140) 2019; 29 SL Smith-Roe (823_CR8) 2020; 61 H Zhang (823_CR153) 2021; 32 R Xiong (823_CR35) 2016; 28 MH Al-Saleh (823_CR43) 2009; 47 H Lv (823_CR92) 2015; 3 S Shi (823_CR103) 2019; 58 Q Liu (823_CR148) 2016; 28 Y Li (823_CR56) 2017; 24 R Bian (823_CR102) 2018; 10 L Falcioni (823_CR7) 2018; 165 DQ Zhang (823_CR29) 2019; 11 DW Hatchett (823_CR107) 2008; 108 Y Cheng (823_CR74) 2020; 6 Z Wang (823_CR142) 2020; 12 D Zhang (823_CR33) 2014; 49 E Zhou (823_CR49) 2018; 133 KR Sahu (823_CR25) 2018; 381 Z Zeng (823_CR132) 2020; 32 LC Jia (823_CR113) 2017; 121 S Zhao (823_CR83) 2016; 98 J Luo (823_CR90) 2020; 380 B Yao (823_CR126) 2020; 32 823_CR9 Y Zhang (823_CR71) 2018; 11 D Feng (823_CR115) 2019; 124 X Feng (823_CR123) 2020; 72 MH Al-Saleh (823_CR41) 2013; 60 Y Deng (823_CR88) 2006; 100 M González (823_CR97) 2019; 147 Z Chen (823_CR11) 2013; 25 Y Zhang (823_CR73) 2015; 27 D Zhang (823_CR39) 2018; 462 N Yousefi (823_CR125) 2014; 26 J Cheng (823_CR130) 2017; 59 WL Song (823_CR23) 2014; 6 K Sushmita (823_CR27) 2020; 5 G Tong (823_CR69) 2011; 509 M Yu (823_CR86) 2014; 2 B Zhao (823_CR145) 2020; 10 AJ Mannix (823_CR160) 2015; 350 Z Ma (823_CR99) 2020; 14 R Li (823_CR24) 2018; 10 WL Song (823_CR67) 2009; 61 K Raagulan (823_CR94) 2020; 10 J Zhang (823_CR163) 2022; 96 823_CR1 M Han (823_CR18) 2019; 7 S Zhao (823_CR84) 2018; 11 J Hou (823_CR93) 2017; 28 Z Huang (823_CR152) 2022; 107 ST Hsiao (823_CR21) 2014; 6 YJ Wan (823_CR120) 2018; 14 Y Wu (823_CR134) 2017; 9 WL Song (823_CR14) 2015; 93 D Zhang (823_CR31) 2019; 134 J Luo (823_CR139) 2019; 11 H Wang (823_CR65) 2013; 102 R Baan (823_CR2) 2011; 12 D Zhang (823_CR61) 2020; 31 Y Hong (823_CR51) 2003; 74 N Das (823_CR129) 2001; 80 D Zhang (823_CR32) 2013; 2013 M Crespo (823_CR101) 2014; 8 J Liu (823_CR85) 2019; 2 H Li (823_CR131) 2019; 304 H Xu (823_CR89) 2019; 142 VT Nguyen (823_CR146) 2020; 393 Y Zhan (823_CR114) 2019; 11 CM Watts (823_CR16) 2012; 24 K Yuan (823_CR156) 2015; 7 Q Zhou (823_CR17) 2019; 125 J Cheng (823_CR40) 2021; 7 B Zhao (823_CR128) 2020; 8 XM Bian (823_CR55) 2016; 28 S Bi (823_CR95) 2017; 412 W Shen (823_CR133) 2022; 238 C Zhou (823_CR76) 2016; 108 L Kong (823_CR96) 2013; 117 AP Singh (823_CR52) 2012; 50 Y Han (823_CR10) 2017; 115 Z Yu (823_CR80) 2020; 12 RC Che (823_CR157) 2004; 16 Y Wang (823_CR26) 2017; 9 D Zhang (823_CR151) 2020; 528 X Sun (823_CR119) 2016; 85 R Bogers (823_CR6) 2018; 121 MS Cao (823_CR28) 2019; 359 C Liang (823_CR138) 2020; 12 S Lin (823_CR143) 2019 S Shahin (823_CR5) 2018; 161 TK Gupta (823_CR50) 2014; 6 WL Song (823_CR66) 2009; 94 Z Zhan (823_CR121) 2019; 7 L Kong (823_CR116) 2019; 145 B Zhao (823_CR161) 2021; 9 A Iqbal (823_CR36) 2020; 30 H Mei (823_CR117) 2018; 144 S Lu (823_CR53) 2018; 136 S Mondal (823_CR110) 2017; 119 X Ye (823_CR154) 2019; 8 GG Tibbetts (823_CR111) 2007; 67 H Sun (823_CR155) 2014; 26 J Li (823_CR136) 2017; 5 D Zhang (823_CR30) 2019; 30 WL Song (823_CR13) 2014; 66 Q Liu (823_CR150) 2015; 7 YJ Tan (823_CR15) 2018; 458 C Cui (823_CR22) 2019; 788 B Zhang (823_CR81) 2019; 30 B Shen (823_CR100) 2016; 102 S Zhao (823_CR124) 2018; 12 L Liu (823_CR4) 2021; 118 WL Song (823_CR44) 2014; 77 Y Cheng (823_CR75) 2018; 132 Y Chen (823_CR98) 2018; 140 N Li (823_CR54) 2006; 6 B Liu (823_CR64) 2019; 7 M Panahi-Sarmad (823_CR144) 2020; 2 S Lin (823_CR45) 2020; 5 M Chen (823_CR20) 2014; 6 D Zhang (823_CR38) 2020; 65 CB Li (823_CR165) 2020; 12 L Wang (823_CR70) 2014; 6 Y Cheng (823_CR87) 2018; 127 A Chaudhary (823_CR137) 2019; 176 W Wang (823_CR147) 2021; 9 H Xu (823_CR60) 2019; 11 B Lu (823_CR82) 2008; 320 X Li (823_CR164) 2021; 175 X Liu (823_CR108) 2016; 104 HC Chu (823_CR141) 2016; 8 S Zhu (823_CR109) 2019; 145 L Wang (823_CR162) 2021; 17 |
| References_xml | – reference: ZhangDChengJYangXZhaoBCaoMElectromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructuresJ. Mater. Sci.201449207221723010.1007/s10853-014-8429-3 – reference: ZhangDChaiJChengJJiaYYangXHighly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with hetero-structuresAppl. Surf. Sci.201846287288210.1016/j.apsusc.2018.08.152 – reference: BianXMLiuLLiHBWangCYXieQConstruction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shieldingNanotechnology201628410.1088/1361-6528/28/4/045710 – reference: WangLHuangMQianXLiuLYouWConfined magnetic-dielectric balance boosted electromagnetic wave absorptionSmall20211730210097010.1002/smll.202100970 – reference: SongWLGuanXTFanLZCaoWQWangCYTuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shieldingCarbon20159315116010.1016/j.carbon.2015.05.033 – reference: ChenYZhangHZengGTunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structureCarbon201814049450310.1016/j.carbon.2018.09.014 – reference: RaagulanKKimBMChaiKYRecent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel compositesNanomaterials202010470210.3390/nano10040702 – reference: ZhangHChengJWangHHuangZZhengQInitiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6 48 GHz through phase engineering modulationAdv. Funct. Mater.2021326210819410.1002/adfm.202108194 – reference: LiuLDengHTangXLuYZhouJSpecific electromagnetic radiation in the wireless signal range increases wakefulness in micePNAS20211183110.1073/pnas.2105838118 – reference: ZhangDQLiuTTShuJCLiangSWangXXSelf-assembly construction of WS2–rGO architecture with green EMI shieldingACS Appl. Mater. Interfaces20191130268072681610.1021/acsami.9b06509 – reference: LiuJYouWYuJLiuXZhangXElectron holography of yolk–shell Fe3O4@mSiO2 microspheres for use in microwave absorptionACS Appl. Nano Mater.20192291091610.1021/acsanm.8b02150 – reference: ShenWEstevezDZhouLXuPQinFStretchable silver@CNT-poly(vinyl alcohol) films with efficient electromagnetic shielding prepared by polydopamine functionalizationPolymer202223810.1016/j.polymer.2021.124413 – reference: WangZJiaoBQingYNanHHuangLFlexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shieldingACS Appl. Mater. Interfaces20201222826283410.1021/acsami.9b17513 – reference: ChenZRenWGaoLLiuBPeiSThree-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour depositionNat. Mater.201110642442810.1038/nmat3001 – reference: YousefiNSunXLinXShenXJiaJHighly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shieldingAdv. Mater.201426315480548710.1002/adma.201305293 – reference: ChaudharyATeotiaSKumarRGuptaVDhakateSRMulti-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performanceCompos. B Eng.201917610.1016/j.compositesb.2019.107123 – reference: ZhuSXingCWuFZuoXZhangYCake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shieldingCarbon201914525926510.1016/j.carbon.2019.01.030 – reference: ChengJYangXDongLYuanZWangWEffective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysisPolym. Test.20175937137610.1016/j.polymertesting.2017.02.021 – reference: LiXWenCYangLZhangRLiXMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon202117550951810.1016/j.carbon.2020.11.089 – reference: LiangCRuanKZhangYGuJMultifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performancesACS Appl. Mater. Interfaces20201215180231803110.1021/acsami.0c04482 – reference: HsiaoSTMaCCMLiaoWHWangYSLiSMLightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performanceACS Appl. Mater. Interfaces2014613106671067810.1021/am502412q – reference: ZhouQYinXYeFMoRTangZOptically transparent and flexible broadband microwave metamaterial absorber with sandwich structureJ. Appl. Phys. A2019125213110.1007/s00339-019-2430-2 – reference: LiNHuangYDuFHeXLinXElectromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy compositesNano Lett.2006661141114510.1021/nl0602589 – reference: YanDXPangHLiBVajtaiRXuLStructured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shieldingAdv. Funct. Mater.201525455956610.1002/adfm.201403809 – reference: NguyenVTMinBKYiYKimSJChoiCGMXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skinsChem. Eng. J.202039310.1016/j.cej.2020.124608 – reference: The 3GPP specification. https://www.3gpp.org/DynaReport/38-series.htm – reference: ChenMZhangLDuanSJingSJiangHHighly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performancesNanoscale2014673796380310.1039/C3NR06092F – reference: T. Alsop, Number of wireless local area network (WLAN) connected devices worldwide from 2016 to 2021. (2020). https://www.statista.com/statistics/802706/world-wlan-connected-device/ – reference: ShenBLiYZhaiWZhengWCompressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shieldingACS Appl. Mater. Interfaces20168128050805710.1021/acsami.5b11715 – reference: ZhangYHuangYZhangTChangHXiaoPBroadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foamAdv. Mater.201527122049205310.1002/adma.201405788 – reference: HanMYinXLiXAnasoriBZhangLLaminated and two-dimensional carbon-supported microwave absorbers derived from MXenesACS Appl. Mater. Interfaces2017923200382004510.1021/acsami.7b04602 – reference: LiPDuDGuoLGuoYOuyangJStretchable and conductive polymer films for high-performance electromagnetic interference shieldingJ. Mater. Chem. C20164276525653210.1039/C6TC01619G – reference: LuSShaoJMaKChenDWangXFlexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shieldingCarbon201813638739410.1016/j.carbon.2018.04.086 – reference: CheRCPengLMDuanXFChenQLiangXLMicrowave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubesAdv. Mater.200416540140510.1002/adma.200306460 – reference: ShenBLiYYiDZhaiWWeiXMicrocellular graphene foam for improved broadband electromagnetic interference shieldingCarbon201610215416010.1016/j.carbon.2016.02.040 – reference: FalcioniLBuaLTibaldiELauriolaMAngelisLDReport of final results regarding brain and heart tumors in sprague-dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emissionEnviron. Res.201816549650310.1016/j.envres.2018.01.037 – reference: XuHYinXZhuMHanMHouZCarbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorptionACS Appl. Mater. Interfaces2017976332634110.1021/acsami.6b15826 – reference: HuangZChengJZhangHXiongYZhouZHigh-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-bandJ. Mater. Sci. Technol.202210715516410.1016/j.jmst.2021.08.005 – reference: ZhangYQiuMYuYWenBChengLA novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performanceACS Appl. Mater. Interfaces20179180981810.1021/acsami.6b11989 – reference: LuoJZhangKChengMGuMSunXMoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorptionChem. Eng. J.202038010.1016/j.cej.2019.122625 – reference: YaoBHongWChenTHanZXuXHighly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectivenessAdv. Mater.20203214190749910.1002/adma.201907499 – reference: NaguibMMochalinVNBarsoumMWGogotsiY25th anniversary article: MXenes: a new family of two-dimensional materialsAdv. Mater.2014267992100510.1002/adma.201304138 – reference: ZhangDChengJChaiJDengJRenRMagnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibersJ. Alloys Compd.20187401067107610.1016/j.jallcom.2018.01.081 – reference: XuHYinXZhuMLiMZhangHConstructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorptionCarbon201914234635310.1016/j.carbon.2018.10.056 – reference: FengDLiuPWangQExploiting the piezo resistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networksCompos. A Appl. Sci. Manuf.201912410.1016/j.compositesa.2019.05.031 – reference: CaoMSCaiYZHePShuJCCaoWQ2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shieldingChem. Eng. J.20193591265130210.1016/j.cej.2018.11.051 – reference: ZhangDYangXChengJLuMZhaoBFacile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocompositesJ. Nanomater.2013201310.1155/2013/591893 – reference: LuoJWangLHuangXLiBGuoZMechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shieldingACS Appl. Mater. Interfaces20191111108831089410.1021/acsami.8b22212 – reference: ZhangDLiuTChengJChaiJYangXLight-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxidesNanotechnology2019304410.1088/1361-6528/ab35fa – reference: MondalSGangulySDasPKhastgirDDasNCLow percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocompositesCompos. B Eng.2017119415610.1016/j.compositesb.2017.03.022 – reference: Panahi-SarmadMNorooziMAbrishamMEghbaliniaSTeimouryFA comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensorsACS Appl. Electron. Mater.2020282318235010.1021/acsaelm.0c00490 – reference: LiRLinHLanPGaoJHuangYLightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shieldingPolymers20181012131910.3390/polym10121319 – reference: ChengJZhangHXiongYGaoLWenBConstruction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a reviewJ. Materiomics2021761233126310.1016/j.jmat.2021.02.017 – reference: MannixAJZhouXFKiralyBWoodJDAlducinDSynthesis of borophenes: anisotropic, two-dimensional boron polymorphsScience201535062671513151610.1126/science.aad1080 – reference: LuDMoZLiangBYangLHeZFlexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shieldingCarbon201813345746310.1016/j.carbon.2018.03.061 – reference: ZhaoBZengSLiXGuoXBaiZFlexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiationJ. Mater. Chem. C20208250050910.1039/C9TC05462F – reference: LiuQCaoQZhaoXBiHWangCInsights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holographyACS Appl. Mater. Interfaces2015774233424010.1021/am508527s – reference: HatchettDWJosowiczMComposites of intrinsically conducting polymers as sensing nanomaterialsChem. Rev.2008108274676910.1021/cr068112h – reference: SushmitaKMadrasGBoseSPolymer nanocomposites containing semiconductors as advanced materials for EMI shieldingACS Omega20205104705471810.1021/acsomega.9b03641 – reference: LiuXZhangLYinXYeFLiuYFlexible thin SiC fiber fabrics using carbon nanotube modification for improving electromagnetic shielding propertiesMater. Des.2016104687510.1016/j.matdes.2016.05.005 – reference: WangWMaXShaoYQiXYangJFlexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistanceJ. Mater. Chem. A2021985033504410.1039/D0TA11040J – reference: YuanKCheRCaoQSunZYueQDesigned fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheresACS Appl. Mater. Interfaces2015795312531910.1021/am508683p – reference: BogersRGilsAVClahsenSVercruijsseWKampIVIndividual variation in temporal relationships between exposure to radiofrequency electromagnetic fields and non-specific physical symptoms: a new approach in studying ‘electrosensitivity’Environ. Int.201812129730710.1016/j.envint.2018.08.064 – reference: WangQWZhangHBLiuJZhaoSXieXMultifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performancesAdv. Funct. Mater.2019297180681910.1002/adfm.201806819 – reference: LiYWangBSuiXXuHZhangLFacile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant propertiesCellulose20172493815382310.1007/s10570-017-1373-z – reference: ZhangDLiangSChaiJLiuTYangXHighly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal methodJ. Phys. Chem. Solids.2019134778210.1016/j.jpcs.2019.05.041 – reference: ZhaoBHamidinejadMWangSBaiPCheRAdvances in electromagnetic shielding properties of composite foamsJ. Mater. Chem. A20219148896894910.1039/D1TA00417D – reference: CuiCXiangCGengLLaiXGuoRFlexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shieldingJ. Alloys Compd.20197881246125510.1016/j.jallcom.2019.02.294 – reference: BianRLinRWangGLuGZhiW3D assembly of Ti3C2-MXene directed by water/oil interfacesNanoscale20181083621362510.1039/C7NR07346A – reference: ShangTLinZQiCLiuXLiP3D macroscopic architectures from self-assembled MXene hydrogelsAdv. Funct. Mater.20192933190396010.1002/adfm.201903960 – reference: ChuHCChangYCLinYChangSHChangWCSpray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applicationsACS Appl. Mater. Interfaces2016820130091301710.1021/acsami.6b02652 – reference: WattsCMLiuXPadillaWJMetamaterial electromagnetic wave absorbersAdv. Mater.20122423OP98OP120 – reference: WangYGuFQNiLJLiangKMarcusKEasily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shieldingNanoscale2017946183181832510.1039/C7NR05951E – reference: ZengZJiangFYueYHanDLinLFlexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shieldingAdv. Mater.20203219190849610.1002/adma.201908496 – reference: LiCBLiYJZhaoQLuoYYangGYElectromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compressionACS Appl. Mater. Interfaces20201227306863069410.1021/acsami.0c05688 – reference: XiongRHuKGrantAMMaRXuWUltrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivityAdv. Opt. Mater.20162871501150910.1002/adma.201504438 – reference: HouJZhangLQiuHDuanWWangXFabrication and microwave absorption performances of hollow-structure Fe3O4/PANI microspheresJ. Mater. Sci. Mater. Electron.201728139279928810.1007/s10854-017-6664-5 – reference: JiaLCLiYKYanDXFlexible and efficient electromagnetic interference shielding materials from ground tire rubberCarbon201712126727310.1016/j.carbon.2017.05.100 – reference: ZhanZSongQZhouZLuCUltrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shieldingJ. Mater. Chem. C20197329820982910.1039/C9TC03309B – reference: WuYWangZLiuXShenXZhengQUltralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shieldingACS Appl. Mater. Interfaces20179109059906910.1021/acsami.7b01017 – reference: Al-SalehMHSundararajUElectromagnetic interference shielding mechanisms of CNT/polymer compositesCarbon20094771738174610.1016/j.carbon.2009.02.030 – reference: YuZDaiTYuanSZouHLiuPElectromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogelsACS Appl. Mater. Interfaces20201227309903100110.1021/acsami.0c07122 – reference: HuDHuangXLiSJiangPFlexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shieldingCompos. Sci. Technol.202018810.1016/j.compscitech.2020.107995 – reference: LuBDongXLHuangHZhangXFZhuXGMicrowave absorption properties of the core/shell-type iron and nickel nanoparticlesJ. Magn. Magn. Mater.200832061106111110.1016/j.jmmm.2007.10.030 – reference: LiuXYuZIshikawaRChenLLiuXSingle-source-precursor derived rGO/CNTs-SiCN ceramic nanocomposite with ultra-high electromagnetic shielding effectivenessActa Mater.2017130839310.1016/j.actamat.2017.03.031 – reference: FengXNingJWangBGuoHXiaMFunctional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXeneNano Energy20207210.1016/j.nanoen.2020.104741 – reference: LiuQXuXXiaWCheRChenCDependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holographyNanoscale2015751736174310.1039/C4NR05547K – reference: YeXChenZAiSHouBZhangJPorous SiC/melamine-derived carbon foam frameworks with excellent electromagnetic wave absorbing capacityJ. Adv. Ceram.20198447948810.1007/s40145-019-0328-2 – reference: Smith-RoeSLWydeMEStoutMDWintersJWHobbsCAEvaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposureEnviron. Mol. Mutagen.202061227629010.1002/em.22343 – reference: WangBLiWDengJChiral 3D porous hybrid foams constructed by graphene and helically substituted polyacetylene: preparation and application in enantioselective crystallizationJ. Mater. Sci.20175284575458610.1007/s10853-016-0702-1 – reference: ChengYZhaoHLvHShiTJiGLightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applicationsAdv. Electron. Mater.202061190079610.1002/aelm.201900796 – reference: ZhouCGengSXuXWangTZhangLLightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorptionCarbon201610823424110.1016/j.carbon.2016.07.015 – reference: LiuJZhangHBSunRLiuYLiuZHydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shieldingAdv. Mater.20172938170236710.1002/adma.201702367 – reference: ZhangYWangXCaoMConfinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorptionNano Res.20181131426143610.1007/s12274-017-1758-1 – reference: QianKZhouQWuHFangJMiaoMCarbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shieldingCompos. A Appl. Sci. Manuf.202114110.1016/j.compositesa.2020.106229 – reference: ShahzadFAlhabebMHatterCBAnasoriBHongSMElectromagnetic interference shielding with 2D transition metal carbides (MXenes)Science201635363041137114010.1126/science.aag2421 – reference: SahuKRDeUPolymer composites for flexible electromagnetic shieldsMacromol. Symp.20183811180009710.1002/masy.201800097 – reference: SongWLCaoMSLuMMBiSWangCYFlexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shieldingCarbon201466677610.1016/j.carbon.2013.08.043 – reference: QiangRDuYZhaoHWangYTianCMetal organic framework-derived Fe/C nanocubes toward efficient microwave absorptionJ. Mater. Chem. A2015325134261343410.1039/C5TA01457C – reference: WangLHuangYSunXHuangHLiuPSynthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structuresNanoscale2014663157316410.1039/C3NR05313J – reference: BiSZhangLMuCLiuMHuXElectromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogelsAppl. Surf. Sci.201741252953610.1016/j.apsusc.2017.03.293 – reference: KwonSMaRKimUChoiHRBaikSFlexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubberCarbon20146811812410.1016/j.carbon.2013.10.070 – reference: ShahinSBanerjeeSSwarupVSinghSPChaturvediCMFrom the cover: 2. 45-GHz microwave radiation impairs hippocampal learning and spatial memory: involvement of local stress mechanism-induced suppression of iGluR/ERK/CREB signalingToxicol. Sci.2018161234937410.1093/toxsci/kfx221 – reference: KongLYinXZhangYYuanXLiQElectromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clustersJ. Phys. Chem. C201311738197011971110.1021/jp4058498 – reference: LinSLiuJWangQZuDWangHHighly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shieldingAdv. Mater. Technol.202052190076110.1002/admt.201900761 – reference: DasNChakiTKhastgirDChakrabortyAElectromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillersJ. Appl. Polym. Sci.200180101601160810.1002/app.1253 – reference: ZhangDXiongYChengJChaiJLiuTSynergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticlesSci. Bull.202065213814610.1016/j.scib.2019.10.011 – reference: WuZPeiKXingLYuXYouWEnhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular compositeAdv. Funct. Mater.20192928190144810.1002/adfm.201901448 – reference: ZhangDLiuTZhangMZhangHYangXConfinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorptionNanotechnology2020313210.1088/1361-6528/ab8b8d – reference: SunHCheRYouXJiangYYangZCross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensitiesAdv. Mater.201426488120812510.1002/adma.201403735 – reference: Al-SalehMHSaadehWHSundararajUEMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative studyCarbon20136014615610.1016/j.carbon.2013.04.008 – reference: Danker-HopfeHDornHBolzTPeterAHansenMLEffects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: an intra- and inter-individual perspectiveEnviron. Res.2016145506010.1016/j.envres.2015.11.011 – reference: GonzálezMBaselgaJPozueloJModulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogelsCarbon2019147273410.1016/j.carbon.2019.02.068 – reference: SongWLCaoMHouZYuanJFangXHigh-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocompositeScr. Mater.200961220120410.1016/j.scriptamat.2009.03.048 – reference: SunGDongBCaoMWeiBHuCHierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorptionChem. Mater.20112361587159310.1021/cm103441u – reference: LiuQCaoQBiHLiangCYuanKConi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorptionAdv. Mater.201628348649010.1002/adma.201503149 – reference: IqbalASambyalPKooCM2D MXenes for electromagnetic shielding: a reviewAdv. Funct. Mater.20203047200088310.1002/adfm.202000883 – reference: WangHDaiYGongWGengDMaSBroadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonancesAppl. Phys. Lett.20131022210.1063/1.4809675 – reference: LiuPGaoSZhangGHuangYYouWHollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorptionAdv. Funct. Mater.20213127210281210.1002/adfm.202102812 – reference: LvHJiGLiuWZhangHDuYAchieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight featuresJ. Mater. Chem. C2015339102321024110.1039/C5TC02512E – reference: ZhangHLiuTHuangZChengJWangHEngineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibersJ. Materiomics.202110.1016/j.jmat.2021.09.003 – reference: ZhaoBZhangXDengJZhangCLiYFlexible PEBAX/graphene electromagnetic shielding composite films with a negative pressure effect of resistance for pressure sensors applicationsRSC Adv.20201031535154310.1039/C9RA08679J – reference: HanMYinXHantanasirisakulKLiXIqbalAAnisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorptionAdv. Opt. Mater.2019710190026710.1002/adom.201900267 – reference: GhoshSGangulySRemananSMondalSJanaSUltra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materialsJ. Mater. Sci. Mater. Electron.20182912101771018910.1007/s10854-018-9068-2 – reference: DengYZhaoLShenBLiuLHuWMicrowave characterization of submicrometer-sized nickel hollow sphere compositesJ. Appl. Phys.2006100110.1063/1.2210187 – reference: TibbettsGGLakeMLStrongKLRiceBPA review of the fabrication and properties of vapor-grown carbon nanofiber/polymer compositesCompos. Sci. Technol.20076771709171810.1016/j.compscitech.2006.06.015 – reference: ZhaoSYanLTianXLiuYChenCFlexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performanceNano Res.201811153054110.1007/s12274-017-1664-6 – reference: KongLYinXXuHYuanXWangTPowerful absorbing and lightweight electromagnetic shielding CNTs/rGO compositeCarbon2019145616610.1016/j.carbon.2019.01.009 – reference: SunXLiuXShenXWuYWangZGraphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shieldingCompos. A Appl. Sci. Manuf.20168519920610.1016/j.compositesa.2016.03.009 – reference: YuMLiangCLiuMLiuXYuanKYolk–shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol–gel method for high temperature stable microwave absorptionJ. Mater. Chem. C20142357275728310.1039/C4TC01285B – reference: ChengYLiZLiYDaiSJiGRationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorptionCarbon201812764365210.1016/j.carbon.2017.11.055 – reference: TanYJLiJGaoYLiJGuoSA facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shieldingAppl. Surf. Sci.201845823624410.1016/j.apsusc.2018.07.107 – reference: SinghAPGargPAlamFSinghKMathurRBPhenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-bandCarbon201250103868387510.1016/j.carbon.2012.04.030 – reference: XuHYinXLiXLiMLiangSLightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated featureACS Appl. Mater. Interfaces20191110101981020710.1021/acsami.8b21671 – reference: ZhaoSZhangHBLuoJQWangQWXuBHighly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performancesACS Nano20181211111931120210.1021/acsnano.8b05739 – reference: HanMYinXWuHHouZSongCTi3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-bandACS Appl. Mater. Interfaces2016832210112101910.1021/acsami.6b06455 – reference: PengMQinFClarification of basic concepts for electromagnetic interference shielding effectivenessJ. Appl. Phys.202113010.1063/5.0075019 – reference: LiuBChengJPengHQChenDCuiXIn situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolutionJ. Mater. Chem. A20197277578210.1039/C8TA09800J – reference: ZhouCWuCYanMA versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorptionChem. Eng. J.201937098899610.1016/j.cej.2019.03.295 – reference: DuYLiuWQiangRWangYHanXShell thickness-dependent microwave absorption of core–shell Fe3O4@C compositesACS Appl. Mater. Interfaces2014615129971300610.1021/am502910d – reference: MaZKangSMaJShaoLZhangYUltraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shieldingACS Nano20201478368838210.1021/acsnano.0c02401 – reference: MeiHZhaoXXiaJWeiFHanDCompacting CNT sponge to achieve larger electromagnetic interference shielding performanceMater. Des.201814432333010.1016/j.matdes.2018.02.047 – reference: BaanRGrosseYLauby-SecretanBGhissassiFEBouvardVCarcinogenicity of radiofrequency electromagnetic fieldsLancet Oncol.201112762462610.1016/s1470-2045(11)70147-4 – reference: ZhangBWangJPengJSunJSuXDouble-shell PANS@PANI@Ag hollow microspheres and graphene dispersed in epoxy with enhanced microwave absorptionJ. Mater. Sci. Mater. Electron.201930109785979710.1007/s10854-019-01315-y – reference: LinSWangHWuFWangQBaiXRoom-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shieldingnpj Electron Flex201910.1038/s41528-019-0050-8 – reference: SongWLCaoMSFanLZLuMMLiYHighly ordered porous carbon/wax composites for effective electromagnetic attenuation and shieldingCarbon20147713014210.1016/j.carbon.2014.05.014 – reference: ShiSQianBWuXSunHWangHSelf-assembly of MXene-surfactants at liquid–liquid interfaces: From structured liquids to 3D aerogelsAngew. Chem. Int. Ed.20195850181711817610.1002/anie.201908402 – reference: HanYLiuYHanLLinJJinPHigh-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shieldingCarbon2017115344210.1016/j.carbon.2016.12.092 – reference: ZhangJWangZLiJDongYHeAMagnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shieldingJ. Mater. Sci. Technol.202296112010.1016/j.jmst.2021.05.001 – reference: ZhaoSGaoZChenCWangGZhangBAlternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption propertyCarbon20169819620310.1016/j.carbon.2015.10.101 – reference: LiHJensenMWangNChenYGaoYCuxS/PAN 3D nanofiber mats as ultra-lightweight and flexible electromagnetic interference shielding materialsMacromol. Mater. Eng.201930412190048210.1002/mame.201900482 – reference: ChaiJChengJZhangDXiongYYangXEnhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheetsJ. Alloys Compd.202082910.1016/j.jallcom.2020.154531 – reference: ZhouEXiJGuoYLiuYXuZSynergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding filmsCarbon201813331632210.1016/j.carbon.2018.03.023 – reference: ZhanYOlivieroMWangJSorrentinoABuonocoreGGEnhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networksNanoscale20191131011102010.1039/C8NR07351A – reference: ChengYHuPZhouSYanLSunBAchieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foamCarbon201813243044310.1016/j.carbon.2018.02.084 – reference: SongWLCaoMSHouZLFangXYShiXLHigh dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-bandAppl. Phys. Lett.2009942310.1063/1.3152764 – reference: LiJLiuHGuoJHuZWangZFlexible, conductive, porous, fibrillar polymer–gold nanocomposites with enhanced electromagnetic interference shielding and mechanical propertiesJ. Mater. Chem. C2017551095110510.1039/C6TC04780G – reference: SongWLWangJFanLZLiYWangCYInterfacial engineering of carbon nanofiber–graphene–carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networksACS Appl. Mater. Interfaces2014613105161052310.1021/am502103u – reference: ZhangDWangHChengJHanCYangXConductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performanceAppl. Surf. Sci.202052810.1016/j.apsusc.2020.147052 – reference: HongYLeeCJeongCLeeDKimKMethod and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency rangesRev. Sci. Instrum.20037421098110210.1063/1.1532540 – reference: WanYJZhuPLYuSHSunRWongCPAnticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shieldingSmall20181427180053410.1002/smll.201800534 – reference: GuptaTKSinghBPMathurRBDhakateSRMulti-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectivenessNanoscale20146284285110.1039/C3NR04565J – reference: CrespoMGonzálezMElíasALRajukumarLPBaselgaJUltra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz rangePhys. Status Solidi RRL20148869870410.1002/pssr.201409151 – reference: ChenZXuCMaCRenWChengHMLightweight and flexible graphene foam composites for high-performance electromagnetic interference shieldingAdv. Mater.20132591296130010.1002/adma.201204196 – reference: TongGWuWGuanJQianHYuanJSynthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing propertiesJ. Alloys Compd.2011509114320432610.1016/j.jallcom.2011.01.058 – volume: 10 start-page: 1319 issue: 12 year: 2018 ident: 823_CR24 publication-title: Polymers doi: 10.3390/polym10121319 – volume: 134 start-page: 77 year: 2019 ident: 823_CR31 publication-title: J. Phys. Chem. Solids. doi: 10.1016/j.jpcs.2019.05.041 – volume: 7 start-page: 4233 issue: 7 year: 2015 ident: 823_CR150 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508527s – volume: 5 start-page: 1095 issue: 5 year: 2017 ident: 823_CR136 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04780G – volume: 7 start-page: 1736 issue: 5 year: 2015 ident: 823_CR149 publication-title: Nanoscale doi: 10.1039/C4NR05547K – volume: 96 start-page: 11 year: 2022 ident: 823_CR163 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.001 – volume: 2 start-page: 7275 issue: 35 year: 2014 ident: 823_CR86 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01285B – volume: 3 start-page: 10232 issue: 39 year: 2015 ident: 823_CR92 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02512E – volume: 11 start-page: 1426 issue: 3 year: 2018 ident: 823_CR71 publication-title: Nano Res. doi: 10.1007/s12274-017-1758-1 – volume: 29 start-page: 1806819 issue: 7 year: 2019 ident: 823_CR140 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806819 – volume: 28 start-page: 486 issue: 3 year: 2016 ident: 823_CR148 publication-title: Adv. Mater. doi: 10.1002/adma.201503149 – volume: 26 start-page: 8120 issue: 48 year: 2014 ident: 823_CR155 publication-title: Adv. Mater. doi: 10.1002/adma.201403735 – volume: 32 start-page: 2108194 issue: 6 year: 2021 ident: 823_CR153 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108194 – volume: 68 start-page: 118 year: 2014 ident: 823_CR42 publication-title: Carbon doi: 10.1016/j.carbon.2013.10.070 – volume: 8 start-page: 8050 issue: 12 year: 2016 ident: 823_CR112 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11715 – volume: 32 start-page: 1908496 issue: 19 year: 2020 ident: 823_CR132 publication-title: Adv. Mater. doi: 10.1002/adma.201908496 – volume: 107 start-page: 155 year: 2022 ident: 823_CR152 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.08.005 – volume: 28 start-page: 1501 issue: 7 year: 2016 ident: 823_CR35 publication-title: Adv. Opt. Mater. doi: 10.1002/adma.201504438 – volume: 11 start-page: 10883 issue: 11 year: 2019 ident: 823_CR139 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22212 – volume: 67 start-page: 1709 issue: 7 year: 2007 ident: 823_CR111 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2006.06.015 – volume: 24 start-page: 3815 issue: 9 year: 2017 ident: 823_CR56 publication-title: Cellulose doi: 10.1007/s10570-017-1373-z – volume: 130 year: 2021 ident: 823_CR79 publication-title: J. Appl. Phys. doi: 10.1063/5.0075019 – volume: 9 start-page: 6332 issue: 7 year: 2017 ident: 823_CR91 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15826 – volume: 7 start-page: 5312 issue: 9 year: 2015 ident: 823_CR156 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508683p – volume: 165 start-page: 496 year: 2018 ident: 823_CR7 publication-title: Environ. Res. doi: 10.1016/j.envres.2018.01.037 – volume: 119 start-page: 41 year: 2017 ident: 823_CR110 publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2017.03.022 – volume: 47 start-page: 1738 issue: 7 year: 2009 ident: 823_CR43 publication-title: Carbon doi: 10.1016/j.carbon.2009.02.030 – volume: 25 start-page: 1296 issue: 9 year: 2013 ident: 823_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201204196 – volume: 52 start-page: 4575 issue: 8 year: 2017 ident: 823_CR57 publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0702-1 – volume: 80 start-page: 1601 issue: 10 year: 2001 ident: 823_CR129 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1253 – volume: 462 start-page: 872 year: 2018 ident: 823_CR39 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.152 – volume: 6 start-page: 3796 issue: 7 year: 2014 ident: 823_CR20 publication-title: Nanoscale doi: 10.1039/C3NR06092F – year: 2021 ident: 823_CR37 publication-title: J. Materiomics. doi: 10.1016/j.jmat.2021.09.003 – volume: 124 year: 2019 ident: 823_CR115 publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.05.031 – volume: 12 start-page: 11193 issue: 11 year: 2018 ident: 823_CR124 publication-title: ACS Nano doi: 10.1021/acsnano.8b05739 – volume: 12 start-page: 30686 issue: 27 year: 2020 ident: 823_CR165 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05688 – volume: 121 start-page: 297 year: 2018 ident: 823_CR6 publication-title: Environ. Int. doi: 10.1016/j.envint.2018.08.064 – volume: 161 start-page: 349 issue: 2 year: 2018 ident: 823_CR5 publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfx221 – volume: 133 start-page: 316 year: 2018 ident: 823_CR49 publication-title: Carbon doi: 10.1016/j.carbon.2018.03.023 – volume: 7 start-page: 9820 issue: 32 year: 2019 ident: 823_CR121 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03309B – volume: 23 start-page: 1587 issue: 6 year: 2011 ident: 823_CR68 publication-title: Chem. Mater. doi: 10.1021/cm103441u – volume: 60 start-page: 146 year: 2013 ident: 823_CR41 publication-title: Carbon doi: 10.1016/j.carbon.2013.04.008 – volume: 108 start-page: 234 year: 2016 ident: 823_CR76 publication-title: Carbon doi: 10.1016/j.carbon.2016.07.015 – volume: 381 start-page: 1800097 issue: 1 year: 2018 ident: 823_CR25 publication-title: Macromol. Symp. doi: 10.1002/masy.201800097 – volume: 393 year: 2020 ident: 823_CR146 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124608 – volume: 16 start-page: 401 issue: 5 year: 2004 ident: 823_CR157 publication-title: Adv. Mater. doi: 10.1002/adma.200306460 – volume: 458 start-page: 236 year: 2018 ident: 823_CR15 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.07.107 – volume: 12 start-page: 2826 issue: 2 year: 2020 ident: 823_CR142 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b17513 – volume: 412 start-page: 529 year: 2017 ident: 823_CR95 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.03.293 – volume: 117 start-page: 19701 issue: 38 year: 2013 ident: 823_CR96 publication-title: J. Phys. Chem. C doi: 10.1021/jp4058498 – volume: 66 start-page: 67 year: 2014 ident: 823_CR13 publication-title: Carbon doi: 10.1016/j.carbon.2013.08.043 – volume: 10 start-page: 424 issue: 6 year: 2011 ident: 823_CR135 publication-title: Nat. Mater. doi: 10.1038/nmat3001 – volume: 133 start-page: 457 year: 2018 ident: 823_CR118 publication-title: Carbon doi: 10.1016/j.carbon.2018.03.061 – volume: 6 start-page: 10516 issue: 13 year: 2014 ident: 823_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502103u – volume: 32 start-page: 1907499 issue: 14 year: 2020 ident: 823_CR126 publication-title: Adv. Mater. doi: 10.1002/adma.201907499 – volume: 11 start-page: 26807 issue: 30 year: 2019 ident: 823_CR29 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06509 – volume: 72 year: 2020 ident: 823_CR123 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104741 – volume: 2 start-page: 2318 issue: 8 year: 2020 ident: 823_CR144 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00490 – year: 2019 ident: 823_CR143 publication-title: npj Electron Flex doi: 10.1038/s41528-019-0050-8 – volume: 30 issue: 44 year: 2019 ident: 823_CR30 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab35fa – volume: 141 year: 2021 ident: 823_CR106 publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2020.106229 – volume: 50 start-page: 3868 issue: 10 year: 2012 ident: 823_CR52 publication-title: Carbon doi: 10.1016/j.carbon.2012.04.030 – volume: 353 start-page: 1137 issue: 6304 year: 2016 ident: 823_CR58 publication-title: Science doi: 10.1126/science.aag2421 – volume: 9 start-page: 809 issue: 1 year: 2017 ident: 823_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11989 – volume: 121 start-page: 267 year: 2017 ident: 823_CR113 publication-title: Carbon doi: 10.1016/j.carbon.2017.05.100 – volume: 238 year: 2022 ident: 823_CR133 publication-title: Polymer doi: 10.1016/j.polymer.2021.124413 – volume: 12 start-page: 18023 issue: 15 year: 2020 ident: 823_CR138 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04482 – volume: 61 start-page: 201 issue: 2 year: 2009 ident: 823_CR67 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2009.03.048 – volume: 65 start-page: 138 issue: 2 year: 2020 ident: 823_CR38 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.011 – volume: 145 start-page: 259 year: 2019 ident: 823_CR109 publication-title: Carbon doi: 10.1016/j.carbon.2019.01.030 – volume: 29 start-page: 10177 issue: 12 year: 2018 ident: 823_CR19 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-9068-2 – volume: 14 start-page: 1800534 issue: 27 year: 2018 ident: 823_CR120 publication-title: Small doi: 10.1002/smll.201800534 – volume: 118 issue: 31 year: 2021 ident: 823_CR4 publication-title: PNAS doi: 10.1073/pnas.2105838118 – volume: 6 start-page: 1900796 issue: 1 year: 2020 ident: 823_CR74 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900796 – volume: 24 start-page: OP98 issue: 23 year: 2012 ident: 823_CR16 publication-title: Adv. Mater. – volume: 94 issue: 23 year: 2009 ident: 823_CR66 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3152764 – ident: 823_CR9 – volume: 8 start-page: 698 issue: 8 year: 2014 ident: 823_CR101 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201409151 – volume: 30 start-page: 2000883 issue: 47 year: 2020 ident: 823_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000883 – volume: 77 start-page: 130 year: 2014 ident: 823_CR44 publication-title: Carbon doi: 10.1016/j.carbon.2014.05.014 – volume: 102 issue: 22 year: 2013 ident: 823_CR65 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4809675 – volume: 10 start-page: 702 issue: 4 year: 2020 ident: 823_CR94 publication-title: Nanomaterials doi: 10.3390/nano10040702 – volume: 140 start-page: 494 year: 2018 ident: 823_CR98 publication-title: Carbon doi: 10.1016/j.carbon.2018.09.014 – volume: 26 start-page: 992 issue: 7 year: 2014 ident: 823_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201304138 – volume: 7 start-page: 1900267 issue: 10 year: 2019 ident: 823_CR18 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900267 – volume: 136 start-page: 387 year: 2018 ident: 823_CR53 publication-title: Carbon doi: 10.1016/j.carbon.2018.04.086 – volume: 98 start-page: 196 year: 2016 ident: 823_CR83 publication-title: Carbon doi: 10.1016/j.carbon.2015.10.101 – volume: 130 start-page: 83 year: 2017 ident: 823_CR46 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.031 – volume: 25 start-page: 559 issue: 4 year: 2015 ident: 823_CR48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403809 – volume: 31 start-page: 2102812 issue: 27 year: 2021 ident: 823_CR159 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 147 start-page: 27 year: 2019 ident: 823_CR97 publication-title: Carbon doi: 10.1016/j.carbon.2019.02.068 – ident: 823_CR1 – volume: 10 start-page: 1535 issue: 3 year: 2020 ident: 823_CR145 publication-title: RSC Adv. doi: 10.1039/C9RA08679J – volume: 350 start-page: 1513 issue: 6267 year: 2015 ident: 823_CR160 publication-title: Science doi: 10.1126/science.aad1080 – volume: 7 start-page: 1233 issue: 6 year: 2021 ident: 823_CR40 publication-title: J. Materiomics doi: 10.1016/j.jmat.2021.02.017 – volume: 176 year: 2019 ident: 823_CR137 publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107123 – volume: 188 year: 2020 ident: 823_CR122 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.107995 – volume: 27 start-page: 2049 issue: 12 year: 2015 ident: 823_CR73 publication-title: Adv. Mater. doi: 10.1002/adma.201405788 – volume: 304 start-page: 1900482 issue: 12 year: 2019 ident: 823_CR131 publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201900482 – volume: 8 start-page: 21011 issue: 32 year: 2016 ident: 823_CR77 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06455 – volume: 74 start-page: 1098 issue: 2 year: 2003 ident: 823_CR51 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1532540 – volume: 528 year: 2020 ident: 823_CR151 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147052 – volume: 142 start-page: 346 year: 2019 ident: 823_CR89 publication-title: Carbon doi: 10.1016/j.carbon.2018.10.056 – volume: 8 start-page: 500 issue: 2 year: 2020 ident: 823_CR128 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05462F – volume: 5 start-page: 1900761 issue: 2 year: 2020 ident: 823_CR45 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900761 – volume: 125 start-page: 131 issue: 2 year: 2019 ident: 823_CR17 publication-title: J. Appl. Phys. A doi: 10.1007/s00339-019-2430-2 – volume: 8 start-page: 479 issue: 4 year: 2019 ident: 823_CR154 publication-title: J. Adv. Ceram. doi: 10.1007/s40145-019-0328-2 – volume: 740 start-page: 1067 year: 2018 ident: 823_CR72 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.081 – volume: 58 start-page: 18171 issue: 50 year: 2019 ident: 823_CR103 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908402 – volume: 359 start-page: 1265 year: 2019 ident: 823_CR28 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.051 – volume: 29 start-page: 1903960 issue: 33 year: 2019 ident: 823_CR104 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903960 – volume: 5 start-page: 4705 issue: 10 year: 2020 ident: 823_CR27 publication-title: ACS Omega doi: 10.1021/acsomega.9b03641 – volume: 115 start-page: 34 year: 2017 ident: 823_CR10 publication-title: Carbon doi: 10.1016/j.carbon.2016.12.092 – volume: 145 start-page: 61 year: 2019 ident: 823_CR116 publication-title: Carbon doi: 10.1016/j.carbon.2019.01.009 – volume: 100 issue: 1 year: 2006 ident: 823_CR88 publication-title: J. Appl. Phys. doi: 10.1063/1.2210187 – volume: 10 start-page: 3621 issue: 8 year: 2018 ident: 823_CR102 publication-title: Nanoscale doi: 10.1039/C7NR07346A – volume: 29 start-page: 1702367 issue: 38 year: 2017 ident: 823_CR105 publication-title: Adv. Mater. doi: 10.1002/adma.201702367 – volume: 29 start-page: 1901448 issue: 28 year: 2019 ident: 823_CR158 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901448 – volume: 49 start-page: 7221 issue: 20 year: 2014 ident: 823_CR33 publication-title: J. Mater. Sci. doi: 10.1007/s10853-014-8429-3 – volume: 829 year: 2020 ident: 823_CR34 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154531 – volume: 132 start-page: 430 year: 2018 ident: 823_CR75 publication-title: Carbon doi: 10.1016/j.carbon.2018.02.084 – volume: 26 start-page: 5480 issue: 31 year: 2014 ident: 823_CR125 publication-title: Adv. Mater. doi: 10.1002/adma.201305293 – volume: 61 start-page: 276 issue: 2 year: 2020 ident: 823_CR8 publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.22343 – volume: 6 start-page: 10667 issue: 13 year: 2014 ident: 823_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502412q – volume: 12 start-page: 30990 issue: 27 year: 2020 ident: 823_CR80 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c07122 – volume: 9 start-page: 5033 issue: 8 year: 2021 ident: 823_CR147 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11040J – volume: 17 start-page: 2100970 issue: 30 year: 2021 ident: 823_CR162 publication-title: Small doi: 10.1002/smll.202100970 – volume: 145 start-page: 50 year: 2016 ident: 823_CR3 publication-title: Environ. Res. doi: 10.1016/j.envres.2015.11.011 – volume: 104 start-page: 68 year: 2016 ident: 823_CR108 publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.005 – volume: 380 year: 2020 ident: 823_CR90 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122625 – volume: 3 start-page: 13426 issue: 25 year: 2015 ident: 823_CR62 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01457C – volume: 11 start-page: 10198 issue: 10 year: 2019 ident: 823_CR60 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21671 – volume: 2 start-page: 910 issue: 2 year: 2019 ident: 823_CR85 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02150 – volume: 127 start-page: 643 year: 2018 ident: 823_CR87 publication-title: Carbon doi: 10.1016/j.carbon.2017.11.055 – volume: 788 start-page: 1246 year: 2019 ident: 823_CR22 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.02.294 – volume: 2013 year: 2013 ident: 823_CR32 publication-title: J. Nanomater. doi: 10.1155/2013/591893 – volume: 6 start-page: 12997 issue: 15 year: 2014 ident: 823_CR63 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502910d – volume: 7 start-page: 775 issue: 2 year: 2019 ident: 823_CR64 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09800J – volume: 320 start-page: 1106 issue: 6 year: 2008 ident: 823_CR82 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2007.10.030 – volume: 28 issue: 4 year: 2016 ident: 823_CR55 publication-title: Nanotechnology doi: 10.1088/1361-6528/28/4/045710 – volume: 28 start-page: 9279 issue: 13 year: 2017 ident: 823_CR93 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-6664-5 – volume: 9 start-page: 9059 issue: 10 year: 2017 ident: 823_CR134 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01017 – volume: 370 start-page: 988 year: 2019 ident: 823_CR78 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.295 – volume: 85 start-page: 199 year: 2016 ident: 823_CR119 publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.03.009 – volume: 8 start-page: 13009 issue: 20 year: 2016 ident: 823_CR141 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02652 – volume: 6 start-page: 1141 issue: 6 year: 2006 ident: 823_CR54 publication-title: Nano Lett. doi: 10.1021/nl0602589 – volume: 4 start-page: 6525 issue: 27 year: 2016 ident: 823_CR127 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01619G – volume: 11 start-page: 530 issue: 1 year: 2018 ident: 823_CR84 publication-title: Nano Res. doi: 10.1007/s12274-017-1664-6 – volume: 14 start-page: 8368 issue: 7 year: 2020 ident: 823_CR99 publication-title: ACS Nano doi: 10.1021/acsnano.0c02401 – volume: 31 issue: 32 year: 2020 ident: 823_CR61 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab8b8d – volume: 108 start-page: 746 issue: 2 year: 2008 ident: 823_CR107 publication-title: Chem. Rev. doi: 10.1021/cr068112h – volume: 9 start-page: 8896 issue: 14 year: 2021 ident: 823_CR161 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00417D – volume: 175 start-page: 509 year: 2021 ident: 823_CR164 publication-title: Carbon doi: 10.1016/j.carbon.2020.11.089 – volume: 93 start-page: 151 year: 2015 ident: 823_CR14 publication-title: Carbon doi: 10.1016/j.carbon.2015.05.033 – volume: 509 start-page: 4320 issue: 11 year: 2011 ident: 823_CR69 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.01.058 – volume: 11 start-page: 1011 issue: 3 year: 2019 ident: 823_CR114 publication-title: Nanoscale doi: 10.1039/C8NR07351A – volume: 59 start-page: 371 year: 2017 ident: 823_CR130 publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.02.021 – volume: 9 start-page: 18318 issue: 46 year: 2017 ident: 823_CR26 publication-title: Nanoscale doi: 10.1039/C7NR05951E – volume: 9 start-page: 20038 issue: 23 year: 2017 ident: 823_CR47 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04602 – volume: 102 start-page: 154 year: 2016 ident: 823_CR100 publication-title: Carbon doi: 10.1016/j.carbon.2016.02.040 – volume: 12 start-page: 624 issue: 7 year: 2011 ident: 823_CR2 publication-title: Lancet Oncol. doi: 10.1016/s1470-2045(11)70147-4 – volume: 6 start-page: 842 issue: 2 year: 2014 ident: 823_CR50 publication-title: Nanoscale doi: 10.1039/C3NR04565J – volume: 30 start-page: 9785 issue: 10 year: 2019 ident: 823_CR81 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-01315-y – volume: 144 start-page: 323 year: 2018 ident: 823_CR117 publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.047 – volume: 6 start-page: 3157 issue: 6 year: 2014 ident: 823_CR70 publication-title: Nanoscale doi: 10.1039/C3NR05313J |
| SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
| Score | 2.6793334 |
| SecondaryResourceType | review_article |
| Snippet | Highlights
Detailed summary of current trends in the advancement of flexible EMI shielding materials.
The theoretical shielding mechanisms and the latest... With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent demand in... HighlightsDetailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept... Detailed summary of current trends in the advancement of flexible EMI shielding materials.The theoretical shielding mechanisms and the latest concept of "green... Abstract With rapid development of 5G communication technologies, electromagnetic interference (EMI) shielding for electronic devices has become an urgent... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 80 |
| SubjectTerms | Electromagnetic radiation Electromagnetic shielding Electronic devices EMI shielding mechanism Engineering Flexible shielding materials Green shielding index Hydrophobicity Microwave absorption and EMI shielding Multifunctionalities Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Review Silicones Thermal conductivity Uranium |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiPJMW5CRuIGFHTt2fCzQFQeoOIDUW2Q7NqzUZqvuFvHzmbGz2V2eF66xE1nzyHzJzHxDyHMTTUjKK5Zk7ZgSrma2VQ2LEblCuPV9zOz6783paXt2Zj9ujfrCmrBCD1wE96oXffLgg2BaSQURWyuaPjgdU-yVD7l1jxu79TEFllQbnMi0yQ_iWGW1xVKjkNNFbojMGiQuMxt-zKZWENfHQFuAtMEUVp5UJwTThuuxAyf34eHUZs6wMD5nrpjZiXJ5GMDvEOyvhZg_ZWNzkJvdJXdGdEqPi1T2yY043CO3tzgL75PvADThOfS4FA8s6Xygb3MZCF0z3cJFN_Q09_Zi3Cy_GwHu00WiM2Tg9OeRnpQBPBfuy4CNlDT_mxy7DymO6M5pMfrBrYqTPCCfZyef3rxj4_gGFjQ3K-a8sIoHL2OdRBDaK2VC0zecB6OD9yHxqENygIA0oCbZB50AgEmPqU5QsHxI9obFEB9jY7mG5SDhKRYQpPHKRsuVtyl5U6e2ImIt7i6M3OY4YuO8m1iZs4o6UFGXVdSZiryY7rkszB5_3f0atTjtRFbufAFstRtttfuXrVbkaG0D3fiqWHaASCWALHgTVuTZtAxOjpkbN8TFdd6jEIw1siKPislMJ5EA2BFlVsTsGNPOUXdXhvnXTCTewsexaeHOl2uz2xzrz6I4-B-iOCS3avSXXBh0RPZWV9fxCbkZvq3my6un2Zl_ANmdRuU priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICNxA4s4duz4hAp0xQEqJEDqLYodu12pJGV3i_j5zDhO0uXRC9fYiZzMeOaLZ-YbQp5rr12QVrIgioZJ3hTMVLJk3iNXSG5s6yO7_gd9cFAdHppP6cBtndIqR5sYDXXbOzwjfwWOW4AvAoV5ffqdYdcojK6mFhqXyRVkSeAxde_zqE-Fxr5Mc5QQmyvLc1w1EpldxExnViJ9mZ5ZMstCgndP7naA0xoDWbFfHedM6VylOpxYjYe9m3OG6fExfsX0lq-LLQH-hmP_TMf8LSYbXd3i5v9-pFvkRgK5dG_Qytvkku_ukOvnqA_vkp-AV2EhdG_IQVjTZUffxWwSOhLmwsWma2ksEUb3O5xawl8D7QNdIJGnPfF0f-jj86056rAek8YjzlTESLHTd4yu0Y_NZthr98jXxf6Xt-9Z6gLBnMr1hjWWG5k7K3wRuOPKSqld2ZZ57rRy1rqQe-VCA0BKAfgSrVMBcJywGDFtlBf3yU7Xd_4h1qcrGHYCnmIAiGorjTe5tCYEq4tQZYSP8qpdokjHTh0n9UTuHGVcg4zrKONaZ-TFdM_pQBBy4ew3qAbTTCT3jhf61VGdbEXd8jZYcDtgTYN03FeGl62DVwm-ldaZjOyO0q-TxVnXs-gz8mwaBluBAaCm8_1ZnCMR05UiIw8GnZtWIgD3I1jNiN7Sxq2lbo90y-PIR17BP7au4M6Xo97Oy_r3p3h08Vs8JtcK3Eoxc2iX7GxWZ_4Juep-bJbr1dO4z38BEbZSJg priority: 102 providerName: ProQuest |
| Title | Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials |
| URI | https://link.springer.com/article/10.1007/s40820-022-00823-7 https://www.ncbi.nlm.nih.gov/pubmed/35333993 https://www.proquest.com/docview/2643124196 https://www.proquest.com/docview/2644021853 https://pubmed.ncbi.nlm.nih.gov/PMC8956783 https://doaj.org/article/d1dfbdde257f4c1e8915dca6efed4bc9 |
| Volume | 14 |
| WOSCitedRecordID | wos000782151100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: C24 dateStart: 20091201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbYXQ5w4A0bWCIjcYOgOHbi-LhdWoFgq4qHVLhEsWMvlXZT1HYRJ347M85rCwsSXHyIncR1xjNfPTPfEPJUWmmc0CJyPCkjwcokUrlII2uRKyRWurKeXf-tnE7z-VzN2qSwdRft3rkkvabuk92wNHIcYfS5dw9FcofspSxXGMh3NHCOJxKrMQ2-QSypLC4w1Ajkc-EDiVmKpGVy4MZMEwE2vTWyDYiW6L7yVeoYizIZZ232zeXT2rJwvhDAZej19yDMXzyx3sBNbv7f0twiN1pASw8bCbxNrtj6Drl-gebwLvkO2BReTw-beIM1XdT0pY8coR05Llws64r6dGA0tc0JJfxDoEtHJ0jaqU8tHTc1e87KkxpzL6k_zmwTFilW9faeNHpcbpp9dY98nIw_HL2K2ooPkcliuYlKzZSIjeY2ccywTAshTVqlcWxkZrQ2LraZcSWApgyAFq9M5gCzcY3e0TKz_D7ZrZe13cdc9Ay6DYenKACdUgtlVSy0ck7LxOUBYd1XKkxLh45VOU6LnsjZr2oBq1r4VS1kQJ7193xtyED-OnqEH78fiUTe_sJydVK0eqGoWOU0mBjQnE4YZnPF0srAT3G2EtqogBx0olO02mVdAIjlgMtAeQbkSd8NegGdPWVtl-d-jED8lvKAPGgkrZ8JB4yPwDQgcksGt6a63VMvvnjucdhuAG_gzuedJA7T-vNSPPy34Y_ItQSF2UcNHZDdzercPiZXzbfNYr0KyY6c5yHZG42ns3eh3_uhP0qB9s3oRYjhu--x_TGGdpZ-hrGz18ezTz8BlZ1Qpg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwPsRKGAkOIFFHk68OSBUaFdddXe1hyKVUxo7drtSScrulsef4jcy4yS7XR699cA1TiI7-Twz9ni-D-CFNFJboQS3UZhzEeQhT7si5sYQV4ifqsI4dv2BHI26BwfpeA1-trUwdKyytYnOUBeVpj3yN-i4I_RFCJh3p184qUZRdrWV0KhhsWd-fMMl2-xtfxv_78sw7O3sf9jljaoA14kv5zxXuG73tYpMaAMdJEoIqeMi9n0tE62Utr5JtM3RMSekRV_oxGJcECnKwOWJifC9V2BdENg7sD7uD8efWgSHkpSglnlJknMW59hxBHHJREsCtZgI0-SSlzMOBcYTjYOvA3hJqTOnkBcEPJF-0lT-uPo_Uov2OR3IdxkzLle8qxMh-Fvk_OcB0N-ywM659m7-b7_lFtxowni2Vc-727Bmyjtw_Ry54134jhE5Dpxt1acsZmxSsm13Xoa1lMB4MS8L5oqgKcCo92VxXcQqy3pEVapODNuplYo-50clVZwyt4nblGky0jJ3-UM2zOe1NbkHHy9l6PehU1aleUgV-Ak26wjfkmKoLZVITeoLlVqrZGi7HgQtPjLdkMCTFslJtqCvdpjKEFOZw1QmPXi1eOa0pkC58O73BLvFnURf7i5U06OssYZZERRWoWPFKWSFDkw3DeJC41CsKYTSqQebLdqyxqbOsiXUPHi-aEZrSCmuvDTVmbtHUNQaRx48qDG-6EmEKxsKxz2QK-hf6epqSzk5dozr3TTGoA6ffN3Ok2W3_v0pHl08imdwbXd_OMgG_dHeY9gIaRq7c1Kb0JlPz8wTuKq_ziez6dPGyjA4vOwZ9AutGrEp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIFQOvCmBAkbiBlHj2LHjY2m7AlFWPYDUmxU7dlmpZKvdFPHzmXEeuwsFCXGNHcuZTGY-Z2a-IeS18soFYUUaeF6lglV5qktRpN4jV0imbe0ju_6xmk7L01N9slbFH7Pdh5BkV9OALE1Nu3dRh72x8A3bJGcpZqLHUFGqrpMbGJFCHT9Y8Y_nCjszreKE2F5ZrLHVCOR24StCswIJzNSKJ7PIBfj33uF2gFphKCt2rGMslSqTfSXO1dva8HaxKcBVSPb3hMxforLR2U3u_r-Y7pE7PdCl-51m3ifXfPOA3F6jP3xIfgBmhcXofpeHsKSzhh7GjBI6kObCxaqpaSwTRhfc_bmEkwOdBzpBMk977ulR18vnW3XWYE0mjb85-0JGit2-Y4SNfqra7nt7RL5Mjj4fvE_7ThCpk5lq08oyLTJnuc8Dc0xaIZQr6iLLnJLOWhcyL12oAExJAGC8djIAluMWo6aV9Pwx2WrmjX-CNeoShh2HVTSAUWWF9joTVodgVR7KhLDhjRnX06Rjt45zMxI8R6kakKqJUjUqIW_Gey46kpC_zn6HijDORILveGG-ODO9vTA1q4MF1wMWNQjHfKlZUTt4lOBrYZ1OyO6gRqa3OksD4JYDXgOjmpBX4zDYCwwCVY2fX8Y5AnFdwROy02nduBMO2B8Ba0LUhj5ubHVzpJl9jZzkJZyzVQl3vh20crWtP4vi6b9Nf0lunRxOzPGH6cdnZDtHvY6JRbtkq11c-ufkpvvezpaLF9EI_AQJQVNB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Design+Strategies+and+Multifunctionality+of+Flexible+Electromagnetic+Interference+Shielding+Materials&rft.jtitle=Nano-micro+letters&rft.au=Cheng%2C+Junye&rft.au=Li%2C+Chuanbing&rft.au=Xiong%2C+Yingfei&rft.au=Zhang%2C+Huibin&rft.date=2022-12-01&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft.spage=80&rft_id=info:doi/10.1007%2Fs40820-022-00823-7&rft_id=info%3Apmid%2F35333993&rft.externalDocID=35333993 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |