Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation

Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroengineering and rehabilitation Jg. 18; H. 1; S. 126 - 17
Hauptverfasser: Song, Seungmoon, Kidziński, Łukasz, Peng, Xue Bin, Ong, Carmichael, Hicks, Jennifer, Levine, Sergey, Atkeson, Christopher G., Delp, Scott L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 16.08.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1743-0003, 1743-0003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research
AbstractList Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research.Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research.
Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research
Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research Keywords: Neuromechanical simulation, Deep reinforcement learning, Motor control, Locomotion, Biomechanics, Musculoskeletal modeling, Academic competition
Abstract Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research
Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research.
ArticleNumber 126
Audience Academic
Author Song, Seungmoon
Hicks, Jennifer
Peng, Xue Bin
Ong, Carmichael
Kidziński, Łukasz
Delp, Scott L.
Levine, Sergey
Atkeson, Christopher G.
Author_xml – sequence: 1
  givenname: Seungmoon
  orcidid: 0000-0002-4358-5948
  surname: Song
  fullname: Song, Seungmoon
  email: smsong@stanford.edu
  organization: Department of Mechanical Engineering, Stanford University
– sequence: 2
  givenname: Łukasz
  surname: Kidziński
  fullname: Kidziński, Łukasz
  organization: Department of Bioengineering, Stanford University
– sequence: 3
  givenname: Xue Bin
  surname: Peng
  fullname: Peng, Xue Bin
  organization: Department of Electrical Engineering and Computer Science, University of California, Berkeley
– sequence: 4
  givenname: Carmichael
  surname: Ong
  fullname: Ong, Carmichael
  organization: Department of Bioengineering, Stanford University
– sequence: 5
  givenname: Jennifer
  surname: Hicks
  fullname: Hicks, Jennifer
  organization: Department of Bioengineering, Stanford University
– sequence: 6
  givenname: Sergey
  surname: Levine
  fullname: Levine, Sergey
  organization: Department of Electrical Engineering and Computer Science, University of California, Berkeley
– sequence: 7
  givenname: Christopher G.
  surname: Atkeson
  fullname: Atkeson, Christopher G.
  organization: Robotics Institute, Carnegie Mellon University
– sequence: 8
  givenname: Scott L.
  surname: Delp
  fullname: Delp, Scott L.
  organization: Department of Mechanical Engineering, Stanford University, Department of Bioengineering, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34399772$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAixQJDZsUnyN7Q1SVW6VKrGBteVxjmc8cuzBTpDm7fHMtLRToSoL2yff_9vnct6cxBShad5idImx7D8WTJRkHSK4Q0hh1W1fNGdYMFqPiJ482p8256Ws64Yhzl41p5RRpYQgZ43-DLBpM_joUrYwQpzaACZHH5dtDbVjGiDsDqt5NLENyaYxTT7F1qY45RRaH9sIc04j2JWJ3prQFj_Oweyo181LZ0KBN3frRfPr65ef19-72x_fbq6vbjvbIzF10pFeSM6pGiSXAybGGiIocg5ZIsSiV5JbAmqBjFEWG9IrgTlhjlGkHHH0ork5-A7JrPUm-9HkrU7G630g5aU2efI2gBYMD8MCqOUK2KDwQg71EQYcs8hJZavXp4PXZl6MMNhak2zCkenxn-hXepn-aEl7rgiqBh_uDHL6PUOZ9OiLhRBMhDQXTXhPCOWC9hV9_wRdpznHWqo9xSlHiD1QS1MT2PWq3mt3pvqqF7UOmHJcqcv_UPUbYPS1W-B8jR8J3j1O9F-G9-NRAXkAbE6lZHDa-mnf1-rsg8ZI7yZRHyZR10nU-0nU2yolT6T37s-K6EFUKhyXkB-q8YzqLwQV8TM
CitedBy_id crossref_primary_10_1016_j_conb_2022_02_002
crossref_primary_10_3390_machines11100980
crossref_primary_10_1007_s10489_025_06360_1
crossref_primary_10_1016_j_procs_2023_10_639
crossref_primary_10_1145_3747865
crossref_primary_10_3390_biomimetics9030164
crossref_primary_10_1186_s12984_025_01556_5
crossref_primary_10_1186_s12984_024_01324_x
crossref_primary_10_1002_cav_2170
crossref_primary_10_1126_scirobotics_abo0235
crossref_primary_10_1371_journal_pcbi_1012257
crossref_primary_10_1109_TNSRE_2023_3336713
crossref_primary_10_1007_s11044_023_09960_2
crossref_primary_10_1016_j_jbiomech_2023_111623
crossref_primary_10_1007_s11044_024_10009_1
crossref_primary_10_1038_s41598_025_87610_7
crossref_primary_10_1016_j_gaitpost_2025_07_003
crossref_primary_10_1038_s42256_022_00599_w
crossref_primary_10_3389_fnbot_2023_1244417
crossref_primary_10_1007_s11044_023_09884_x
crossref_primary_10_1038_s41598_023_49865_w
crossref_primary_10_1016_j_engappai_2025_111811
crossref_primary_10_1016_j_cmpb_2022_106904
crossref_primary_10_3389_frobt_2023_1032748
crossref_primary_10_1016_j_knosys_2022_108624
crossref_primary_10_1051_itmconf_20257801030
crossref_primary_10_1242_jeb_245132
crossref_primary_10_1016_j_heliyon_2025_e42119
crossref_primary_10_1016_j_neuron_2024_09_002
crossref_primary_10_1038_s41598_024_61536_y
crossref_primary_10_1038_s42256_024_00829_3
crossref_primary_10_1038_s41586_024_07382_4
crossref_primary_10_1016_j_measen_2024_101256
crossref_primary_10_1109_TNSRE_2022_3196468
crossref_primary_10_1088_1748_3190_adcde0
crossref_primary_10_3390_app13148174
crossref_primary_10_3390_s23052698
crossref_primary_10_1038_s41598_022_14040_0
crossref_primary_10_1088_1748_3190_adf385
crossref_primary_10_1186_s12984_025_01686_w
crossref_primary_10_3390_s22218479
crossref_primary_10_1186_s12984_024_01318_9
crossref_primary_10_3389_fnins_2023_1051500
crossref_primary_10_3389_frai_2025_1611534
crossref_primary_10_1186_s12984_024_01490_y
Cites_doi 10.1145/1778765.1781157
10.1016/j.jbiomech.2009.12.012
10.1098/rspb.2020.2432
10.1016/S0021-9290(01)00245-7
10.1145/3099564.3099567
10.1115/1.1392310
10.1111/j.1467-8659.2008.01134.x
10.1113/JP275166
10.1152/jn.00570.2011
10.1371/journal.pone.0163417
10.1016/j.brainresrev.2007.07.015
10.1038/nrn3112
10.1561/2300000021
10.1016/j.gaitpost.2005.10.003
10.1113/jphysiol.2011.215137
10.1145/2010324.1964954
10.1162/106365603321828970
10.1016/j.jbiomech.2020.110121
10.1371/journal.pcbi.0030134
10.1093/ptj/82.1.69
10.1371/journal.pcbi.1008369
10.1371/journal.pbio.0040179
10.3389/fncom.2017.00015
10.1109/TNSRE.2018.2858204
10.1109/TBME.2016.2586891
10.1146/annurev.neuro.31.060407.125639
10.1115/1.4023390
10.1109/IROS.2015.7354279
10.1038/s41586-019-1724-z
10.1006/jtbi.2001.2279
10.1145/1276377.1276509
10.1126/science.aal5054
10.21105/joss.00500
10.1016/j.jbiomech.2010.03.022
10.1016/j.jbiomech.2008.03.015
10.1098/rspb.2011.2015
10.1016/j.jbiomech.2014.12.049
10.1186/1743-0003-9-18
10.1007/BF00198086
10.1038/nature14236
10.1016/j.jbiomech.2010.06.025
10.1145/3306346.3322972
10.1016/S0021-9290(03)00239-2
10.1371/journal.pone.0222037
10.3389/fnins.2020.00017
10.1109/TBME.2015.2472533
10.1145/3272127.3275048
10.1046/j.1460-9568.2000.00301.x
10.1109/IROS.2004.1389841
10.1038/nn1930
10.1152/jn.00416.2020
10.1038/nature16961
10.1016/j.jbiomech.2008.12.007
10.1007/s10514-018-9814-6
10.3389/fncom.2013.00051
10.1038/s41593-019-0520-2
10.1109/ACCESS.2019.2927606
10.1016/S0021-9290(02)00432-3
10.1109/TNSRE.2021.3072771
10.1101/2021.03.18.435986
10.1016/j.jbiomech.2014.02.009
10.1007/s10439-009-9852-5
10.1038/nature24270
10.1038/s41467-019-13239-6
10.1088/1748-3190/ab6ed8
10.1007/s10827-020-00767-0
10.1145/3072959.3073602
10.1109/TBME.2006.880883
10.1152/jn.01095.2006
10.1109/TRO.2008.915449
10.1109/10.102791
10.1177/1073858417699790
10.1007/BF00236067
10.1109/TNSRE.2010.2047592
10.3389/fnhum.2014.00371
10.1115/1.3005107
10.1113/jphysiol.1988.sp017319
10.1007/978-3-030-29135-8_4
10.1109/MRA.2019.2955669
10.3389/fnbot.2019.00090
10.1109/LRA.2018.2792536
10.1145/545261.545276
10.1145/1531326.1531366
10.1016/j.humov.2005.07.005
10.1007/PL00007977
10.1038/s41598-018-37460-3
10.1145/3197517.3201397
10.1016/j.pneurobio.2006.04.001
10.1115/1.4045660
10.1109/IROS.2012.6386109
10.1007/3-540-32494-1_4
10.1038/s41598-018-29429-z
10.1123/mcj.6.2.129
10.1007/978-3-319-94042-7_7
10.1113/JP277725
10.1007/BF00449593
10.1145/2508363.2508399
10.1109/TIV.2016.2578706
10.1145/383259.383287
10.3389/fnbot.2017.00030
10.1146/annurev-neuro-060909-153135
10.1016/j.jbiomech.2011.04.040
10.1371/journal.pcbi.1006993
10.1152/jn.1999.81.6.2914
10.1016/j.jbiomech.2008.07.031
10.1007/s00422-006-0126-0
10.1145/882262.882286
10.1145/1778765.1781156
10.1113/JP270228
10.1098/rsif.2010.0084
10.1098/rsif.2009.0544
10.1038/nature04113
10.1177/0956797612446346
10.1098/rsif.2019.0402
10.1109/Humanoids43949.2019.9035034
10.1016/S0166-2236(02)02173-2
10.1371/journal.pcbi.1008493
10.1038/nn1309
10.1126/scirobotics.aam7749
10.1145/1833349.1781155
10.1098/rspb.2003.2454
10.1177/02783649922066655
10.1093/acprof:oso/9780198524052.001.0001
10.1371/journal.pcbi.1006223
10.1002/9780470549148
10.1007/978-3-319-94042-7_6
10.1007/s10439-016-1591-9
10.1080/10255842.2011.627560
10.1016/j.jbiomech.2008.12.014
10.1002/vis.306
10.1109/TNSRE.2021.3074154
10.1145/2661229.2661233
10.1101/2020.12.01.407023
10.1145/1553374.1553380
10.1007/s00422-003-0414-x
10.1016/S0021-9290(00)00101-9
10.1007/s11999-008-0594-8
10.1109/TNSRE.2009.2039620
10.1145/3306346.3322963
10.1016/j.jbiomech.2012.11.024
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12984-021-00919-y
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef




MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 17
ExternalDocumentID oai_doaj_org_article_741ddbe3c59e4d91b8dc60aef4c0f89c
PMC8365920
A675241351
34399772
10_1186_s12984_021_00919_y
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Institute on Aging
  grantid: K99AG065524
  funderid: http://dx.doi.org/10.13039/100000049
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: U54EB020405
  funderid: http://dx.doi.org/10.13039/100000070
– fundername: NIA NIH HHS
  grantid: K99AG065524
– fundername: NIBIB NIH HHS
  grantid: U54 EB020405
– fundername: NIA NIH HHS
  grantid: K99 AG065524
– fundername: NIBIB NIH HHS
  grantid: U54EB020405
– fundername: ;
  grantid: K99AG065524
– fundername: ;
  grantid: U54EB020405
GroupedDBID ---
0R~
29L
2QV
2WC
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c607t-8f26785539d858d12aca2730ff0c277b6985c2e9b0aa9c1a26971524f4309f2f3
IEDL.DBID DOA
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686710600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1743-0003
IngestDate Mon Nov 10 04:26:17 EST 2025
Tue Nov 04 01:54:57 EST 2025
Fri Sep 05 07:15:45 EDT 2025
Sat Oct 18 23:48:44 EDT 2025
Tue Nov 11 10:35:56 EST 2025
Tue Nov 04 18:08:22 EST 2025
Mon Jul 21 06:07:24 EDT 2025
Tue Nov 18 22:49:34 EST 2025
Sat Nov 29 03:36:23 EST 2025
Sat Sep 06 07:18:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biomechanics
Neuromechanical simulation
Locomotion
Academic competition
Deep reinforcement learning
Musculoskeletal modeling
Motor control
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-8f26785539d858d12aca2730ff0c277b6985c2e9b0aa9c1a26971524f4309f2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4358-5948
OpenAccessLink https://doaj.org/article/741ddbe3c59e4d91b8dc60aef4c0f89c
PMID 34399772
PQID 2562535004
PQPubID 55356
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_741ddbe3c59e4d91b8dc60aef4c0f89c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8365920
proquest_miscellaneous_2562235736
proquest_journals_2562535004
gale_infotracmisc_A675241351
gale_infotracacademiconefile_A675241351
pubmed_primary_34399772
crossref_citationtrail_10_1186_s12984_021_00919_y
crossref_primary_10_1186_s12984_021_00919_y
springer_journals_10_1186_s12984_021_00919_y
PublicationCentury 2000
PublicationDate 2021-08-16
PublicationDateYYYYMMDD 2021-08-16
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 919_CR109
R Shadmehr (919_CR161) 2010; 33
919_CR105
LJ Bhargava (919_CR23) 2004; 37
MD Fox (919_CR46) 2009; 42
919_CR106
J Zhang (919_CR52) 2017; 356
919_CR107
J Hwangbo (919_CR5) 2018; 3
V Mnih (919_CR108) 2015; 518
M Srinivasan (919_CR170) 2006; 439
TK Uchida (919_CR45) 2016; 11
AD Kuo (919_CR178) 2002; 6
D Karabulut (919_CR42) 2020; 142
JE Bertram (919_CR172) 2001; 209
I Cajigas (919_CR104) 2017; 2
SR Hamner (919_CR139) 2013; 46
H Geyer (919_CR169) 2006; 273
919_CR119
MJD Taylor (919_CR146) 2005; 24
Y Lee (919_CR97) 2014; 33
919_CR115
SR Hamner (919_CR41) 2010; 43
919_CR116
919_CR117
919_CR118
F De Groote (919_CR39) 2016; 44
DM Wolpert (919_CR162) 2011; 12
919_CR112
FC Anderson (919_CR48) 2001; 123
919_CR113
N Sanchez (919_CR180) 2019; 597
919_CR114
F Dzeladini (919_CR79) 2014; 8
SL Delp (919_CR13) 1990; 37
D Tamura (919_CR8) 2020; 14
MQ Liu (919_CR40) 2008; 41
A Rajagopal (919_CR17) 2016; 63
M MacKay-Lyons (919_CR66) 2002; 82
K Wampler (919_CR84) 2009; 28
MA Smith (919_CR159) 2006; 4
S Coros (919_CR85) 2011; 30
919_CR129
XB Peng (919_CR124) 2016; 35
919_CR120
K Yin (919_CR87) 2007; 26
919_CR121
G Arechavaleta (919_CR173) 2008; 24
EE Cavallaro (919_CR43) 2006; 53
N Sánchez (919_CR158) 2021; 125
A Seth (919_CR14) 2019; 13
W Yu (919_CR125) 2018; 37
XB Peng (919_CR128) 2017; 36
E Bizzi (919_CR69) 2013; 7
DM Armstrong (919_CR62) 1988; 405
DG Thelen (919_CR38) 2003; 36
919_CR44
R Müller (919_CR156) 2020; 113
919_CR137
S Song (919_CR6) 2015; 593
MG Sirota (919_CR63) 2000; 12
919_CR133
919_CR134
S Aoi (919_CR77) 2019; 9
919_CR135
N Ogihara (919_CR74) 2001; 84
919_CR136
BJ Fregly (919_CR34) 2012; 9
919_CR130
S Hong (919_CR94) 2019; 38
JM Wang (919_CR95) 2012; 31
919_CR131
919_CR132
A Falisse (919_CR49) 2019; 16
S Faraji (919_CR176) 2018; 8
T Orlovsky (919_CR60) 1999
DA Winter (919_CR182) 2009
919_CR54
T Geijtenbeek (919_CR96) 2013; 32
919_CR55
K Hase (919_CR75) 2003; 14
F Clarac (919_CR64) 2008; 57
JT Choi (919_CR101) 2007; 10
919_CR149
919_CR29
F De Groote (919_CR37) 2010; 43
919_CR144
S Song (919_CR28) 2018; 596
J Visser (919_CR30) 1990; 61
919_CR141
AC Fang (919_CR83) 2003; 22
919_CR142
S Song (919_CR81) 2017; 11
919_CR143
JM Wang (919_CR122) 2010; 29
919_CR150
CE Bauby (919_CR171) 2000; 33
N Caporale (919_CR160) 2008; 31
D Haeufle (919_CR22) 2014; 47
AR Wu (919_CR59) 2017; 11
K Minassian (919_CR67) 2017; 23
S Jo (919_CR76) 2007; 96
HJ Ralston (919_CR70) 1958; 17
919_CR36
H Geyer (919_CR179) 2003; 270
M Millard (919_CR21) 2013; 135
919_CR155
N Hansen (919_CR123) 2003; 11
G Torres-Oviedo (919_CR102) 2012; 107
919_CR152
M Ackermann (919_CR26) 2010; 43
CT John (919_CR140) 2013; 16
919_CR154
RH Miller (919_CR27) 2012; 279
MH Schwartz (919_CR138) 2008; 41
G Taga (919_CR73) 1991; 65
919_CR1
J Lee (919_CR4) 2018; 3
KE Adolph (919_CR148) 2012; 23
P Sar (919_CR166) 2020; 48
919_CR2
919_CR3
C Capaday (919_CR61) 2002; 25
BR Umberger (919_CR24) 2010; 7
919_CR31
919_CR7
S Coros (919_CR90) 2010; 29
SR Ward (919_CR32) 2009; 467
A Seyfarth (919_CR168) 2002; 35
EM Arnold (919_CR16) 2010; 38
919_CR35
RH Miller (919_CR50) 2012; 45
K Hase (919_CR145) 1999; 81
M Srinivasan (919_CR175) 2011; 8
J Merel (919_CR151) 2019; 10
MF Eilenberg (919_CR58) 2010; 18
P Manoonpong (919_CR165) 2007; 3
AD Koelewijn (919_CR25) 2019; 14
919_CR167
F De Groote (919_CR47) 2021; 288
S Song (919_CR100) 2021; 29
919_CR163
919_CR164
N Thatte (919_CR53) 2015; 63
AD Kuo (919_CR98) 1999; 18
B Paden (919_CR153) 2016; 1
919_CR82
M Günther (919_CR78) 2003; 89
919_CR86
E Todorov (919_CR71) 2004; 7
F Lacquaniti (919_CR68) 2012; 590
G Zhao (919_CR57) 2020; 15
919_CR88
M De Lasa (919_CR89) 2010; 29
K Matsuoka (919_CR72) 1985; 52
J Wang (919_CR80) 2019; 7
D Silver (919_CR110) 2017; 550
919_CR177
FE Zajac (919_CR19) 1989; 17
ML Handford (919_CR51) 2018; 26
N Van der Noot (919_CR56) 2019; 43
919_CR174
JL Emken (919_CR103) 2007; 97
919_CR181
L Liu (919_CR126) 2018; 37
A Hallemans (919_CR147) 2006; 24
AV Hill (919_CR18) 1938; 126
H Hultborn (919_CR65) 2006; 78
919_CR92
XB Peng (919_CR10) 2018; 37
H Geyer (919_CR20) 2010; 18
919_CR93
S Lee (919_CR11) 2019; 38
919_CR91
L Scheys (919_CR33) 2009; 42
O Vinyals (919_CR111) 2019; 575
A Clegg (919_CR127) 2018; 37
BA Richards (919_CR9) 2019; 22
V Chambers (919_CR157) 2021; 29
919_CR12
ZF Lerner (919_CR15) 2015; 48
919_CR99
References_xml – volume: 29
  start-page: 1
  issue: 4
  year: 2010
  ident: 919_CR89
  publication-title: ACM Trans Graph
  doi: 10.1145/1778765.1781157
– volume: 43
  start-page: 1055
  issue: 6
  year: 2010
  ident: 919_CR26
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.12.012
– volume: 288
  start-page: 20202432
  issue: 1946
  year: 2021
  ident: 919_CR47
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2020.2432
– ident: 919_CR141
– ident: 919_CR135
– volume: 35
  start-page: 649
  issue: 5
  year: 2002
  ident: 919_CR168
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00245-7
– ident: 919_CR130
  doi: 10.1145/3099564.3099567
– ident: 919_CR106
– volume: 123
  start-page: 381
  issue: 5
  year: 2001
  ident: 919_CR48
  publication-title: J Biomech Eng
  doi: 10.1115/1.1392310
– ident: 919_CR92
  doi: 10.1111/j.1467-8659.2008.01134.x
– volume: 596
  start-page: 1199
  issue: 7
  year: 2018
  ident: 919_CR28
  publication-title: J Physiol
  doi: 10.1113/JP275166
– volume: 107
  start-page: 346
  issue: 1
  year: 2012
  ident: 919_CR102
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00570.2011
– volume: 11
  start-page: 9
  year: 2016
  ident: 919_CR45
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0163417
– ident: 919_CR150
– volume: 57
  start-page: 13
  issue: 1
  year: 2008
  ident: 919_CR64
  publication-title: Brain Res Rev
  doi: 10.1016/j.brainresrev.2007.07.015
– volume: 12
  start-page: 739
  issue: 12
  year: 2011
  ident: 919_CR162
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3112
– ident: 919_CR120
  doi: 10.1561/2300000021
– volume: 24
  start-page: 270
  issue: 3
  year: 2006
  ident: 919_CR147
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.10.003
– ident: 919_CR149
– volume: 590
  start-page: 2189
  issue: 10
  year: 2012
  ident: 919_CR68
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2011.215137
– ident: 919_CR36
– volume: 30
  start-page: 1
  issue: 4
  year: 2011
  ident: 919_CR85
  publication-title: ACM Trans Graph
  doi: 10.1145/2010324.1964954
– volume: 11
  start-page: 1
  issue: 1
  year: 2003
  ident: 919_CR123
  publication-title: Evol Comput
  doi: 10.1162/106365603321828970
– ident: 919_CR99
– ident: 919_CR112
– volume: 113
  start-page: 110121
  year: 2020
  ident: 919_CR156
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2020.110121
– volume: 3
  start-page: 134
  issue: 7
  year: 2007
  ident: 919_CR165
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030134
– volume: 82
  start-page: 69
  issue: 1
  year: 2002
  ident: 919_CR66
  publication-title: Phys Ther
  doi: 10.1093/ptj/82.1.69
– ident: 919_CR155
  doi: 10.1371/journal.pcbi.1008369
– volume: 4
  start-page: 6
  year: 2006
  ident: 919_CR159
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040179
– volume: 11
  start-page: 15
  year: 2017
  ident: 919_CR81
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2017.00015
– ident: 919_CR117
– volume: 26
  start-page: 1773
  issue: 9
  year: 2018
  ident: 919_CR51
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2858204
– volume: 63
  start-page: 2068
  issue: 10
  year: 2016
  ident: 919_CR17
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2586891
– volume: 31
  start-page: 25
  year: 2008
  ident: 919_CR160
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.31.060407.125639
– volume: 135
  start-page: 2
  year: 2013
  ident: 919_CR21
  publication-title: J Biomech Eng.
  doi: 10.1115/1.4023390
– ident: 919_CR55
  doi: 10.1109/IROS.2015.7354279
– volume: 575
  start-page: 350
  issue: 7782
  year: 2019
  ident: 919_CR111
  publication-title: Nature
  doi: 10.1038/s41586-019-1724-z
– volume: 209
  start-page: 445
  issue: 4
  year: 2001
  ident: 919_CR172
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2001.2279
– volume: 26
  start-page: 105
  issue: 3
  year: 2007
  ident: 919_CR87
  publication-title: ACM Trans Graph
  doi: 10.1145/1276377.1276509
– volume: 356
  start-page: 1280
  issue: 6344
  year: 2017
  ident: 919_CR52
  publication-title: Science
  doi: 10.1126/science.aal5054
– volume: 3
  start-page: 500
  issue: 22
  year: 2018
  ident: 919_CR4
  publication-title: J Open Source Softw
  doi: 10.21105/joss.00500
– volume: 43
  start-page: 1876
  issue: 10
  year: 2010
  ident: 919_CR37
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.03.022
– volume: 41
  start-page: 1639
  issue: 8
  year: 2008
  ident: 919_CR138
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.03.015
– volume: 279
  start-page: 1498
  issue: 1733
  year: 2012
  ident: 919_CR27
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2011.2015
– volume: 48
  start-page: 644
  issue: 4
  year: 2015
  ident: 919_CR15
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.12.049
– volume: 9
  start-page: 18
  issue: 1
  year: 2012
  ident: 919_CR34
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-9-18
– volume: 65
  start-page: 147
  issue: 3
  year: 1991
  ident: 919_CR73
  publication-title: Biol Cybern
  doi: 10.1007/BF00198086
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 919_CR108
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 43
  start-page: 2709
  issue: 14
  year: 2010
  ident: 919_CR41
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.06.025
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  ident: 919_CR11
  publication-title: ACM Trans Graph
  doi: 10.1145/3306346.3322972
– volume: 37
  start-page: 81
  issue: 1
  year: 2004
  ident: 919_CR23
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00239-2
– volume: 14
  start-page: 9
  year: 2019
  ident: 919_CR25
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0222037
– ident: 919_CR137
– volume: 14
  start-page: 17
  year: 2020
  ident: 919_CR8
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2020.00017
– ident: 919_CR31
– volume: 63
  start-page: 904
  issue: 5
  year: 2015
  ident: 919_CR53
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2472533
– ident: 919_CR143
– volume: 17
  start-page: 277
  issue: 4
  year: 1958
  ident: 919_CR70
  publication-title: Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie
– volume: 37
  start-page: 1
  issue: 6
  year: 2018
  ident: 919_CR127
  publication-title: ACM Trans Graph
  doi: 10.1145/3272127.3275048
– volume: 12
  start-page: 4081
  issue: 11
  year: 2000
  ident: 919_CR63
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.2000.00301.x
– volume: 29
  start-page: 1
  issue: 4
  year: 2010
  ident: 919_CR122
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: 919_CR10
  publication-title: ACM Trans Graph
– ident: 919_CR152
– ident: 919_CR164
  doi: 10.1109/IROS.2004.1389841
– volume: 10
  start-page: 1055
  issue: 8
  year: 2007
  ident: 919_CR101
  publication-title: Nat Neurosci
  doi: 10.1038/nn1930
– volume: 125
  start-page: 344
  issue: 2
  year: 2021
  ident: 919_CR158
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00416.2020
– ident: 919_CR109
  doi: 10.1038/nature16961
– volume: 42
  start-page: 614
  issue: 5
  year: 2009
  ident: 919_CR46
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.12.007
– volume: 43
  start-page: 1537
  issue: 6
  year: 2019
  ident: 919_CR56
  publication-title: Auton Robots
  doi: 10.1007/s10514-018-9814-6
– ident: 919_CR118
– volume: 7
  start-page: 51
  year: 2013
  ident: 919_CR69
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2013.00051
– volume: 22
  start-page: 1761
  issue: 11
  year: 2019
  ident: 919_CR9
  publication-title: Nature Neurosci
  doi: 10.1038/s41593-019-0520-2
– volume: 7
  start-page: 92465
  year: 2019
  ident: 919_CR80
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927606
– ident: 919_CR163
– volume: 36
  start-page: 321
  issue: 3
  year: 2003
  ident: 919_CR38
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(02)00432-3
– volume: 29
  start-page: 740
  year: 2021
  ident: 919_CR157
  publication-title: IEEE Trans Neural Syst Rehab Eng
  doi: 10.1109/TNSRE.2021.3072771
– ident: 919_CR181
  doi: 10.1101/2021.03.18.435986
– volume: 47
  start-page: 1531
  issue: 6
  year: 2014
  ident: 919_CR22
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.02.009
– ident: 919_CR115
– volume: 38
  start-page: 269
  issue: 2
  year: 2010
  ident: 919_CR16
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9852-5
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 919_CR110
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 919_CR151
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13239-6
– volume: 15
  start-page: 026007
  issue: 2
  year: 2020
  ident: 919_CR57
  publication-title: Bioinspir Biomimet
  doi: 10.1088/1748-3190/ab6ed8
– volume: 48
  start-page: 365
  issue: 4
  year: 2020
  ident: 919_CR166
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-020-00767-0
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  ident: 919_CR128
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073602
– volume: 53
  start-page: 2387
  issue: 11
  year: 2006
  ident: 919_CR43
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.880883
– volume: 97
  start-page: 3997
  issue: 6
  year: 2007
  ident: 919_CR103
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01095.2006
– volume: 24
  start-page: 5
  issue: 1
  year: 2008
  ident: 919_CR173
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2008.915449
– ident: 919_CR129
– ident: 919_CR174
– volume: 37
  start-page: 757
  issue: 8
  year: 1990
  ident: 919_CR13
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.102791
– volume: 23
  start-page: 649
  issue: 6
  year: 2017
  ident: 919_CR67
  publication-title: Neuroscientist
  doi: 10.1177/1073858417699790
– ident: 919_CR132
– volume: 61
  start-page: 453
  issue: 5–6
  year: 1990
  ident: 919_CR30
  publication-title: Eur J Appl Physiol Occup Physiol
  doi: 10.1007/BF00236067
– volume: 17
  start-page: 359
  issue: 4
  year: 1989
  ident: 919_CR19
  publication-title: Crit Rev Biomed Eng
– volume: 18
  start-page: 263
  issue: 3
  year: 2010
  ident: 919_CR20
  publication-title: IEEE Trans Neural Syst Rehab Eng
  doi: 10.1109/TNSRE.2010.2047592
– ident: 919_CR116
– volume: 8
  start-page: 371
  year: 2014
  ident: 919_CR79
  publication-title: Front Human Neurosci
  doi: 10.3389/fnhum.2014.00371
– ident: 919_CR167
  doi: 10.1115/1.3005107
– volume: 405
  start-page: 1
  issue: 1
  year: 1988
  ident: 919_CR62
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1988.sp017319
– ident: 919_CR134
  doi: 10.1007/978-3-030-29135-8_4
– ident: 919_CR44
  doi: 10.1109/MRA.2019.2955669
– volume: 13
  start-page: 90
  year: 2019
  ident: 919_CR14
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2019.00090
– volume: 3
  start-page: 895
  issue: 2
  year: 2018
  ident: 919_CR5
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2792536
– ident: 919_CR91
  doi: 10.1145/545261.545276
– volume: 28
  start-page: 1
  issue: 3
  year: 2009
  ident: 919_CR84
  publication-title: ACM Trans Graph
  doi: 10.1145/1531326.1531366
– volume: 24
  start-page: 558
  issue: 4
  year: 2005
  ident: 919_CR146
  publication-title: Human Movement Sci
  doi: 10.1016/j.humov.2005.07.005
– volume: 84
  start-page: 1
  issue: 1
  year: 2001
  ident: 919_CR74
  publication-title: Biol Cybern
  doi: 10.1007/PL00007977
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 919_CR77
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37460-3
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: 919_CR125
  publication-title: ACM Trans Graph
  doi: 10.1145/3197517.3201397
– ident: 919_CR154
– volume: 78
  start-page: 215
  issue: 3–5
  year: 2006
  ident: 919_CR65
  publication-title: Progr Neurobiol
  doi: 10.1016/j.pneurobio.2006.04.001
– volume: 142
  start-page: 5
  year: 2020
  ident: 919_CR42
  publication-title: J Biomech Eng
  doi: 10.1115/1.4045660
– ident: 919_CR131
– ident: 919_CR3
  doi: 10.1109/IROS.2012.6386109
– ident: 919_CR121
  doi: 10.1007/3-540-32494-1_4
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 919_CR176
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-29429-z
– volume: 6
  start-page: 129
  issue: 2
  year: 2002
  ident: 919_CR178
  publication-title: Motor control
  doi: 10.1123/mcj.6.2.129
– ident: 919_CR113
– ident: 919_CR133
  doi: 10.1007/978-3-319-94042-7_7
– volume: 597
  start-page: 4053
  issue: 15
  year: 2019
  ident: 919_CR180
  publication-title: J Physiol
  doi: 10.1113/JP277725
– volume: 52
  start-page: 367
  issue: 6
  year: 1985
  ident: 919_CR72
  publication-title: Biol Cybern
  doi: 10.1007/BF00449593
– volume: 35
  start-page: 1
  issue: 4
  year: 2016
  ident: 919_CR124
  publication-title: ACM Trans Graph
– volume: 32
  start-page: 1
  issue: 6
  year: 2013
  ident: 919_CR96
  publication-title: ACM Trans Graph
  doi: 10.1145/2508363.2508399
– ident: 919_CR107
– volume: 1
  start-page: 33
  issue: 1
  year: 2016
  ident: 919_CR153
  publication-title: IEEE Trans Intell Vehicles
  doi: 10.1109/TIV.2016.2578706
– ident: 919_CR86
– ident: 919_CR82
  doi: 10.1145/383259.383287
– volume: 11
  start-page: 30
  year: 2017
  ident: 919_CR59
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2017.00030
– volume: 33
  start-page: 89
  year: 2010
  ident: 919_CR161
  publication-title: Ann Rev Neurosci
  doi: 10.1146/annurev-neuro-060909-153135
– volume: 45
  start-page: 1092
  issue: 6
  year: 2012
  ident: 919_CR50
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.04.040
– ident: 919_CR7
  doi: 10.1371/journal.pcbi.1006993
– volume: 81
  start-page: 2914
  issue: 6
  year: 1999
  ident: 919_CR145
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.81.6.2914
– volume: 41
  start-page: 3243
  issue: 15
  year: 2008
  ident: 919_CR40
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.07.031
– volume: 96
  start-page: 279
  issue: 3
  year: 2007
  ident: 919_CR76
  publication-title: Biol Cybern
  doi: 10.1007/s00422-006-0126-0
– volume: 22
  start-page: 417
  issue: 3
  year: 2003
  ident: 919_CR83
  publication-title: ACM Trans Graph
  doi: 10.1145/882262.882286
– volume: 29
  start-page: 1
  issue: 4
  year: 2010
  ident: 919_CR90
  publication-title: ACM Trans Graph
  doi: 10.1145/1778765.1781156
– ident: 919_CR114
– ident: 919_CR29
– ident: 919_CR54
– volume: 593
  start-page: 3493
  issue: 16
  year: 2015
  ident: 919_CR6
  publication-title: J Physiol
  doi: 10.1113/JP270228
– volume: 7
  start-page: 1329
  issue: 50
  year: 2010
  ident: 919_CR24
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2010.0084
– volume: 8
  start-page: 74
  issue: 54
  year: 2011
  ident: 919_CR175
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2009.0544
– volume: 439
  start-page: 72
  issue: 7072
  year: 2006
  ident: 919_CR170
  publication-title: Nature
  doi: 10.1038/nature04113
– volume: 23
  start-page: 1387
  issue: 11
  year: 2012
  ident: 919_CR148
  publication-title: Psychol Sci
  doi: 10.1177/0956797612446346
– volume: 31
  start-page: 1
  issue: 4
  year: 2012
  ident: 919_CR95
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: 919_CR126
  publication-title: ACM Trans Graph
– volume: 16
  start-page: 20190402
  issue: 157
  year: 2019
  ident: 919_CR49
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2019.0402
– ident: 919_CR12
  doi: 10.1109/Humanoids43949.2019.9035034
– volume: 25
  start-page: 370
  issue: 7
  year: 2002
  ident: 919_CR61
  publication-title: TRENDS Neurosci
  doi: 10.1016/S0166-2236(02)02173-2
– ident: 919_CR2
  doi: 10.1371/journal.pcbi.1008493
– volume: 7
  start-page: 907
  issue: 9
  year: 2004
  ident: 919_CR71
  publication-title: Nat Neurosci
  doi: 10.1038/nn1309
– volume: 2
  start-page: 1
  issue: 6
  year: 2017
  ident: 919_CR104
  publication-title: Sci Robot
  doi: 10.1126/scirobotics.aam7749
– ident: 919_CR93
  doi: 10.1145/1833349.1781155
– volume: 270
  start-page: 2173
  issue: 1529
  year: 2003
  ident: 919_CR179
  publication-title: Proc R Soc London B
  doi: 10.1098/rspb.2003.2454
– volume: 18
  start-page: 917
  issue: 9
  year: 1999
  ident: 919_CR98
  publication-title: Int J Robot Res
  doi: 10.1177/02783649922066655
– volume-title: Neuronal Control of Locomotion: from Mollusc to Man
  year: 1999
  ident: 919_CR60
  doi: 10.1093/acprof:oso/9780198524052.001.0001
– ident: 919_CR1
  doi: 10.1371/journal.pcbi.1006223
– ident: 919_CR142
– volume-title: Biomechanics and Motor Control of Human Movement
  year: 2009
  ident: 919_CR182
  doi: 10.1002/9780470549148
– ident: 919_CR35
  doi: 10.1007/978-3-319-94042-7_6
– ident: 919_CR136
– volume: 273
  start-page: 2861
  issue: 1603
  year: 2006
  ident: 919_CR169
  publication-title: Proc R Soc Lond B
– volume: 44
  start-page: 2922
  issue: 10
  year: 2016
  ident: 919_CR39
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-016-1591-9
– volume: 16
  start-page: 451
  issue: 4
  year: 2013
  ident: 919_CR140
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2011.627560
– ident: 919_CR105
– volume: 42
  start-page: 565
  issue: 5
  year: 2009
  ident: 919_CR33
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.12.014
– volume: 14
  start-page: 73
  issue: 2
  year: 2003
  ident: 919_CR75
  publication-title: J Visualiz Comput Anim
  doi: 10.1002/vis.306
– ident: 919_CR88
– volume: 29
  start-page: 786
  year: 2021
  ident: 919_CR100
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3074154
– volume: 33
  start-page: 1
  issue: 6
  year: 2014
  ident: 919_CR97
  publication-title: ACM Trans Graph
  doi: 10.1145/2661229.2661233
– ident: 919_CR177
  doi: 10.1101/2020.12.01.407023
– ident: 919_CR144
  doi: 10.1145/1553374.1553380
– volume: 126
  start-page: 136
  issue: 843
  year: 1938
  ident: 919_CR18
  publication-title: Proc R Soc London
– volume: 89
  start-page: 89
  issue: 2
  year: 2003
  ident: 919_CR78
  publication-title: Biol Cybern
  doi: 10.1007/s00422-003-0414-x
– volume: 33
  start-page: 1433
  issue: 11
  year: 2000
  ident: 919_CR171
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(00)00101-9
– ident: 919_CR119
– volume: 467
  start-page: 1074
  issue: 4
  year: 2009
  ident: 919_CR32
  publication-title: Clin Orthopaed Related Res
  doi: 10.1007/s11999-008-0594-8
– volume: 18
  start-page: 164
  issue: 2
  year: 2010
  ident: 919_CR58
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2009.2039620
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  ident: 919_CR94
  publication-title: ACM Trans Graph
  doi: 10.1145/3306346.3322963
– volume: 46
  start-page: 780
  issue: 4
  year: 2013
  ident: 919_CR139
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.11.024
SSID ssj0034054
Score 2.5988352
SecondaryResourceType review_article
Snippet Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of...
Abstract Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126
SubjectTerms Biomechanical Phenomena
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Competition
Computer Simulation
Deep learning
Deep reinforcement learning
Human locomotion
Human mechanics
Human motion
Humans
Hypotheses
Information processing
Learning
Locomotion
Machine learning
Motor control
Motor skill
Motor task performance
Musculoskeletal modeling
Musculoskeletal system
Nervous system
Neural networks
Neurology
Neuromechanical simulation
Neurosciences
Optimization
Physiological aspects
Physiological research
Physiology
Predictive control
Rehabilitation
Rehabilitation Medicine
Reinforcement
Reinforcement, Psychology
Review
Simulation
Stability
Teams
Walking
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagcKCyvQEFG4nEoURMnTuwTKo-KA1QrVFBvVuLYZaU2u-xukfrvmXGc7aaIXjgmHkex_XlmbI-_AXjZCGeJbjJurGhwgWLrWFZFGqMpsFxJIbm_X_HjS3lwII-O1DhsuC1CWGWvE72ibqaG9sh3OXnqmcAxfTf7FVPWKDpdDSk0rsMNYknIfOjeuNfEGTojeX9RRha7C7RtMo8pKAE9i1TF5wNj5Dn7_9bMa6bpctjkpbNTb5L2t_63MXfhTnBG2V6HnntwzbYjuL1GUTiCW1_D4fsIXq0zErPDjo6AvWbfBmTfI9gah7HvZe6D_mjtjM2tp2k1fkeShXwVxwxfMZ-Qhx58zkCGFnba5RdiIZaeTVrmuTdPLd1V9p9fTE5D8rEH8H3_0-GHz3FI7RCbIimXsXQcraQQmWoQD03KK1OhI5U4lxhelnWBMDHcqjqpKmXSiheqRE8jd3mWKMdd9hA22mlrHwNT0tnCujQXVZE7rGhTk1VoZo0Voi55BGk_xtqErqD0Gyfar39koTtcaMSF9rjQ5xHsrOrMOtaPK6XfE3RWksTY7V9M58c6KACNnlvT1DYzQtm8UWktG-yKyrrcJE4qE8EbAp6mgcDfM1W4HoGNJIYuvYcrOzoDFWkE2wNJ1AdmWNxjTgd9tNAXgIvgxaqYalKMXWunZ50MkR9lRQSPOqSvmpTRsrWkziwHc2DQ5mFJO_np2cplRif3SQRv-9ly8Vv_7tMnV7fiKWxyP49lnBbbsLGcn9lncNP8Xk4W8-deC_wB-kBloQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQagcKCwUAgUZicehRCR27NjH8qg4QFWVUvVmJY5dVqLZarNF6r9n7DjLpjwkOG48XsWed-z5BuBZw531cJNpY3mDCYqtU1mJPEVXYKmSXNJQX3H0sdzbk8fHaj8WhXXDbffhSDJY6qDWUrzu0DPJIvVXCjAuyFV6cRWuobuTXh0PPh8N9pdhCFIM5TG_nTdyQQGp_1d7vOKQLl-WvHRiGhzR7sb_LeE23IqBJ9npJeUOXLHtBG6uwBFO4ManeNA-geer6MPksIceIC_IwQjYewIb-5HPA81d0O-sPSNzGyBZTfj6SGJvihOCj0hovuN_hP6ABL3prO8lROK9eTJtScDZPLW-Ljn8fTc9jY3G7sGX3feHbz-ksY1DakRWLlLpKHpEzplqkPdNTitTYdCUOZcZWpa1QJEw1Ko6qypl8ooKVWJUUbiCZcpRxzZhrZ219gEQJZ0V1uUFr0ThcKLNDavQpRrLeV3SBPKBs9rErfCtNr7pkOtIoXsWaGSBDizQFwlsL-ec9Qgff6V-4wVmSenRucOD2fxER2XXGKU1TW2Z4coWjcpr2eBWVNYVJnNSmQReenHTnhH4eqaKpRC4SI_GpXcwi_PnnTxPYGtEibpvxsODwOpoezpNfU7LOFq_BJ4uh_1Mf5-utbPznsYDHTGRwP1evpdLYj5FLf1mliPJH615PNJOvwZkcsn8KX2WwKtB_n--1p_39OG_kT-CdRpUSKa52IK1xfzcPobr5vti2s2fBFvwA-NwXLM
  priority: 102
  providerName: Springer Nature
Title Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation
URI https://link.springer.com/article/10.1186/s12984-021-00919-y
https://www.ncbi.nlm.nih.gov/pubmed/34399772
https://www.proquest.com/docview/2562535004
https://www.proquest.com/docview/2562235736
https://pubmed.ncbi.nlm.nih.gov/PMC8365920
https://doaj.org/article/741ddbe3c59e4d91b8dc60aef4c0f89c
Volume 18
WOSCitedRecordID wos000686710600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M0T
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7RV
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RSV
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQAge-ChfgVEZiY8HiJY4cWw_brAJJFpFXanGk5U4NlRi6dR2SPvvOTtJaYaAF14sJbYr--5yH_X5dwAvKmaNg5sMK8MqDFBMGYoii0M0BYZKwQT19ytmn_h4LE5OZL5V6svlhDXwwA3h9tDiVVVpEs2kSSsZl6LSWVQYm-rICqmd9kWvpwumGh2coBuSdldkRLa3Qqsm0tClI6BPEcvwomeGPFr_7zp5yyhdTpi8dGrqjdHRXbjdepFkv1n9Pbhi6gHc2sIWHMCNUXtqPoCX21DCZNrgCJBXZNJD6R7AnbxlWjfmPqj3xpyRpfH4qtr_lUjaQhNfCb4ivpKOe_DF_giaxkVTGIi0SfBkXhMPmnlq3CVj__Or-WlbNewBfD46nL77ELY1GUKkOl-HwlI0b4wlskJGVjEtdIEeUGRtpCnnZYb81dTIMioKqeOCZpKji5DaNImkpTZ5CDv1ojaPgUhhTWZsnLIiSy1ONLFOCrSP2jBWchpA3LFI6ZYUrm7Gd-UDF5Gphq0K2ao8W9VFAG82c84auI6_jj5wnN-MdFDb_gUKoGoFUP1LAAN47eRGOUbg8nTR3mvATTpoLbWPIZk7vGRxALu9kfgh6353J3mqVSQrRV2AmjBUZQE833S7mS45rjaL82aMQy1KsgAeNYK62VLi4k3uiMl7Itzbc7-nnn_zMOMicUfuUQBvO2H_taw_0_TJ_6DpU7hJ_ccqwjjbhZ318tw8g-v6x3q-Wg7hKp_MXHvCfSuGcO3gcJxPhl4JYDuKpq7luW-PsT__OMq_4NPkePYTroBjZA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgngcKCyvQAEjUThA1MR52QeECqVq1d1VhbaoN5M4TlmJZpfdLWj_FL-RGSfZbororQeOie3IHo_nEc98A_AyjwpDcJNubqIcHRSTuSKNfRdVgeFSRILb_Iov3aTfF0dH8mAFfje5MBRW2chEK6jzkaZ_5JucLPUgwj19P_7hUtUoul1tSmhUbLFv5r_QZZu-29vG_d3gfOfT4OOuW1cVcHXsJTNXFBwFdBQFMsep5D5PdYo63CsKT_MkyWKcoeZGZl6aSu2nPJYJKrmwCANPFrwI8LtX4Crh6lEIYc8bNJI_QOMnbBJzRLw5RV0qQpeCINCS8aU7byk_WyPgb02wpArPh2meu6u1KnBn7X8j3h24XRvbbKs6HXdhxZQduLUEwdiB6706uKADG8uIy2xQwS2wV-xzC8y8A2sHNW83fe6B2jZmzCbGwtBq-8eV1fU4jhm-YrbgED3YmogMLYhRVT-J1bkCbFgyiy16YigX235-Ojypi6vdh8NLodMDWC1HpXkETIrCxKbwwyiNwwIHGl8HKZoR2kRRlnAH_IanlK5JQeVFvivr34lYVXyokA-V5UM1d-DNYsy4QjW5sPcHYtVFT0Ikty9Gk2NVCziFlmmeZybQkTRhLv1M5EiK1BSh9gohtQOvidEVbQROT6d1-gcukhDI1BZ6rnTHG_kOrLd6orzT7eaGx1Utb6fqjMEdeLFoppEUQ1ia0WnVh8CdgtiBh9XJWiwpILc8IWImrTPXWnO7pRx-s2jsIqDIBM-Bt83pPJvWv2n6-OJVPIcbu4NeV3X3-vtP4Ca3MkS4frwOq7PJqXkK1_TP2XA6eWYlEIOvl31q_wB_zcAv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQBM8MChfgQFGAvYA0RInTuzHwahAjKqCMe3Nchx7VGJp1XZI--85O05pxoeEeGx8rmLf-T5yvt8BPKuZNQ5uMq4NqzFAMVXMVZHGaAoMFZxx6usrjg7K0YgfH4vxWhW_v-3epSTbmgaH0tQsd2e1bY84L3YXaKV4HrvrBegjpCI-vwxXctc0yMXrn486XZyhO5J3pTK_ndczRx61_1fdvGacLl6cvJA99UZpuPX_y7kJN4JDSvZaCboFl0wzgOtrMIUD2PwYEvADeL6OSkwOW0gC8oJ86gF-D2BrHPjf0dwGuW_MjMyNh2rV_qskCT0rTgg-Ir4pj_vh-wYStLLTtscQCffpyaQhHn_z1Lh6Zf_3i8lpaEB2B74M3x6-eReH9g6xLpJyGXNL0VIylokaZaJOqdIKnanE2kTTsqwKFBVNjagSpYROFS1Eid5GbvMsEZba7C5sNNPG3AciuDWFsWnOVJFbnGhSnSk0tdowVpU0grTjstRhK1wLjm_Sx0C8kC0LJLJAehbI8wherubMWuSPv1K_dsKzonSo3f7BdH4igxKQ6L3VdWUyzYTJa5FWvMatUMbmOrFc6Ah2nOhJxwh8Pa1CiQQu0qF0yT2M7lwelKURbPcoUSfo_nAnvDLopIWkLtbNGGrFCJ6uht1Md8-uMdOzlsYBIGVFBPdaWV8tKXOha-k2s-ydgt6a-yPN5KtHLOeZy94nEbzqzsLP1_rznj74N_InsDneH8qD96MPD-Ea9aeJx2mxDRvL-Zl5BFf19-VkMX_sVcQPcKloew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning+for+modeling+human+locomotion+control+in+neuromechanical+simulation&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Song%2C+Seungmoon&rft.au=Kidzi%C5%84ski%2C+%C5%81ukasz&rft.au=Peng%2C+Xue+Bin&rft.au=Ong%2C+Carmichael&rft.date=2021-08-16&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=18&rft.issue=1&rft.spage=126&rft_id=info:doi/10.1186%2Fs12984-021-00919-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon