Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation
Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motio...
Gespeichert in:
| Veröffentlicht in: | Journal of neuroengineering and rehabilitation Jg. 18; H. 1; S. 126 - 17 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
16.08.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1743-0003, 1743-0003 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research |
|---|---|
| AbstractList | Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research.Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research. Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research Keywords: Neuromechanical simulation, Deep reinforcement learning, Motor control, Locomotion, Biomechanics, Musculoskeletal modeling, Academic competition Abstract Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data. While such plausible control models were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), modeling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse repertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation to model human control. In this paper, we review the current state of neuromechanical simulations, along with the fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in neuromechanical simulations. This "Learn to Move" competition was an official competition at the NeurIPS conference from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in modeling human motor control for biomechanics and rehabilitation research. |
| ArticleNumber | 126 |
| Audience | Academic |
| Author | Song, Seungmoon Hicks, Jennifer Peng, Xue Bin Ong, Carmichael Kidziński, Łukasz Delp, Scott L. Levine, Sergey Atkeson, Christopher G. |
| Author_xml | – sequence: 1 givenname: Seungmoon orcidid: 0000-0002-4358-5948 surname: Song fullname: Song, Seungmoon email: smsong@stanford.edu organization: Department of Mechanical Engineering, Stanford University – sequence: 2 givenname: Łukasz surname: Kidziński fullname: Kidziński, Łukasz organization: Department of Bioengineering, Stanford University – sequence: 3 givenname: Xue Bin surname: Peng fullname: Peng, Xue Bin organization: Department of Electrical Engineering and Computer Science, University of California, Berkeley – sequence: 4 givenname: Carmichael surname: Ong fullname: Ong, Carmichael organization: Department of Bioengineering, Stanford University – sequence: 5 givenname: Jennifer surname: Hicks fullname: Hicks, Jennifer organization: Department of Bioengineering, Stanford University – sequence: 6 givenname: Sergey surname: Levine fullname: Levine, Sergey organization: Department of Electrical Engineering and Computer Science, University of California, Berkeley – sequence: 7 givenname: Christopher G. surname: Atkeson fullname: Atkeson, Christopher G. organization: Robotics Institute, Carnegie Mellon University – sequence: 8 givenname: Scott L. surname: Delp fullname: Delp, Scott L. organization: Department of Mechanical Engineering, Stanford University, Department of Bioengineering, Stanford University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34399772$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhiNURC_wAixQJDZsUnyN7Q1SVW6VKrGBteVxjmc8cuzBTpDm7fHMtLRToSoL2yff_9vnct6cxBShad5idImx7D8WTJRkHSK4Q0hh1W1fNGdYMFqPiJ482p8256Ws64Yhzl41p5RRpYQgZ43-DLBpM_joUrYwQpzaACZHH5dtDbVjGiDsDqt5NLENyaYxTT7F1qY45RRaH9sIc04j2JWJ3prQFj_Oweyo181LZ0KBN3frRfPr65ef19-72x_fbq6vbjvbIzF10pFeSM6pGiSXAybGGiIocg5ZIsSiV5JbAmqBjFEWG9IrgTlhjlGkHHH0ork5-A7JrPUm-9HkrU7G630g5aU2efI2gBYMD8MCqOUK2KDwQg71EQYcs8hJZavXp4PXZl6MMNhak2zCkenxn-hXepn-aEl7rgiqBh_uDHL6PUOZ9OiLhRBMhDQXTXhPCOWC9hV9_wRdpznHWqo9xSlHiD1QS1MT2PWq3mt3pvqqF7UOmHJcqcv_UPUbYPS1W-B8jR8J3j1O9F-G9-NRAXkAbE6lZHDa-mnf1-rsg8ZI7yZRHyZR10nU-0nU2yolT6T37s-K6EFUKhyXkB-q8YzqLwQV8TM |
| CitedBy_id | crossref_primary_10_1016_j_conb_2022_02_002 crossref_primary_10_3390_machines11100980 crossref_primary_10_1007_s10489_025_06360_1 crossref_primary_10_1016_j_procs_2023_10_639 crossref_primary_10_1145_3747865 crossref_primary_10_3390_biomimetics9030164 crossref_primary_10_1186_s12984_025_01556_5 crossref_primary_10_1186_s12984_024_01324_x crossref_primary_10_1002_cav_2170 crossref_primary_10_1126_scirobotics_abo0235 crossref_primary_10_1371_journal_pcbi_1012257 crossref_primary_10_1109_TNSRE_2023_3336713 crossref_primary_10_1007_s11044_023_09960_2 crossref_primary_10_1016_j_jbiomech_2023_111623 crossref_primary_10_1007_s11044_024_10009_1 crossref_primary_10_1038_s41598_025_87610_7 crossref_primary_10_1016_j_gaitpost_2025_07_003 crossref_primary_10_1038_s42256_022_00599_w crossref_primary_10_3389_fnbot_2023_1244417 crossref_primary_10_1007_s11044_023_09884_x crossref_primary_10_1038_s41598_023_49865_w crossref_primary_10_1016_j_engappai_2025_111811 crossref_primary_10_1016_j_cmpb_2022_106904 crossref_primary_10_3389_frobt_2023_1032748 crossref_primary_10_1016_j_knosys_2022_108624 crossref_primary_10_1051_itmconf_20257801030 crossref_primary_10_1242_jeb_245132 crossref_primary_10_1016_j_heliyon_2025_e42119 crossref_primary_10_1016_j_neuron_2024_09_002 crossref_primary_10_1038_s41598_024_61536_y crossref_primary_10_1038_s42256_024_00829_3 crossref_primary_10_1038_s41586_024_07382_4 crossref_primary_10_1016_j_measen_2024_101256 crossref_primary_10_1109_TNSRE_2022_3196468 crossref_primary_10_1088_1748_3190_adcde0 crossref_primary_10_3390_app13148174 crossref_primary_10_3390_s23052698 crossref_primary_10_1038_s41598_022_14040_0 crossref_primary_10_1088_1748_3190_adf385 crossref_primary_10_1186_s12984_025_01686_w crossref_primary_10_3390_s22218479 crossref_primary_10_1186_s12984_024_01318_9 crossref_primary_10_3389_fnins_2023_1051500 crossref_primary_10_3389_frai_2025_1611534 crossref_primary_10_1186_s12984_024_01490_y |
| Cites_doi | 10.1145/1778765.1781157 10.1016/j.jbiomech.2009.12.012 10.1098/rspb.2020.2432 10.1016/S0021-9290(01)00245-7 10.1145/3099564.3099567 10.1115/1.1392310 10.1111/j.1467-8659.2008.01134.x 10.1113/JP275166 10.1152/jn.00570.2011 10.1371/journal.pone.0163417 10.1016/j.brainresrev.2007.07.015 10.1038/nrn3112 10.1561/2300000021 10.1016/j.gaitpost.2005.10.003 10.1113/jphysiol.2011.215137 10.1145/2010324.1964954 10.1162/106365603321828970 10.1016/j.jbiomech.2020.110121 10.1371/journal.pcbi.0030134 10.1093/ptj/82.1.69 10.1371/journal.pcbi.1008369 10.1371/journal.pbio.0040179 10.3389/fncom.2017.00015 10.1109/TNSRE.2018.2858204 10.1109/TBME.2016.2586891 10.1146/annurev.neuro.31.060407.125639 10.1115/1.4023390 10.1109/IROS.2015.7354279 10.1038/s41586-019-1724-z 10.1006/jtbi.2001.2279 10.1145/1276377.1276509 10.1126/science.aal5054 10.21105/joss.00500 10.1016/j.jbiomech.2010.03.022 10.1016/j.jbiomech.2008.03.015 10.1098/rspb.2011.2015 10.1016/j.jbiomech.2014.12.049 10.1186/1743-0003-9-18 10.1007/BF00198086 10.1038/nature14236 10.1016/j.jbiomech.2010.06.025 10.1145/3306346.3322972 10.1016/S0021-9290(03)00239-2 10.1371/journal.pone.0222037 10.3389/fnins.2020.00017 10.1109/TBME.2015.2472533 10.1145/3272127.3275048 10.1046/j.1460-9568.2000.00301.x 10.1109/IROS.2004.1389841 10.1038/nn1930 10.1152/jn.00416.2020 10.1038/nature16961 10.1016/j.jbiomech.2008.12.007 10.1007/s10514-018-9814-6 10.3389/fncom.2013.00051 10.1038/s41593-019-0520-2 10.1109/ACCESS.2019.2927606 10.1016/S0021-9290(02)00432-3 10.1109/TNSRE.2021.3072771 10.1101/2021.03.18.435986 10.1016/j.jbiomech.2014.02.009 10.1007/s10439-009-9852-5 10.1038/nature24270 10.1038/s41467-019-13239-6 10.1088/1748-3190/ab6ed8 10.1007/s10827-020-00767-0 10.1145/3072959.3073602 10.1109/TBME.2006.880883 10.1152/jn.01095.2006 10.1109/TRO.2008.915449 10.1109/10.102791 10.1177/1073858417699790 10.1007/BF00236067 10.1109/TNSRE.2010.2047592 10.3389/fnhum.2014.00371 10.1115/1.3005107 10.1113/jphysiol.1988.sp017319 10.1007/978-3-030-29135-8_4 10.1109/MRA.2019.2955669 10.3389/fnbot.2019.00090 10.1109/LRA.2018.2792536 10.1145/545261.545276 10.1145/1531326.1531366 10.1016/j.humov.2005.07.005 10.1007/PL00007977 10.1038/s41598-018-37460-3 10.1145/3197517.3201397 10.1016/j.pneurobio.2006.04.001 10.1115/1.4045660 10.1109/IROS.2012.6386109 10.1007/3-540-32494-1_4 10.1038/s41598-018-29429-z 10.1123/mcj.6.2.129 10.1007/978-3-319-94042-7_7 10.1113/JP277725 10.1007/BF00449593 10.1145/2508363.2508399 10.1109/TIV.2016.2578706 10.1145/383259.383287 10.3389/fnbot.2017.00030 10.1146/annurev-neuro-060909-153135 10.1016/j.jbiomech.2011.04.040 10.1371/journal.pcbi.1006993 10.1152/jn.1999.81.6.2914 10.1016/j.jbiomech.2008.07.031 10.1007/s00422-006-0126-0 10.1145/882262.882286 10.1145/1778765.1781156 10.1113/JP270228 10.1098/rsif.2010.0084 10.1098/rsif.2009.0544 10.1038/nature04113 10.1177/0956797612446346 10.1098/rsif.2019.0402 10.1109/Humanoids43949.2019.9035034 10.1016/S0166-2236(02)02173-2 10.1371/journal.pcbi.1008493 10.1038/nn1309 10.1126/scirobotics.aam7749 10.1145/1833349.1781155 10.1098/rspb.2003.2454 10.1177/02783649922066655 10.1093/acprof:oso/9780198524052.001.0001 10.1371/journal.pcbi.1006223 10.1002/9780470549148 10.1007/978-3-319-94042-7_6 10.1007/s10439-016-1591-9 10.1080/10255842.2011.627560 10.1016/j.jbiomech.2008.12.014 10.1002/vis.306 10.1109/TNSRE.2021.3074154 10.1145/2661229.2661233 10.1101/2020.12.01.407023 10.1145/1553374.1553380 10.1007/s00422-003-0414-x 10.1016/S0021-9290(00)00101-9 10.1007/s11999-008-0594-8 10.1109/TNSRE.2009.2039620 10.1145/3306346.3322963 10.1016/j.jbiomech.2012.11.024 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TB 7TK 7TS 7X7 7XB 88C 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 L6V LK8 M0S M0T M1P M7P M7S NAPCQ P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1186/s12984-021-00919-y |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database Biological Science Database Engineering Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
| EISSN | 1743-0003 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_741ddbe3c59e4d91b8dc60aef4c0f89c PMC8365920 A675241351 34399772 10_1186_s12984_021_00919_y |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: National Institute on Aging grantid: K99AG065524 funderid: http://dx.doi.org/10.13039/100000049 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: U54EB020405 funderid: http://dx.doi.org/10.13039/100000070 – fundername: NIA NIH HHS grantid: K99AG065524 – fundername: NIBIB NIH HHS grantid: U54 EB020405 – fundername: NIA NIH HHS grantid: K99 AG065524 – fundername: NIBIB NIH HHS grantid: U54EB020405 – fundername: ; grantid: K99AG065524 – fundername: ; grantid: U54EB020405 |
| GroupedDBID | --- 0R~ 29L 2QV 2WC 53G 5GY 5VS 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO IHR INH INR IPY ITC KQ8 L6V LK8 M0T M1P M48 M7P M7S ML0 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7TB 7TK 7TS 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c607t-8f26785539d858d12aca2730ff0c277b6985c2e9b0aa9c1a26971524f4309f2f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686710600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1743-0003 |
| IngestDate | Mon Nov 10 04:26:17 EST 2025 Tue Nov 04 01:54:57 EST 2025 Fri Sep 05 07:15:45 EDT 2025 Sat Oct 18 23:48:44 EDT 2025 Tue Nov 11 10:35:56 EST 2025 Tue Nov 04 18:08:22 EST 2025 Mon Jul 21 06:07:24 EDT 2025 Tue Nov 18 22:49:34 EST 2025 Sat Nov 29 03:36:23 EST 2025 Sat Sep 06 07:18:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Biomechanics Neuromechanical simulation Locomotion Academic competition Deep reinforcement learning Musculoskeletal modeling Motor control |
| Language | English |
| License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c607t-8f26785539d858d12aca2730ff0c277b6985c2e9b0aa9c1a26971524f4309f2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4358-5948 |
| OpenAccessLink | https://doaj.org/article/741ddbe3c59e4d91b8dc60aef4c0f89c |
| PMID | 34399772 |
| PQID | 2562535004 |
| PQPubID | 55356 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_741ddbe3c59e4d91b8dc60aef4c0f89c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8365920 proquest_miscellaneous_2562235736 proquest_journals_2562535004 gale_infotracmisc_A675241351 gale_infotracacademiconefile_A675241351 pubmed_primary_34399772 crossref_citationtrail_10_1186_s12984_021_00919_y crossref_primary_10_1186_s12984_021_00919_y springer_journals_10_1186_s12984_021_00919_y |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-16 |
| PublicationDateYYYYMMDD | 2021-08-16 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Journal of neuroengineering and rehabilitation |
| PublicationTitleAbbrev | J NeuroEngineering Rehabil |
| PublicationTitleAlternate | J Neuroeng Rehabil |
| PublicationYear | 2021 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 919_CR109 R Shadmehr (919_CR161) 2010; 33 919_CR105 LJ Bhargava (919_CR23) 2004; 37 MD Fox (919_CR46) 2009; 42 919_CR106 J Zhang (919_CR52) 2017; 356 919_CR107 J Hwangbo (919_CR5) 2018; 3 V Mnih (919_CR108) 2015; 518 M Srinivasan (919_CR170) 2006; 439 TK Uchida (919_CR45) 2016; 11 AD Kuo (919_CR178) 2002; 6 D Karabulut (919_CR42) 2020; 142 JE Bertram (919_CR172) 2001; 209 I Cajigas (919_CR104) 2017; 2 SR Hamner (919_CR139) 2013; 46 H Geyer (919_CR169) 2006; 273 919_CR119 MJD Taylor (919_CR146) 2005; 24 Y Lee (919_CR97) 2014; 33 919_CR115 SR Hamner (919_CR41) 2010; 43 919_CR116 919_CR117 919_CR118 F De Groote (919_CR39) 2016; 44 DM Wolpert (919_CR162) 2011; 12 919_CR112 FC Anderson (919_CR48) 2001; 123 919_CR113 N Sanchez (919_CR180) 2019; 597 919_CR114 F Dzeladini (919_CR79) 2014; 8 SL Delp (919_CR13) 1990; 37 D Tamura (919_CR8) 2020; 14 MQ Liu (919_CR40) 2008; 41 A Rajagopal (919_CR17) 2016; 63 M MacKay-Lyons (919_CR66) 2002; 82 K Wampler (919_CR84) 2009; 28 MA Smith (919_CR159) 2006; 4 S Coros (919_CR85) 2011; 30 919_CR129 XB Peng (919_CR124) 2016; 35 919_CR120 K Yin (919_CR87) 2007; 26 919_CR121 G Arechavaleta (919_CR173) 2008; 24 EE Cavallaro (919_CR43) 2006; 53 N Sánchez (919_CR158) 2021; 125 A Seth (919_CR14) 2019; 13 W Yu (919_CR125) 2018; 37 XB Peng (919_CR128) 2017; 36 E Bizzi (919_CR69) 2013; 7 DM Armstrong (919_CR62) 1988; 405 DG Thelen (919_CR38) 2003; 36 919_CR44 R Müller (919_CR156) 2020; 113 919_CR137 S Song (919_CR6) 2015; 593 MG Sirota (919_CR63) 2000; 12 919_CR133 919_CR134 S Aoi (919_CR77) 2019; 9 919_CR135 N Ogihara (919_CR74) 2001; 84 919_CR136 BJ Fregly (919_CR34) 2012; 9 919_CR130 S Hong (919_CR94) 2019; 38 JM Wang (919_CR95) 2012; 31 919_CR131 919_CR132 A Falisse (919_CR49) 2019; 16 S Faraji (919_CR176) 2018; 8 T Orlovsky (919_CR60) 1999 DA Winter (919_CR182) 2009 919_CR54 T Geijtenbeek (919_CR96) 2013; 32 919_CR55 K Hase (919_CR75) 2003; 14 F Clarac (919_CR64) 2008; 57 JT Choi (919_CR101) 2007; 10 919_CR149 919_CR29 F De Groote (919_CR37) 2010; 43 919_CR144 S Song (919_CR28) 2018; 596 J Visser (919_CR30) 1990; 61 919_CR141 AC Fang (919_CR83) 2003; 22 919_CR142 S Song (919_CR81) 2017; 11 919_CR143 JM Wang (919_CR122) 2010; 29 919_CR150 CE Bauby (919_CR171) 2000; 33 N Caporale (919_CR160) 2008; 31 D Haeufle (919_CR22) 2014; 47 AR Wu (919_CR59) 2017; 11 K Minassian (919_CR67) 2017; 23 S Jo (919_CR76) 2007; 96 HJ Ralston (919_CR70) 1958; 17 919_CR36 H Geyer (919_CR179) 2003; 270 M Millard (919_CR21) 2013; 135 919_CR155 N Hansen (919_CR123) 2003; 11 G Torres-Oviedo (919_CR102) 2012; 107 919_CR152 M Ackermann (919_CR26) 2010; 43 CT John (919_CR140) 2013; 16 919_CR154 RH Miller (919_CR27) 2012; 279 MH Schwartz (919_CR138) 2008; 41 G Taga (919_CR73) 1991; 65 919_CR1 J Lee (919_CR4) 2018; 3 KE Adolph (919_CR148) 2012; 23 P Sar (919_CR166) 2020; 48 919_CR2 919_CR3 C Capaday (919_CR61) 2002; 25 BR Umberger (919_CR24) 2010; 7 919_CR31 919_CR7 S Coros (919_CR90) 2010; 29 SR Ward (919_CR32) 2009; 467 A Seyfarth (919_CR168) 2002; 35 EM Arnold (919_CR16) 2010; 38 919_CR35 RH Miller (919_CR50) 2012; 45 K Hase (919_CR145) 1999; 81 M Srinivasan (919_CR175) 2011; 8 J Merel (919_CR151) 2019; 10 MF Eilenberg (919_CR58) 2010; 18 P Manoonpong (919_CR165) 2007; 3 AD Koelewijn (919_CR25) 2019; 14 919_CR167 F De Groote (919_CR47) 2021; 288 S Song (919_CR100) 2021; 29 919_CR163 919_CR164 N Thatte (919_CR53) 2015; 63 AD Kuo (919_CR98) 1999; 18 B Paden (919_CR153) 2016; 1 919_CR82 M Günther (919_CR78) 2003; 89 919_CR86 E Todorov (919_CR71) 2004; 7 F Lacquaniti (919_CR68) 2012; 590 G Zhao (919_CR57) 2020; 15 919_CR88 M De Lasa (919_CR89) 2010; 29 K Matsuoka (919_CR72) 1985; 52 J Wang (919_CR80) 2019; 7 D Silver (919_CR110) 2017; 550 919_CR177 FE Zajac (919_CR19) 1989; 17 ML Handford (919_CR51) 2018; 26 N Van der Noot (919_CR56) 2019; 43 919_CR174 JL Emken (919_CR103) 2007; 97 919_CR181 L Liu (919_CR126) 2018; 37 A Hallemans (919_CR147) 2006; 24 AV Hill (919_CR18) 1938; 126 H Hultborn (919_CR65) 2006; 78 919_CR92 XB Peng (919_CR10) 2018; 37 H Geyer (919_CR20) 2010; 18 919_CR93 S Lee (919_CR11) 2019; 38 919_CR91 L Scheys (919_CR33) 2009; 42 O Vinyals (919_CR111) 2019; 575 A Clegg (919_CR127) 2018; 37 BA Richards (919_CR9) 2019; 22 V Chambers (919_CR157) 2021; 29 919_CR12 ZF Lerner (919_CR15) 2015; 48 919_CR99 |
| References_xml | – volume: 29 start-page: 1 issue: 4 year: 2010 ident: 919_CR89 publication-title: ACM Trans Graph doi: 10.1145/1778765.1781157 – volume: 43 start-page: 1055 issue: 6 year: 2010 ident: 919_CR26 publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.12.012 – volume: 288 start-page: 20202432 issue: 1946 year: 2021 ident: 919_CR47 publication-title: Proc R Soc B doi: 10.1098/rspb.2020.2432 – ident: 919_CR141 – ident: 919_CR135 – volume: 35 start-page: 649 issue: 5 year: 2002 ident: 919_CR168 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00245-7 – ident: 919_CR130 doi: 10.1145/3099564.3099567 – ident: 919_CR106 – volume: 123 start-page: 381 issue: 5 year: 2001 ident: 919_CR48 publication-title: J Biomech Eng doi: 10.1115/1.1392310 – ident: 919_CR92 doi: 10.1111/j.1467-8659.2008.01134.x – volume: 596 start-page: 1199 issue: 7 year: 2018 ident: 919_CR28 publication-title: J Physiol doi: 10.1113/JP275166 – volume: 107 start-page: 346 issue: 1 year: 2012 ident: 919_CR102 publication-title: J Neurophysiol doi: 10.1152/jn.00570.2011 – volume: 11 start-page: 9 year: 2016 ident: 919_CR45 publication-title: PLoS ONE doi: 10.1371/journal.pone.0163417 – ident: 919_CR150 – volume: 57 start-page: 13 issue: 1 year: 2008 ident: 919_CR64 publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2007.07.015 – volume: 12 start-page: 739 issue: 12 year: 2011 ident: 919_CR162 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3112 – ident: 919_CR120 doi: 10.1561/2300000021 – volume: 24 start-page: 270 issue: 3 year: 2006 ident: 919_CR147 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.10.003 – ident: 919_CR149 – volume: 590 start-page: 2189 issue: 10 year: 2012 ident: 919_CR68 publication-title: J Physiol doi: 10.1113/jphysiol.2011.215137 – ident: 919_CR36 – volume: 30 start-page: 1 issue: 4 year: 2011 ident: 919_CR85 publication-title: ACM Trans Graph doi: 10.1145/2010324.1964954 – volume: 11 start-page: 1 issue: 1 year: 2003 ident: 919_CR123 publication-title: Evol Comput doi: 10.1162/106365603321828970 – ident: 919_CR99 – ident: 919_CR112 – volume: 113 start-page: 110121 year: 2020 ident: 919_CR156 publication-title: J Biomech doi: 10.1016/j.jbiomech.2020.110121 – volume: 3 start-page: 134 issue: 7 year: 2007 ident: 919_CR165 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030134 – volume: 82 start-page: 69 issue: 1 year: 2002 ident: 919_CR66 publication-title: Phys Ther doi: 10.1093/ptj/82.1.69 – ident: 919_CR155 doi: 10.1371/journal.pcbi.1008369 – volume: 4 start-page: 6 year: 2006 ident: 919_CR159 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040179 – volume: 11 start-page: 15 year: 2017 ident: 919_CR81 publication-title: Front Comput Neurosci doi: 10.3389/fncom.2017.00015 – ident: 919_CR117 – volume: 26 start-page: 1773 issue: 9 year: 2018 ident: 919_CR51 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2018.2858204 – volume: 63 start-page: 2068 issue: 10 year: 2016 ident: 919_CR17 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2586891 – volume: 31 start-page: 25 year: 2008 ident: 919_CR160 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.31.060407.125639 – volume: 135 start-page: 2 year: 2013 ident: 919_CR21 publication-title: J Biomech Eng. doi: 10.1115/1.4023390 – ident: 919_CR55 doi: 10.1109/IROS.2015.7354279 – volume: 575 start-page: 350 issue: 7782 year: 2019 ident: 919_CR111 publication-title: Nature doi: 10.1038/s41586-019-1724-z – volume: 209 start-page: 445 issue: 4 year: 2001 ident: 919_CR172 publication-title: J Theor Biol doi: 10.1006/jtbi.2001.2279 – volume: 26 start-page: 105 issue: 3 year: 2007 ident: 919_CR87 publication-title: ACM Trans Graph doi: 10.1145/1276377.1276509 – volume: 356 start-page: 1280 issue: 6344 year: 2017 ident: 919_CR52 publication-title: Science doi: 10.1126/science.aal5054 – volume: 3 start-page: 500 issue: 22 year: 2018 ident: 919_CR4 publication-title: J Open Source Softw doi: 10.21105/joss.00500 – volume: 43 start-page: 1876 issue: 10 year: 2010 ident: 919_CR37 publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.03.022 – volume: 41 start-page: 1639 issue: 8 year: 2008 ident: 919_CR138 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.03.015 – volume: 279 start-page: 1498 issue: 1733 year: 2012 ident: 919_CR27 publication-title: Proc R Soc B doi: 10.1098/rspb.2011.2015 – volume: 48 start-page: 644 issue: 4 year: 2015 ident: 919_CR15 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.12.049 – volume: 9 start-page: 18 issue: 1 year: 2012 ident: 919_CR34 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-9-18 – volume: 65 start-page: 147 issue: 3 year: 1991 ident: 919_CR73 publication-title: Biol Cybern doi: 10.1007/BF00198086 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 919_CR108 publication-title: Nature doi: 10.1038/nature14236 – volume: 43 start-page: 2709 issue: 14 year: 2010 ident: 919_CR41 publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.06.025 – volume: 38 start-page: 1 issue: 4 year: 2019 ident: 919_CR11 publication-title: ACM Trans Graph doi: 10.1145/3306346.3322972 – volume: 37 start-page: 81 issue: 1 year: 2004 ident: 919_CR23 publication-title: J Biomech doi: 10.1016/S0021-9290(03)00239-2 – volume: 14 start-page: 9 year: 2019 ident: 919_CR25 publication-title: PLoS ONE doi: 10.1371/journal.pone.0222037 – ident: 919_CR137 – volume: 14 start-page: 17 year: 2020 ident: 919_CR8 publication-title: Front Neurosci. doi: 10.3389/fnins.2020.00017 – ident: 919_CR31 – volume: 63 start-page: 904 issue: 5 year: 2015 ident: 919_CR53 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2472533 – ident: 919_CR143 – volume: 17 start-page: 277 issue: 4 year: 1958 ident: 919_CR70 publication-title: Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie – volume: 37 start-page: 1 issue: 6 year: 2018 ident: 919_CR127 publication-title: ACM Trans Graph doi: 10.1145/3272127.3275048 – volume: 12 start-page: 4081 issue: 11 year: 2000 ident: 919_CR63 publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2000.00301.x – volume: 29 start-page: 1 issue: 4 year: 2010 ident: 919_CR122 publication-title: ACM Trans Graph – volume: 37 start-page: 1 issue: 4 year: 2018 ident: 919_CR10 publication-title: ACM Trans Graph – ident: 919_CR152 – ident: 919_CR164 doi: 10.1109/IROS.2004.1389841 – volume: 10 start-page: 1055 issue: 8 year: 2007 ident: 919_CR101 publication-title: Nat Neurosci doi: 10.1038/nn1930 – volume: 125 start-page: 344 issue: 2 year: 2021 ident: 919_CR158 publication-title: J Neurophysiol doi: 10.1152/jn.00416.2020 – ident: 919_CR109 doi: 10.1038/nature16961 – volume: 42 start-page: 614 issue: 5 year: 2009 ident: 919_CR46 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.12.007 – volume: 43 start-page: 1537 issue: 6 year: 2019 ident: 919_CR56 publication-title: Auton Robots doi: 10.1007/s10514-018-9814-6 – ident: 919_CR118 – volume: 7 start-page: 51 year: 2013 ident: 919_CR69 publication-title: Front Comput Neurosci doi: 10.3389/fncom.2013.00051 – volume: 22 start-page: 1761 issue: 11 year: 2019 ident: 919_CR9 publication-title: Nature Neurosci doi: 10.1038/s41593-019-0520-2 – volume: 7 start-page: 92465 year: 2019 ident: 919_CR80 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927606 – ident: 919_CR163 – volume: 36 start-page: 321 issue: 3 year: 2003 ident: 919_CR38 publication-title: J Biomech doi: 10.1016/S0021-9290(02)00432-3 – volume: 29 start-page: 740 year: 2021 ident: 919_CR157 publication-title: IEEE Trans Neural Syst Rehab Eng doi: 10.1109/TNSRE.2021.3072771 – ident: 919_CR181 doi: 10.1101/2021.03.18.435986 – volume: 47 start-page: 1531 issue: 6 year: 2014 ident: 919_CR22 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.02.009 – ident: 919_CR115 – volume: 38 start-page: 269 issue: 2 year: 2010 ident: 919_CR16 publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9852-5 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 919_CR110 publication-title: Nature doi: 10.1038/nature24270 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 919_CR151 publication-title: Nat Commun doi: 10.1038/s41467-019-13239-6 – volume: 15 start-page: 026007 issue: 2 year: 2020 ident: 919_CR57 publication-title: Bioinspir Biomimet doi: 10.1088/1748-3190/ab6ed8 – volume: 48 start-page: 365 issue: 4 year: 2020 ident: 919_CR166 publication-title: J Comput Neurosci doi: 10.1007/s10827-020-00767-0 – volume: 36 start-page: 1 issue: 4 year: 2017 ident: 919_CR128 publication-title: ACM Trans Graph doi: 10.1145/3072959.3073602 – volume: 53 start-page: 2387 issue: 11 year: 2006 ident: 919_CR43 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.880883 – volume: 97 start-page: 3997 issue: 6 year: 2007 ident: 919_CR103 publication-title: J Neurophysiol doi: 10.1152/jn.01095.2006 – volume: 24 start-page: 5 issue: 1 year: 2008 ident: 919_CR173 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2008.915449 – ident: 919_CR129 – ident: 919_CR174 – volume: 37 start-page: 757 issue: 8 year: 1990 ident: 919_CR13 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.102791 – volume: 23 start-page: 649 issue: 6 year: 2017 ident: 919_CR67 publication-title: Neuroscientist doi: 10.1177/1073858417699790 – ident: 919_CR132 – volume: 61 start-page: 453 issue: 5–6 year: 1990 ident: 919_CR30 publication-title: Eur J Appl Physiol Occup Physiol doi: 10.1007/BF00236067 – volume: 17 start-page: 359 issue: 4 year: 1989 ident: 919_CR19 publication-title: Crit Rev Biomed Eng – volume: 18 start-page: 263 issue: 3 year: 2010 ident: 919_CR20 publication-title: IEEE Trans Neural Syst Rehab Eng doi: 10.1109/TNSRE.2010.2047592 – ident: 919_CR116 – volume: 8 start-page: 371 year: 2014 ident: 919_CR79 publication-title: Front Human Neurosci doi: 10.3389/fnhum.2014.00371 – ident: 919_CR167 doi: 10.1115/1.3005107 – volume: 405 start-page: 1 issue: 1 year: 1988 ident: 919_CR62 publication-title: J Physiol doi: 10.1113/jphysiol.1988.sp017319 – ident: 919_CR134 doi: 10.1007/978-3-030-29135-8_4 – ident: 919_CR44 doi: 10.1109/MRA.2019.2955669 – volume: 13 start-page: 90 year: 2019 ident: 919_CR14 publication-title: Front Neurorobot doi: 10.3389/fnbot.2019.00090 – volume: 3 start-page: 895 issue: 2 year: 2018 ident: 919_CR5 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2018.2792536 – ident: 919_CR91 doi: 10.1145/545261.545276 – volume: 28 start-page: 1 issue: 3 year: 2009 ident: 919_CR84 publication-title: ACM Trans Graph doi: 10.1145/1531326.1531366 – volume: 24 start-page: 558 issue: 4 year: 2005 ident: 919_CR146 publication-title: Human Movement Sci doi: 10.1016/j.humov.2005.07.005 – volume: 84 start-page: 1 issue: 1 year: 2001 ident: 919_CR74 publication-title: Biol Cybern doi: 10.1007/PL00007977 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 919_CR77 publication-title: Sci Rep doi: 10.1038/s41598-018-37460-3 – volume: 37 start-page: 1 issue: 4 year: 2018 ident: 919_CR125 publication-title: ACM Trans Graph doi: 10.1145/3197517.3201397 – ident: 919_CR154 – volume: 78 start-page: 215 issue: 3–5 year: 2006 ident: 919_CR65 publication-title: Progr Neurobiol doi: 10.1016/j.pneurobio.2006.04.001 – volume: 142 start-page: 5 year: 2020 ident: 919_CR42 publication-title: J Biomech Eng doi: 10.1115/1.4045660 – ident: 919_CR131 – ident: 919_CR3 doi: 10.1109/IROS.2012.6386109 – ident: 919_CR121 doi: 10.1007/3-540-32494-1_4 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 919_CR176 publication-title: Sci Rep doi: 10.1038/s41598-018-29429-z – volume: 6 start-page: 129 issue: 2 year: 2002 ident: 919_CR178 publication-title: Motor control doi: 10.1123/mcj.6.2.129 – ident: 919_CR113 – ident: 919_CR133 doi: 10.1007/978-3-319-94042-7_7 – volume: 597 start-page: 4053 issue: 15 year: 2019 ident: 919_CR180 publication-title: J Physiol doi: 10.1113/JP277725 – volume: 52 start-page: 367 issue: 6 year: 1985 ident: 919_CR72 publication-title: Biol Cybern doi: 10.1007/BF00449593 – volume: 35 start-page: 1 issue: 4 year: 2016 ident: 919_CR124 publication-title: ACM Trans Graph – volume: 32 start-page: 1 issue: 6 year: 2013 ident: 919_CR96 publication-title: ACM Trans Graph doi: 10.1145/2508363.2508399 – ident: 919_CR107 – volume: 1 start-page: 33 issue: 1 year: 2016 ident: 919_CR153 publication-title: IEEE Trans Intell Vehicles doi: 10.1109/TIV.2016.2578706 – ident: 919_CR86 – ident: 919_CR82 doi: 10.1145/383259.383287 – volume: 11 start-page: 30 year: 2017 ident: 919_CR59 publication-title: Front Neurorobot doi: 10.3389/fnbot.2017.00030 – volume: 33 start-page: 89 year: 2010 ident: 919_CR161 publication-title: Ann Rev Neurosci doi: 10.1146/annurev-neuro-060909-153135 – volume: 45 start-page: 1092 issue: 6 year: 2012 ident: 919_CR50 publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.04.040 – ident: 919_CR7 doi: 10.1371/journal.pcbi.1006993 – volume: 81 start-page: 2914 issue: 6 year: 1999 ident: 919_CR145 publication-title: J Neurophysiol doi: 10.1152/jn.1999.81.6.2914 – volume: 41 start-page: 3243 issue: 15 year: 2008 ident: 919_CR40 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.07.031 – volume: 96 start-page: 279 issue: 3 year: 2007 ident: 919_CR76 publication-title: Biol Cybern doi: 10.1007/s00422-006-0126-0 – volume: 22 start-page: 417 issue: 3 year: 2003 ident: 919_CR83 publication-title: ACM Trans Graph doi: 10.1145/882262.882286 – volume: 29 start-page: 1 issue: 4 year: 2010 ident: 919_CR90 publication-title: ACM Trans Graph doi: 10.1145/1778765.1781156 – ident: 919_CR114 – ident: 919_CR29 – ident: 919_CR54 – volume: 593 start-page: 3493 issue: 16 year: 2015 ident: 919_CR6 publication-title: J Physiol doi: 10.1113/JP270228 – volume: 7 start-page: 1329 issue: 50 year: 2010 ident: 919_CR24 publication-title: J R Soc Interface doi: 10.1098/rsif.2010.0084 – volume: 8 start-page: 74 issue: 54 year: 2011 ident: 919_CR175 publication-title: J R Soc Interface doi: 10.1098/rsif.2009.0544 – volume: 439 start-page: 72 issue: 7072 year: 2006 ident: 919_CR170 publication-title: Nature doi: 10.1038/nature04113 – volume: 23 start-page: 1387 issue: 11 year: 2012 ident: 919_CR148 publication-title: Psychol Sci doi: 10.1177/0956797612446346 – volume: 31 start-page: 1 issue: 4 year: 2012 ident: 919_CR95 publication-title: ACM Trans Graph – volume: 37 start-page: 1 issue: 4 year: 2018 ident: 919_CR126 publication-title: ACM Trans Graph – volume: 16 start-page: 20190402 issue: 157 year: 2019 ident: 919_CR49 publication-title: J R Soc Interface doi: 10.1098/rsif.2019.0402 – ident: 919_CR12 doi: 10.1109/Humanoids43949.2019.9035034 – volume: 25 start-page: 370 issue: 7 year: 2002 ident: 919_CR61 publication-title: TRENDS Neurosci doi: 10.1016/S0166-2236(02)02173-2 – ident: 919_CR2 doi: 10.1371/journal.pcbi.1008493 – volume: 7 start-page: 907 issue: 9 year: 2004 ident: 919_CR71 publication-title: Nat Neurosci doi: 10.1038/nn1309 – volume: 2 start-page: 1 issue: 6 year: 2017 ident: 919_CR104 publication-title: Sci Robot doi: 10.1126/scirobotics.aam7749 – ident: 919_CR93 doi: 10.1145/1833349.1781155 – volume: 270 start-page: 2173 issue: 1529 year: 2003 ident: 919_CR179 publication-title: Proc R Soc London B doi: 10.1098/rspb.2003.2454 – volume: 18 start-page: 917 issue: 9 year: 1999 ident: 919_CR98 publication-title: Int J Robot Res doi: 10.1177/02783649922066655 – volume-title: Neuronal Control of Locomotion: from Mollusc to Man year: 1999 ident: 919_CR60 doi: 10.1093/acprof:oso/9780198524052.001.0001 – ident: 919_CR1 doi: 10.1371/journal.pcbi.1006223 – ident: 919_CR142 – volume-title: Biomechanics and Motor Control of Human Movement year: 2009 ident: 919_CR182 doi: 10.1002/9780470549148 – ident: 919_CR35 doi: 10.1007/978-3-319-94042-7_6 – ident: 919_CR136 – volume: 273 start-page: 2861 issue: 1603 year: 2006 ident: 919_CR169 publication-title: Proc R Soc Lond B – volume: 44 start-page: 2922 issue: 10 year: 2016 ident: 919_CR39 publication-title: Ann Biomed Eng doi: 10.1007/s10439-016-1591-9 – volume: 16 start-page: 451 issue: 4 year: 2013 ident: 919_CR140 publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2011.627560 – ident: 919_CR105 – volume: 42 start-page: 565 issue: 5 year: 2009 ident: 919_CR33 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.12.014 – volume: 14 start-page: 73 issue: 2 year: 2003 ident: 919_CR75 publication-title: J Visualiz Comput Anim doi: 10.1002/vis.306 – ident: 919_CR88 – volume: 29 start-page: 786 year: 2021 ident: 919_CR100 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3074154 – volume: 33 start-page: 1 issue: 6 year: 2014 ident: 919_CR97 publication-title: ACM Trans Graph doi: 10.1145/2661229.2661233 – ident: 919_CR177 doi: 10.1101/2020.12.01.407023 – ident: 919_CR144 doi: 10.1145/1553374.1553380 – volume: 126 start-page: 136 issue: 843 year: 1938 ident: 919_CR18 publication-title: Proc R Soc London – volume: 89 start-page: 89 issue: 2 year: 2003 ident: 919_CR78 publication-title: Biol Cybern doi: 10.1007/s00422-003-0414-x – volume: 33 start-page: 1433 issue: 11 year: 2000 ident: 919_CR171 publication-title: J Biomech doi: 10.1016/S0021-9290(00)00101-9 – ident: 919_CR119 – volume: 467 start-page: 1074 issue: 4 year: 2009 ident: 919_CR32 publication-title: Clin Orthopaed Related Res doi: 10.1007/s11999-008-0594-8 – volume: 18 start-page: 164 issue: 2 year: 2010 ident: 919_CR58 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2009.2039620 – volume: 38 start-page: 1 issue: 4 year: 2019 ident: 919_CR94 publication-title: ACM Trans Graph doi: 10.1145/3306346.3322963 – volume: 46 start-page: 780 issue: 4 year: 2013 ident: 919_CR139 publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.11.024 |
| SSID | ssj0034054 |
| Score | 2.5988352 |
| SecondaryResourceType | review_article |
| Snippet | Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of... Abstract Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 126 |
| SubjectTerms | Biomechanical Phenomena Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Competition Computer Simulation Deep learning Deep reinforcement learning Human locomotion Human mechanics Human motion Humans Hypotheses Information processing Learning Locomotion Machine learning Motor control Motor skill Motor task performance Musculoskeletal modeling Musculoskeletal system Nervous system Neural networks Neurology Neuromechanical simulation Neurosciences Optimization Physiological aspects Physiological research Physiology Predictive control Rehabilitation Rehabilitation Medicine Reinforcement Reinforcement, Psychology Review Simulation Stability Teams Walking |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagcKCyvQEFG4nEoURMnTuwTKo-KA1QrVFBvVuLYZaU2u-xukfrvmXGc7aaIXjgmHkex_XlmbI-_AXjZCGeJbjJurGhwgWLrWFZFGqMpsFxJIbm_X_HjS3lwII-O1DhsuC1CWGWvE72ibqaG9sh3OXnqmcAxfTf7FVPWKDpdDSk0rsMNYknIfOjeuNfEGTojeX9RRha7C7RtMo8pKAE9i1TF5wNj5Dn7_9bMa6bpctjkpbNTb5L2t_63MXfhTnBG2V6HnntwzbYjuL1GUTiCW1_D4fsIXq0zErPDjo6AvWbfBmTfI9gah7HvZe6D_mjtjM2tp2k1fkeShXwVxwxfMZ-Qhx58zkCGFnba5RdiIZaeTVrmuTdPLd1V9p9fTE5D8rEH8H3_0-GHz3FI7RCbIimXsXQcraQQmWoQD03KK1OhI5U4lxhelnWBMDHcqjqpKmXSiheqRE8jd3mWKMdd9hA22mlrHwNT0tnCujQXVZE7rGhTk1VoZo0Voi55BGk_xtqErqD0Gyfar39koTtcaMSF9rjQ5xHsrOrMOtaPK6XfE3RWksTY7V9M58c6KACNnlvT1DYzQtm8UWktG-yKyrrcJE4qE8EbAp6mgcDfM1W4HoGNJIYuvYcrOzoDFWkE2wNJ1AdmWNxjTgd9tNAXgIvgxaqYalKMXWunZ50MkR9lRQSPOqSvmpTRsrWkziwHc2DQ5mFJO_np2cplRif3SQRv-9ly8Vv_7tMnV7fiKWxyP49lnBbbsLGcn9lncNP8Xk4W8-deC_wB-kBloQ priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQagcKCwUAgUZicehRCR27NjH8qg4QFWVUvVmJY5dVqLZarNF6r9n7DjLpjwkOG48XsWed-z5BuBZw531cJNpY3mDCYqtU1mJPEVXYKmSXNJQX3H0sdzbk8fHaj8WhXXDbffhSDJY6qDWUrzu0DPJIvVXCjAuyFV6cRWuobuTXh0PPh8N9pdhCFIM5TG_nTdyQQGp_1d7vOKQLl-WvHRiGhzR7sb_LeE23IqBJ9npJeUOXLHtBG6uwBFO4ManeNA-geer6MPksIceIC_IwQjYewIb-5HPA81d0O-sPSNzGyBZTfj6SGJvihOCj0hovuN_hP6ABL3prO8lROK9eTJtScDZPLW-Ljn8fTc9jY3G7sGX3feHbz-ksY1DakRWLlLpKHpEzplqkPdNTitTYdCUOZcZWpa1QJEw1Ko6qypl8ooKVWJUUbiCZcpRxzZhrZ219gEQJZ0V1uUFr0ThcKLNDavQpRrLeV3SBPKBs9rErfCtNr7pkOtIoXsWaGSBDizQFwlsL-ec9Qgff6V-4wVmSenRucOD2fxER2XXGKU1TW2Z4coWjcpr2eBWVNYVJnNSmQReenHTnhH4eqaKpRC4SI_GpXcwi_PnnTxPYGtEibpvxsODwOpoezpNfU7LOFq_BJ4uh_1Mf5-utbPznsYDHTGRwP1evpdLYj5FLf1mliPJH615PNJOvwZkcsn8KX2WwKtB_n--1p_39OG_kT-CdRpUSKa52IK1xfzcPobr5vti2s2fBFvwA-NwXLM priority: 102 providerName: Springer Nature |
| Title | Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation |
| URI | https://link.springer.com/article/10.1186/s12984-021-00919-y https://www.ncbi.nlm.nih.gov/pubmed/34399772 https://www.proquest.com/docview/2562535004 https://www.proquest.com/docview/2562235736 https://pubmed.ncbi.nlm.nih.gov/PMC8365920 https://doaj.org/article/741ddbe3c59e4d91b8dc60aef4c0f89c |
| Volume | 18 |
| WOSCitedRecordID | wos000686710600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: RBZ dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M7S dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Healthcare Administration Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: M0T dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthmanagement providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: 7RV dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1743-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034054 issn: 1743-0003 databaseCode: RSV dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BQAge-ChfgVEZiY8HiJY4cWw_brAJJFpFXanGk5U4NlRi6dR2SPvvOTtJaYaAF14sJbYr--5yH_X5dwAvKmaNg5sMK8MqDFBMGYoii0M0BYZKwQT19ytmn_h4LE5OZL5V6svlhDXwwA3h9tDiVVVpEs2kSSsZl6LSWVQYm-rICqmd9kWvpwumGh2coBuSdldkRLa3Qqsm0tClI6BPEcvwomeGPFr_7zp5yyhdTpi8dGrqjdHRXbjdepFkv1n9Pbhi6gHc2sIWHMCNUXtqPoCX21DCZNrgCJBXZNJD6R7AnbxlWjfmPqj3xpyRpfH4qtr_lUjaQhNfCb4ivpKOe_DF_giaxkVTGIi0SfBkXhMPmnlq3CVj__Or-WlbNewBfD46nL77ELY1GUKkOl-HwlI0b4wlskJGVjEtdIEeUGRtpCnnZYb81dTIMioKqeOCZpKji5DaNImkpTZ5CDv1ojaPgUhhTWZsnLIiSy1ONLFOCrSP2jBWchpA3LFI6ZYUrm7Gd-UDF5Gphq0K2ao8W9VFAG82c84auI6_jj5wnN-MdFDb_gUKoGoFUP1LAAN47eRGOUbg8nTR3mvATTpoLbWPIZk7vGRxALu9kfgh6353J3mqVSQrRV2AmjBUZQE833S7mS45rjaL82aMQy1KsgAeNYK62VLi4k3uiMl7Itzbc7-nnn_zMOMicUfuUQBvO2H_taw_0_TJ_6DpU7hJ_ccqwjjbhZ318tw8g-v6x3q-Wg7hKp_MXHvCfSuGcO3gcJxPhl4JYDuKpq7luW-PsT__OMq_4NPkePYTroBjZA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgngcKCyvQAEjUThA1MR52QeECqVq1d1VhbaoN5M4TlmJZpfdLWj_FL-RGSfZbororQeOie3IHo_nEc98A_AyjwpDcJNubqIcHRSTuSKNfRdVgeFSRILb_Iov3aTfF0dH8mAFfje5MBRW2chEK6jzkaZ_5JucLPUgwj19P_7hUtUoul1tSmhUbLFv5r_QZZu-29vG_d3gfOfT4OOuW1cVcHXsJTNXFBwFdBQFMsep5D5PdYo63CsKT_MkyWKcoeZGZl6aSu2nPJYJKrmwCANPFrwI8LtX4Crh6lEIYc8bNJI_QOMnbBJzRLw5RV0qQpeCINCS8aU7byk_WyPgb02wpArPh2meu6u1KnBn7X8j3h24XRvbbKs6HXdhxZQduLUEwdiB6706uKADG8uIy2xQwS2wV-xzC8y8A2sHNW83fe6B2jZmzCbGwtBq-8eV1fU4jhm-YrbgED3YmogMLYhRVT-J1bkCbFgyiy16YigX235-Ojypi6vdh8NLodMDWC1HpXkETIrCxKbwwyiNwwIHGl8HKZoR2kRRlnAH_IanlK5JQeVFvivr34lYVXyokA-V5UM1d-DNYsy4QjW5sPcHYtVFT0Ikty9Gk2NVCziFlmmeZybQkTRhLv1M5EiK1BSh9gohtQOvidEVbQROT6d1-gcukhDI1BZ6rnTHG_kOrLd6orzT7eaGx1Utb6fqjMEdeLFoppEUQ1ia0WnVh8CdgtiBh9XJWiwpILc8IWImrTPXWnO7pRx-s2jsIqDIBM-Bt83pPJvWv2n6-OJVPIcbu4NeV3X3-vtP4Ca3MkS4frwOq7PJqXkK1_TP2XA6eWYlEIOvl31q_wB_zcAv |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQBM8MChfgQFGAvYA0RInTuzHwahAjKqCMe3Nchx7VGJp1XZI--85O05pxoeEeGx8rmLf-T5yvt8BPKuZNQ5uMq4NqzFAMVXMVZHGaAoMFZxx6usrjg7K0YgfH4vxWhW_v-3epSTbmgaH0tQsd2e1bY84L3YXaKV4HrvrBegjpCI-vwxXctc0yMXrn486XZyhO5J3pTK_ndczRx61_1fdvGacLl6cvJA99UZpuPX_y7kJN4JDSvZaCboFl0wzgOtrMIUD2PwYEvADeL6OSkwOW0gC8oJ86gF-D2BrHPjf0dwGuW_MjMyNh2rV_qskCT0rTgg-Ir4pj_vh-wYStLLTtscQCffpyaQhHn_z1Lh6Zf_3i8lpaEB2B74M3x6-eReH9g6xLpJyGXNL0VIylokaZaJOqdIKnanE2kTTsqwKFBVNjagSpYROFS1Eid5GbvMsEZba7C5sNNPG3AciuDWFsWnOVJFbnGhSnSk0tdowVpU0grTjstRhK1wLjm_Sx0C8kC0LJLJAehbI8wherubMWuSPv1K_dsKzonSo3f7BdH4igxKQ6L3VdWUyzYTJa5FWvMatUMbmOrFc6Ah2nOhJxwh8Pa1CiQQu0qF0yT2M7lwelKURbPcoUSfo_nAnvDLopIWkLtbNGGrFCJ6uht1Md8-uMdOzlsYBIGVFBPdaWV8tKXOha-k2s-ydgt6a-yPN5KtHLOeZy94nEbzqzsLP1_rznj74N_InsDneH8qD96MPD-Ea9aeJx2mxDRvL-Zl5BFf19-VkMX_sVcQPcKloew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning+for+modeling+human+locomotion+control+in+neuromechanical+simulation&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Song%2C+Seungmoon&rft.au=Kidzi%C5%84ski%2C+%C5%81ukasz&rft.au=Peng%2C+Xue+Bin&rft.au=Ong%2C+Carmichael&rft.date=2021-08-16&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=18&rft.issue=1&rft.spage=126&rft_id=info:doi/10.1186%2Fs12984-021-00919-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |