Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R

Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior research methods Jg. 53; H. 6; S. 2528 - 2543
Hauptverfasser: Kumle, Levi, Võ, Melissa L.-H., Draschkow, Dejan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2021
Springer Nature B.V
Schlagworte:
ISSN:1554-3528, 1554-351X, 1554-3528
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.
AbstractList Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.
Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.
Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the probability that a test correctly rejects the null hypothesis. Being able to estimate this probability, however, is critical for sample size planning, as power is closely linked to the reliability and replicability of empirical findings. A flexible and very intuitive alternative to analytic power solutions are simulation-based power analyses. Although various tools for conducting simulation-based power analyses for mixed-effects models are available, there is lack of guidance on how to appropriately use them. In this tutorial, we discuss how to estimate power for mixed-effects models in different use cases: first, how to use models that were fit on available (e.g. published) data to determine sample size; second, how to determine the number of stimuli required for sufficient power; and finally, how to conduct sample size planning without available data. Our examples cover both linear and generalized linear models and we provide code and resources for performing simulation-based power analyses on openly accessible data sets. The present work therefore helps researchers to navigate sound research design when using mixed-effects models, by summarizing resources, collating available knowledge, providing solutions and tools, and applying them to real-world problems in sample sizing planning when sophisticated analysis procedures like mixed-effects models are outlined as inferential procedures.
Author Kumle, Levi
Võ, Melissa L.-H.
Draschkow, Dejan
Author_xml – sequence: 1
  givenname: Levi
  orcidid: 0000-0002-9994-0988
  surname: Kumle
  fullname: Kumle, Levi
  email: levi.kumle@gmail.com
  organization: Department of Psychology, Scene Grammar Lab, Goethe University Frankfurt
– sequence: 2
  givenname: Melissa L.-H.
  orcidid: 0000-0003-1145-4473
  surname:
  fullname: Võ, Melissa L.-H.
  organization: Department of Psychology, Scene Grammar Lab, Goethe University Frankfurt
– sequence: 3
  givenname: Dejan
  orcidid: 0000-0003-1354-4835
  surname: Draschkow
  fullname: Draschkow, Dejan
  organization: Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33954914$$D View this record in MEDLINE/PubMed
BookMark eNp9kctrFTEYxYNU7EP_ARcScNMuRvO-iQuhlPqAgiC6lJCZfHNNySTXZMbXX99cb621i64SyO-cnO87h2gv5QQIPaXkBV9J_bJSLpjuCKMdoVKojjxAB1RK0XHJ9N6t-z46rPWSEK4ZFY_QPudGCkPFAfpyXucwuTmkNd7kH1BwSPh4DQmKi-E3-BMcQwJX8BR-gsdT9hDrK3yacN5AavRcsl-GOeSEXfJ4XuZcgotbn4-P0cPRxQpPrs8j9PnN-aezd93Fh7fvz04vukGR1dwJMyoCjrteE6AMjJADG3vCZK8HogmRo2dc9cxJYyisvBKuIdybXmgtOT9Cr3e-m6WfwA_QUrloN6WNVn7Z7IL9_yWFr3adv1utKKdCNYPja4OSvy1QZzuFOkCMLkFeqmWSMUWNlLqhz--gl3kpqY1nmSKMcE7NNtGz24luovzdfAPYDhhKrrXAeINQYrf12l29ttVr_9RrSRPpO6IhzG67-zZViPdL-U5a2z9pDeVf7HtUV5HCuSU
CitedBy_id crossref_primary_10_1038_s41598_024_56139_6
crossref_primary_10_1136_bmjopen_2024_090518
crossref_primary_10_3389_fpsyg_2022_980277
crossref_primary_10_3758_s13423_024_02569_2
crossref_primary_10_1016_j_bbr_2025_115829
crossref_primary_10_1017_ehs_2024_22
crossref_primary_10_1016_j_psychsport_2023_102436
crossref_primary_10_1016_j_psychsport_2022_102159
crossref_primary_10_1016_j_actpsy_2024_104460
crossref_primary_10_1177_09567976241249183
crossref_primary_10_1186_s12984_023_01238_0
crossref_primary_10_1007_s00192_025_06238_3
crossref_primary_10_7554_eLife_89485
crossref_primary_10_3389_fspor_2023_1192737
crossref_primary_10_1016_j_cognition_2022_105104
crossref_primary_10_1038_s41598_023_33307_8
crossref_primary_10_1007_s10936_024_10117_1
crossref_primary_10_1167_iovs_66_4_71
crossref_primary_10_1515_lingty_2025_0034
crossref_primary_10_1017_S1366728923000706
crossref_primary_10_3758_s13421_025_01775_0
crossref_primary_10_1073_pnas_2311116121
crossref_primary_10_3758_s13423_023_02301_6
crossref_primary_10_3389_fpsyg_2025_1652627
crossref_primary_10_5114_pq_174936
crossref_primary_10_1111_bjep_12684
crossref_primary_10_1016_j_cortex_2021_12_017
crossref_primary_10_1016_j_dcn_2025_101614
crossref_primary_10_1016_j_neuroimage_2024_120853
crossref_primary_10_1044_2023_JSLHR_23_00078
crossref_primary_10_1002_alz_70055
crossref_primary_10_1016_j_cognition_2025_106172
crossref_primary_10_1038_s44271_024_00134_0
crossref_primary_10_1016_j_cognition_2023_105533
crossref_primary_10_1080_0361073X_2022_2046948
crossref_primary_10_1515_iral_2023_0155
crossref_primary_10_15626_MP_2021_3078
crossref_primary_10_2139_ssrn_4649792
crossref_primary_10_1016_j_system_2024_103440
crossref_primary_10_1038_s43588_024_00685_6
crossref_primary_10_1371_journal_pone_0315351
crossref_primary_10_1016_j_jml_2023_104478
crossref_primary_10_1017_S0305000924000175
crossref_primary_10_1017_jdm_2024_42
crossref_primary_10_1016_j_jpainsymman_2025_03_006
crossref_primary_10_1080_0284186X_2022_2098680
crossref_primary_10_1016_j_learninstruc_2025_102186
crossref_primary_10_3389_fpsyg_2025_1558689
crossref_primary_10_1007_s10508_024_02875_9
crossref_primary_10_1177_17470218231161310
crossref_primary_10_1186_s12874_025_02546_w
crossref_primary_10_1080_00220973_2023_2287444
crossref_primary_10_1007_s11145_024_10536_5
crossref_primary_10_1016_j_jenvp_2024_102377
crossref_primary_10_1057_s41599_024_02842_8
crossref_primary_10_3758_s13421_025_01689_x
crossref_primary_10_1038_s41598_025_05745_z
crossref_primary_10_3758_s13414_024_02924_4
crossref_primary_10_1038_s41598_025_01293_8
crossref_primary_10_1093_icesjms_fsad097
crossref_primary_10_1016_j_foodres_2024_114702
crossref_primary_10_3758_s13414_024_02891_w
crossref_primary_10_1038_s41593_025_01992_5
crossref_primary_10_1080_02699931_2024_2374038
crossref_primary_10_1016_j_jml_2022_104373
crossref_primary_10_1016_j_cct_2025_107955
crossref_primary_10_3389_fnins_2022_803387
crossref_primary_10_3758_s13421_024_01616_6
crossref_primary_10_1098_rsos_220178
crossref_primary_10_3390_jintelligence13010004
crossref_primary_10_1177_0044118X241309356
crossref_primary_10_1007_s11409_021_09273_9
crossref_primary_10_1002_ejp_70067
crossref_primary_10_1038_s41598_023_42006_3
crossref_primary_10_1016_j_jpsychores_2023_111518
crossref_primary_10_1016_j_yhbeh_2023_105445
crossref_primary_10_1016_j_learninstruc_2025_102168
crossref_primary_10_1017_langcog_2023_51
crossref_primary_10_1002_cpp_2929
crossref_primary_10_1016_j_actpsy_2025_105518
crossref_primary_10_1016_j_concog_2024_103769
crossref_primary_10_22599_jesla_95
crossref_primary_10_1016_j_isci_2023_108547
crossref_primary_10_1007_s10608_025_10614_0
crossref_primary_10_1016_j_cbpra_2022_04_005
crossref_primary_10_1111_nyas_15284
crossref_primary_10_1016_j_chbr_2025_100767
crossref_primary_10_1016_j_flora_2022_152062
crossref_primary_10_1177_20438087231175147
crossref_primary_10_3758_s13414_025_03088_5
crossref_primary_10_1007_s40647_025_00447_2
crossref_primary_10_3390_vision8030050
crossref_primary_10_2196_51716
crossref_primary_10_1007_s00426_024_01985_2
crossref_primary_10_1098_rspb_2025_1107
crossref_primary_10_32872_cpe_7495
crossref_primary_10_1016_j_bbi_2023_05_011
crossref_primary_10_1038_s41598_021_96513_2
crossref_primary_10_1057_s41599_025_04806_y
crossref_primary_10_1016_j_jenvp_2024_102346
crossref_primary_10_1038_s44271_024_00152_y
crossref_primary_10_1371_journal_pone_0306113
crossref_primary_10_1016_j_psychsport_2024_102698
crossref_primary_10_1080_23273798_2024_2390003
crossref_primary_10_1519_JSC_0000000000004223
crossref_primary_10_3758_s13428_021_01686_3
crossref_primary_10_1007_s00125_025_06496_2
crossref_primary_10_1017_S0142716424000444
crossref_primary_10_1007_s10457_023_00871_x
crossref_primary_10_1016_j_neuropsychologia_2021_108107
crossref_primary_10_3389_fnins_2024_1407775
crossref_primary_10_1016_j_psyneuen_2024_107020
crossref_primary_10_1038_s41598_022_21917_7
crossref_primary_10_1111_cogs_13099
crossref_primary_10_3758_s13423_023_02382_3
crossref_primary_10_1016_j_jenvp_2024_102337
crossref_primary_10_1371_journal_pone_0308768
crossref_primary_10_1016_j_drugalcdep_2025_112704
crossref_primary_10_1080_15213269_2022_2161576
crossref_primary_10_1007_s10212_025_00951_9
crossref_primary_10_1016_j_ijchp_2024_100476
crossref_primary_10_1016_j_jpsychires_2025_03_046
crossref_primary_10_1093_jnen_nlad064
crossref_primary_10_1177_00238309241247210
crossref_primary_10_1007_s00426_023_01833_9
crossref_primary_10_1016_j_psyneuen_2022_105734
crossref_primary_10_3389_fdpys_2024_1429845
crossref_primary_10_5674_jjppp_2505tn
crossref_primary_10_1038_s41598_024_82004_7
crossref_primary_10_1093_cercor_bhab360
crossref_primary_10_3758_s13421_022_01383_2
crossref_primary_10_1177_17470218221085943
crossref_primary_10_1016_j_anbehav_2023_09_001
crossref_primary_10_1016_j_jml_2025_104618
crossref_primary_10_1016_j_neuroimage_2023_119888
crossref_primary_10_3390_brainsci12020179
crossref_primary_10_1016_j_bbi_2024_09_010
crossref_primary_10_3758_s13421_025_01760_7
crossref_primary_10_1016_j_rmal_2025_100226
crossref_primary_10_1016_j_concog_2025_103851
crossref_primary_10_1016_j_jenvp_2024_102441
crossref_primary_10_1016_j_cogdev_2024_101462
crossref_primary_10_1111_jre_13269
crossref_primary_10_1016_j_brat_2023_104423
crossref_primary_10_3758_s13414_025_03072_z
crossref_primary_10_1016_j_bodyim_2024_101747
crossref_primary_10_1136_bmjopen_2021_054775
crossref_primary_10_1186_s13034_024_00776_2
crossref_primary_10_2174_0115672050370810250430112549
crossref_primary_10_1007_s00426_024_01979_0
crossref_primary_10_1016_j_caeo_2025_100243
crossref_primary_10_1177_25152459241287132
crossref_primary_10_1177_17470218231159787
crossref_primary_10_1177_09567976231225094
crossref_primary_10_2106_JBJS_24_00602
crossref_primary_10_3758_s13428_022_01902_8
crossref_primary_10_1161_JAHA_125_042144
crossref_primary_10_1016_j_jsp_2024_101399
crossref_primary_10_1177_00238309241258162
crossref_primary_10_3758_s13428_023_02137_x
crossref_primary_10_1007_s00426_025_02161_w
crossref_primary_10_1016_j_asmr_2024_101026
crossref_primary_10_1080_1743727X_2023_2215699
crossref_primary_10_1093_scipol_scaf012
crossref_primary_10_1016_j_aap_2024_107790
crossref_primary_10_1075_lab_24028_ran
crossref_primary_10_3758_s13428_025_02737_9
crossref_primary_10_1515_phon_2023_0002
crossref_primary_10_1080_15475441_2024_2313226
crossref_primary_10_3390_languages10020020
crossref_primary_10_1111_weng_12634
crossref_primary_10_1080_02699931_2024_2353775
crossref_primary_10_1115_1_4065269
crossref_primary_10_3168_jds_2024_25793
crossref_primary_10_1007_s00221_025_07060_5
crossref_primary_10_3389_fnint_2025_1454924
crossref_primary_10_1080_0163853X_2023_2185408
crossref_primary_10_3758_s13421_022_01367_2
crossref_primary_10_1016_j_cogdev_2024_101489
crossref_primary_10_3758_s13423_024_02581_6
crossref_primary_10_1016_j_cognition_2024_105731
crossref_primary_10_1162_jocn_a_02078
crossref_primary_10_3389_fpsyg_2023_1139128
crossref_primary_10_1016_j_concog_2025_103872
crossref_primary_10_1002_arcp_1101
crossref_primary_10_1098_rsos_211969
crossref_primary_10_1186_s12984_023_01257_x
crossref_primary_10_3758_s13421_025_01684_2
crossref_primary_10_1016_j_chiabu_2024_106874
crossref_primary_10_3758_s13423_022_02061_9
crossref_primary_10_1186_s12913_024_11733_2
crossref_primary_10_1080_09658211_2024_2336161
crossref_primary_10_1177_17479541241242951
crossref_primary_10_7554_eLife_89485_5
crossref_primary_10_1016_j_ijhcs_2023_103119
crossref_primary_10_1177_17470218231217732
crossref_primary_10_3389_fpsyt_2024_1213863
crossref_primary_10_1007_s10936_024_10078_5
crossref_primary_10_1016_j_neuron_2023_04_020
crossref_primary_10_1002_jeab_814
crossref_primary_10_1177_00131644241281049
crossref_primary_10_1080_10503307_2025_2494272
crossref_primary_10_1080_02640414_2024_2408195
crossref_primary_10_1016_j_cognition_2024_105966
crossref_primary_10_1016_j_brat_2022_104233
crossref_primary_10_3758_s13414_024_02992_6
crossref_primary_10_3390_healthcare11030335
crossref_primary_10_1016_j_cogdev_2025_101542
crossref_primary_10_3758_s13428_024_02507_z
crossref_primary_10_1016_j_cogdev_2025_101543
crossref_primary_10_1038_s41398_025_03411_6
crossref_primary_10_1016_j_dcn_2025_101599
crossref_primary_10_1121_10_0032400
crossref_primary_10_1038_s41598_025_04122_0
crossref_primary_10_1016_j_neuroimage_2024_120830
crossref_primary_10_1155_hbe2_4765842
crossref_primary_10_1016_j_arthro_2023_10_009
crossref_primary_10_1017_S1366728924000166
crossref_primary_10_1016_j_displa_2025_103146
crossref_primary_10_1177_13621688221140521
crossref_primary_10_1016_j_visres_2024_108535
crossref_primary_10_3758_s13414_025_03107_5
crossref_primary_10_3758_s13428_022_01989_z
crossref_primary_10_3390_agriculture14122140
crossref_primary_10_1016_j_bbr_2024_115078
crossref_primary_10_1016_j_brat_2023_104340
crossref_primary_10_1016_j_jml_2024_104535
crossref_primary_10_1080_13825585_2024_2361960
crossref_primary_10_1177_02654075221080128
crossref_primary_10_3758_s13428_023_02176_4
crossref_primary_10_1016_j_jml_2025_104644
crossref_primary_10_1111_bjop_12753
crossref_primary_10_1016_j_ijnsa_2025_100356
crossref_primary_10_1016_j_eja_2023_126984
crossref_primary_10_1111_bjso_12687
crossref_primary_10_1016_j_clinph_2023_09_011
crossref_primary_10_1038_s44271_025_00312_8
crossref_primary_10_1177_01461672241310917
crossref_primary_10_3758_s13421_024_01541_8
crossref_primary_10_3758_s13421_024_01549_0
crossref_primary_10_22430_22565337_2265
crossref_primary_10_3389_fpsyg_2022_845590
crossref_primary_10_3758_s13423_024_02575_4
crossref_primary_10_1016_j_lindif_2024_102593
crossref_primary_10_3758_s13428_024_02523_z
crossref_primary_10_1109_TOH_2023_3322557
crossref_primary_10_1177_01461672211067068
crossref_primary_10_3758_s13421_025_01706_z
crossref_primary_10_1016_j_neurobiolaging_2025_04_010
crossref_primary_10_1017_S1366728925100370
crossref_primary_10_1177_09567976241279291
crossref_primary_10_1111_jopy_13030
crossref_primary_10_1515_cllt_2023_0127
crossref_primary_10_1098_rsos_220595
crossref_primary_10_1121_10_0020064
crossref_primary_10_1162_jocn_a_02151
crossref_primary_10_1016_j_avrs_2025_100278
crossref_primary_10_1017_S1366728922000529
crossref_primary_10_1016_j_brainres_2025_149897
crossref_primary_10_1177_17470218221091096
crossref_primary_10_1038_s41398_025_03352_0
crossref_primary_10_1210_clinem_dgae488
crossref_primary_10_1111_cogs_70101
crossref_primary_10_1186_s13054_023_04562_y
crossref_primary_10_3390_healthcare12030375
crossref_primary_10_1016_j_anbehav_2024_123054
crossref_primary_10_3758_s13428_024_02572_4
crossref_primary_10_1016_j_cub_2025_01_045
crossref_primary_10_1016_j_cognition_2022_105168
crossref_primary_10_1016_j_appet_2022_106105
crossref_primary_10_1016_j_jesp_2025_104783
crossref_primary_10_1080_09658211_2023_2216910
crossref_primary_10_3390_jintelligence11040063
crossref_primary_10_3758_s13428_021_01730_2
crossref_primary_10_3758_s13428_023_02091_8
crossref_primary_10_1016_j_paid_2024_112806
crossref_primary_10_1016_j_janxdis_2024_102847
crossref_primary_10_1016_j_tsc_2025_101881
crossref_primary_10_3758_s13423_023_02348_5
crossref_primary_10_1002_ajpa_24981
crossref_primary_10_1016_j_neuropsychologia_2024_108832
crossref_primary_10_3758_s13415_025_01320_1
crossref_primary_10_1080_09658211_2025_2551232
crossref_primary_10_1109_TVCG_2022_3209443
crossref_primary_10_1007_s12144_022_03276_8
crossref_primary_10_1111_gcb_17168
crossref_primary_10_1017_langcog_2025_10009
crossref_primary_10_3758_s13423_025_02683_9
crossref_primary_10_3390_bs15010063
crossref_primary_10_1038_s41598_022_22866_x
crossref_primary_10_1162_opmi_a_00171
Cites_doi 10.18637/jss.v067.i01
10.1016/j.jesp.2017.09.004
10.1017/CBO9780511801686
10.1371/journal.pmed.0020124
10.1006/anbe.1996.0232
10.1348/000711009X441021
10.5334/joc.10
10.1038/485298a
10.7717/peerj.1226
10.2527/jas.2006-449
10.1016/j.jml.2007.12.005
10.1177/2515245918770963
10.1207/S15328007SEM0802
10.1177/1745691614551642
10.5281/zenodo.1341047
10.1371/journal.pbio.2000797
10.1016/j.cognition.2014.03.008
10.7717/peerj.4794
10.5334/joc.72
10.1080/00220970903292876
10.1007/s10211-004-0095-z
10.3758/s13428-016-0809-y
10.1198/000313001300339897
10.3389/fpsyg.2010.00238
10.1111/j.1740-9713.2007.00249.x
10.1016/j.jml.2017.01.001
10.1111/2041-210X.12306
10.1146/annurev.psych.59.103006.093735
10.1111/j.1541-0420.2007.00782.x
10.1111/2041-210X.12504
10.1037/a0031844
10.1016/j.jml.2012.11.001
10.1146/annurev-psych-122414-033702
10.1037/xge0000014
10.1177/2515245920965119
10.17077/f7kk-6w7f
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
5PM
DOI 10.3758/s13428-021-01546-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 2543
ExternalDocumentID PMC8613146
33954914
10_3758_s13428_021_01546_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 203139
– fundername: Wellcome Trust
  grantid: 104571
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PRQQA
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c607t-49f60ea3ab80e12e945c2fb025b8c08005fd236b2a5991e7d64a45c3d9b488533
IEDL.DBID RSV
ISICitedReferencesCount 378
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647500300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1554-3528
1554-351X
IngestDate Tue Nov 04 02:00:55 EST 2025
Thu Sep 04 18:11:50 EDT 2025
Sat Nov 15 11:51:10 EST 2025
Mon Jul 21 06:00:13 EDT 2025
Sat Nov 29 02:18:10 EST 2025
Tue Nov 18 21:51:48 EST 2025
Fri Feb 21 02:46:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords lme4
R
Simulation
mixedpower
Power
Mixed models
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-49f60ea3ab80e12e945c2fb025b8c08005fd236b2a5991e7d64a45c3d9b488533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1145-4473
0000-0002-9994-0988
0000-0003-1354-4835
OpenAccessLink https://link.springer.com/10.3758/s13428-021-01546-0
PMID 33954914
PQID 2602033193
PQPubID 976348
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8613146
proquest_miscellaneous_2522619558
proquest_journals_2602033193
pubmed_primary_33954914
crossref_primary_10_3758_s13428_021_01546_0
crossref_citationtrail_10_3758_s13428_021_01546_0
springer_journals_10_3758_s13428_021_01546_0
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HoenigJMHeiseyDMThe abuse of power: The pervasive fallacy of power calculations for data analysisAmerican Statistician2001551192410.1198/000313001300339897
MaxwellSEKelleyKRauschJRSample Size Planning for Statistical Power and Accuracy in Parameter EstimationAnnual Review of Psychology200859153756310.1146/annurev.psych.59.103006.09373517937603
BrysbaertMStevensMPower Analysis and Effect Size in Mixed Effects Models: A TutorialJournal of Cognition20181112010.5334/joc.10
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine. https://doi.org/10.1371/journal.pmed.0020124
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Retrieved from http://utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf
von OertzenTBrandmaierAMOptimal study design with identical power: An application of power equivalence to latent growth curve modelsPsychology and Aging201328241442810.1037/a0031844
Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology. https://doi.org/10.1016/j.jesp.2017.09.004
LitièreSAlonsoAMolenberghsGType I and type II error under random-effects misspecification in generalized linear mixed modelsBiometrics20076341038104410.1111/j.1541-0420.2007.00782.x17425642
GelmanACarlinJBeyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) ErrorsPerspectives on Psychological Science20149664165110.1177/174569161455164226186114
JohnsonPCDBarrySJEFergusonHMMüllerPPower analysis for generalized linear mixed models in ecology and evolutionMethods in Ecology and Evolution20156213314210.1111/2041-210X.1230625893088
LeBeau, B. (2019). Power Analysis by Simulation using R and simglm. Retrieved from https://ir.uiowa.edu/pq_pubs/3
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3). https://doi.org/10.1016/j.jml.2012.11.001
Bates, D. M., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using lme4. Journal of Staistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
O’Brien, R., & Castelloe, J. (2007). Sample size analysis for traditional hypothesis testing: concepts and issues. In Pharmaceutical Statistics using SAS: A Practical Guide.
Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for Psychological Research : A Tutorial. https://doi.org/10.1177/2515245918770963
Nakagawa, S., & Foster, T. M. (2004). The case against retrospective statistical power analyses with an introduction to power analysis, 103–108. https://doi.org/10.1007/s10211-004-0095-z
Magnusson, K. (2018). Powerlmm: Power analysis for longitudinal multilevel models.
Lenth, R. V. (2007). Statistical power calculations. Journal of Animal Science, 85(13 Suppl). https://doi.org/10.2527/jas.2006-449
YanMZhouWShuHYusupuRMiaoDKrügelAKlieglREye movements guided by morphological structure: Evidence from the Uighur languageCognition2014132218121510.1016/j.cognition.2014.03.00824813572
WestfallJKennyDAJuddCMStatistical power and optimal design in experiments in which samples of participants respond to samples of stimuliJournal of Experimental Psychology: General201414352020204510.1037/xge0000014
YongEReplication studies: Bad copyNature2012485739829830010.1038/485298a22596136
Brysbaert, M. (2019). How Many Participants Do We Have to Include in Properly Powered Experiments ? A Tutorial of Power Analysis with Reference Tables, 2(1), 1–38.
MatuschekHKlieglRVasishthSBaayenHBatesDBalancing Type I error and power in linear mixed modelsJournal of Memory and Language20179430531510.1016/j.jml.2017.01.001
GreenPMacLeodCJSIMR: An R package for power analysis of generalized linear mixed models by simulationMethods in Ecology and Evolution20167449349810.1111/2041-210X.12504
Bates, D. M., Mächler, M., Zurich, E., Bolker, B. M., & Walker, S. C. (2015b). Fitting Linear Mixed-Effects Models Using lme4. JSS Journal of Statistical Software, 67. https://doi.org/10.18637/jss.v067.i01
Paxton, P., Curran, P. J., & Bollen, K. A. (2001). Monte Carlo Experiments : Design and Implementation Monte Carlo Experiments : Design and Implementation University of North Carolina at Chapel Hill, (April). https://doi.org/10.1207/S15328007SEM0802
KainMPBolkerBMMcCoyMWA practical guide and power analysis for GLMMs: detecting among treatment variation in random effectsPeerJ20153e122610.7717/peerj.1226264014464579019
von OertzenTPower equivalence in structural equation modellingBritish Journal of Mathematical and Statistical Psychology201063225727210.1348/000711009X441021
Konstantopoulos, S., & Taylor, P. (2020). Power Analysis in Two-Level Unbalanced Designs, 78(3), 291–317. https://doi.org/10.1080/00220970903292876
Coppock, A. (2013). 10 Things to Know About Statistical Power. Retrieved September 20, 2018, from http://egap.org/methods-guides/10-things-you-need-know-about statistical-power
JuddCMWestfallJKennyDAExperiments with More Than One Random Factor: Designs, Analytic Models, and Statistical PowerAnnual Review of Psychology201768January60162510.1146/annurev-psych-122414-03370227687116
Martin, J. (2012). PAMM: power analysis for random effects in mixed models.
HarrisonXADonaldsonLCorrea-CanoMEEvansJFisherDNGoodwinCEDA brief introduction to mixed effects modelling and multi-model inference in ecologyPeerJ20182018513210.7717/peerj.4794
Baayen, H. (2007). Analyzing linguistic data: a practical introduction to statistics using R.
BaayenHDavidsonDJBatesDMMixed-effects modeling with crossed random effects for subjects and itemsJournal of Memory and Language200859439041210.1016/j.jml.2007.12.005
Bates, D. M., Kliegl, R., Vasishth, S., & Baayen, R. H. (2015a). Parsimonious Mixed Models. Journal of Memory and Language, 27. Methodology.
Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R, (September 2016), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y
DeBruine, L. M., & Barr, D. J. (2021). Understanding mixed-effects models through data simulation. Advances in Methods and Practices in Psychological Science. https://doi.org/10.1177/2515245920965119
KlieglRWeiPDambacherMYanMZhouXExperimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attentionFrontiers in Psychology20111JAN11210.3389/fpsyg.2010.00238
Goldstein, H. (2007). Becoming familiar with multilevel modelling, 133–135. Retrieved from https://harveygoldsteinweb.files.wordpress.com/2019/02/becoming-familiar-with-multilevel-modelling.pdf
SzucsDIoannidisJPAEmpirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literaturePLoS Biology201715311810.1371/journal.pbio.2000797
Kumle, L., Võ, M. L.-H., & Draschkow, D. (2018). Mixedpower: a library for estimating simulation-based power for mixed models in R. https://doi.org/10.5281/zenodo.1341047
ThomasLJuanesFThe importance of statistical power analysis: An example from Animal BehaviourAnimal Behaviour199652485685910.1006/anbe.1996.0232
XA Harrison (1546_CR16) 2018; 2018
D Szucs (1546_CR37) 2017; 15
T von Oertzen (1546_CR40) 2013; 28
JM Hoenig (1546_CR17) 2001; 55
1546_CR25
J Westfall (1546_CR41) 2014; 143
1546_CR24
1546_CR23
SE Maxwell (1546_CR33) 2008; 59
1546_CR29
T von Oertzen (1546_CR39) 2010; 63
1546_CR27
H Matuschek (1546_CR32) 2017; 94
1546_CR26
M Brysbaert (1546_CR9) 2018; 1
CM Judd (1546_CR20) 2017; 68
L Thomas (1546_CR38) 1996; 52
E Yong (1546_CR43) 2012; 485
P Green (1546_CR15) 2016; 7
1546_CR5
R Kliegl (1546_CR22) 2011; 1
1546_CR4
H Baayen (1546_CR2) 2008; 59
1546_CR7
1546_CR6
1546_CR1
MP Kain (1546_CR21) 2015; 3
1546_CR3
1546_CR14
1546_CR36
1546_CR35
1546_CR12
1546_CR34
1546_CR11
S Litière (1546_CR28) 2007; 63
1546_CR18
PCD Johnson (1546_CR19) 2015; 6
M Yan (1546_CR42) 2014; 132
1546_CR8
A Gelman (1546_CR13) 2014; 9
1546_CR10
1546_CR31
1546_CR30
References_xml – reference: HarrisonXADonaldsonLCorrea-CanoMEEvansJFisherDNGoodwinCEDA brief introduction to mixed effects modelling and multi-model inference in ecologyPeerJ20182018513210.7717/peerj.4794
– reference: MatuschekHKlieglRVasishthSBaayenHBatesDBalancing Type I error and power in linear mixed modelsJournal of Memory and Language20179430531510.1016/j.jml.2017.01.001
– reference: DeBruine, L. M., & Barr, D. J. (2021). Understanding mixed-effects models through data simulation. Advances in Methods and Practices in Psychological Science. https://doi.org/10.1177/2515245920965119
– reference: YongEReplication studies: Bad copyNature2012485739829830010.1038/485298a22596136
– reference: Baayen, H. (2007). Analyzing linguistic data: a practical introduction to statistics using R.
– reference: Kumle, L., Võ, M. L.-H., & Draschkow, D. (2018). Mixedpower: a library for estimating simulation-based power for mixed models in R. https://doi.org/10.5281/zenodo.1341047
– reference: Bates, D. M., Kliegl, R., Vasishth, S., & Baayen, R. H. (2015a). Parsimonious Mixed Models. Journal of Memory and Language, 27. Methodology.
– reference: Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R, (September 2016), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y
– reference: HoenigJMHeiseyDMThe abuse of power: The pervasive fallacy of power calculations for data analysisAmerican Statistician2001551192410.1198/000313001300339897
– reference: LitièreSAlonsoAMolenberghsGType I and type II error under random-effects misspecification in generalized linear mixed modelsBiometrics20076341038104410.1111/j.1541-0420.2007.00782.x17425642
– reference: KlieglRWeiPDambacherMYanMZhouXExperimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attentionFrontiers in Psychology20111JAN11210.3389/fpsyg.2010.00238
– reference: LeBeau, B. (2019). Power Analysis by Simulation using R and simglm. Retrieved from https://ir.uiowa.edu/pq_pubs/3/
– reference: JuddCMWestfallJKennyDAExperiments with More Than One Random Factor: Designs, Analytic Models, and Statistical PowerAnnual Review of Psychology201768January60162510.1146/annurev-psych-122414-03370227687116
– reference: KainMPBolkerBMMcCoyMWA practical guide and power analysis for GLMMs: detecting among treatment variation in random effectsPeerJ20153e122610.7717/peerj.1226264014464579019
– reference: Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine. https://doi.org/10.1371/journal.pmed.0020124
– reference: Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Retrieved from http://utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf
– reference: JohnsonPCDBarrySJEFergusonHMMüllerPPower analysis for generalized linear mixed models in ecology and evolutionMethods in Ecology and Evolution20156213314210.1111/2041-210X.1230625893088
– reference: Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology. https://doi.org/10.1016/j.jesp.2017.09.004
– reference: Paxton, P., Curran, P. J., & Bollen, K. A. (2001). Monte Carlo Experiments : Design and Implementation Monte Carlo Experiments : Design and Implementation University of North Carolina at Chapel Hill, (April). https://doi.org/10.1207/S15328007SEM0802
– reference: O’Brien, R., & Castelloe, J. (2007). Sample size analysis for traditional hypothesis testing: concepts and issues. In Pharmaceutical Statistics using SAS: A Practical Guide.
– reference: BrysbaertMStevensMPower Analysis and Effect Size in Mixed Effects Models: A TutorialJournal of Cognition20181112010.5334/joc.10
– reference: Coppock, A. (2013). 10 Things to Know About Statistical Power. Retrieved September 20, 2018, from http://egap.org/methods-guides/10-things-you-need-know-about statistical-power
– reference: Brysbaert, M. (2019). How Many Participants Do We Have to Include in Properly Powered Experiments ? A Tutorial of Power Analysis with Reference Tables, 2(1), 1–38.
– reference: Martin, J. (2012). PAMM: power analysis for random effects in mixed models.
– reference: Nakagawa, S., & Foster, T. M. (2004). The case against retrospective statistical power analyses with an introduction to power analysis, 103–108. https://doi.org/10.1007/s10211-004-0095-z
– reference: ThomasLJuanesFThe importance of statistical power analysis: An example from Animal BehaviourAnimal Behaviour199652485685910.1006/anbe.1996.0232
– reference: von OertzenTBrandmaierAMOptimal study design with identical power: An application of power equivalence to latent growth curve modelsPsychology and Aging201328241442810.1037/a0031844
– reference: Bates, D. M., Mächler, M., Zurich, E., Bolker, B. M., & Walker, S. C. (2015b). Fitting Linear Mixed-Effects Models Using lme4. JSS Journal of Statistical Software, 67. https://doi.org/10.18637/jss.v067.i01
– reference: Bates, D. M., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using lme4. Journal of Staistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
– reference: Magnusson, K. (2018). Powerlmm: Power analysis for longitudinal multilevel models.
– reference: BaayenHDavidsonDJBatesDMMixed-effects modeling with crossed random effects for subjects and itemsJournal of Memory and Language200859439041210.1016/j.jml.2007.12.005
– reference: GreenPMacLeodCJSIMR: An R package for power analysis of generalized linear mixed models by simulationMethods in Ecology and Evolution20167449349810.1111/2041-210X.12504
– reference: GelmanACarlinJBeyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) ErrorsPerspectives on Psychological Science20149664165110.1177/174569161455164226186114
– reference: Goldstein, H. (2007). Becoming familiar with multilevel modelling, 133–135. Retrieved from https://harveygoldsteinweb.files.wordpress.com/2019/02/becoming-familiar-with-multilevel-modelling.pdf
– reference: Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for Psychological Research : A Tutorial. https://doi.org/10.1177/2515245918770963
– reference: Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3). https://doi.org/10.1016/j.jml.2012.11.001
– reference: Konstantopoulos, S., & Taylor, P. (2020). Power Analysis in Two-Level Unbalanced Designs, 78(3), 291–317. https://doi.org/10.1080/00220970903292876
– reference: von OertzenTPower equivalence in structural equation modellingBritish Journal of Mathematical and Statistical Psychology201063225727210.1348/000711009X441021
– reference: Lenth, R. V. (2007). Statistical power calculations. Journal of Animal Science, 85(13 Suppl). https://doi.org/10.2527/jas.2006-449
– reference: WestfallJKennyDAJuddCMStatistical power and optimal design in experiments in which samples of participants respond to samples of stimuliJournal of Experimental Psychology: General201414352020204510.1037/xge0000014
– reference: MaxwellSEKelleyKRauschJRSample Size Planning for Statistical Power and Accuracy in Parameter EstimationAnnual Review of Psychology200859153756310.1146/annurev.psych.59.103006.09373517937603
– reference: SzucsDIoannidisJPAEmpirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literaturePLoS Biology201715311810.1371/journal.pbio.2000797
– reference: YanMZhouWShuHYusupuRMiaoDKrügelAKlieglREye movements guided by morphological structure: Evidence from the Uighur languageCognition2014132218121510.1016/j.cognition.2014.03.00824813572
– ident: 1546_CR7
  doi: 10.18637/jss.v067.i01
– ident: 1546_CR1
  doi: 10.1016/j.jesp.2017.09.004
– ident: 1546_CR3
  doi: 10.1017/CBO9780511801686
– ident: 1546_CR18
  doi: 10.1371/journal.pmed.0020124
– volume: 52
  start-page: 856
  issue: 4
  year: 1996
  ident: 1546_CR38
  publication-title: Animal Behaviour
  doi: 10.1006/anbe.1996.0232
– volume: 63
  start-page: 257
  issue: 2
  year: 2010
  ident: 1546_CR39
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1348/000711009X441021
– ident: 1546_CR5
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  ident: 1546_CR9
  publication-title: Journal of Cognition
  doi: 10.5334/joc.10
– ident: 1546_CR30
– volume: 485
  start-page: 298
  issue: 7398
  year: 2012
  ident: 1546_CR43
  publication-title: Nature
  doi: 10.1038/485298a
– ident: 1546_CR10
– volume: 3
  start-page: e1226
  year: 2015
  ident: 1546_CR21
  publication-title: PeerJ
  doi: 10.7717/peerj.1226
– ident: 1546_CR6
  doi: 10.18637/jss.v067.i01
– ident: 1546_CR27
  doi: 10.2527/jas.2006-449
– volume: 59
  start-page: 390
  issue: 4
  year: 2008
  ident: 1546_CR2
  publication-title: Journal of Memory and Language
  doi: 10.1016/j.jml.2007.12.005
– ident: 1546_CR25
  doi: 10.1177/2515245918770963
– ident: 1546_CR36
  doi: 10.1207/S15328007SEM0802
– volume: 9
  start-page: 641
  issue: 6
  year: 2014
  ident: 1546_CR13
  publication-title: Perspectives on Psychological Science
  doi: 10.1177/1745691614551642
– ident: 1546_CR24
  doi: 10.5281/zenodo.1341047
– volume: 15
  start-page: 1
  issue: 3
  year: 2017
  ident: 1546_CR37
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.2000797
– volume: 132
  start-page: 181
  issue: 2
  year: 2014
  ident: 1546_CR42
  publication-title: Cognition
  doi: 10.1016/j.cognition.2014.03.008
– volume: 2018
  start-page: 1
  issue: 5
  year: 2018
  ident: 1546_CR16
  publication-title: PeerJ
  doi: 10.7717/peerj.4794
– ident: 1546_CR8
  doi: 10.5334/joc.72
– ident: 1546_CR23
  doi: 10.1080/00220970903292876
– ident: 1546_CR34
  doi: 10.1007/s10211-004-0095-z
– ident: 1546_CR29
  doi: 10.3758/s13428-016-0809-y
– volume: 55
  start-page: 19
  issue: 1
  year: 2001
  ident: 1546_CR17
  publication-title: American Statistician
  doi: 10.1198/000313001300339897
– ident: 1546_CR11
– volume: 1
  start-page: 1
  issue: JAN
  year: 2011
  ident: 1546_CR22
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2010.00238
– ident: 1546_CR14
  doi: 10.1111/j.1740-9713.2007.00249.x
– volume: 94
  start-page: 305
  year: 2017
  ident: 1546_CR32
  publication-title: Journal of Memory and Language
  doi: 10.1016/j.jml.2017.01.001
– volume: 6
  start-page: 133
  issue: 2
  year: 2015
  ident: 1546_CR19
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12306
– ident: 1546_CR31
– volume: 59
  start-page: 537
  issue: 1
  year: 2008
  ident: 1546_CR33
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.59.103006.093735
– volume: 63
  start-page: 1038
  issue: 4
  year: 2007
  ident: 1546_CR28
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00782.x
– ident: 1546_CR35
– volume: 7
  start-page: 493
  issue: 4
  year: 2016
  ident: 1546_CR15
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12504
– volume: 28
  start-page: 414
  issue: 2
  year: 2013
  ident: 1546_CR40
  publication-title: Psychology and Aging
  doi: 10.1037/a0031844
– ident: 1546_CR4
  doi: 10.1016/j.jml.2012.11.001
– volume: 68
  start-page: 601
  issue: January
  year: 2017
  ident: 1546_CR20
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev-psych-122414-033702
– volume: 143
  start-page: 2020
  issue: 5
  year: 2014
  ident: 1546_CR41
  publication-title: Journal of Experimental Psychology: General
  doi: 10.1037/xge0000014
– ident: 1546_CR12
  doi: 10.1177/2515245920965119
– ident: 1546_CR26
  doi: 10.17077/f7kk-6w7f
SSID ssj0038214
Score 2.7094498
Snippet Mixed-effects models are a powerful tool for modeling fixed and random effects simultaneously, but do not offer a feasible analytic solution for estimating the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2528
SubjectTerms Behavioral Science and Psychology
Cognitive Psychology
Computer Simulation
Data
Generalized linear models
Humans
Linear analysis
Linear Models
Null hypothesis
Planning
Power
Probability
Psychology
Random effects
Reliability
Reproducibility of Results
Research design
Sample Size
Simulation
World problems
Title Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R
URI https://link.springer.com/article/10.3758/s13428-021-01546-0
https://www.ncbi.nlm.nih.gov/pubmed/33954914
https://www.proquest.com/docview/2602033193
https://www.proquest.com/docview/2522619558
https://pubmed.ncbi.nlm.nih.gov/PMC8613146
Volume 53
WOSCitedRecordID wos000647500300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1554-3528
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038214
  issn: 1554-3528
  databaseCode: RSV
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB5B4dBLKWsDbWUkDiCIGttx7PRWVa04oAqVRe-CIid2SiRwq5cUAb-emWzoURUJzh47jmfxN7L9DcAzUXMnvTKxw-QrTk2m4rzkFv2qLvM0r03me02_0ScnZrHI346Pwtrptvt0JNlHasorEdTutVymxKYsKP1VODAm6rdwuzPkjqfvPk7xVxrB0-F5zDX9VregK7jy6vXIP85I-63n-M7_TXoTNkaoyQ4G27gLN3y4B-tzxPtxHz4doYMTZA1n7ILKpbEmsOdnAxN189O7F4xQqF2yr81371hfNqfdZweBUdUtlO4GwlhULrPBsY4YEdCiaZzTB_Dh-Oj94et4rLcQV1miuxhVkyXeSluaxHPh81RVoi4RFZWGCMkTVTshs1JYhajSa5elFkWky0sMA4gbH8JaOA9-C1hWcZdZbm1uMCWyrkzq2laV0ForjSgnAj6poKhGMnKqifGlwKSEVq4YVq7AlSv6lSuSCF7OfS4GKo6_Sm9Pmi1Gt2wLTN5EIjHqyAiezs3oUHRKYoM_v0QZQqQ8V8pE8GgwhPlzUtKpKE8j0CsmMgsQWfdqS2g-96TdBnET7koRvJoM5fe0rv-Lx_8m_gTWBdlaf91mG9a65aXfgdvVt65pl7twUy_Mbu8svwBZDQ6w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEB6kCvZF662uVo3gg6JLN8lesr4Vaal4PEit0hcJ2U22XWjTcnYr6q_vzN7kWCrocybZbOaSb0jyDcALUXErXaJCi8lXGKs0CfOCG_SrqsjjvFKp6zQ9y-ZzdXCQfxoehTXjbffxSLKL1JRXIqjdbLiMiU1ZUPqb4MCYqF-Pcceii3x7n7-O8VcqweP-ecwV_Za3oEu48vL1yD_OSLutZ-f2_016DW4NUJNt9bZxB645fxdWp4j38x5820YHJ8jqD9kZlUtjtWcvD3sm6vqXs68YoVCzYCf1D2dZVzanecu2PKOqWyjd9oSxqFxmvGUtMSKgRdM4e_fhy872_rvdcKi3EJZplLUhqiaNnJGmUJHjwuVxUoqqQFRUKCIkj5LKCpkWwiSIKl1m09igiLR5gWEAceMDWPGn3j0ElpbcpoYbkytMiYwtoqoyZSmyLEsyRDkB8FEFuhzIyKkmxrHGpIRWTvcrp3HldLdyOgrg9dTnrKfi-Kv0xqhZPbhlozF5E5HEqCMDeD41o0PRKYnx7vQcZQiR8jxJVADrvSFMn5OSTkV5HEC2ZCKTAJF1L7f4-qgj7VaIm3BXCuDNaCi_p3X1Xzz6N_FncHN3_-NMz97PPzyGVUF211292YCVdnHunsCN8ntbN4unnctcAK_HEKw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hglAvUF4lUMBIHEAQNbbjxOmtgq5AVKuKl3pBlhM7JRK4q90UQX99Z5JNYKmKhDh7HMeeGfsbjf0NwBNRcye90rHD4CtOdabiouQW_aoui7SodeY7Te_n06k-PCwOfnvF3912H1KS_ZsGYmkK7fbM1eTiEgHu9oLLlJiVBYXCCgfBoP1ySkWDKF5__2nYi6UWPO2fylzQb_U4Oocxz1-V_CNf2h1Dk-v_P4ENuLaEoGy3t5kbcMmHm7A-7oQ_b8HnPXR8grLhiM2ojBprAnt61DNUN6fePWOETu2cfWt-eMe6cjqLHbYbGFXjQum2J5JFpTMbHGuJKQEtnb7z7jZ8nOx9ePk6XtZhiKssydsYVZYl3kpb6sRz4YtUVaIuES2VmojKE1U7IbNSWIVo0-cuSy2KSFeUuD0gnrwDa-E4-LvAsoq7zHJrC42hknVlUte2qkSe5ypH9BMBH9RhqiVJOdXK-GowWKGVM_3KGVw5062cSSJ4PvaZ9RQdf5XeGrRslu66MBjUiUTibiQjeDw2o6NR9sQGf3yCMoRUeaGUjmCzN4pxOCkpW8rTCPIVcxkFiMR7tSU0Xzoyb414Ck-rCF4MRvPrty6exb1_E38EVw9eTcz-m-nb-7AuyOy6GzlbsNbOT_wDuFJ9b5vF_GHnPWcBCRmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+power+in+%28generalized%29+linear+mixed+models%3A+An+open+introduction+and+tutorial+in+R&rft.jtitle=Behavior+research+methods&rft.au=Kumle%2C+Levi&rft.au=V%C3%B5%2C+Melissa+L.-H.&rft.au=Draschkow%2C+Dejan&rft.date=2021-12-01&rft.pub=Springer+US&rft.issn=1554-351X&rft.eissn=1554-3528&rft.volume=53&rft.issue=6&rft.spage=2528&rft.epage=2543&rft_id=info:doi/10.3758%2Fs13428-021-01546-0&rft_id=info%3Apmid%2F33954914&rft.externalDocID=PMC8613146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon