Avoiding a replication crisis in deep-learning-based bioimage analysis

Deep learning algorithms are powerful tools for analyzing, restoring and transforming bioimaging data. One promise of deep learning is parameter-free one-click image analysis with expert-level performance in a fraction of the time previously required. However, as with most emerging technologies, the...

Full description

Saved in:
Bibliographic Details
Published in:Nature methods Vol. 18; no. 10; pp. 1136 - 1144
Main Authors: Laine, Romain F, Arganda-Carreras, Ignacio, Henriques, Ricardo, Jacquemet, Guillaume
Format: Journal Article
Language:English
Published: United States Nature Publishing Group 01.10.2021
Subjects:
ISSN:1548-7091, 1548-7105, 1548-7105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning algorithms are powerful tools for analyzing, restoring and transforming bioimaging data. One promise of deep learning is parameter-free one-click image analysis with expert-level performance in a fraction of the time previously required. However, as with most emerging technologies, the potential for inappropriate use is raising concerns among the research community. In this Comment, we discuss key concepts that we believe are important for researchers to consider when using deep learning for their microscopy studies. We describe how results obtained using deep learning can be validated and propose what should, in our view, be considered when choosing a suitable tool. We also suggest what aspects of a deep learning analysis should be reported in publications to ensure reproducibility. We hope this perspective will foster further discussion among developers, image analysis specialists, users and journal editors to define adequate guidelines and ensure the appropriate use of this transformative technology.
AbstractList Deep learning algorithms are powerful tools for analyzing, restoring and transforming bioimaging data. One promise of deep learning is parameter-free one-click image analysis with expert-level performance in a fraction of the time previously required. However, as with most emerging technologies, the potential for inappropriate use is raising concerns among the research community. In this Comment, we discuss key concepts that we believe are important for researchers to consider when using deep learning for their microscopy studies. We describe how results obtained using deep learning can be validated and propose what should, in our view, be considered when choosing a suitable tool. We also suggest what aspects of a deep learning analysis should be reported in publications to ensure reproducibility. We hope this perspective will foster further discussion among developers, image analysis specialists, users and journal editors to define adequate guidelines and ensure the appropriate use of this transformative technology.
Author Henriques, Ricardo
Arganda-Carreras, Ignacio
Jacquemet, Guillaume
Laine, Romain F
Author_xml – sequence: 1
  givenname: Romain F
  surname: Laine
  fullname: Laine, Romain F
  organization: Micrographia Bio, Translation and Innovation Hub, London, UK
– sequence: 2
  givenname: Ignacio
  surname: Arganda-Carreras
  fullname: Arganda-Carreras, Ignacio
  organization: Donostia International Physics Center (DIPC), San Sebastian, Spain
– sequence: 3
  givenname: Ricardo
  surname: Henriques
  fullname: Henriques, Ricardo
  organization: Instituto Gulbenkian de Ciência, Oeiras, Portugal
– sequence: 4
  givenname: Guillaume
  orcidid: 0000-0002-9286-920X
  surname: Jacquemet
  fullname: Jacquemet, Guillaume
  email: guillaume.jacquemet@abo.fi, guillaume.jacquemet@abo.fi, guillaume.jacquemet@abo.fi
  organization: Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland. guillaume.jacquemet@abo.fi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34608322$$D View this record in MEDLINE/PubMed
BookMark eNpd0D1PwzAQBmALFdEP-AMMKBILi-H8kdgeq4oCUiUWmCPHvlSu0iTEDVL_PRa0C9O9w6PT3Tsnk7ZrkZBbBo8MhH6KkuWGU-CMAuNaUnFBZiyXmioG-eScwbApmce4AxBC8vyKTIUsQAvOZ2S9_O6CD-02s9mAfROcPYSuzdwQYohZaDOP2NMG7dAmRSsb0WdV6MLebjGzrW2OCV6Ty9o2EW9Oc0E-188fq1e6eX95Wy031BWgDlQ4VklR6xqdVt4iqLxitRFOyxSkA-6d5-i5MmBQAFcVeFHkWlleFxzEgjz87e2H7mvEeCj3ITpsGttiN8aS58oIzWShE73_R3fdOKR7f5U2qZzCJHV3UmO1R1_2Q3psOJbnhsQPakdo7A
CitedBy_id crossref_primary_10_1038_s41592_022_01639_4
crossref_primary_10_1242_jeb_247046
crossref_primary_10_1242_jcs_258986
crossref_primary_10_1371_journal_pone_0302537
crossref_primary_10_3389_fbioe_2023_1225495
crossref_primary_10_1016_j_nlm_2025_108035
crossref_primary_10_1038_s41592_025_02835_8
crossref_primary_10_1016_j_crmeth_2025_101179
crossref_primary_10_1038_s41467_025_60093_w
crossref_primary_10_1051_epjconf_202226604007
crossref_primary_10_1016_j_copbio_2023_103055
crossref_primary_10_1016_j_bpr_2025_100201
crossref_primary_10_1038_s41592_024_02307_5
crossref_primary_10_1038_s41592_023_01987_9
crossref_primary_10_1371_journal_pcbi_1012874
crossref_primary_10_20517_evcna_2025_35
crossref_primary_10_1038_s41592_023_02138_w
crossref_primary_10_12688_f1000research_143062_1
crossref_primary_10_1016_j_sbi_2024_102842
crossref_primary_10_1038_s41592_022_01602_3
crossref_primary_10_1038_s41467_025_60709_1
crossref_primary_10_1038_s41467_022_32626_0
crossref_primary_10_1080_15321819_2024_2412528
crossref_primary_10_1038_s44303_025_00097_9
crossref_primary_10_1109_TIM_2023_3272405
crossref_primary_10_1038_s41467_024_51202_2
crossref_primary_10_1038_s42003_022_03634_z
crossref_primary_10_1097_j_pain_0000000000002758
crossref_primary_10_1093_ajcp_aqac178
crossref_primary_10_1016_j_devcel_2022_09_016
crossref_primary_10_1038_s41467_024_49444_1
crossref_primary_10_1038_s41592_023_02057_w
crossref_primary_10_1109_TIM_2025_3575962
crossref_primary_10_1177_00131644241262964
crossref_primary_10_1038_s42003_022_04117_x
crossref_primary_10_3758_s13428_024_02390_8
crossref_primary_10_1016_j_ceb_2023_102271
crossref_primary_10_1038_s41522_022_00362_4
crossref_primary_10_1016_j_addr_2023_115138
crossref_primary_10_1515_nanoph_2022_0197
crossref_primary_10_3390_socsci12010015
crossref_primary_10_1038_s41592_024_02295_6
crossref_primary_10_1111_jmi_13288
crossref_primary_10_1242_jcs_261545
crossref_primary_10_1016_j_softx_2024_101638
crossref_primary_10_1038_s41598_024_51381_4
crossref_primary_10_1038_s41598_023_33433_3
crossref_primary_10_1136_bmjhci_2024_101184
crossref_primary_10_1007_s43670_022_00043_5
crossref_primary_10_1242_jcs_263801
crossref_primary_10_1038_s41467_024_48575_9
crossref_primary_10_1016_j_crmeth_2023_100597
crossref_primary_10_1137_23M1568739
crossref_primary_10_1073_pnas_2412261122
crossref_primary_10_1007_s00204_024_03922_z
crossref_primary_10_1038_s41592_025_02678_3
crossref_primary_10_1038_s41587_025_02553_8
crossref_primary_10_1038_s41467_023_36960_9
crossref_primary_10_1016_j_addr_2023_114974
crossref_primary_10_1109_TGRS_2024_3446950
crossref_primary_10_7554_eLife_88463
crossref_primary_10_3389_fphy_2021_776805
crossref_primary_10_1038_s41467_023_37447_3
crossref_primary_10_1371_journal_pcbi_1013058
crossref_primary_10_7554_eLife_88463_4
crossref_primary_10_1371_journal_pcbi_1011836
crossref_primary_10_1038_s43586_022_00168_w
crossref_primary_10_1242_jcs_260728
crossref_primary_10_7554_eLife_79519
ContentType Journal Article
Copyright Springer Nature America, Inc. 2021.
Copyright_xml – notice: Springer Nature America, Inc. 2021.
DBID CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
DOI 10.1038/s41592-021-01284-3
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 1144
ExternalDocumentID 34608322
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/T027924/1
– fundername: Wellcome Trust
  grantid: 203276
– fundername: European Research Council
  grantid: 101001332
– fundername: Medical Research Council
  grantid: MR/V039229/1
GroupedDBID ---
-~X
0R~
123
29M
39C
4.4
53G
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHBH
AARCD
AAYZH
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
ECM
EE.
EIF
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NFIDA
NNMJJ
NPM
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
3V.
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
AGSTI
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c607t-3c1b43f8fec87dae075b1f93c845b14c02dcd2ed27909e3027b0d36587a2f6203
IEDL.DBID BENPR
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703607700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1548-7091
1548-7105
IngestDate Thu Sep 04 20:18:33 EDT 2025
Mon Oct 06 17:04:27 EDT 2025
Mon Jul 21 06:03:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-3c1b43f8fec87dae075b1f93c845b14c02dcd2ed27909e3027b0d36587a2f6203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9286-920X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7611896
PMID 34608322
PQID 2578915469
PQPubID 28015
PageCount 9
ParticipantIDs proquest_miscellaneous_2579381468
proquest_journals_2578915469
pubmed_primary_34608322
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Nature methods
PublicationTitleAlternate Nat Methods
PublicationYear 2021
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
SSID ssj0033425
Score 2.6334233
Snippet Deep learning algorithms are powerful tools for analyzing, restoring and transforming bioimaging data. One promise of deep learning is parameter-free one-click...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1136
SubjectTerms Algorithms
Biomedical Research - methods
Biomedical Research - standards
Computational Biology - methods
Computational Biology - standards
Deep learning
Deep Learning - standards
Image analysis
Image processing
Image Processing, Computer-Assisted - standards
Learning algorithms
Machine learning
Medical imaging
Microscopy - methods
Microscopy - standards
New technology
Title Avoiding a replication crisis in deep-learning-based bioimage analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/34608322
https://www.proquest.com/docview/2578915469
https://www.proquest.com/docview/2579381468
Volume 18
WOSCitedRecordID wos000703607700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB2apIVemn532zSo0KsaraRY8qkkIUsgzWL6AUsvi_VVfKi9XW8C_fedsbXpqb3k8rCxMcYavzfWyPMA3qPmGe1izV10x1xbp7mzyfGkXJQiIB2mYaQ_mfncLhZllSfc-ryscsuJA1GHztMc-RGFVol6X5QfV784uUZRdTVbaOzAHnUqwzjfOz2fV5-3XKyUHmxXKS_nBqUx_zYjlD3qUbpo5aWkz2kkaa7-nWQOYjPbv-ttPoZHOc1kJ2NcPIF7sX0KD0bjyd_PYHZy0zWkWqxm63hbwmZIIX3Ts6ZlIcYVz5YSPzhpXWCu6ZqfyD-szp1MnsO32fnXswueHRW4L4TZcOWnTqtkU_TWhDpivuCmqVTeatzQXsjgg4xBmlKUkUqaTgSFSYqpZSqkUC9gt-3a-AqYrJOjXoHeqKmOydtC6Cn5YGFOY4q6mMDB9gEt82vRL_8-nQm8uz2MAU1VirqN3fVwTqloYtJO4OU4CMvV2HljqXQhiIJe___ib-ChpHEd1twdwO5mfR3fwn1_s2n69SHsmIUZ0B7meMG9y9MPiFfiklBWhGbEL4jz6gqxOv7-B7-qzHU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioXni0sFDASHK16bRM7B4QqYNVqtysOReotxC-UA8my2Rb1T_EbmcmjnODWA7dIiSw5M_4-j2c8H8Br5DyjXSy5i-4t19Zp7mxyPCkXpQgIh6mz9MIsl_bsLP-8Bb_GuzBUVjliYgfUofF0Rn5ArpUj32f5-9UPTqpRlF0dJTR6t5jHy58YsrXvjj-ifd9IOft0-uGID6oC3GfCbLjyU6dVsil6a0IZkTPdNOXKW40P2gsZfJAxSJOLPFJaz4mgkKhNKVMmhcJxb8BNjYEXlZCdiPmI_ErpTuSVogBukIiHSzpC2YMWiZLqPCUF70gJXP19S9tR2-ze__ZT7sPdYRPNDnuvfwBbsX4It3tZzctHMDu8aCriZFaydbxK0DMEyLZqWVWzEOOKD4IZ3zgxeWCuaqrviK6sHPq07MKXa5nEHmzXTR2fAJNlctQJ0Rs11TF5mwk9JZUv3LGZrMwmsD8apBgWfVv8scYEXl29xuVKOZiyjs15902u6NjVTuBxb_Ri1fcVKZTOBAHs038P_hJ2jk5PFsXieDl_Bnck-VRXXbgP25v1eXwOt_zFpmrXLzrvZPD1ui3_G0soHyg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8lAvPAtdKGAkOFrrtd3YOSBUUVZUrVZ7AKniEuIXyoFk2WyL-tf4dczkUU5w64FbpESWnBl_39gzng_gNXKe0S6W3EV3wLV1mjubHE_KRSkCwmHqLH1qFgt7dpYvt-DXeBeGyipHTOyAOjSezsin5Fo58n2WT9NQFrE8mr9b_eCkIEWZ1lFOo3eRk3j5E7dv7dvjI7T1GynnHz69_8gHhQHuM2E2XPmZ0yrZFL01oYzIn26WcuWtxgfthQw-yBikyUUeKcXnRFBI2qaUKZNC4bg34KbRmaVysuXBl5EFlNKd4CvtCLhBUh4u7Ahlpy2SJtV8StrIIz1w9ffwtqO5-b3_-Qfdh7tDcM0O-9XwALZi_RBu93Kbl49gfnjRVMTVrGTreJW4ZwicbdWyqmYhxhUfhDS-cWL4wFzVVN8RdVk59G_Zhc_XMonHsF03ddwDJsvkqEOiN2qmY_I2E3pG6l8YyZmszCawPxqnGMCgLf5YZgKvrl7jMqbcTFnH5rz7Jld0HGsn8KR3gGLV9xsplM4EAe_Tfw_-Eu6gwYvT48XJM9iR5F5d0eE-bG_W5_E53PIXm6pdv-gclcHX6zb8b7mxKCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Avoiding+a+replication+crisis+in+deep-learning-based+bioimage+analysis&rft.jtitle=Nature+methods&rft.au=Laine%2C+Romain+F&rft.au=Arganda-Carreras+Ignacio&rft.au=Henriques%2C+Ricardo&rft.au=Jacquemet+Guillaume&rft.date=2021-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=18&rft.issue=10&rft.spage=1136&rft.epage=1144&rft_id=info:doi/10.1038%2Fs41592-021-01284-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon