Prediction of acute kidney injury risk after cardiac surgery: using a hybrid machine learning algorithm

Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conduc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC medical informatics and decision making Ročník 22; číslo 1; s. 137 - 10
Hlavní autoři: Petrosyan, Yelena, Mesana, Thierry G., Sun, Louise Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 18.05.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1472-6947, 1472-6947
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer–Lemeshow goodness-of-fit test) in the validation datasets. Results Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer–Lemeshow p  = 0.804, and AUC = 0.74, Hosmer–Lemeshow p  = 0.347, respectively). Conclusions We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
AbstractList Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models.BACKGROUNDAcute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models.We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer-Lemeshow goodness-of-fit test) in the validation datasets.METHODSWe conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer-Lemeshow goodness-of-fit test) in the validation datasets.Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer-Lemeshow p = 0.804, and AUC = 0.74, Hosmer-Lemeshow p = 0.347, respectively).RESULTSOf 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer-Lemeshow p = 0.804, and AUC = 0.74, Hosmer-Lemeshow p = 0.347, respectively).We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.CONCLUSIONSWe demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer–Lemeshow goodness-of-fit test) in the validation datasets. Results Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer–Lemeshow p = 0.804, and AUC = 0.74, Hosmer–Lemeshow p = 0.347, respectively). Conclusions We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
Abstract Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer–Lemeshow goodness-of-fit test) in the validation datasets. Results Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer–Lemeshow p = 0.804, and AUC = 0.74, Hosmer–Lemeshow p = 0.347, respectively). Conclusions We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer-Lemeshow goodness-of-fit test) in the validation datasets. Results Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer-Lemeshow p = 0.804, and AUC = 0.74, Hosmer-Lemeshow p = 0.347, respectively). Conclusions We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies. Keywords: Cardiac surgery-associated acute kidney injury, Machine Learning, Random Forests, Data mining, Predictive modeling
Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer-Lemeshow goodness-of-fit test) in the validation datasets. Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer-Lemeshow p = 0.804, and AUC = 0.74, Hosmer-Lemeshow p = 0.347, respectively). We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer-Lemeshow goodness-of-fit test) in the validation datasets. Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer-Lemeshow p = 0.804, and AUC = 0.74, Hosmer-Lemeshow p = 0.347, respectively). We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict cardiac surgery-associated AKI of any severity and compared its performance with parametric statistical models. Methods We conducted a retrospective study of adult patients who underwent major cardiac surgery requiring cardiopulmonary bypass between November 1st, 2009 and March 31st, 2015. AKI was defined according to the KDIGO criteria as stage 1 or greater, within 7 days of surgery. We randomly split the cohort into derivation and validation datasets. We developed three AKI risk models: (1) a hybrid machine learning (ML) algorithm, using Random Forests for variable selection, followed by high performance logistic regression; (2) a traditional logistic regression model and (3) an enhanced logistic regression model with 500 bootstraps, with backward variable selection. For each model, we assigned risk scores to each of the retained covariate and assessed model discrimination (C statistic) and calibration (Hosmer–Lemeshow goodness-of-fit test) in the validation datasets. Results Of 6522 included patients, 1760 (27.0%) developed AKI. The best performance was achieved by the hybrid ML algorithm to predict AKI of any severity. The ML and enhanced statistical models remained robust after internal validation (C statistic = 0.75; Hosmer–Lemeshow p  = 0.804, and AUC = 0.74, Hosmer–Lemeshow p  = 0.347, respectively). Conclusions We demonstrated that a hybrid ML model provides higher accuracy without sacrificing parsimony, computational efficiency, or interpretability, when compared with parametric statistical models. This score-based model can easily be used at the bedside to identify high-risk patients who may benefit from intensive perioperative monitoring and personalized management strategies.
ArticleNumber 137
Audience Academic
Author Petrosyan, Yelena
Sun, Louise Y.
Mesana, Thierry G.
Author_xml – sequence: 1
  givenname: Yelena
  surname: Petrosyan
  fullname: Petrosyan, Yelena
  organization: Cardiocore Big Data Research Unit, University of Ottawa Heart Institute
– sequence: 2
  givenname: Thierry G.
  surname: Mesana
  fullname: Mesana, Thierry G.
  organization: Cardiocore Big Data Research Unit, University of Ottawa Heart Institute
– sequence: 3
  givenname: Louise Y.
  surname: Sun
  fullname: Sun, Louise Y.
  email: lsun@ottawaheart.ca
  organization: Cardiocore Big Data Research Unit, University of Ottawa Heart Institute, Division of Cardiac Anesthesiology, University of Ottawa Heart Institute, School of Epidemiology and Public Health, University of Ottawa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35585624$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFCEYxiemxn7oP-DBkHjxMi0wAwMeTJpGbZMmetAzecvHLNsZqDDTZv972d3adhvTcIDA8_xeXngOq70Qg62q9wQfEyL4SSZUElJjSmtMBJP13avqgLQdrblsu70n6_3qMOclxqQTDXtT7TeMCcZpe1D1P5M1Xk8-BhQdAj1PFl17E-wK-bCc0woln68RuMkmpCEZDxrlOfU2rT6jOfvQI0CL1VXyBo2gFz5YNFhIYXMy9DH5aTG-rV47GLJ9dz8fVb-_ff11dl5f_vh-cXZ6WWuOu6kmGhuuWwKcATENaU3XOWZl0xEJxjYYc9a6hnEinGBUs1ZYKQyV1BloqGmOqost10RYqpvkR0grFcGrzUZMvYI0eT1YZQxoyTomhYRWcyccxq0k2BntMIi2sL5sWTfz1WiNtmFKMOxAd0-CX6g-3qryK6JjogA-3QNS_DPbPKnRZ22HAYKNc1aUcy4xb6ks0o_PpMs4p1CeaqNqOGOEPap6KA344GKpq9dQddrhwqElDEV1_B9VGcaOXpcMOV_2dwwfnjb60OG_mBQB3Qp0ijkn6x4kBKt1FtU2i6rQ1CaL6q6YxDOT9hOsk1au44eXrc3WmkudUKL2-BovuP4CBjDy5g
CitedBy_id crossref_primary_10_2147_CLEP_S404580
crossref_primary_10_3389_fmed_2023_1050255
crossref_primary_10_1016_j_jclinane_2025_111782
crossref_primary_10_1186_s12911_024_02758_y
crossref_primary_10_1053_j_jvca_2023_06_045
crossref_primary_10_1097_ALN_0000000000004764
Cites_doi 10.7326/0003-4819-128-3-199802010-00005
10.4103/0971-9784.191578
10.1093/bib/bbs034
10.1023/A:1010933404324
10.1161/CIRCULATIONAHA.108.786913
10.1056/NEJMicm064659
10.1681/ASN.2003100875
10.1097/00000542-200102000-00006
10.1017/ice.2015.327
10.1016/j.athoracsur.2011.09.010
10.1161/circ.54.3.947585
10.1001/jama.297.16.1801
10.1002/art.21695
10.1016/j.amjsurg.2013.04.006
10.1046/j.1492-7535.2003.00029.x
10.1371/journal.pone.0217057
10.1097/ALN.0000000000002298
10.1191/0267659105pf829oa
10.1038/kisup.2012.1
10.1038/sj.ki.5002419
10.1186/s13054-014-0606-x
10.1186/1756-0500-4-299
10.1002/sim.7591
10.7717/peerj.6339
10.1016/j.athoracsur.2011.09.073
10.1002/sim.3104
10.1186/s12859-018-2264-5
10.1016/j.jtcvs.2013.06.049
10.1016/j.ejcts.2011.06.015
10.1002/sim.1742
10.1016/0003-4975(96)00055-0
10.1016/j.ahj.2003.12.042
10.1016/j.pmrj.2013.07.007
10.1681/ASN.2011090940
10.1016/j.jcrc.2015.11.004
10.1177/070674370705200210
10.1371/journal.pone.0098028
10.1053/j.ajkd.2009.01.267
10.1186/cc7894
10.1371/journal.pone.0096385
10.1007/s12630-014-0302-y
10.1016/j.athoracsur.2010.08.018
10.1161/CIRCULATIONAHA.106.635573
10.1007/s10916-011-9730-1
10.1186/cc13041
10.1371/journal.pone.0149089
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12911-022-01859-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 10
ExternalDocumentID oai_doaj_org_article_ddac9575989a4c6f8f004910fdcf0a84
PMC9118758
A704292022
35585624
10_1186_s12911_022_01859_w
Genre Journal Article
GeographicLocations Canada
United States--US
GeographicLocations_xml – name: Canada
– name: United States--US
GrantInformation_xml – fundername: University of Ottawa
  funderid: http://dx.doi.org/10.13039/100008572
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c607t-1c0d6c41a65a1d314d77f5e93719ade300654f35618f852c548e98d292fda32d3
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797513300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1472-6947
IngestDate Fri Oct 03 12:43:44 EDT 2025
Tue Nov 04 01:59:10 EST 2025
Fri Sep 05 11:31:33 EDT 2025
Mon Nov 24 18:15:13 EST 2025
Tue Nov 11 10:22:58 EST 2025
Tue Nov 04 17:13:50 EST 2025
Mon Jul 21 06:00:20 EDT 2025
Sat Nov 29 06:13:56 EST 2025
Tue Nov 18 21:59:30 EST 2025
Sat Sep 06 07:31:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cardiac surgery-associated acute kidney injury
Random Forests
Predictive modeling
Data mining
Machine Learning
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-1c0d6c41a65a1d314d77f5e93719ade300654f35618f852c548e98d292fda32d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12911-022-01859-w
PMID 35585624
PQID 2666365515
PQPubID 42572
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ddac9575989a4c6f8f004910fdcf0a84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9118758
proquest_miscellaneous_2666906429
proquest_journals_2666365515
gale_infotracmisc_A704292022
gale_infotracacademiconefile_A704292022
pubmed_primary_35585624
crossref_primary_10_1186_s12911_022_01859_w
crossref_citationtrail_10_1186_s12911_022_01859_w
springer_journals_10_1186_s12911_022_01859_w
PublicationCentury 2000
PublicationDate 2022-05-18
PublicationDateYYYYMMDD 2022-05-18
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J Cremer (1859_CR43) 1996; 61
JR Brown (1859_CR4) 2007; 116
J Li (1859_CR17) 2016; 11
A Liam (1859_CR32) 2002; 2
SU Nigwekar (1859_CR50) 2009; 54
CV Thakar (1859_CR11) 2003; 7
DT Tran (1859_CR25) 2012; 41
MN Wright (1859_CR34) 2019; 7
A Parolari (1859_CR5) 2012; 93
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (1859_CR19) 2012; 2
MM Ward (1859_CR16) 2006; 55
DN Wijeysundera (1859_CR10) 2007; 297
CM Mangano (1859_CR2) 1998; 128
P Jorge-Monjas (1859_CR47) 2016; 31
AM Robert (1859_CR3) 2010; 90
C van Walraven (1859_CR37) 2016; 37
JY Dupuis (1859_CR24) 2001; 94
H Palomba (1859_CR13) 2007; 72
K Karkouti (1859_CR28) 2009; 119
LM Sullivan (1859_CR38) 2004; 23
MN Machado (1859_CR41) 2014; 9
PC Austin (1859_CR30) 2008; 27
L Campeau (1859_CR26) 1976; 54
J Maroco (1859_CR45) 2011; 4
L Breiman (1859_CR31) 2001; 45
S Doerken (1859_CR35) 2019; 14
K Birnie (1859_CR20) 2014; 18
LY Sun (1859_CR18) 2018; 129
CE Lok (1859_CR14) 2004; 148
SY Ng (1859_CR22) 2014; 147
FT Billings (1859_CR21) 2012; 23
DL Streiner (1859_CR39) 2007; 52
A Ozcift (1859_CR46) 2012; 36
C Ortega-Loubon (1859_CR8) 2016; 19
I Bahar (1859_CR29) 2005; 20
K Karkouti (1859_CR23) 2015; 62
FJ Abelha (1859_CR7) 2009; 13
M Legrand (1859_CR27) 2013; 17
R Couronne (1859_CR49) 2018; 19
HC Kang (1859_CR42) 2007; 357
1859_CR36
KL Sainani (1859_CR40) 2013; 5
HS Gurm (1859_CR15) 2014; 9
WG Touw (1859_CR33) 2013; 14
RH Mehta (1859_CR9) 2006; 114
M Biteker (1859_CR6) 2014; 207
I Sgouralis (1859_CR44) 2017; 34
SC Huen (1859_CR12) 2012; 93
BG Loef (1859_CR1) 2005; 16
PC Austin (1859_CR48) 2018; 37
References_xml – volume: 128
  start-page: 194
  issue: 3
  year: 1998
  ident: 1859_CR2
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-128-3-199802010-00005
– volume: 19
  start-page: 687
  issue: 4
  year: 2016
  ident: 1859_CR8
  publication-title: Ann Card Anaesth
  doi: 10.4103/0971-9784.191578
– volume: 14
  start-page: 315
  issue: 3
  year: 2013
  ident: 1859_CR33
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbs034
– volume: 45
  start-page: 5
  year: 2001
  ident: 1859_CR31
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 119
  start-page: 495
  issue: 4
  year: 2009
  ident: 1859_CR28
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.786913
– volume: 357
  issue: 18
  year: 2007
  ident: 1859_CR42
  publication-title: N Engl J Med
  doi: 10.1056/NEJMicm064659
– volume: 116
  start-page: I139
  issue: 11 Suppl
  year: 2007
  ident: 1859_CR4
  publication-title: Circulation
– volume: 16
  start-page: 195
  issue: 1
  year: 2005
  ident: 1859_CR1
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2003100875
– volume: 94
  start-page: 194
  issue: 2
  year: 2001
  ident: 1859_CR24
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200102000-00006
– volume: 37
  start-page: 455
  issue: 4
  year: 2016
  ident: 1859_CR37
  publication-title: Infect Control Hosp Epidemiol
  doi: 10.1017/ice.2015.327
– volume: 93
  start-page: 337
  issue: 1
  year: 2012
  ident: 1859_CR12
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2011.09.010
– volume: 54
  start-page: 522
  issue: 3
  year: 1976
  ident: 1859_CR26
  publication-title: Circulation
  doi: 10.1161/circ.54.3.947585
– volume: 297
  start-page: 1801
  issue: 16
  year: 2007
  ident: 1859_CR10
  publication-title: JAMA
  doi: 10.1001/jama.297.16.1801
– volume: 55
  start-page: 74
  issue: 1
  year: 2006
  ident: 1859_CR16
  publication-title: Arthritis Rheum
  doi: 10.1002/art.21695
– volume: 207
  start-page: 53
  issue: 1
  year: 2014
  ident: 1859_CR6
  publication-title: Am J Surg
  doi: 10.1016/j.amjsurg.2013.04.006
– volume: 7
  start-page: 143
  issue: 2
  year: 2003
  ident: 1859_CR11
  publication-title: Hemodial Int
  doi: 10.1046/j.1492-7535.2003.00029.x
– volume: 14
  issue: 5
  year: 2019
  ident: 1859_CR35
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0217057
– volume: 129
  start-page: 440
  issue: 3
  year: 2018
  ident: 1859_CR18
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002298
– volume: 20
  start-page: 317
  issue: 6
  year: 2005
  ident: 1859_CR29
  publication-title: Perfusion
  doi: 10.1191/0267659105pf829oa
– volume: 2
  start-page: 1
  year: 2012
  ident: 1859_CR19
  publication-title: Kidney Int Suppl
  doi: 10.1038/kisup.2012.1
– volume: 72
  start-page: 624
  issue: 5
  year: 2007
  ident: 1859_CR13
  publication-title: Kidney Int
  doi: 10.1038/sj.ki.5002419
– volume: 34
  start-page: 313
  issue: 3
  year: 2017
  ident: 1859_CR44
  publication-title: Math Med Biol
– volume: 18
  start-page: 606
  issue: 6
  year: 2014
  ident: 1859_CR20
  publication-title: Crit Care
  doi: 10.1186/s13054-014-0606-x
– volume: 4
  start-page: 299
  year: 2011
  ident: 1859_CR45
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-4-299
– volume: 37
  start-page: 1405
  issue: 8
  year: 2018
  ident: 1859_CR48
  publication-title: Stat Med
  doi: 10.1002/sim.7591
– ident: 1859_CR36
– volume: 7
  year: 2019
  ident: 1859_CR34
  publication-title: PeerJ
  doi: 10.7717/peerj.6339
– volume: 93
  start-page: 584
  issue: 2
  year: 2012
  ident: 1859_CR5
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2011.09.073
– volume: 27
  start-page: 3286
  issue: 17
  year: 2008
  ident: 1859_CR30
  publication-title: Stat Med
  doi: 10.1002/sim.3104
– volume: 19
  start-page: 270
  issue: 1
  year: 2018
  ident: 1859_CR49
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2264-5
– volume: 147
  start-page: 1875
  issue: 6
  year: 2014
  ident: 1859_CR22
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2013.06.049
– volume: 2
  start-page: 315
  issue: 3
  year: 2002
  ident: 1859_CR32
  publication-title: R News
– volume: 41
  start-page: 307
  issue: 2
  year: 2012
  ident: 1859_CR25
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1016/j.ejcts.2011.06.015
– volume: 23
  start-page: 1631
  issue: 10
  year: 2004
  ident: 1859_CR38
  publication-title: Stat Med
  doi: 10.1002/sim.1742
– volume: 61
  start-page: 1714
  issue: 6
  year: 1996
  ident: 1859_CR43
  publication-title: Ann Thorac Surg
  doi: 10.1016/0003-4975(96)00055-0
– volume: 148
  start-page: 430
  issue: 3
  year: 2004
  ident: 1859_CR14
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2003.12.042
– volume: 5
  start-page: 791
  issue: 9
  year: 2013
  ident: 1859_CR40
  publication-title: PM&R
  doi: 10.1016/j.pmrj.2013.07.007
– volume: 23
  start-page: 1221
  issue: 7
  year: 2012
  ident: 1859_CR21
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2011090940
– volume: 31
  start-page: 130
  issue: 1
  year: 2016
  ident: 1859_CR47
  publication-title: J Crit Care
  doi: 10.1016/j.jcrc.2015.11.004
– volume: 52
  start-page: 121
  issue: 2
  year: 2007
  ident: 1859_CR39
  publication-title: Can J Psychiatry
  doi: 10.1177/070674370705200210
– volume: 9
  issue: 5
  year: 2014
  ident: 1859_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098028
– volume: 54
  start-page: 413
  issue: 3
  year: 2009
  ident: 1859_CR50
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2009.01.267
– volume: 13
  start-page: R79
  issue: 3
  year: 2009
  ident: 1859_CR7
  publication-title: Crit Care
  doi: 10.1186/cc7894
– volume: 9
  issue: 5
  year: 2014
  ident: 1859_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0096385
– volume: 62
  start-page: 377
  issue: 4
  year: 2015
  ident: 1859_CR23
  publication-title: Can J Anaesth
  doi: 10.1007/s12630-014-0302-y
– volume: 90
  start-page: 1939
  issue: 6
  year: 2010
  ident: 1859_CR3
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2010.08.018
– volume: 114
  start-page: 2208
  issue: 21
  year: 2006
  ident: 1859_CR9
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.635573
– volume: 36
  start-page: 2577
  issue: 4
  year: 2012
  ident: 1859_CR46
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9730-1
– volume: 17
  start-page: R220
  issue: 5
  year: 2013
  ident: 1859_CR27
  publication-title: Crit Care
  doi: 10.1186/cc13041
– volume: 11
  issue: 2
  year: 2016
  ident: 1859_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0149089
SSID ssj0017835
Score 2.3748796
Snippet Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model...
Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model to predict...
Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning preoperative model...
Abstract Background Acute kidney injury (AKI) is a serious complication after cardiac surgery. We derived and internally validated a Machine Learning...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Acute Kidney Injury - diagnosis
Acute Kidney Injury - epidemiology
Acute Kidney Injury - etiology
Acute renal failure
Adult
Algorithms
Artificial intelligence
Calibration
Cardiac surgery-associated acute kidney injury
Cardiac Surgical Procedures - adverse effects
Cardiovascular disease
Care and treatment
Classification
Computer applications
Coronary artery bypass
Data mining
Datasets
Diagnosis
Feature selection
Generalized linear models
Goodness of fit
Health aspects
Health Informatics
Health risk assessment
Health risks
Heart
Heart surgery
Humans
Information Systems and Communication Service
Kidneys
Learning algorithms
Machine Learning
Management of Computing and Information Systems
Mathematical models
Medicine
Medicine & Public Health
Methods
Model accuracy
Mortality
Patient outcomes
Patients
Predictive modeling
Random Forests
Regression models
Retrospective Studies
Risk
Risk Assessment
Risk Factors
Risk groups
Statistical analysis
Statistical methods
Statistical models
Statistical tests
Surgery
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkJcEOUZKMhISBwgauLEic2tICoOUPUAUm-W48duoM2ifVD13zPjJEtTBFy4RbGt2DOf47E98w3AC8Gz0NSuSWVoQlrSTaFBLKVFMBJb8MKZmLXkY318LE9P1cmVVF_kE9bTA_eCO3DOWEVZJKUypa2CDGTU5llwNmRGRibQrFbjZmq4P6DzjDFERlYHK1zV6CiQkxuCFCq9mCxDka3_93_ylUXpusPktVvTuBgd3YHbgxXJDvve78EN392Fm5-Ge_J7MDtZ0jMJnS0CM3az9uxb6zp_ydruK8qRkU85ixnCmY0osWzVh0i_YeQMP2OGzS8pnoudR4dLz4YME1hyNlss2_X8_D58OXr_-d2HdEipkNoqq9dpbjNX2TI3lTC5K_LS1XUQnkjxlHG-iLGmoUCjSgYpuMX9jFfSccWDMwV3xQPY6RadfwTMSu9FQLVkIZRG2gY_UCIeGlOI0tQ-gXyUsLYD3zilvTjTcd8hK91rRaNWdNSKvkjg1bbN955t46-135LitjWJKTu-QPzoAT_6X_hJ4CWpXdN8xu5ZM4Ql4CCJGUsf1lnM6MV5AvuTmjgP7bR4BI4e_gMrjeZPVVRolYoEnm-LqSX5tnV-senrKNoHqgQe9jjbDonI79FCxV7WEwROxjwt6dp5ZAlXlEheyARej1j91a0_y_Tx_5DpE7jF41wTaS73YWe93PinsGt_rNvV8lmcqT8BVdVCTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagX3o9AQUZC4gBR83Jic0EFUXGAqgeQ9mZ5_dhdaJN2k6Xqv8fjOCkpohduq7Wt9ex8M-Ox5wHwimaJnVd6HjM7t3GBL4XSYSnOrWRuRZZr6buWfKkODthsxg_DhVsbwioHnegVtW4U3pHvOkNS5qWz7_T9yWmMXaPwdTW00LgON7BtNuK8mo0OV4q3GkOiDCt3W2fb8EIww2AERnl8NjFGvmb_35r5D9N0OWzy0tupN0n7d_6XmLtwOxxGyV6PnntwzdT34dbX8Nz-ABaHa_yMvCONJVJtOkN-rnRtzsmq_uHYQTA0nfhG40R5sCnS9pnW7wjG1C-IJMtzTAsjxz5u05DQqMKNHC3cprrl8UP4vv_p28fPcejMEKsyqbo4VYkuVZHKkspU52mhq8pSg7X1uNQm9ymrNndnM2YZzZRziwxnOuOZ1TLPdP4ItuqmNk-AKGYMtZzxxNpCMjV3P1A4WM1lTgtZmQjSgUVChbLl2D3jSHj3hZWiZ6twbBWereIsgjfjmpO-aMeVsz8g58eZWHDbf9GsFyLIr9BaKo7NTBmXhSots-hbpYnVyiaSFRG8RtwIVAtue0qG7AZHJBbYEntV4huDZVkEO5OZTpzVdHiAjAjqpBUXeIng5TiMKzFErjbNpp_D0Z3kETzugTqShDX03UHX7bKaQHhC83SkXi19sXGOgkVZBG8HsF9s69__6dOrqXgG25kXQxqnbAe2uvXGPIeb6le3atcvvBD_BhNET78
  priority: 102
  providerName: ProQuest
Title Prediction of acute kidney injury risk after cardiac surgery: using a hybrid machine learning algorithm
URI https://link.springer.com/article/10.1186/s12911-022-01859-w
https://www.ncbi.nlm.nih.gov/pubmed/35585624
https://www.proquest.com/docview/2666365515
https://www.proquest.com/docview/2666906429
https://pubmed.ncbi.nlm.nih.gov/PMC9118758
https://doaj.org/article/ddac9575989a4c6f8f004910fdcf0a84
Volume 22
WOSCitedRecordID wos000797513300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M0T
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbhMx0KItQrxwQxdKZCQkHmDVvW3z1qJWIEi0KgUFXizHRxLablAOqv49M97dwJZDghdrFY8VezyeGXsuQp7mSeRGzIxC7kYuzNBSqICWwtQpDiOS1ChfteQdGwz4cCjKJihs0Xq7tyZJz6n9sebF7gIkEz7nJehKwHMRnm-QLRB3DB35jt5_XNsO8C2jDY_57biOCPKZ-n_lxz8JpMvOkpcspl4QHd78vyXcIjcaxZPu1ZRym1yx1R1yrd-Y1u-ScTnHb9wnOnNU6dXS0pOpqewFnVZfAPUU3dCpLypOtScsTRd1VPVLiv7zY6ro5AJDwOiZ99G0tClKAT2n49l8upyc3SMfDg-OX70OmyoMoS4itgxjHZlCZ7EqchWbNM4MYy63mEdPKGNTH57qUtDDuON5ouEKZAU3iUicUWli0vtks5pVdptQza3NneAici5TXI_gDzIgoZFK80wxG5C43RipmxTlWCnjVPqrCi9kjUEJGJQeg_I8IM_XY77WCTr-Cr2P-72GxOTa_ofZfCybsyqNUVpg4VIuVKYLxx3eo-LIGe0ixbOAPENqkcgCYHpaNZEMsEhMpiX3WOSLgCVJQHY6kHB0dbe7pTfZsI6FBI2pSAtQZPOAPFl340h0h6vsbFXDCLw6ioA8qMlzvSTMlw9KLcySdQi3s-ZuTzWd-MTiAmvP5zwgL1ry_TGtP-P04b-BPyLXE38C8jDmO2RzOV_Zx-Sq_racLuY9ssGGzLe8R7b2DwblUc-_k0D7loXQ9qNjbFkJbZl_BqjyTb_81PNM4DufD1Bz
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxELZKQcAL97FQwEggHmDVXe9lIyFUjqpVk6gPReqbcXwkgXZTchDlT_EbmfHupmwRfesDb9Ha3tjeb2Z8zMxHyIuMRa5fmH7IXd-FKd4UKsBSmDjFoQVLjPKsJZ2i1-OHh2J_jfxqYmHQrbLRiV5Rm7HGM_JNMCR5koN9z96f_AiRNQpvVxsKjQoWe3a5gC3b9N3uJ_i-Lxnb_nzwcSesWQVCnUfFLIx1ZHKdxirPVGySODVF4TKLeeGEMjbx4ZYugXUFdzxjGpb0VnDDBHNGJcwk8N5L5HKaRglKUTc6WN1a4ClKE5jD880p2FI8gGTo_MAzES5axs9zBPxtCf4whWfdNM_c1XoTuH3zf5u8W-RGvdimW5V03CZrtrxDrnZrd4K7ZLA_wd-ITTp2VOn5zNLvI1PaJR2V3wBuFF3vqSdSp9oLk6bTKpL8LcWYgQFVdLjEsDd67P1SLa2JOKDkaACTMBse3yNfLmSY98l6OS7tQ0I1tzZzgovIuVRx3Yc_SEFs-irJUlXYgMQNJKSu07IjO8iR9NsznssKRhJgJD2M5CIgr1dtTqqkJOfW_oBIW9XEhOL-wXgykLV-ksYoLZCslQuV6txxh3vHOHJGu0jxNCCvEKcS1R50T6s6egMGiQnE5FYReeIzxgKy0aoJ6kq3ixuIylpdTuUpPgPyfFWMLdEFsLTjeVVH4HZZBORBJRirISFHACzkoZdFS2RaY26XlKOhT6YOkwVbdh6QN41wnXbr33P66PxRPCPXdg66HdnZ7e09JteZVwFZGPMNsj6bzO0TckX_nI2mk6degVDy9aKF7jeEfqrW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BQRUv3IVAASMh8QBRc8fmrRwrEGW1Eof6Zjk-dtMjqXazVP33eJyDphwS4i2Kx4qPb-yZzAXwLI0CU-Sq8KkpjJ-gpVBYLPmxEdT2iGIlXNWSvXw6pfv7bHYuit95u_cmyTamAbM0Vc3OiTIti9NsZ2VvKfy1F6FbAU2Zf3oZriToLof6-udvgx0B_2v0oTK_7Te6jlzW_l_P5nOX00XHyQvWU3cpTW78_3RuwvVOICW7LYJuwSVd3YbNT53J_Q7MZ0t8xv0jtSFCrhtNDktV6TNSVgd2Swi6pxNXbJxIBzhJVm209SuCfvVzIsjiDEPDyLHz3dSkK1ZhW47m9bJsFsd34evk3Zc37_2uOoMvsyBv_FAGKpNJKLJUhCoOE5XnJtWYX48JpWMXtmpiK59RQ9NIWtVIM6oiFhkl4kjFW7BR1ZW-D0RSrVPDKAuMSQSVhf1AYqFViDhNRK49CPtN4rJLXY4VNI64U2FoxtsV5HYFuVtBfurBi6HPSZu446_Ur3HvB0pMuu1e1Ms573iYKyUkw4KmlIlEZoYa1K_CwChpAkETD54jcjgeDXZ4UnQRDnaSmGSL7-aBKw4WRR5sjygtS8txc4893h0pK24lqSzOrICbevB0aMae6CZX6Xrd0jBUKZkH91qoDlPCPPpW2LWjzEcgHs153FKVC5dwnGFN-pR68LKH8s9h_XlNH_wb-RPYnL2d8L0P048P4VrkmCH1Q7oNG81yrR_BVfm9KVfLx47DfwDIJFJr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+acute+kidney+injury+risk+after+cardiac+surgery%3A+using+a+hybrid+machine+learning+algorithm&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Petrosyan%2C+Yelena&rft.au=Mesana%2C+Thierry+G&rft.au=Sun%2C+Louise+Y&rft.date=2022-05-18&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=22&rft.issue=1&rft.spage=137&rft_id=info:doi/10.1186%2Fs12911-022-01859-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon