Capsaicin-evoked CGRP release from rat buccal mucosa: development of a model system for studying trigeminal mechanisms of neurogenic inflammation

Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience Vol. 14; no. 7; pp. 1113 - 1120
Main Authors: Flores, Christopher M., Leong, Anthony S., O. Dussor, Gregory, Hargreaves, Kenneth M., Kilo, Sonja
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Science Ltd 01.10.2001
Subjects:
ISSN:0953-816X, 1460-9568
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene‐related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 µm), to the superfusion buffer resulted in a significant, concentration‐dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 µm). The specific, capsaicin receptor antagonist, capsazepine (300 µm), completely abolished the capsaicin‐evoked release of iCGRP while having no effect whatsoever on the potassium‐evoked release. Moreover, capsaicin‐evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor‐mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
AbstractList Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene‐related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 µ m ), to the superfusion buffer resulted in a significant, concentration‐dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 m m ) or by the calcium ionophore A23187 (1 µ m ). The specific, capsaicin receptor antagonist, capsazepine (300 µ m ), completely abolished the capsaicin‐evoked release of iCGRP while having no effect whatsoever on the potassium‐evoked release. Moreover, capsaicin‐evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor‐mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene‐related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 µm), to the superfusion buffer resulted in a significant, concentration‐dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 µm). The specific, capsaicin receptor antagonist, capsazepine (300 µm), completely abolished the capsaicin‐evoked release of iCGRP while having no effect whatsoever on the potassium‐evoked release. Moreover, capsaicin‐evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor‐mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 microm), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 microm). The specific, capsaicin receptor antagonist, capsazepine (300 microm), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 mu m), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50mm) or by the calcium ionophore A23187 (1 mu m). The specific, capsaicin receptor antagonist, capsazepine (300 mu m), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 μM), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mM) or by the calcium ionophore A23187 (1 μM). The specific, capsaicin receptor antagonist, capsazepine (300 μM), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 microm), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 microm). The specific, capsaicin receptor antagonist, capsazepine (300 microm), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 microm), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 microm). The specific, capsaicin receptor antagonist, capsazepine (300 microm), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.
Author Kilo, Sonja
Leong, Anthony S.
Flores, Christopher M.
O. Dussor, Gregory
Hargreaves, Kenneth M.
AuthorAffiliation 2 Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA
1 Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA
3 Department of Restorative Sciences, University of Minnesota, Minneapolis, MN 55455, USA
AuthorAffiliation_xml – name: 3 Department of Restorative Sciences, University of Minnesota, Minneapolis, MN 55455, USA
– name: 1 Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA
– name: 2 Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA
Author_xml – sequence: 1
  givenname: Christopher M.
  surname: Flores
  fullname: Flores, Christopher M.
  organization: Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
– sequence: 2
  givenname: Anthony S.
  surname: Leong
  fullname: Leong, Anthony S.
  organization: Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
– sequence: 3
  givenname: Gregory
  surname: O. Dussor
  fullname: O. Dussor, Gregory
  organization: Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
– sequence: 4
  givenname: Kenneth M.
  surname: Hargreaves
  fullname: Hargreaves, Kenneth M.
  organization: Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
– sequence: 5
  givenname: Sonja
  surname: Kilo
  fullname: Kilo, Sonja
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11683903$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhi00xLrBX0C-Qtyk2HFiJ0ggQTXKxzQ-VAnuLMc56dzFdrGT0v4M_jHJunVwgyZZsiU_7-tzfN4TdOS8A4QwJVNKMv5iNSVlzpKC8u00JYROCRWMT7cP0IRmnCRlzosjNLmFfhyjkxhXhJCCZ_kjdEwpL1hJ2AT9nql1VEYbl8DGX0GNZ_NvX3CAFlQE3ARvcVAdrnqtVYttr31UL3ENG2j92oLrsG-wwtbX0OK4ix1Y3PiAY9fXO-OWuAtmCda4UQ36UjkTbRxFDvrgl-CMxsY1rbJWdca7x-hho9oIT272U7R4d7aYvU_OP88_zN6cJ5oTwZO6agShZcNLpkouFIhGi5TyTChRMVFDWtU6pQUwKHNQeU4bDVXNuR4WE-wUvd7brvvKQq2HToJq5ToYq8JOemXkvzfOXMql38i0oFleloPBsxuD4H_2EDtpTdTQtsqB76MUacqKNKMD-Py_IC2GsXAqcjKgT_8u6lDN7bwGoNgDOvgYAzR3CJFjNORKjlOXYzTkGA15HQ25vWv4INWmu_7xoT3T3sfg1d7gl2lhd--H5dnHi_E06JO93gwh2R70KlxJLpjI5feLuXxbflqk4utcztgfPV7nGw
CitedBy_id crossref_primary_10_1016_j_neuroscience_2016_02_008
crossref_primary_10_1016_j_pain_2005_10_003
crossref_primary_10_1111_j_1526_4610_2012_02262_x
crossref_primary_10_1111_j_1600_0765_2005_00836_x
crossref_primary_10_3390_molecules24050995
crossref_primary_10_1046_j_1460_9568_2003_02935_x
crossref_primary_10_1038_sj_bjp_0705486
crossref_primary_10_1080_00016480600895110
crossref_primary_10_1007_s00441_005_0013_3
crossref_primary_10_1016_j_brainres_2017_06_004
crossref_primary_10_1016_S0161_813X_03_00022_6
crossref_primary_10_1016_j_neuroscience_2006_08_015
crossref_primary_10_1016_j_npep_2018_01_004
crossref_primary_10_1177_154411130401500203
crossref_primary_10_1177_154405910308200412
crossref_primary_10_1016_j_pain_2009_03_027
crossref_primary_10_1074_jbc_M408500200
crossref_primary_10_1038_srep29294
crossref_primary_10_1111_j_1526_4637_2011_01229_x
crossref_primary_10_1016_j_semcdb_2012_09_002
crossref_primary_10_1016_j_npep_2017_02_080
crossref_primary_10_1007_s00418_006_0167_4
crossref_primary_10_1177_00220345211004872
crossref_primary_10_1007_s00221_009_1756_y
crossref_primary_10_1016_j_joen_2014_01_030
crossref_primary_10_1016_j_pain_2003_09_022
crossref_primary_10_1111_j_1468_2982_2004_00649_x
crossref_primary_10_1124_jpet_103_059808
crossref_primary_10_1016_j_brainres_2006_02_035
crossref_primary_10_1152_jn_00126_2018
crossref_primary_10_3200_AEOH_59_7_363_375
Cites_doi 10.1111/j.1748-1716.1987.tb08108.x
10.1038/270741a0
10.1038/39807
10.1016/S0099-2399(06)81329-4
10.1016/0014-2999(85)90520-5
10.1159/000246682
10.1111/j.1600-0765.1995.tb01271.x
10.1016/0003-9969(92)90128-U
10.1111/j.1600-0765.1996.tb00489.x
10.1111/j.1476-5381.1992.tb14472.x
10.1111/j.1600-0765.1990.tb00916.x
10.1111/j.1600-0714.1993.tb00116.x
10.1016/0006-8993(86)90716-X
10.1111/j.1600-051X.1992.tb02162.x
10.1016/S0304-3959(99)00064-0
10.1007/BF00179044
10.1016/0167-0115(91)90019-D
10.1001/archneur.1961.00450120031005
10.1016/0006-8993(94)01247-F
10.1016/0304-3940(89)90139-0
10.1002/cne.902800211
10.1016/0003-9969(95)00060-3
10.1016/0306-4522(88)90064-4
10.1111/j.1600-0765.1993.tb01068.x
10.1111/j.1476-5381.1967.tb01984.x
10.1016/0006-8993(87)90598-1
10.1016/B978-0-08-003267-2.50008-7
10.1016/0167-0115(92)90061-X
10.1902/jop.1993.64.1.16
10.1016/0003-9969(93)90099-8
10.1007/BF00492515
10.1016/0196-9781(93)90037-H
10.1111/j.1600-051X.1997.tb01192.x
10.1007/BF00315910
10.1016/0006-8993(92)90753-V
10.1113/jphysiol.1901.sp000831
10.1159/000046488
10.1111/j.1476-5381.1985.tb11107.x
10.1007/BF01612335
10.1016/0003-9969(94)90006-X
10.1006/exnr.1997.6624
10.1038/313054a0
10.1016/0304-3940(94)90835-4
10.1038/sj.bjp.0701272
10.1007/BF00502092
10.1016/0003-9969(88)90039-8
10.1902/jop.1994.65.12.1113
10.1016/S1079-2104(99)70026-0
10.1016/S0304-3959(97)00108-5
10.1177/00220345720510020901
10.1007/BF00492350
ContentType Journal Article
Copyright Federation of European Neuroscience Societies
Copyright_xml – notice: Federation of European Neuroscience Societies
CorporateAuthor Catherine Harding‐Rose
CorporateAuthor_xml – name: Catherine Harding‐Rose
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1046/j.0953-816x.2001.01736.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 1120
ExternalDocumentID PMC2814599
11683903
10_1046_j_0953_816x_2001_01736_x
EJN1736
ark_67375_WNG_B9KT27QG_C
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA010510
– fundername: NIDA NIH HHS
  grantid: DA10510
– fundername: NIDA NIH HHS
  grantid: F31 DA005982
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RIG
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c6076-dbf7019f693a967ae7fc721647a7b37de2bdc218e3e95ea551fcebd66c66c373
IEDL.DBID DRFUL
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000171795700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0953-816X
IngestDate Tue Nov 04 01:58:54 EST 2025
Thu Oct 02 04:07:11 EDT 2025
Sun Nov 09 10:38:16 EST 2025
Fri May 30 10:50:26 EDT 2025
Sat Nov 29 03:17:47 EST 2025
Tue Nov 18 22:36:08 EST 2025
Wed Jan 22 17:12:48 EST 2025
Tue Nov 11 03:32:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6076-dbf7019f693a967ae7fc721647a7b37de2bdc218e3e95ea551fcebd66c66c373
Notes istex:70945C5C9462911D4CD18049A98EFC31A8D36883
ArticleID:EJN1736
ark:/67375/WNG-B9KT27QG-C
On leave from, Institut für Physiologie und Experimentelle Pathophysiologie, Universitätsstrasse 17, D‐91054 Erlangen, Germany.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
On leave from, Institut für Physiologie und Experimentelle Pathophysiologie, Universitätsstrasse 17, D-91054 Erlangen, Germany.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2814599
PMID 11683903
PQID 1808661750
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814599
proquest_miscellaneous_72238241
proquest_miscellaneous_1808661750
pubmed_primary_11683903
crossref_primary_10_1046_j_0953_816x_2001_01736_x
crossref_citationtrail_10_1046_j_0953_816x_2001_01736_x
wiley_primary_10_1046_j_0953_816x_2001_01736_x_EJN1736
istex_primary_ark_67375_WNG_B9KT27QG_C
PublicationCentury 2000
PublicationDate October 2001
PublicationDateYYYYMMDD 2001-10-01
PublicationDate_xml – month: 10
  year: 2001
  text: October 2001
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2001
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References Brain, S.J., Morris, H., MacIntyre, I. (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature, 313, 54-56.
Docherty, R.J., Yeats, J.C., Piper, A.S. (1997) Capsazepine block of voltage-activated calcium channels I adult rat dorsal root ganglion neurons in culture. Br. J. Pharmacol., 121, 1461-1467.
Jancsó, G., Kiraly, E., Jancsó-Gábor, A. (1977) Pharmacologically induced selective degeration of chemosensitive primary sensory neurons. Nature, 270, 741-743.
Escott, K.J., Beattie, D.T., Connor, H.E., Brain, S.D. (1995) Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res., 669, 93-99.
Soinila, J., Salo, A., Unsitalo, H., Yanaihara, N., Happole, O. (1989) CGRP-immunoreactive sensory nerve fibers in the submandibular gland of the rat. Histochemistry, 91, 455-460.
Györfi, A., Fazekas, Á., Fehér, E., Ender, F., Rosivall, L. (1996) Effects of streptozotocin-induced diabetes on neurogenic inflammation of gingivomucosal tissue in rat. J. Periodont. Res., 31, 249-255.
Byers, M.R., Mecifi, K.B., Kimberly, C.L. (1987) Numerous nerves with calcitonin gene-related peptide-like immunoreactivity innervate junctional epithelium of rats. Brain Res., 419, 311-314.
Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816-824.
Karimian, M. & Ferrell, W.R. (1994) Plasma protein extravasation into the rat knee joint induced by calcitonin gene-related peptide. Neurosci. Lett., 166, 39-42.
Leong, A.S., Kilo, S., Hargreaves, K.M., Flores, C.M. (1997) Modulation of capsaicin-evoked neuropeptide release by nicotine in the rat buccal musocsa. Soc. Neurosci. Abstr., 23, 874.
Szallasi, A. & Blumberg, P.M. (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev., 51, 160-211.
Barthold, P.M., Kylstra, A., Lawson, R. (1994) Substance P: an immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation? J. Periodontol., 65, 1113-1121.
Kilo, S., Harding-Rose, C., Hargreaves, K.M., Flores, C.M. (1997) Peripheral CGRP release as a marker for neurogenic inflammation: a model system for the study of neuropeptide secretion in rat paw skin. Pain, 73, 201-207.
Goltz, F. (1874) Über gefässerweiternde Nerven. Pflueger Arch. Ges. Physiol., 9, 15.
Györfi, A., Fazekas, Á., Irmes, F., Rosivall, L. (1995) Effect of substance P administration on vascular permeability in the rat oral mucosa and sublingual gland. J. Peridont. Res., 30, 181-185.
Györfi, A., Fazekas, Á., Rosivall, L. (1992) Neurogenic inflammation and the oral mucosa. J. Clin. Periodontol., 19, 731-736.
Gamse, R. & Saria, A. (1985) Potentiation of tachykinin-induced plasma protein extravasation by CGRP. Eur. J. Pharmacol., 114, 61-66.
Ruokonen, H., Hietanen, J., Malmström, M., Sane, J., Häyrinen-Immonen, R., Hukkanen, M., Konttinen, Y.T. (1993) Peripheral nerves and mast cells in normal buccal mucosa. J. Oral Pathol. Med., 22, 30-34.
Brain, S. & Williams, T. (1985) Inflammatory edema induced by synergism between CGRP and mediators of increased vascular permeability. Br. J. Pharmacol., 86, 855-860.
Terenghi, G., Zhang, S.-Q., Under, W.G., Polak, J.M. (1986b) Morphological changes of sensory CGRP-immunoreactive and sympathetic nerves in peripheral tissues following chronic denervation. Histochemistry, 86, 89-95.
Hargreaves, K.M., Bowles, W.R., Garry, G. (1992) An in vitro method to evaluate regulation of neuropeptide release. J. Endodontics, 18, 597-600.
Luthman, J., Johansson, O., Ahlström, U., Kvint, S. (1988) Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, γ-MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva. Arch. Oral Biol., 33, 149-158.
Silverman, J.D. & Kruger, L. (1989) Calcitonin gene-related peptide immunoreactive innervation of the rat head with emphasis on specialized sensory structures. J. Comp. Neurol., 280, 303-330.
Kerezoudis, N.P., Olgart, L., Edwall, L. (1993) Evans blue extravasation in rat dental pulp and oral tissues induced by electrical stimulation of the inferior alveolar nerve. Arch. Oral Biol., 10, 893-901.
Gazelius, B., Edwall, B., Olgart, L., Lundberg, J., Hokfelt, T., Fischer, J. (1987) Vasodilatory effects and coexistence of CGRP and substance P in sensory nerves of cat dental pulp. Acta Physiol. Scand., 130, 33-40.
Hilliges, M., Hellman, M., Ahlström, U., Johansson, O. (1994) Immunohistochemical studies of neurochemical markers in normal human buccal mucosa. Histochemistry, 101, 235-244.
Epstein, J.B. & Schubert, M.M. (1999) Oral mucositis in myelosuppressive cancer therapy. Oral Surg. Oral Med. Oral Pathol., 88, 273-276.
Kato, J., Uddman, R., Sundler, F., Kurisu, K. (1998) Immunohistochemical study of the innervation of the boundary area of the hard and soft palates of the rat. Acta Anat., 163, 92-98.
Linden, G.J., McKinnell, J., Shaw, C., Lundy, F.T. (1997) Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease. J. Clin. Periodontol., 24, 799-803.
Nagata, E., Kondo, T., Ayasaka, N., Nakata, M., Tanaka, T. (1992) Immunohistochemical study of nerve fibres with substance P- or calcitonin gene-related peptide-like immunoreactivity in the junctional epithelium of developing rats. Arch. Oral Biol., 37, 655-662.
Jancsó-Gábor, A. & Szolcsányi, J. (1972) Neurogenic inflammatory responses. J. Dent. Res., 51 (Suppl.), 264-269.
Cruwys, S.C., Kidd, B.L., Mapp, P.I., Walsh, D.A., Blake, D.R. (1992) The effects of calcitonin gene-related peptide on formation of intra-articular oedema by inflammatory mediators. Br. J. Pharm., 107, 116-119.
Holzer, P. (1988) Local effector function of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience, 24, 739-768.
Fazekas, Á., Vindisch, K., Pósch, E., Györfi, A. (1990) Experimentally-induced neurogenic inflammationin the rat oral mucosa. J. Periodont. Res., 25, 276-282.
Bowles, W.R., Oh, W., Sabino, M.L., Harding-Rose, C., Hargreaves, K.M. (1998) Development of an in vitro rat dental pulp superfusion model. J. Dent. Res., 77, 160.
Chapman, L.F., Ramos, A.O., Goddell, H., Wolff, H.G. (1961) Neurohumoral features of afferent fibers in man. Arch. Neurol., 4, 617-650.
Li, Y., Hsieh, S.T., Chien, H.F., Zhang, X., McArthur, J.C., Griffin, J.W. (1997) Sensory and motor denervation influence epidermal thickness in rat foot and glabrous skin. Exp. Neurol., 147, 452-462.
Bayliss, W.M. (1901) On the origin from the spinal cord of the vaso-dilator fibres of the hindlimb, and on the nature of these fibres. J. Physiol. (Lond.), 26, 173-209.
Kerezoudis, N.P., Olgart, L., Edwall, L. (1994) Involvement of substance P but not nitric oxide or calcitonin gene-related peptide in neurogenic plasma extravasation in rat incisor pulp and lip. Arch. Oral Biol., 39, 769-774.
Fantini, F., Giannetti, A., Benassi, L., Cattaneo, V., Magnoni, C., Pincelli, C. (1995) Nerve growth factor receptor and neurochemical markers in human oral mucosa: an immunohistochemical study. Dermatology, 190, 186-191.
Nadoolman, W., Duffy, V.B., Berger, A.M., Bartoshuk, L.M. (1994) Successive desensitization: a low pain/high dose technique for oral capsaicin delivery. Chem. Senses, 19, 494.
Lewis, T., Harris, K.E., Grant, R.T. (1927) Influence of the cutaneous nerves on various reaction of the cutaneous vessels. Heart, 14, 1.
Jancsó, N., Jancsó-Gábor, A., Szolcsányi, J. (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br. J. Pharmacol., 31, 138-151.
Terenghi, G., Polak, J.M., Rodrigo, J., Mulderry, P.K., Bloom, S.R. (1986a) Calcitonin gene-related peptide-immunoreactive nerves in the tonjue, epiglottis and pharynx of the rat: occurrence, distribution and origin. Brain Res., 365, 1-14.
Kondo, T., Kido, M.A., Kiyoshima, T., Yamaza, T., Tanaka, T. (1995) An immunohistochemical and monastral blue-vascular labelling study on the involvement of capsaicin-sensitive sensory innervation of the junctional ipithelium in nurogenic plasma extravasation in the rat gingiva. Arch. Oral Biol., 10, 931-940.
Wimalawansa, S.J. (1993) The effects of neonatal capsaicin on plasma levels and tissue contents of CGRP. Peptides, 14, 247-252.
Donnerer, J., Schuligoi, R., Amann, R. (1992) Time-course of capsaicin-evoked release of calcitonin gene-related peptide from rat spinal cord in vitro. Effect of concentration and modulation by Ruthenium Red. Regul. Pept., 37, 27-37.
Hammond, D.L. & Ruda, M.A. (1989) Developmental alterations in thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene-related peptide and substance P after neonatal administration of capsaicin in the rat. Neurosci. Lett., 97, 57-62.
Jackson, D.L., Garry, M., Engelstad, M., Geier, H., Hargreaves, K.M. (1992) An in vitro method to evaluate neuropeptide secretion from dental pulp. J. Dent. Res., 71, 178.
Fazekas, Á., Györfi, A., Pósch, E., Jacab, G., Bártfai, Z., Rosivall, L. (1991) Effect of denervation on the neurogenic inflammation of the rat mandibular mucosa. Naunyn-Schmiedeberg's Arch. Pharmacol., 343, 393-398.
Bongenhielm, U., Boissonade, F.M., Westermark, A., Robinson, P.P., Fried, K. (1999) Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain, 82, 183-288.
Dussor, G.O., Leong, A.S., Gracia, N.B., Hargreaves, K.M., Arneric, S.P., Flores, C.M. (1998) Differential effects of neuronal nicotinic receptor agonists on capsaicin-evoked CGRP release from peripheral terminals of primary sensory neurons. Soc. Neurosci. Abstract., 24, 1625.
Haber, J., Wattles, J., Crowby, M., Mandel, R., Kaunusi, J., Kent, R. (1993) Evidence for smoking as a major risk factor for periodontitis. J. Periodontol., 64, 16-23.
Györfi, A., Fazekas, Á.,
1995; 30
1993; 28
1993; 22
1993; 64
1874; 9
1989; 280
1992; 18
1988; 33
1999; 88
1992; 19
1999; 82
1992; 12
1996; 31
1994; 65
1994; 101
1997; 389
1997; 147
1991; 343
1961; 4
1999; 51
1972; 51
1994; 39
1998; 163
1986a; 365
1986b; 86
1977; 270
1927; 14
1986; 94
1991; 32
1997; 24
1995; 10
1997; 23
1992; 107
1992; 37
1985; 82
1985; 86
1992; 71
1998; 24
1987; 130
1901; 26
1995; 190
1993; 14
1994; 166
1997; 73
1989; 97
1990; 25
1967; 31
1994; 19
1989; 91
1997; 121
1993; 10
1995; 669
1992; 579
1987; 419
1985; 114
1985; 313
1988; 24
1998; 77
1968
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Lewis T. (e_1_2_6_46_1) 1927; 14
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Leong A.S. (e_1_2_6_45_1) 1997; 23
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Jackson D.L. (e_1_2_6_34_1) 1992; 71
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
Dussor G.O. (e_1_2_6_14_1) 1998; 24
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Nadoolman W. (e_1_2_6_51_1) 1994; 19
Szallasi A. (e_1_2_6_57_1) 1999; 51
e_1_2_6_8_1
Uddman R. (e_1_2_6_61_1) 1986; 94
Bowles W.R. (e_1_2_6_5_1) 1998; 77
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
Light A.R. (e_1_2_6_48_1) 1992
e_1_2_6_27_1
References_xml – reference: Gazelius, B., Edwall, B., Olgart, L., Lundberg, J., Hokfelt, T., Fischer, J. (1987) Vasodilatory effects and coexistence of CGRP and substance P in sensory nerves of cat dental pulp. Acta Physiol. Scand., 130, 33-40.
– reference: Kerezoudis, N.P., Olgart, L., Edwall, L. (1993) Evans blue extravasation in rat dental pulp and oral tissues induced by electrical stimulation of the inferior alveolar nerve. Arch. Oral Biol., 10, 893-901.
– reference: Ruokonen, H., Hietanen, J., Malmström, M., Sane, J., Häyrinen-Immonen, R., Hukkanen, M., Konttinen, Y.T. (1993) Peripheral nerves and mast cells in normal buccal mucosa. J. Oral Pathol. Med., 22, 30-34.
– reference: Li, Y., Hsieh, S.T., Chien, H.F., Zhang, X., McArthur, J.C., Griffin, J.W. (1997) Sensory and motor denervation influence epidermal thickness in rat foot and glabrous skin. Exp. Neurol., 147, 452-462.
– reference: Hargreaves, K.M., Bowles, W.R., Garry, G. (1992) An in vitro method to evaluate regulation of neuropeptide release. J. Endodontics, 18, 597-600.
– reference: Fantini, F., Giannetti, A., Benassi, L., Cattaneo, V., Magnoni, C., Pincelli, C. (1995) Nerve growth factor receptor and neurochemical markers in human oral mucosa: an immunohistochemical study. Dermatology, 190, 186-191.
– reference: Dussor, G.O., Leong, A.S., Gracia, N.B., Hargreaves, K.M., Arneric, S.P., Flores, C.M. (1998) Differential effects of neuronal nicotinic receptor agonists on capsaicin-evoked CGRP release from peripheral terminals of primary sensory neurons. Soc. Neurosci. Abstract., 24, 1625.
– reference: Hilliges, M., Hellman, M., Ahlström, U., Johansson, O. (1994) Immunohistochemical studies of neurochemical markers in normal human buccal mucosa. Histochemistry, 101, 235-244.
– reference: Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816-824.
– reference: Holzer, P. (1988) Local effector function of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience, 24, 739-768.
– reference: Kilo, S., Harding-Rose, C., Hargreaves, K.M., Flores, C.M. (1997) Peripheral CGRP release as a marker for neurogenic inflammation: a model system for the study of neuropeptide secretion in rat paw skin. Pain, 73, 201-207.
– reference: Bongenhielm, U., Boissonade, F.M., Westermark, A., Robinson, P.P., Fried, K. (1999) Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain, 82, 183-288.
– reference: Gamse, R. & Saria, A. (1985) Potentiation of tachykinin-induced plasma protein extravasation by CGRP. Eur. J. Pharmacol., 114, 61-66.
– reference: Jackson, D.L., Garry, M., Engelstad, M., Geier, H., Hargreaves, K.M. (1992) An in vitro method to evaluate neuropeptide secretion from dental pulp. J. Dent. Res., 71, 178.
– reference: Györfi, A., Fazekas, Á., Fehér, E., Ender, F., Rosivall, L. (1996) Effects of streptozotocin-induced diabetes on neurogenic inflammation of gingivomucosal tissue in rat. J. Periodont. Res., 31, 249-255.
– reference: Cruwys, S.C., Kidd, B.L., Mapp, P.I., Walsh, D.A., Blake, D.R. (1992) The effects of calcitonin gene-related peptide on formation of intra-articular oedema by inflammatory mediators. Br. J. Pharm., 107, 116-119.
– reference: Leong, A.S., Kilo, S., Hargreaves, K.M., Flores, C.M. (1997) Modulation of capsaicin-evoked neuropeptide release by nicotine in the rat buccal musocsa. Soc. Neurosci. Abstr., 23, 874.
– reference: Soinila, J., Salo, A., Unsitalo, H., Yanaihara, N., Happole, O. (1989) CGRP-immunoreactive sensory nerve fibers in the submandibular gland of the rat. Histochemistry, 91, 455-460.
– reference: Hammond, D.L. & Ruda, M.A. (1989) Developmental alterations in thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene-related peptide and substance P after neonatal administration of capsaicin in the rat. Neurosci. Lett., 97, 57-62.
– reference: Györfi, A., Fazekas, Á., Irmes, F., Jakab, G., Süto, T., Rosivall, L. (1993) Role of substance P (SP) in development of symptoms of neurogenic inflammationin the oral mucosa of the rat. J. Peridont. Res., 28, 191-196.
– reference: Nadoolman, W., Duffy, V.B., Berger, A.M., Bartoshuk, L.M. (1994) Successive desensitization: a low pain/high dose technique for oral capsaicin delivery. Chem. Senses, 19, 494.
– reference: Byers, M.R., Mecifi, K.B., Kimberly, C.L. (1987) Numerous nerves with calcitonin gene-related peptide-like immunoreactivity innervate junctional epithelium of rats. Brain Res., 419, 311-314.
– reference: Bowles, W.R., Oh, W., Sabino, M.L., Harding-Rose, C., Hargreaves, K.M. (1998) Development of an in vitro rat dental pulp superfusion model. J. Dent. Res., 77, 160.
– reference: Jancsó-Gábor, A. & Szolcsányi, J. (1972) Neurogenic inflammatory responses. J. Dent. Res., 51 (Suppl.), 264-269.
– reference: Luthman, J., Johansson, O., Ahlström, U., Kvint, S. (1988) Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, γ-MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva. Arch. Oral Biol., 33, 149-158.
– reference: Silverman, J.D. & Kruger, L. (1989) Calcitonin gene-related peptide immunoreactive innervation of the rat head with emphasis on specialized sensory structures. J. Comp. Neurol., 280, 303-330.
– reference: Escott, K.J., Beattie, D.T., Connor, H.E., Brain, S.D. (1995) Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res., 669, 93-99.
– reference: Györfi, A., Fazekas, Á., Irmes, F., Rosivall, L. (1995) Effect of substance P administration on vascular permeability in the rat oral mucosa and sublingual gland. J. Peridont. Res., 30, 181-185.
– reference: Tal, M. & Devor, M. (1992) Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents. Brain Res., 579, 148-151.
– reference: Bayliss, W.M. (1901) On the origin from the spinal cord of the vaso-dilator fibres of the hindlimb, and on the nature of these fibres. J. Physiol. (Lond.), 26, 173-209.
– reference: Fazekas, Á., Györfi, A., Pósch, E., Jacab, G., Bártfai, Z., Rosivall, L. (1991) Effect of denervation on the neurogenic inflammation of the rat mandibular mucosa. Naunyn-Schmiedeberg's Arch. Pharmacol., 343, 393-398.
– reference: Barthold, P.M., Kylstra, A., Lawson, R. (1994) Substance P: an immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation? J. Periodontol., 65, 1113-1121.
– reference: Haber, J., Wattles, J., Crowby, M., Mandel, R., Kaunusi, J., Kent, R. (1993) Evidence for smoking as a major risk factor for periodontitis. J. Periodontol., 64, 16-23.
– reference: Kondo, T., Kido, M.A., Kiyoshima, T., Yamaza, T., Tanaka, T. (1995) An immunohistochemical and monastral blue-vascular labelling study on the involvement of capsaicin-sensitive sensory innervation of the junctional ipithelium in nurogenic plasma extravasation in the rat gingiva. Arch. Oral Biol., 10, 931-940.
– reference: Brain, S. & Williams, T. (1985) Inflammatory edema induced by synergism between CGRP and mediators of increased vascular permeability. Br. J. Pharmacol., 86, 855-860.
– reference: Goltz, F. (1874) Über gefässerweiternde Nerven. Pflueger Arch. Ges. Physiol., 9, 15.
– reference: Docherty, R.J., Yeats, J.C., Piper, A.S. (1997) Capsazepine block of voltage-activated calcium channels I adult rat dorsal root ganglion neurons in culture. Br. J. Pharmacol., 121, 1461-1467.
– reference: Donnerer, J., Schuligoi, R., Amann, R. (1992) Time-course of capsaicin-evoked release of calcitonin gene-related peptide from rat spinal cord in vitro. Effect of concentration and modulation by Ruthenium Red. Regul. Pept., 37, 27-37.
– reference: Jancsó, N., Jancsó-Gábor, A., Szolcsányi, J. (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br. J. Pharmacol., 31, 138-151.
– reference: Terenghi, G., Polak, J.M., Rodrigo, J., Mulderry, P.K., Bloom, S.R. (1986a) Calcitonin gene-related peptide-immunoreactive nerves in the tonjue, epiglottis and pharynx of the rat: occurrence, distribution and origin. Brain Res., 365, 1-14.
– reference: Szallasi, A. & Blumberg, P.M. (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev., 51, 160-211.
– reference: Epstein, J.B. & Schubert, M.M. (1999) Oral mucositis in myelosuppressive cancer therapy. Oral Surg. Oral Med. Oral Pathol., 88, 273-276.
– reference: Chapman, L.F., Ramos, A.O., Goddell, H., Wolff, H.G. (1961) Neurohumoral features of afferent fibers in man. Arch. Neurol., 4, 617-650.
– reference: Kerezoudis, N.P., Olgart, L., Edwall, L. (1994) Involvement of substance P but not nitric oxide or calcitonin gene-related peptide in neurogenic plasma extravasation in rat incisor pulp and lip. Arch. Oral Biol., 39, 769-774.
– reference: Terenghi, G., Zhang, S.-Q., Under, W.G., Polak, J.M. (1986b) Morphological changes of sensory CGRP-immunoreactive and sympathetic nerves in peripheral tissues following chronic denervation. Histochemistry, 86, 89-95.
– reference: Linden, G.J., McKinnell, J., Shaw, C., Lundy, F.T. (1997) Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease. J. Clin. Periodontol., 24, 799-803.
– reference: Nagata, E., Kondo, T., Ayasaka, N., Nakata, M., Tanaka, T. (1992) Immunohistochemical study of nerve fibres with substance P- or calcitonin gene-related peptide-like immunoreactivity in the junctional epithelium of developing rats. Arch. Oral Biol., 37, 655-662.
– reference: Wimalawansa, S.J. (1993) The effects of neonatal capsaicin on plasma levels and tissue contents of CGRP. Peptides, 14, 247-252.
– reference: Fazekas, Á., Vindisch, K., Pósch, E., Györfi, A. (1990) Experimentally-induced neurogenic inflammationin the rat oral mucosa. J. Periodont. Res., 25, 276-282.
– reference: Györfi, A., Fazekas, Á., Rosivall, L. (1992) Neurogenic inflammation and the oral mucosa. J. Clin. Periodontol., 19, 731-736.
– reference: Lewis, T., Harris, K.E., Grant, R.T. (1927) Influence of the cutaneous nerves on various reaction of the cutaneous vessels. Heart, 14, 1.
– reference: Brain, S.J., Morris, H., MacIntyre, I. (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature, 313, 54-56.
– reference: Uddman, R., Grunditz, T., Sundler, F. (1986) Calcitonin gene-related peptide: a sensory transmitter in dental pulps? Scand. J. Dent. Res., 94, 219-224.
– reference: Rodrigo, J., Polak, J.M., Terenghi, G., Cervantes, C., Ghatei, M.A., Mulderry, P.K., Bloom, S.R. (1985) Calcitonin gene-related peptide (CGRP) -immunoreacctive sensory and motor nerves of the mammalian palate. Histochemistry, 82, 67-74.
– reference: Franco-Cereceda, A., Rydh, M., Lou, Y.P., Dalsgaard, C.J., Lundberg, J.M. (1991) Endothelin as a putative sensory neuropeptide in the guinea-pig: different properties in comparison with calcitonin gene-related peptide. Regulatory Peptides., 32, 253-265.
– reference: Kato, J., Uddman, R., Sundler, F., Kurisu, K. (1998) Immunohistochemical study of the innervation of the boundary area of the hard and soft palates of the rat. Acta Anat., 163, 92-98.
– reference: Jancsó, G., Kiraly, E., Jancsó-Gábor, A. (1977) Pharmacologically induced selective degeration of chemosensitive primary sensory neurons. Nature, 270, 741-743.
– reference: Karimian, M. & Ferrell, W.R. (1994) Plasma protein extravasation into the rat knee joint induced by calcitonin gene-related peptide. Neurosci. Lett., 166, 39-42.
– volume: 39
  start-page: 769
  year: 1994
  end-page: 774
  article-title: Involvement of substance P but not nitric oxide or calcitonin gene‐related peptide in neurogenic plasma extravasation in rat incisor pulp and lip
  publication-title: Arch. Oral Biol.
– volume: 26
  start-page: 173
  year: 1901
  end-page: 209
  article-title: On the origin from the spinal cord of the vaso‐dilator fibres of the hindlimb, and on the nature of these fibres
  publication-title: J. Physiol. (Lond.)
– volume: 101
  start-page: 235
  year: 1994
  end-page: 244
  article-title: Immunohistochemical studies of neurochemical markers in normal human buccal mucosa
  publication-title: Histochemistry
– volume: 280
  start-page: 303
  year: 1989
  end-page: 330
  article-title: Calcitonin gene‐related peptide immunoreactive innervation of the rat head with emphasis on specialized sensory structures
  publication-title: J. Comp. Neurol.
– volume: 18
  start-page: 597
  year: 1992
  end-page: 600
  article-title: An method to evaluate regulation of neuropeptide release
  publication-title: J. Endodontics
– volume: 12
  year: 1992
– volume: 24
  start-page: 1625
  year: 1998
  article-title: Differential effects of neuronal nicotinic receptor agonists on capsaicin‐evoked CGRP release from peripheral terminals of primary sensory neurons
  publication-title: Soc. Neurosci. Abstract.
– volume: 365
  start-page: 1
  year: 1986a
  end-page: 14
  article-title: Calcitonin gene‐related peptide‐immunoreactive nerves in the tonjue, epiglottis and pharynx of the rat: occurrence, distribution and origin
  publication-title: Brain Res.
– volume: 71
  start-page: 178
  year: 1992
  article-title: An method to evaluate neuropeptide secretion from dental pulp
  publication-title: J. Dent. Res.
– volume: 163
  start-page: 92
  year: 1998
  end-page: 98
  article-title: Immunohistochemical study of the innervation of the boundary area of the hard and soft palates of the rat
  publication-title: Acta Anat.
– volume: 389
  start-page: 816
  year: 1997
  end-page: 824
  article-title: The capsaicin receptor: a heat‐activated ion channel in the pain pathway
  publication-title: Nature
– volume: 19
  start-page: 731
  year: 1992
  end-page: 736
  article-title: Neurogenic inflammation and the oral mucosa
  publication-title: J. Clin. Periodontol.
– volume: 32
  start-page: 253
  year: 1991
  end-page: 265
  article-title: Endothelin as a putative sensory neuropeptide in the guinea‐pig: different properties in comparison with calcitonin gene‐related peptide
  publication-title: Regulatory Peptides.
– volume: 121
  start-page: 1461
  year: 1997
  end-page: 1467
  article-title: Capsazepine block of voltage‐activated calcium channels I adult rat dorsal root ganglion neurons in culture
  publication-title: Br. J. Pharmacol.
– volume: 31
  start-page: 249
  year: 1996
  end-page: 255
  article-title: Effects of streptozotocin‐induced diabetes on neurogenic inflammation of gingivomucosal tissue in rat
  publication-title: J. Periodont. Res.
– volume: 37
  start-page: 27
  year: 1992
  end-page: 37
  article-title: Time‐course of capsaicin‐evoked release of calcitonin gene‐related peptide from rat spinal cord in vitro. Effect of concentration and modulation by Ruthenium Red
  publication-title: Regul. Pept.
– volume: 22
  start-page: 30
  year: 1993
  end-page: 34
  article-title: Peripheral nerves and mast cells in normal buccal mucosa
  publication-title: J. Oral Pathol. Med.
– volume: 30
  start-page: 181
  year: 1995
  end-page: 185
  article-title: Effect of substance P administration on vascular permeability in the rat oral mucosa and sublingual gland
  publication-title: J. Peridont. Res.
– volume: 10
  start-page: 931
  year: 1995
  end-page: 940
  article-title: An immunohistochemical and monastral blue‐vascular labelling study on the involvement of capsaicin‐sensitive sensory innervation of the junctional ipithelium in nurogenic plasma extravasation in the rat gingiva
  publication-title: Arch. Oral Biol.
– volume: 10
  start-page: 893
  year: 1993
  end-page: 901
  article-title: Evans blue extravasation in rat dental pulp and oral tissues induced by electrical stimulation of the inferior alveolar nerve
  publication-title: Arch. Oral Biol.
– volume: 343
  start-page: 393
  year: 1991
  end-page: 398
  article-title: Effect of denervation on the neurogenic inflammation of the rat mandibular mucosa
  publication-title: Naunyn-Schmiedeberg's Arch. Pharmacol.
– volume: 37
  start-page: 655
  year: 1992
  end-page: 662
  article-title: Immunohistochemical study of nerve fibres with substance P‐ or calcitonin gene‐related peptide‐like immunoreactivity in the junctional epithelium of developing rats
  publication-title: Arch. Oral Biol.
– volume: 107
  start-page: 116
  year: 1992
  end-page: 119
  article-title: The effects of calcitonin gene‐related peptide on formation of intra‐articular oedema by inflammatory mediators
  publication-title: Br. J. Pharm.
– volume: 97
  start-page: 57
  year: 1989
  end-page: 62
  article-title: Developmental alterations in thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene‐related peptide and substance P after neonatal administration of capsaicin in the rat
  publication-title: Neurosci. Lett.
– volume: 14
  start-page: 247
  year: 1993
  end-page: 252
  article-title: The effects of neonatal capsaicin on plasma levels and tissue contents of CGRP
  publication-title: Peptides
– volume: 669
  start-page: 93
  year: 1995
  end-page: 99
  article-title: Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene‐related peptide
  publication-title: Brain Res.
– volume: 190
  start-page: 186
  year: 1995
  end-page: 191
  article-title: Nerve growth factor receptor and neurochemical markers in human oral mucosa: an immunohistochemical study
  publication-title: Dermatology
– volume: 23
  start-page: 874
  year: 1997
  article-title: Modulation of capsaicin‐evoked neuropeptide release by nicotine in the rat buccal musocsa
  publication-title: Soc. Neurosci. Abstr.
– volume: 24
  start-page: 799
  year: 1997
  end-page: 803
  article-title: Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease
  publication-title: J. Clin. Periodontol.
– volume: 130
  start-page: 33
  year: 1987
  end-page: 40
  article-title: Vasodilatory effects and coexistence of CGRP and substance P in sensory nerves of cat dental pulp
  publication-title: Acta Physiol. Scand.
– volume: 65
  start-page: 1113
  year: 1994
  end-page: 1121
  article-title: Substance P: an immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation?
  publication-title: J. Periodontol.
– volume: 24
  start-page: 739
  year: 1988
  end-page: 768
  article-title: Local effector function of capsaicin‐sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene‐related peptide and other neuropeptides
  publication-title: Neuroscience
– volume: 28
  start-page: 191
  year: 1993
  end-page: 196
  article-title: Role of substance P (SP) in development of symptoms of neurogenic inflammationin the oral mucosa of the rat
  publication-title: J. Peridont. Res.
– volume: 77
  start-page: 160
  year: 1998
  article-title: Development of an rat dental pulp superfusion model
  publication-title: J. Dent. Res.
– volume: 4
  start-page: 617
  year: 1961
  end-page: 650
  article-title: Neurohumoral features of afferent fibers in man
  publication-title: Arch. Neurol.
– volume: 51
  start-page: 264
  year: 1972
  end-page: 269
  article-title: Neurogenic inflammatory responses
  publication-title: J. Dent. Res.
– volume: 19
  start-page: 494
  year: 1994
  article-title: Successive desensitization: a low pain/high dose technique for oral capsaicin delivery
  publication-title: Chem. Senses
– volume: 31
  start-page: 138
  year: 1967
  end-page: 151
  article-title: Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin
  publication-title: Br. J. Pharmacol.
– volume: 94
  start-page: 219
  year: 1986
  end-page: 224
  article-title: Calcitonin gene‐related peptide: a sensory transmitter in dental pulps? Scand
  publication-title: J. Dent. Res.
– volume: 91
  start-page: 455
  year: 1989
  end-page: 460
  article-title: CGRP‐immunoreactive sensory nerve fibers in the submandibular gland of the rat
  publication-title: Histochemistry
– volume: 9
  start-page: 15
  year: 1874
  article-title: Über gefässerweiternde Nerven
  publication-title: Pflueger Arch. Ges. Physiol.
– volume: 33
  start-page: 149
  year: 1988
  end-page: 158
  article-title: Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, γ‐MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva
  publication-title: Arch. Oral Biol.
– volume: 86
  start-page: 89
  year: 1986b
  end-page: 95
  article-title: Morphological changes of sensory CGRP‐immunoreactive and sympathetic nerves in peripheral tissues following chronic denervation
  publication-title: Histochemistry
– volume: 579
  start-page: 148
  year: 1992
  end-page: 151
  article-title: Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents
  publication-title: Brain Res.
– volume: 82
  start-page: 183
  year: 1999
  end-page: 288
  article-title: Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat
  publication-title: Pain
– volume: 88
  start-page: 273
  year: 1999
  end-page: 276
  article-title: Oral mucositis in myelosuppressive cancer therapy
  publication-title: Oral Surg. Oral Med. Oral Pathol.
– volume: 166
  start-page: 39
  year: 1994
  end-page: 42
  article-title: Plasma protein extravasation into the rat knee joint induced by calcitonin gene‐related peptide
  publication-title: Neurosci. Lett.
– volume: 147
  start-page: 452
  year: 1997
  end-page: 462
  article-title: Sensory and motor denervation influence epidermal thickness in rat foot and glabrous skin
  publication-title: Exp. Neurol.
– volume: 270
  start-page: 741
  year: 1977
  end-page: 743
  article-title: Pharmacologically induced selective degeration of chemosensitive primary sensory neurons
  publication-title: Nature
– volume: 25
  start-page: 276
  year: 1990
  end-page: 282
  article-title: Experimentally‐induced neurogenic inflammationin the rat oral mucosa
  publication-title: J. Periodont. Res.
– volume: 313
  start-page: 54
  year: 1985
  end-page: 56
  article-title: Calcitonin gene‐related peptide is a potent vasodilator
  publication-title: Nature
– volume: 51
  start-page: 160
  year: 1999
  end-page: 211
  article-title: Vanilloid (capsaicin) receptors and mechanisms
  publication-title: Pharmacol. Rev.
– volume: 419
  start-page: 311
  year: 1987
  end-page: 314
  article-title: Numerous nerves with calcitonin gene‐related peptide‐like immunoreactivity innervate junctional epithelium of rats
  publication-title: Brain Res.
– volume: 14
  start-page: 1
  year: 1927
  article-title: Influence of the cutaneous nerves on various reaction of the cutaneous vessels
  publication-title: Heart
– volume: 73
  start-page: 201
  year: 1997
  end-page: 207
  article-title: Peripheral CGRP release as a marker for neurogenic inflammation: a model system for the study of neuropeptide secretion in rat paw skin
  publication-title: Pain
– start-page: 33
  year: 1968
  end-page: 55
– volume: 86
  start-page: 855
  year: 1985
  end-page: 860
  article-title: Inflammatory edema induced by synergism between CGRP and mediators of increased vascular permeability
  publication-title: Br. J. Pharmacol.
– volume: 114
  start-page: 61
  year: 1985
  end-page: 66
  article-title: Potentiation of tachykinin‐induced plasma protein extravasation by CGRP
  publication-title: Eur. J. Pharmacol.
– volume: 64
  start-page: 16
  year: 1993
  end-page: 23
  article-title: Evidence for smoking as a major risk factor for periodontitis
  publication-title: J. Periodontol.
– volume: 82
  start-page: 67
  year: 1985
  end-page: 74
  article-title: Calcitonin gene‐related peptide (CGRP) ‐immunoreacctive sensory and motor nerves of the mammalian palate
  publication-title: Histochemistry
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1748-1716.1987.tb08108.x
– ident: e_1_2_6_37_1
  doi: 10.1038/270741a0
– ident: e_1_2_6_9_1
  doi: 10.1038/39807
– volume: 71
  start-page: 178
  year: 1992
  ident: e_1_2_6_34_1
  article-title: An in vitro method to evaluate neuropeptide secretion from dental pulp
  publication-title: J. Dent. Res.
– ident: e_1_2_6_30_1
  doi: 10.1016/S0099-2399(06)81329-4
– ident: e_1_2_6_21_1
  doi: 10.1016/0014-2999(85)90520-5
– volume: 94
  start-page: 219
  year: 1986
  ident: e_1_2_6_61_1
  article-title: Calcitonin gene‐related peptide: a sensory transmitter in dental pulps? Scand
  publication-title: J. Dent. Res.
– ident: e_1_2_6_17_1
  doi: 10.1159/000246682
– volume: 19
  start-page: 494
  year: 1994
  ident: e_1_2_6_51_1
  article-title: Successive desensitization: a low pain/high dose technique for oral capsaicin delivery
  publication-title: Chem. Senses
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1600-0765.1995.tb01271.x
– ident: e_1_2_6_52_1
  doi: 10.1016/0003-9969(92)90128-U
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1600-0765.1996.tb00489.x
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1476-5381.1992.tb14472.x
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1600-0765.1990.tb00916.x
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1600-0714.1993.tb00116.x
– ident: e_1_2_6_59_1
  doi: 10.1016/0006-8993(86)90716-X
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1600-051X.1992.tb02162.x
– ident: e_1_2_6_4_1
  doi: 10.1016/S0304-3959(99)00064-0
– ident: e_1_2_6_18_1
  doi: 10.1007/BF00179044
– ident: e_1_2_6_20_1
  doi: 10.1016/0167-0115(91)90019-D
– ident: e_1_2_6_10_1
  doi: 10.1001/archneur.1961.00450120031005
– ident: e_1_2_6_16_1
  doi: 10.1016/0006-8993(94)01247-F
– ident: e_1_2_6_29_1
  doi: 10.1016/0304-3940(89)90139-0
– ident: e_1_2_6_55_1
  doi: 10.1002/cne.902800211
– volume: 51
  start-page: 160
  year: 1999
  ident: e_1_2_6_57_1
  article-title: Vanilloid (capsaicin) receptors and mechanisms
  publication-title: Pharmacol. Rev.
– ident: e_1_2_6_44_1
  doi: 10.1016/0003-9969(95)00060-3
– ident: e_1_2_6_32_1
  doi: 10.1016/0306-4522(88)90064-4
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1600-0765.1993.tb01068.x
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1476-5381.1967.tb01984.x
– ident: e_1_2_6_8_1
  doi: 10.1016/0006-8993(87)90598-1
– ident: e_1_2_6_35_1
  doi: 10.1016/B978-0-08-003267-2.50008-7
– ident: e_1_2_6_13_1
  doi: 10.1016/0167-0115(92)90061-X
– ident: e_1_2_6_28_1
  doi: 10.1902/jop.1993.64.1.16
– ident: e_1_2_6_41_1
  doi: 10.1016/0003-9969(93)90099-8
– ident: e_1_2_6_56_1
  doi: 10.1007/BF00492515
– ident: e_1_2_6_62_1
  doi: 10.1016/0196-9781(93)90037-H
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1600-051X.1997.tb01192.x
– volume: 77
  start-page: 160
  year: 1998
  ident: e_1_2_6_5_1
  article-title: Development of an in vitro rat dental pulp superfusion model
  publication-title: J. Dent. Res.
– ident: e_1_2_6_31_1
  doi: 10.1007/BF00315910
– ident: e_1_2_6_58_1
  doi: 10.1016/0006-8993(92)90753-V
– volume: 14
  start-page: 1
  year: 1927
  ident: e_1_2_6_46_1
  article-title: Influence of the cutaneous nerves on various reaction of the cutaneous vessels
  publication-title: Heart
– ident: e_1_2_6_33_1
– volume: 23
  start-page: 874
  year: 1997
  ident: e_1_2_6_45_1
  article-title: Modulation of capsaicin‐evoked neuropeptide release by nicotine in the rat buccal musocsa
  publication-title: Soc. Neurosci. Abstr.
– ident: e_1_2_6_3_1
  doi: 10.1113/jphysiol.1901.sp000831
– ident: e_1_2_6_40_1
  doi: 10.1159/000046488
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1476-5381.1985.tb11107.x
– volume: 24
  start-page: 1625
  year: 1998
  ident: e_1_2_6_14_1
  article-title: Differential effects of neuronal nicotinic receptor agonists on capsaicin‐evoked CGRP release from peripheral terminals of primary sensory neurons
  publication-title: Soc. Neurosci. Abstract.
– ident: e_1_2_6_23_1
  doi: 10.1007/BF01612335
– ident: e_1_2_6_42_1
  doi: 10.1016/0003-9969(94)90006-X
– ident: e_1_2_6_47_1
  doi: 10.1006/exnr.1997.6624
– ident: e_1_2_6_6_1
  doi: 10.1038/313054a0
– volume-title: Pain and Headache
  year: 1992
  ident: e_1_2_6_48_1
– ident: e_1_2_6_39_1
  doi: 10.1016/0304-3940(94)90835-4
– ident: e_1_2_6_12_1
  doi: 10.1038/sj.bjp.0701272
– ident: e_1_2_6_53_1
  doi: 10.1007/BF00502092
– ident: e_1_2_6_50_1
  doi: 10.1016/0003-9969(88)90039-8
– ident: e_1_2_6_2_1
  doi: 10.1902/jop.1994.65.12.1113
– ident: e_1_2_6_15_1
  doi: 10.1016/S1079-2104(99)70026-0
– ident: e_1_2_6_43_1
  doi: 10.1016/S0304-3959(97)00108-5
– ident: e_1_2_6_38_1
  doi: 10.1177/00220345720510020901
– ident: e_1_2_6_60_1
  doi: 10.1007/BF00492350
SSID ssj0008645
Score 1.8691633
Snippet Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1113
SubjectTerms Animals
Bradykinin - pharmacology
Calcimycin - pharmacology
Calcitonin Gene-Related Peptide - metabolism
Calcium - metabolism
Capsaicin - analogs & derivatives
Capsaicin - pharmacology
Dinoprostone - pharmacology
Disease Models, Animal
Dose-Response Relationship, Drug
exocytosis
Histamine - pharmacology
in vitro superfusion
Inflammation Mediators - metabolism
Ionophores - pharmacology
Male
Mouth Mucosa - drug effects
Mouth Mucosa - innervation
Mouth Mucosa - metabolism
Neurogenic Inflammation - chemically induced
Neurogenic Inflammation - metabolism
Neurogenic Inflammation - physiopathology
neuropeptide
nociceptor
Nociceptors - drug effects
Nociceptors - metabolism
Organ Culture Techniques
pain
Pain Measurement - drug effects
Potassium Chloride - pharmacology
Rats
Rats, Sprague-Dawley
sensory neuron
Serotonin - pharmacology
Trigeminal Nerve - drug effects
Trigeminal Nerve - metabolism
Title Capsaicin-evoked CGRP release from rat buccal mucosa: development of a model system for studying trigeminal mechanisms of neurogenic inflammation
URI https://api.istex.fr/ark:/67375/WNG-B9KT27QG-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.0953-816x.2001.01736.x
https://www.ncbi.nlm.nih.gov/pubmed/11683903
https://www.proquest.com/docview/1808661750
https://www.proquest.com/docview/72238241
https://pubmed.ncbi.nlm.nih.gov/PMC2814599
Volume 14
WOSCitedRecordID wos000171795700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-9568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008645
  issn: 0953-816X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLWgRWIvfGx8hI9hJLS3VEmT2A5vo6xFgKoxFdE3y3Yc6LamU9NO5Y2fgMQ_5Jdwr5NmVAxpQkh9qFTfqM49jo_j63MIeZEYNKMR2k9zw_zYZsbXsQ59WN_mwqiusol2ZhN8OBTjcXpY1z_hWZhKH6J54YYjwz2vcYArXbmQBE7d9riDUmm-CNkKl3lhB7AVsQ7wyXYXYBy3SPv1Uf_j--a5LJizLF5Hjeu6nmqP8_JrbUxWbbzvq8uY6J8Flb8TXTdT9W__zz7eIbdqvkr3K4DdJddssU129gtYq0-_0j3qKkjdq_ltcrO3do_bIT966qxUuG3_89t3ez47sRntDY4OKZq0wMxJ8VwLBfhRvYT0ntIpls6rlzS7qGKis5wq6rx6aKU4TYFiU6eICzMuXcwnn60zJaNTiyeYJ-W0xCAn0gkjY2IoDCDAfHU-8x4Z9Q9GvTd-bQDhGxZw5mc6R7X4nKWRShlXlucGxYZirriOeGa7OjPAUWxk08QqIH-5sTpjzMAn4tF90ipmhX1IKOq4ZTxQyigbCxOLLOMWmmq4SKBy6xG-TrQ0tTg6enScSrdJH-OBNkyFxFSgdWcoXSrkyiNhE3lWCYRcIWbPYakJUPMTLLDjifw0HMhX6btRl38YyJ5Hnq_BJiF_uJejCjtbljIUgGdgn0ngkWd_acOB-glgaB55UMHz4g-GDIhxEEG3N4DbNEDR8c1fiskXJz7eFWGcpKlHmAPulfssD94O8dujfw18TLZc_Z8rpHxCWov50j4lN8z5YlLOd8l1Pha79ZD_BY1DWxw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CLdJ44bLBCLcZCe0to2kSO-FtlLWDlWpMRfTNchwHoq3p1MtU3vgJSPxDfgnnOGlGxZAmhNSHSPWJ4pzvxMf28fcBvAg1idFEiRtnmruBSbWbBInn4vw2i7RqKxMmVmxCDAbRaBQfV3JAdBam5IeoF9woMuz3mgKcFqRfVtuSNsqJK82NPL6keZ63h-Dy-R4mlM0AURU2oPnmpPuxX3-YI241i1dWo6qwp9zkvPpea6NVk1788qpU9M-Kyt8zXTtUde_8107ehdtVxsr2S4jdgxum2ISt_QJn6-OvbJfZGlK7OL8JG52VftwW_Oio85mijfuf376bi8mpSVmnd3LMSKYFx05GJ1sYApAlC3TwGRtT8bx6xdLLOiY2yZhiVq2HlZzTDJNsZjlxccxl82n-2VhZMjY2dIY5n41nZGRpOjE2cs0whBD15QnN-zDsHgw7h24lAeFq3hLcTZOM-OIzHvsq5kIZkWmiGwqEEokvUtNOUo1ZivFNHBqF6V-mTZJyrvHnC_8BNIpJYR4CIya3VLSU0soEkQ6iNBUGmyZ4k5bKjANi5WmpK3p0Uuk4k3abPqAjbeQKSa4g8U5PWlfIpQNebXleUoRcw2bXgqk2UNNTKrETofw06MnX8dGwLT70ZMeB5yu0SfQf7eaowkwWM-lFCGjMP8OWAzt_aSMw-YswR3Ngu8Tn5QN6HFPjlo_dXkNu3YBox9f_KfIvln68HXlBGMcOcIvca_dZHrwb0NWjfzXcgY3D4fu-7L8dHD2GW7Ya0JZVPoHGfLowT-Gmvpjns-mzKvJ_AQsaXiQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEF2hBkFfuLRczK2LhPrmYsf2rs1bSZsAraJQBZG31d5MozZOlEsV3vgEJP6QL2Fm7bhEFKlCSHmIlB0r65nxnvXMnkPIq0SjGE2q_CzXzI-t0b6KVejD_jZPtWxKmygnNsG73XQwyHqVHBCehSn5IeoXbpgZ7nmNCW4nJn9dlSVdliNXmp-GbIn7vHAPgitiewAoG3GSMcjSxsFJ-9Nx_WBOmdMsXlkNqsaessh59bXWVqsG3vjlVVD0z47K35GuW6rad__rJO-ROxVipftliN0nN2yxRbb3C9itj77SXep6SN3L-S1yu7XSj9smP1pyMpNYuP_57bu9GJ9ZQ1udkx5FmRZYOymebKEQgFQtwMHndITN8_INNZd9THScU0mdWg8tOacpgGzqOHFhzaXz6fCLdbJkdGTxDPNwNpqhkaPphNwYagopBFFfntB8QPrtw37rnV9JQPiaBZz5RuXIF5-zLJIZ49LyXCPdUMwlVxE3tqmMBpRiI5slVgL8y7VVhjENn4hHD8lGMS7sY0KRyc3wQEotbZzqODWGWxiq4CKBzK1H-MrTQlf06KjScS5cmT7GI23oCoGuQPHOUDhXiKVHwtpyUlKEXMNm1wVTbSCnZ9hixxPxudsRb7OjfpN_7IiWR16uok2A_7CaIws7XsxEmEJAA_5MAo_s_GUMB_CXAkbzyKMyPi__YMgAGgcRTHstcusBSDu-_ksxPHX04800hPzKPMJc5F57zuLwQxe_PflXwx1yq3fQFsfvu0dPyaZrBnRdlc_Ixny6sM_JTX0xH86mL6rE_wUOQl2f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capsaicin%E2%80%90evoked+CGRP+release+from+rat+buccal+mucosa%3A+development+of+a+model+system+for+studying+trigeminal+mechanisms+of+neurogenic+inflammation&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Flores%2C+Christopher+M.&rft.au=Leong%2C+Anthony+S.&rft.au=O.+Dussor%2C+Gregory&rft.au=Hargreaves%2C+Kenneth+M.&rft.date=2001-10-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=14&rft.issue=7&rft.spage=1113&rft.epage=1120&rft_id=info:doi/10.1046%2Fj.0953-816x.2001.01736.x&rft.externalDBID=10.1046%252Fj.0953-816x.2001.01736.x&rft.externalDocID=EJN1736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon