Capsaicin-evoked CGRP release from rat buccal mucosa: development of a model system for studying trigeminal mechanisms of neurogenic inflammation
Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived...
Gespeichert in:
| Veröffentlicht in: | The European journal of neuroscience Jg. 14; H. 7; S. 1113 - 1120 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Science Ltd
01.10.2001
|
| Schlagworte: | |
| ISSN: | 0953-816X, 1460-9568 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene‐related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 µm), to the superfusion buffer resulted in a significant, concentration‐dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 µm). The specific, capsaicin receptor antagonist, capsazepine (300 µm), completely abolished the capsaicin‐evoked release of iCGRP while having no effect whatsoever on the potassium‐evoked release. Moreover, capsaicin‐evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor‐mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation. |
|---|---|
| AbstractList | Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene‐related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 µ
m
), to the superfusion buffer resulted in a significant, concentration‐dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 m
m
) or by the calcium ionophore A23187 (1 µ
m
). The specific, capsaicin receptor antagonist, capsazepine (300 µ
m
), completely abolished the capsaicin‐evoked release of iCGRP while having no effect whatsoever on the potassium‐evoked release. Moreover, capsaicin‐evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor‐mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation. Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin‐sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene‐related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 µm), to the superfusion buffer resulted in a significant, concentration‐dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 µm). The specific, capsaicin receptor antagonist, capsazepine (300 µm), completely abolished the capsaicin‐evoked release of iCGRP while having no effect whatsoever on the potassium‐evoked release. Moreover, capsaicin‐evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor‐mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation. Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 microm), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 microm). The specific, capsaicin receptor antagonist, capsazepine (300 microm), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation. Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 mu m), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50mm) or by the calcium ionophore A23187 (1 mu m). The specific, capsaicin receptor antagonist, capsazepine (300 mu m), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation. Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague–Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10–300 μM), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mM) or by the calcium ionophore A23187 (1 μM). The specific, capsaicin receptor antagonist, capsazepine (300 μM), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation. Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 microm), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 microm). The specific, capsaicin receptor antagonist, capsazepine (300 microm), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation.Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures. Such attributes include the dependence upon capsaicin-sensitive sensory neurons and the involvement of certain inflammatory mediators derived therein, including calcitonin gene-related peptide (CGRP). However, there are also important differences between the trigeminal and spinal nervous systems, and the potential contributions of neurogenic processes to inflammatory disease within the trigeminal system have yet to be fully elucidated. We present here a model system that affords the ability to study mechanisms regulating the efferent functions of peptidergic terminals that may subserve neurogenic inflammation within the oral cavity. Freshly dissected buccal mucosa tissue from adult, male, Sprague-Dawley rats was placed into chambers and superfused with oxygenated, Krebs buffer. Serial aliquots of the egressing superfusate were acquired and analysed by radioimmunoassay for immunoreactive CGRP (iCGRP). Addition of the selective excitotoxin, capsaicin (10-300 microm), to the superfusion buffer resulted in a significant, concentration-dependent increase in superfusate levels of iCGRP. Similarly, release of iCGRP from the buccal mucosa could also be evoked by a depolarizing concentration of potassium chloride (50 mm) or by the calcium ionophore A23187 (1 microm). The specific, capsaicin receptor antagonist, capsazepine (300 microm), completely abolished the capsaicin-evoked release of iCGRP while having no effect whatsoever on the potassium-evoked release. Moreover, capsaicin-evoked release was dependent upon the presence of extracellular calcium ions and was significantly, though incompletely, attenuated by neonatal capsaicin denervation. Collectively, these data indicate that the evoked neurosecretion of iCGRP in response to capsaicin occurs via a vanilloid receptor-mediated, exocytotic mechanism. The model system described here should greatly facilitate future investigations designed to identify and characterize the stimuli that regulate the release of CGRP or other neurosecretory substances in isolated tissues. This system may also be used to elucidate the role of these mediators in the aetiology of inflammatory processes within the trigeminal field of innervation. |
| Author | Kilo, Sonja Leong, Anthony S. Flores, Christopher M. O. Dussor, Gregory Hargreaves, Kenneth M. |
| AuthorAffiliation | 2 Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA 1 Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA 3 Department of Restorative Sciences, University of Minnesota, Minneapolis, MN 55455, USA |
| AuthorAffiliation_xml | – name: 3 Department of Restorative Sciences, University of Minnesota, Minneapolis, MN 55455, USA – name: 1 Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA – name: 2 Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229–3900, USA |
| Author_xml | – sequence: 1 givenname: Christopher M. surname: Flores fullname: Flores, Christopher M. organization: Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA – sequence: 2 givenname: Anthony S. surname: Leong fullname: Leong, Anthony S. organization: Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA – sequence: 3 givenname: Gregory surname: O. Dussor fullname: O. Dussor, Gregory organization: Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA – sequence: 4 givenname: Kenneth M. surname: Hargreaves fullname: Hargreaves, Kenneth M. organization: Department of Endodontics, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA – sequence: 5 givenname: Sonja surname: Kilo fullname: Kilo, Sonja |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11683903$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1v0zAUhi00xLrBX0C-Qtyk2HFiJ0ggQTXKxzQ-VAnuLMc56dzFdrGT0v4M_jHJunVwgyZZsiU_7-tzfN4TdOS8A4QwJVNKMv5iNSVlzpKC8u00JYROCRWMT7cP0IRmnCRlzosjNLmFfhyjkxhXhJCCZ_kjdEwpL1hJ2AT9nql1VEYbl8DGX0GNZ_NvX3CAFlQE3ARvcVAdrnqtVYttr31UL3ENG2j92oLrsG-wwtbX0OK4ix1Y3PiAY9fXO-OWuAtmCda4UQ36UjkTbRxFDvrgl-CMxsY1rbJWdca7x-hho9oIT272U7R4d7aYvU_OP88_zN6cJ5oTwZO6agShZcNLpkouFIhGi5TyTChRMVFDWtU6pQUwKHNQeU4bDVXNuR4WE-wUvd7brvvKQq2HToJq5ToYq8JOemXkvzfOXMql38i0oFleloPBsxuD4H_2EDtpTdTQtsqB76MUacqKNKMD-Py_IC2GsXAqcjKgT_8u6lDN7bwGoNgDOvgYAzR3CJFjNORKjlOXYzTkGA15HQ25vWv4INWmu_7xoT3T3sfg1d7gl2lhd--H5dnHi_E06JO93gwh2R70KlxJLpjI5feLuXxbflqk4utcztgfPV7nGw |
| CitedBy_id | crossref_primary_10_1016_j_neuroscience_2016_02_008 crossref_primary_10_1016_j_pain_2005_10_003 crossref_primary_10_1111_j_1526_4610_2012_02262_x crossref_primary_10_1111_j_1600_0765_2005_00836_x crossref_primary_10_3390_molecules24050995 crossref_primary_10_1046_j_1460_9568_2003_02935_x crossref_primary_10_1038_sj_bjp_0705486 crossref_primary_10_1080_00016480600895110 crossref_primary_10_1007_s00441_005_0013_3 crossref_primary_10_1016_j_brainres_2017_06_004 crossref_primary_10_1016_S0161_813X_03_00022_6 crossref_primary_10_1016_j_neuroscience_2006_08_015 crossref_primary_10_1016_j_npep_2018_01_004 crossref_primary_10_1177_154411130401500203 crossref_primary_10_1177_154405910308200412 crossref_primary_10_1016_j_pain_2009_03_027 crossref_primary_10_1074_jbc_M408500200 crossref_primary_10_1038_srep29294 crossref_primary_10_1111_j_1526_4637_2011_01229_x crossref_primary_10_1016_j_semcdb_2012_09_002 crossref_primary_10_1016_j_npep_2017_02_080 crossref_primary_10_1007_s00418_006_0167_4 crossref_primary_10_1177_00220345211004872 crossref_primary_10_1007_s00221_009_1756_y crossref_primary_10_1016_j_joen_2014_01_030 crossref_primary_10_1016_j_pain_2003_09_022 crossref_primary_10_1111_j_1468_2982_2004_00649_x crossref_primary_10_1124_jpet_103_059808 crossref_primary_10_1016_j_brainres_2006_02_035 crossref_primary_10_1152_jn_00126_2018 crossref_primary_10_3200_AEOH_59_7_363_375 |
| Cites_doi | 10.1111/j.1748-1716.1987.tb08108.x 10.1038/270741a0 10.1038/39807 10.1016/S0099-2399(06)81329-4 10.1016/0014-2999(85)90520-5 10.1159/000246682 10.1111/j.1600-0765.1995.tb01271.x 10.1016/0003-9969(92)90128-U 10.1111/j.1600-0765.1996.tb00489.x 10.1111/j.1476-5381.1992.tb14472.x 10.1111/j.1600-0765.1990.tb00916.x 10.1111/j.1600-0714.1993.tb00116.x 10.1016/0006-8993(86)90716-X 10.1111/j.1600-051X.1992.tb02162.x 10.1016/S0304-3959(99)00064-0 10.1007/BF00179044 10.1016/0167-0115(91)90019-D 10.1001/archneur.1961.00450120031005 10.1016/0006-8993(94)01247-F 10.1016/0304-3940(89)90139-0 10.1002/cne.902800211 10.1016/0003-9969(95)00060-3 10.1016/0306-4522(88)90064-4 10.1111/j.1600-0765.1993.tb01068.x 10.1111/j.1476-5381.1967.tb01984.x 10.1016/0006-8993(87)90598-1 10.1016/B978-0-08-003267-2.50008-7 10.1016/0167-0115(92)90061-X 10.1902/jop.1993.64.1.16 10.1016/0003-9969(93)90099-8 10.1007/BF00492515 10.1016/0196-9781(93)90037-H 10.1111/j.1600-051X.1997.tb01192.x 10.1007/BF00315910 10.1016/0006-8993(92)90753-V 10.1113/jphysiol.1901.sp000831 10.1159/000046488 10.1111/j.1476-5381.1985.tb11107.x 10.1007/BF01612335 10.1016/0003-9969(94)90006-X 10.1006/exnr.1997.6624 10.1038/313054a0 10.1016/0304-3940(94)90835-4 10.1038/sj.bjp.0701272 10.1007/BF00502092 10.1016/0003-9969(88)90039-8 10.1902/jop.1994.65.12.1113 10.1016/S1079-2104(99)70026-0 10.1016/S0304-3959(97)00108-5 10.1177/00220345720510020901 10.1007/BF00492350 |
| ContentType | Journal Article |
| Copyright | Federation of European Neuroscience Societies |
| Copyright_xml | – notice: Federation of European Neuroscience Societies |
| CorporateAuthor | Catherine Harding‐Rose |
| CorporateAuthor_xml | – name: Catherine Harding‐Rose |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
| DOI | 10.1046/j.0953-816x.2001.01736.x |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Neurosciences Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1460-9568 |
| EndPage | 1120 |
| ExternalDocumentID | PMC2814599 11683903 10_1046_j_0953_816x_2001_01736_x EJN1736 ark_67375_WNG_B9KT27QG_C |
| Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA010510 – fundername: NIDA NIH HHS grantid: DA10510 – fundername: NIDA NIH HHS grantid: F31 DA005982 |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RIG WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
| ID | FETCH-LOGICAL-c6076-dbf7019f693a967ae7fc721647a7b37de2bdc218e3e95ea551fcebd66c66c373 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000171795700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0953-816X |
| IngestDate | Tue Nov 04 01:58:54 EST 2025 Thu Oct 02 04:07:11 EDT 2025 Sun Nov 09 10:38:16 EST 2025 Fri May 30 10:50:26 EDT 2025 Sat Nov 29 03:17:47 EST 2025 Tue Nov 18 22:36:08 EST 2025 Wed Jan 22 17:12:48 EST 2025 Tue Nov 11 03:32:01 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6076-dbf7019f693a967ae7fc721647a7b37de2bdc218e3e95ea551fcebd66c66c373 |
| Notes | istex:70945C5C9462911D4CD18049A98EFC31A8D36883 ArticleID:EJN1736 ark:/67375/WNG-B9KT27QG-C On leave from, Institut für Physiologie und Experimentelle Pathophysiologie, Universitätsstrasse 17, D‐91054 Erlangen, Germany. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 On leave from, Institut für Physiologie und Experimentelle Pathophysiologie, Universitätsstrasse 17, D-91054 Erlangen, Germany. |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2814599 |
| PMID | 11683903 |
| PQID | 1808661750 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2814599 proquest_miscellaneous_72238241 proquest_miscellaneous_1808661750 pubmed_primary_11683903 crossref_primary_10_1046_j_0953_816x_2001_01736_x crossref_citationtrail_10_1046_j_0953_816x_2001_01736_x wiley_primary_10_1046_j_0953_816x_2001_01736_x_EJN1736 istex_primary_ark_67375_WNG_B9KT27QG_C |
| PublicationCentury | 2000 |
| PublicationDate | October 2001 |
| PublicationDateYYYYMMDD | 2001-10-01 |
| PublicationDate_xml | – month: 10 year: 2001 text: October 2001 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: France |
| PublicationTitle | The European journal of neuroscience |
| PublicationTitleAlternate | Eur J Neurosci |
| PublicationYear | 2001 |
| Publisher | Blackwell Science Ltd |
| Publisher_xml | – name: Blackwell Science Ltd |
| References | Brain, S.J., Morris, H., MacIntyre, I. (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature, 313, 54-56. Docherty, R.J., Yeats, J.C., Piper, A.S. (1997) Capsazepine block of voltage-activated calcium channels I adult rat dorsal root ganglion neurons in culture. Br. J. Pharmacol., 121, 1461-1467. Jancsó, G., Kiraly, E., Jancsó-Gábor, A. (1977) Pharmacologically induced selective degeration of chemosensitive primary sensory neurons. Nature, 270, 741-743. Escott, K.J., Beattie, D.T., Connor, H.E., Brain, S.D. (1995) Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res., 669, 93-99. Soinila, J., Salo, A., Unsitalo, H., Yanaihara, N., Happole, O. (1989) CGRP-immunoreactive sensory nerve fibers in the submandibular gland of the rat. Histochemistry, 91, 455-460. Györfi, A., Fazekas, Á., Fehér, E., Ender, F., Rosivall, L. (1996) Effects of streptozotocin-induced diabetes on neurogenic inflammation of gingivomucosal tissue in rat. J. Periodont. Res., 31, 249-255. Byers, M.R., Mecifi, K.B., Kimberly, C.L. (1987) Numerous nerves with calcitonin gene-related peptide-like immunoreactivity innervate junctional epithelium of rats. Brain Res., 419, 311-314. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816-824. Karimian, M. & Ferrell, W.R. (1994) Plasma protein extravasation into the rat knee joint induced by calcitonin gene-related peptide. Neurosci. Lett., 166, 39-42. Leong, A.S., Kilo, S., Hargreaves, K.M., Flores, C.M. (1997) Modulation of capsaicin-evoked neuropeptide release by nicotine in the rat buccal musocsa. Soc. Neurosci. Abstr., 23, 874. Szallasi, A. & Blumberg, P.M. (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev., 51, 160-211. Barthold, P.M., Kylstra, A., Lawson, R. (1994) Substance P: an immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation? J. Periodontol., 65, 1113-1121. Kilo, S., Harding-Rose, C., Hargreaves, K.M., Flores, C.M. (1997) Peripheral CGRP release as a marker for neurogenic inflammation: a model system for the study of neuropeptide secretion in rat paw skin. Pain, 73, 201-207. Goltz, F. (1874) Über gefässerweiternde Nerven. Pflueger Arch. Ges. Physiol., 9, 15. Györfi, A., Fazekas, Á., Irmes, F., Rosivall, L. (1995) Effect of substance P administration on vascular permeability in the rat oral mucosa and sublingual gland. J. Peridont. Res., 30, 181-185. Györfi, A., Fazekas, Á., Rosivall, L. (1992) Neurogenic inflammation and the oral mucosa. J. Clin. Periodontol., 19, 731-736. Gamse, R. & Saria, A. (1985) Potentiation of tachykinin-induced plasma protein extravasation by CGRP. Eur. J. Pharmacol., 114, 61-66. Ruokonen, H., Hietanen, J., Malmström, M., Sane, J., Häyrinen-Immonen, R., Hukkanen, M., Konttinen, Y.T. (1993) Peripheral nerves and mast cells in normal buccal mucosa. J. Oral Pathol. Med., 22, 30-34. Brain, S. & Williams, T. (1985) Inflammatory edema induced by synergism between CGRP and mediators of increased vascular permeability. Br. J. Pharmacol., 86, 855-860. Terenghi, G., Zhang, S.-Q., Under, W.G., Polak, J.M. (1986b) Morphological changes of sensory CGRP-immunoreactive and sympathetic nerves in peripheral tissues following chronic denervation. Histochemistry, 86, 89-95. Hargreaves, K.M., Bowles, W.R., Garry, G. (1992) An in vitro method to evaluate regulation of neuropeptide release. J. Endodontics, 18, 597-600. Luthman, J., Johansson, O., Ahlström, U., Kvint, S. (1988) Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, γ-MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva. Arch. Oral Biol., 33, 149-158. Silverman, J.D. & Kruger, L. (1989) Calcitonin gene-related peptide immunoreactive innervation of the rat head with emphasis on specialized sensory structures. J. Comp. Neurol., 280, 303-330. Kerezoudis, N.P., Olgart, L., Edwall, L. (1993) Evans blue extravasation in rat dental pulp and oral tissues induced by electrical stimulation of the inferior alveolar nerve. Arch. Oral Biol., 10, 893-901. Gazelius, B., Edwall, B., Olgart, L., Lundberg, J., Hokfelt, T., Fischer, J. (1987) Vasodilatory effects and coexistence of CGRP and substance P in sensory nerves of cat dental pulp. Acta Physiol. Scand., 130, 33-40. Hilliges, M., Hellman, M., Ahlström, U., Johansson, O. (1994) Immunohistochemical studies of neurochemical markers in normal human buccal mucosa. Histochemistry, 101, 235-244. Epstein, J.B. & Schubert, M.M. (1999) Oral mucositis in myelosuppressive cancer therapy. Oral Surg. Oral Med. Oral Pathol., 88, 273-276. Kato, J., Uddman, R., Sundler, F., Kurisu, K. (1998) Immunohistochemical study of the innervation of the boundary area of the hard and soft palates of the rat. Acta Anat., 163, 92-98. Linden, G.J., McKinnell, J., Shaw, C., Lundy, F.T. (1997) Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease. J. Clin. Periodontol., 24, 799-803. Nagata, E., Kondo, T., Ayasaka, N., Nakata, M., Tanaka, T. (1992) Immunohistochemical study of nerve fibres with substance P- or calcitonin gene-related peptide-like immunoreactivity in the junctional epithelium of developing rats. Arch. Oral Biol., 37, 655-662. Jancsó-Gábor, A. & Szolcsányi, J. (1972) Neurogenic inflammatory responses. J. Dent. Res., 51 (Suppl.), 264-269. Cruwys, S.C., Kidd, B.L., Mapp, P.I., Walsh, D.A., Blake, D.R. (1992) The effects of calcitonin gene-related peptide on formation of intra-articular oedema by inflammatory mediators. Br. J. Pharm., 107, 116-119. Holzer, P. (1988) Local effector function of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience, 24, 739-768. Fazekas, Á., Vindisch, K., Pósch, E., Györfi, A. (1990) Experimentally-induced neurogenic inflammationin the rat oral mucosa. J. Periodont. Res., 25, 276-282. Bowles, W.R., Oh, W., Sabino, M.L., Harding-Rose, C., Hargreaves, K.M. (1998) Development of an in vitro rat dental pulp superfusion model. J. Dent. Res., 77, 160. Chapman, L.F., Ramos, A.O., Goddell, H., Wolff, H.G. (1961) Neurohumoral features of afferent fibers in man. Arch. Neurol., 4, 617-650. Li, Y., Hsieh, S.T., Chien, H.F., Zhang, X., McArthur, J.C., Griffin, J.W. (1997) Sensory and motor denervation influence epidermal thickness in rat foot and glabrous skin. Exp. Neurol., 147, 452-462. Bayliss, W.M. (1901) On the origin from the spinal cord of the vaso-dilator fibres of the hindlimb, and on the nature of these fibres. J. Physiol. (Lond.), 26, 173-209. Kerezoudis, N.P., Olgart, L., Edwall, L. (1994) Involvement of substance P but not nitric oxide or calcitonin gene-related peptide in neurogenic plasma extravasation in rat incisor pulp and lip. Arch. Oral Biol., 39, 769-774. Fantini, F., Giannetti, A., Benassi, L., Cattaneo, V., Magnoni, C., Pincelli, C. (1995) Nerve growth factor receptor and neurochemical markers in human oral mucosa: an immunohistochemical study. Dermatology, 190, 186-191. Nadoolman, W., Duffy, V.B., Berger, A.M., Bartoshuk, L.M. (1994) Successive desensitization: a low pain/high dose technique for oral capsaicin delivery. Chem. Senses, 19, 494. Lewis, T., Harris, K.E., Grant, R.T. (1927) Influence of the cutaneous nerves on various reaction of the cutaneous vessels. Heart, 14, 1. Jancsó, N., Jancsó-Gábor, A., Szolcsányi, J. (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br. J. Pharmacol., 31, 138-151. Terenghi, G., Polak, J.M., Rodrigo, J., Mulderry, P.K., Bloom, S.R. (1986a) Calcitonin gene-related peptide-immunoreactive nerves in the tonjue, epiglottis and pharynx of the rat: occurrence, distribution and origin. Brain Res., 365, 1-14. Kondo, T., Kido, M.A., Kiyoshima, T., Yamaza, T., Tanaka, T. (1995) An immunohistochemical and monastral blue-vascular labelling study on the involvement of capsaicin-sensitive sensory innervation of the junctional ipithelium in nurogenic plasma extravasation in the rat gingiva. Arch. Oral Biol., 10, 931-940. Wimalawansa, S.J. (1993) The effects of neonatal capsaicin on plasma levels and tissue contents of CGRP. Peptides, 14, 247-252. Donnerer, J., Schuligoi, R., Amann, R. (1992) Time-course of capsaicin-evoked release of calcitonin gene-related peptide from rat spinal cord in vitro. Effect of concentration and modulation by Ruthenium Red. Regul. Pept., 37, 27-37. Hammond, D.L. & Ruda, M.A. (1989) Developmental alterations in thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene-related peptide and substance P after neonatal administration of capsaicin in the rat. Neurosci. Lett., 97, 57-62. Jackson, D.L., Garry, M., Engelstad, M., Geier, H., Hargreaves, K.M. (1992) An in vitro method to evaluate neuropeptide secretion from dental pulp. J. Dent. Res., 71, 178. Fazekas, Á., Györfi, A., Pósch, E., Jacab, G., Bártfai, Z., Rosivall, L. (1991) Effect of denervation on the neurogenic inflammation of the rat mandibular mucosa. Naunyn-Schmiedeberg's Arch. Pharmacol., 343, 393-398. Bongenhielm, U., Boissonade, F.M., Westermark, A., Robinson, P.P., Fried, K. (1999) Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain, 82, 183-288. Dussor, G.O., Leong, A.S., Gracia, N.B., Hargreaves, K.M., Arneric, S.P., Flores, C.M. (1998) Differential effects of neuronal nicotinic receptor agonists on capsaicin-evoked CGRP release from peripheral terminals of primary sensory neurons. Soc. Neurosci. Abstract., 24, 1625. Haber, J., Wattles, J., Crowby, M., Mandel, R., Kaunusi, J., Kent, R. (1993) Evidence for smoking as a major risk factor for periodontitis. J. Periodontol., 64, 16-23. Györfi, A., Fazekas, Á., 1995; 30 1993; 28 1993; 22 1993; 64 1874; 9 1989; 280 1992; 18 1988; 33 1999; 88 1992; 19 1999; 82 1992; 12 1996; 31 1994; 65 1994; 101 1997; 389 1997; 147 1991; 343 1961; 4 1999; 51 1972; 51 1994; 39 1998; 163 1986a; 365 1986b; 86 1977; 270 1927; 14 1986; 94 1991; 32 1997; 24 1995; 10 1997; 23 1992; 107 1992; 37 1985; 82 1985; 86 1992; 71 1998; 24 1987; 130 1901; 26 1995; 190 1993; 14 1994; 166 1997; 73 1989; 97 1990; 25 1967; 31 1994; 19 1989; 91 1997; 121 1993; 10 1995; 669 1992; 579 1987; 419 1985; 114 1985; 313 1988; 24 1998; 77 1968 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Lewis T. (e_1_2_6_46_1) 1927; 14 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Leong A.S. (e_1_2_6_45_1) 1997; 23 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Jackson D.L. (e_1_2_6_34_1) 1992; 71 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Dussor G.O. (e_1_2_6_14_1) 1998; 24 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Nadoolman W. (e_1_2_6_51_1) 1994; 19 Szallasi A. (e_1_2_6_57_1) 1999; 51 e_1_2_6_8_1 Uddman R. (e_1_2_6_61_1) 1986; 94 Bowles W.R. (e_1_2_6_5_1) 1998; 77 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 Light A.R. (e_1_2_6_48_1) 1992 e_1_2_6_27_1 |
| References_xml | – reference: Gazelius, B., Edwall, B., Olgart, L., Lundberg, J., Hokfelt, T., Fischer, J. (1987) Vasodilatory effects and coexistence of CGRP and substance P in sensory nerves of cat dental pulp. Acta Physiol. Scand., 130, 33-40. – reference: Kerezoudis, N.P., Olgart, L., Edwall, L. (1993) Evans blue extravasation in rat dental pulp and oral tissues induced by electrical stimulation of the inferior alveolar nerve. Arch. Oral Biol., 10, 893-901. – reference: Ruokonen, H., Hietanen, J., Malmström, M., Sane, J., Häyrinen-Immonen, R., Hukkanen, M., Konttinen, Y.T. (1993) Peripheral nerves and mast cells in normal buccal mucosa. J. Oral Pathol. Med., 22, 30-34. – reference: Li, Y., Hsieh, S.T., Chien, H.F., Zhang, X., McArthur, J.C., Griffin, J.W. (1997) Sensory and motor denervation influence epidermal thickness in rat foot and glabrous skin. Exp. Neurol., 147, 452-462. – reference: Hargreaves, K.M., Bowles, W.R., Garry, G. (1992) An in vitro method to evaluate regulation of neuropeptide release. J. Endodontics, 18, 597-600. – reference: Fantini, F., Giannetti, A., Benassi, L., Cattaneo, V., Magnoni, C., Pincelli, C. (1995) Nerve growth factor receptor and neurochemical markers in human oral mucosa: an immunohistochemical study. Dermatology, 190, 186-191. – reference: Dussor, G.O., Leong, A.S., Gracia, N.B., Hargreaves, K.M., Arneric, S.P., Flores, C.M. (1998) Differential effects of neuronal nicotinic receptor agonists on capsaicin-evoked CGRP release from peripheral terminals of primary sensory neurons. Soc. Neurosci. Abstract., 24, 1625. – reference: Hilliges, M., Hellman, M., Ahlström, U., Johansson, O. (1994) Immunohistochemical studies of neurochemical markers in normal human buccal mucosa. Histochemistry, 101, 235-244. – reference: Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816-824. – reference: Holzer, P. (1988) Local effector function of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience, 24, 739-768. – reference: Kilo, S., Harding-Rose, C., Hargreaves, K.M., Flores, C.M. (1997) Peripheral CGRP release as a marker for neurogenic inflammation: a model system for the study of neuropeptide secretion in rat paw skin. Pain, 73, 201-207. – reference: Bongenhielm, U., Boissonade, F.M., Westermark, A., Robinson, P.P., Fried, K. (1999) Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain, 82, 183-288. – reference: Gamse, R. & Saria, A. (1985) Potentiation of tachykinin-induced plasma protein extravasation by CGRP. Eur. J. Pharmacol., 114, 61-66. – reference: Jackson, D.L., Garry, M., Engelstad, M., Geier, H., Hargreaves, K.M. (1992) An in vitro method to evaluate neuropeptide secretion from dental pulp. J. Dent. Res., 71, 178. – reference: Györfi, A., Fazekas, Á., Fehér, E., Ender, F., Rosivall, L. (1996) Effects of streptozotocin-induced diabetes on neurogenic inflammation of gingivomucosal tissue in rat. J. Periodont. Res., 31, 249-255. – reference: Cruwys, S.C., Kidd, B.L., Mapp, P.I., Walsh, D.A., Blake, D.R. (1992) The effects of calcitonin gene-related peptide on formation of intra-articular oedema by inflammatory mediators. Br. J. Pharm., 107, 116-119. – reference: Leong, A.S., Kilo, S., Hargreaves, K.M., Flores, C.M. (1997) Modulation of capsaicin-evoked neuropeptide release by nicotine in the rat buccal musocsa. Soc. Neurosci. Abstr., 23, 874. – reference: Soinila, J., Salo, A., Unsitalo, H., Yanaihara, N., Happole, O. (1989) CGRP-immunoreactive sensory nerve fibers in the submandibular gland of the rat. Histochemistry, 91, 455-460. – reference: Hammond, D.L. & Ruda, M.A. (1989) Developmental alterations in thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene-related peptide and substance P after neonatal administration of capsaicin in the rat. Neurosci. Lett., 97, 57-62. – reference: Györfi, A., Fazekas, Á., Irmes, F., Jakab, G., Süto, T., Rosivall, L. (1993) Role of substance P (SP) in development of symptoms of neurogenic inflammationin the oral mucosa of the rat. J. Peridont. Res., 28, 191-196. – reference: Nadoolman, W., Duffy, V.B., Berger, A.M., Bartoshuk, L.M. (1994) Successive desensitization: a low pain/high dose technique for oral capsaicin delivery. Chem. Senses, 19, 494. – reference: Byers, M.R., Mecifi, K.B., Kimberly, C.L. (1987) Numerous nerves with calcitonin gene-related peptide-like immunoreactivity innervate junctional epithelium of rats. Brain Res., 419, 311-314. – reference: Bowles, W.R., Oh, W., Sabino, M.L., Harding-Rose, C., Hargreaves, K.M. (1998) Development of an in vitro rat dental pulp superfusion model. J. Dent. Res., 77, 160. – reference: Jancsó-Gábor, A. & Szolcsányi, J. (1972) Neurogenic inflammatory responses. J. Dent. Res., 51 (Suppl.), 264-269. – reference: Luthman, J., Johansson, O., Ahlström, U., Kvint, S. (1988) Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, γ-MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva. Arch. Oral Biol., 33, 149-158. – reference: Silverman, J.D. & Kruger, L. (1989) Calcitonin gene-related peptide immunoreactive innervation of the rat head with emphasis on specialized sensory structures. J. Comp. Neurol., 280, 303-330. – reference: Escott, K.J., Beattie, D.T., Connor, H.E., Brain, S.D. (1995) Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res., 669, 93-99. – reference: Györfi, A., Fazekas, Á., Irmes, F., Rosivall, L. (1995) Effect of substance P administration on vascular permeability in the rat oral mucosa and sublingual gland. J. Peridont. Res., 30, 181-185. – reference: Tal, M. & Devor, M. (1992) Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents. Brain Res., 579, 148-151. – reference: Bayliss, W.M. (1901) On the origin from the spinal cord of the vaso-dilator fibres of the hindlimb, and on the nature of these fibres. J. Physiol. (Lond.), 26, 173-209. – reference: Fazekas, Á., Györfi, A., Pósch, E., Jacab, G., Bártfai, Z., Rosivall, L. (1991) Effect of denervation on the neurogenic inflammation of the rat mandibular mucosa. Naunyn-Schmiedeberg's Arch. Pharmacol., 343, 393-398. – reference: Barthold, P.M., Kylstra, A., Lawson, R. (1994) Substance P: an immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation? J. Periodontol., 65, 1113-1121. – reference: Haber, J., Wattles, J., Crowby, M., Mandel, R., Kaunusi, J., Kent, R. (1993) Evidence for smoking as a major risk factor for periodontitis. J. Periodontol., 64, 16-23. – reference: Kondo, T., Kido, M.A., Kiyoshima, T., Yamaza, T., Tanaka, T. (1995) An immunohistochemical and monastral blue-vascular labelling study on the involvement of capsaicin-sensitive sensory innervation of the junctional ipithelium in nurogenic plasma extravasation in the rat gingiva. Arch. Oral Biol., 10, 931-940. – reference: Brain, S. & Williams, T. (1985) Inflammatory edema induced by synergism between CGRP and mediators of increased vascular permeability. Br. J. Pharmacol., 86, 855-860. – reference: Goltz, F. (1874) Über gefässerweiternde Nerven. Pflueger Arch. Ges. Physiol., 9, 15. – reference: Docherty, R.J., Yeats, J.C., Piper, A.S. (1997) Capsazepine block of voltage-activated calcium channels I adult rat dorsal root ganglion neurons in culture. Br. J. Pharmacol., 121, 1461-1467. – reference: Donnerer, J., Schuligoi, R., Amann, R. (1992) Time-course of capsaicin-evoked release of calcitonin gene-related peptide from rat spinal cord in vitro. Effect of concentration and modulation by Ruthenium Red. Regul. Pept., 37, 27-37. – reference: Jancsó, N., Jancsó-Gábor, A., Szolcsányi, J. (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br. J. Pharmacol., 31, 138-151. – reference: Terenghi, G., Polak, J.M., Rodrigo, J., Mulderry, P.K., Bloom, S.R. (1986a) Calcitonin gene-related peptide-immunoreactive nerves in the tonjue, epiglottis and pharynx of the rat: occurrence, distribution and origin. Brain Res., 365, 1-14. – reference: Szallasi, A. & Blumberg, P.M. (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev., 51, 160-211. – reference: Epstein, J.B. & Schubert, M.M. (1999) Oral mucositis in myelosuppressive cancer therapy. Oral Surg. Oral Med. Oral Pathol., 88, 273-276. – reference: Chapman, L.F., Ramos, A.O., Goddell, H., Wolff, H.G. (1961) Neurohumoral features of afferent fibers in man. Arch. Neurol., 4, 617-650. – reference: Kerezoudis, N.P., Olgart, L., Edwall, L. (1994) Involvement of substance P but not nitric oxide or calcitonin gene-related peptide in neurogenic plasma extravasation in rat incisor pulp and lip. Arch. Oral Biol., 39, 769-774. – reference: Terenghi, G., Zhang, S.-Q., Under, W.G., Polak, J.M. (1986b) Morphological changes of sensory CGRP-immunoreactive and sympathetic nerves in peripheral tissues following chronic denervation. Histochemistry, 86, 89-95. – reference: Linden, G.J., McKinnell, J., Shaw, C., Lundy, F.T. (1997) Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease. J. Clin. Periodontol., 24, 799-803. – reference: Nagata, E., Kondo, T., Ayasaka, N., Nakata, M., Tanaka, T. (1992) Immunohistochemical study of nerve fibres with substance P- or calcitonin gene-related peptide-like immunoreactivity in the junctional epithelium of developing rats. Arch. Oral Biol., 37, 655-662. – reference: Wimalawansa, S.J. (1993) The effects of neonatal capsaicin on plasma levels and tissue contents of CGRP. Peptides, 14, 247-252. – reference: Fazekas, Á., Vindisch, K., Pósch, E., Györfi, A. (1990) Experimentally-induced neurogenic inflammationin the rat oral mucosa. J. Periodont. Res., 25, 276-282. – reference: Györfi, A., Fazekas, Á., Rosivall, L. (1992) Neurogenic inflammation and the oral mucosa. J. Clin. Periodontol., 19, 731-736. – reference: Lewis, T., Harris, K.E., Grant, R.T. (1927) Influence of the cutaneous nerves on various reaction of the cutaneous vessels. Heart, 14, 1. – reference: Brain, S.J., Morris, H., MacIntyre, I. (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature, 313, 54-56. – reference: Uddman, R., Grunditz, T., Sundler, F. (1986) Calcitonin gene-related peptide: a sensory transmitter in dental pulps? Scand. J. Dent. Res., 94, 219-224. – reference: Rodrigo, J., Polak, J.M., Terenghi, G., Cervantes, C., Ghatei, M.A., Mulderry, P.K., Bloom, S.R. (1985) Calcitonin gene-related peptide (CGRP) -immunoreacctive sensory and motor nerves of the mammalian palate. Histochemistry, 82, 67-74. – reference: Franco-Cereceda, A., Rydh, M., Lou, Y.P., Dalsgaard, C.J., Lundberg, J.M. (1991) Endothelin as a putative sensory neuropeptide in the guinea-pig: different properties in comparison with calcitonin gene-related peptide. Regulatory Peptides., 32, 253-265. – reference: Kato, J., Uddman, R., Sundler, F., Kurisu, K. (1998) Immunohistochemical study of the innervation of the boundary area of the hard and soft palates of the rat. Acta Anat., 163, 92-98. – reference: Jancsó, G., Kiraly, E., Jancsó-Gábor, A. (1977) Pharmacologically induced selective degeration of chemosensitive primary sensory neurons. Nature, 270, 741-743. – reference: Karimian, M. & Ferrell, W.R. (1994) Plasma protein extravasation into the rat knee joint induced by calcitonin gene-related peptide. Neurosci. Lett., 166, 39-42. – volume: 39 start-page: 769 year: 1994 end-page: 774 article-title: Involvement of substance P but not nitric oxide or calcitonin gene‐related peptide in neurogenic plasma extravasation in rat incisor pulp and lip publication-title: Arch. Oral Biol. – volume: 26 start-page: 173 year: 1901 end-page: 209 article-title: On the origin from the spinal cord of the vaso‐dilator fibres of the hindlimb, and on the nature of these fibres publication-title: J. Physiol. (Lond.) – volume: 101 start-page: 235 year: 1994 end-page: 244 article-title: Immunohistochemical studies of neurochemical markers in normal human buccal mucosa publication-title: Histochemistry – volume: 280 start-page: 303 year: 1989 end-page: 330 article-title: Calcitonin gene‐related peptide immunoreactive innervation of the rat head with emphasis on specialized sensory structures publication-title: J. Comp. Neurol. – volume: 18 start-page: 597 year: 1992 end-page: 600 article-title: An method to evaluate regulation of neuropeptide release publication-title: J. Endodontics – volume: 12 year: 1992 – volume: 24 start-page: 1625 year: 1998 article-title: Differential effects of neuronal nicotinic receptor agonists on capsaicin‐evoked CGRP release from peripheral terminals of primary sensory neurons publication-title: Soc. Neurosci. Abstract. – volume: 365 start-page: 1 year: 1986a end-page: 14 article-title: Calcitonin gene‐related peptide‐immunoreactive nerves in the tonjue, epiglottis and pharynx of the rat: occurrence, distribution and origin publication-title: Brain Res. – volume: 71 start-page: 178 year: 1992 article-title: An method to evaluate neuropeptide secretion from dental pulp publication-title: J. Dent. Res. – volume: 163 start-page: 92 year: 1998 end-page: 98 article-title: Immunohistochemical study of the innervation of the boundary area of the hard and soft palates of the rat publication-title: Acta Anat. – volume: 389 start-page: 816 year: 1997 end-page: 824 article-title: The capsaicin receptor: a heat‐activated ion channel in the pain pathway publication-title: Nature – volume: 19 start-page: 731 year: 1992 end-page: 736 article-title: Neurogenic inflammation and the oral mucosa publication-title: J. Clin. Periodontol. – volume: 32 start-page: 253 year: 1991 end-page: 265 article-title: Endothelin as a putative sensory neuropeptide in the guinea‐pig: different properties in comparison with calcitonin gene‐related peptide publication-title: Regulatory Peptides. – volume: 121 start-page: 1461 year: 1997 end-page: 1467 article-title: Capsazepine block of voltage‐activated calcium channels I adult rat dorsal root ganglion neurons in culture publication-title: Br. J. Pharmacol. – volume: 31 start-page: 249 year: 1996 end-page: 255 article-title: Effects of streptozotocin‐induced diabetes on neurogenic inflammation of gingivomucosal tissue in rat publication-title: J. Periodont. Res. – volume: 37 start-page: 27 year: 1992 end-page: 37 article-title: Time‐course of capsaicin‐evoked release of calcitonin gene‐related peptide from rat spinal cord in vitro. Effect of concentration and modulation by Ruthenium Red publication-title: Regul. Pept. – volume: 22 start-page: 30 year: 1993 end-page: 34 article-title: Peripheral nerves and mast cells in normal buccal mucosa publication-title: J. Oral Pathol. Med. – volume: 30 start-page: 181 year: 1995 end-page: 185 article-title: Effect of substance P administration on vascular permeability in the rat oral mucosa and sublingual gland publication-title: J. Peridont. Res. – volume: 10 start-page: 931 year: 1995 end-page: 940 article-title: An immunohistochemical and monastral blue‐vascular labelling study on the involvement of capsaicin‐sensitive sensory innervation of the junctional ipithelium in nurogenic plasma extravasation in the rat gingiva publication-title: Arch. Oral Biol. – volume: 10 start-page: 893 year: 1993 end-page: 901 article-title: Evans blue extravasation in rat dental pulp and oral tissues induced by electrical stimulation of the inferior alveolar nerve publication-title: Arch. Oral Biol. – volume: 343 start-page: 393 year: 1991 end-page: 398 article-title: Effect of denervation on the neurogenic inflammation of the rat mandibular mucosa publication-title: Naunyn-Schmiedeberg's Arch. Pharmacol. – volume: 37 start-page: 655 year: 1992 end-page: 662 article-title: Immunohistochemical study of nerve fibres with substance P‐ or calcitonin gene‐related peptide‐like immunoreactivity in the junctional epithelium of developing rats publication-title: Arch. Oral Biol. – volume: 107 start-page: 116 year: 1992 end-page: 119 article-title: The effects of calcitonin gene‐related peptide on formation of intra‐articular oedema by inflammatory mediators publication-title: Br. J. Pharm. – volume: 97 start-page: 57 year: 1989 end-page: 62 article-title: Developmental alterations in thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene‐related peptide and substance P after neonatal administration of capsaicin in the rat publication-title: Neurosci. Lett. – volume: 14 start-page: 247 year: 1993 end-page: 252 article-title: The effects of neonatal capsaicin on plasma levels and tissue contents of CGRP publication-title: Peptides – volume: 669 start-page: 93 year: 1995 end-page: 99 article-title: Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene‐related peptide publication-title: Brain Res. – volume: 190 start-page: 186 year: 1995 end-page: 191 article-title: Nerve growth factor receptor and neurochemical markers in human oral mucosa: an immunohistochemical study publication-title: Dermatology – volume: 23 start-page: 874 year: 1997 article-title: Modulation of capsaicin‐evoked neuropeptide release by nicotine in the rat buccal musocsa publication-title: Soc. Neurosci. Abstr. – volume: 24 start-page: 799 year: 1997 end-page: 803 article-title: Substance P and neurokinin A in gingival crevicular fluid in periodontal health and disease publication-title: J. Clin. Periodontol. – volume: 130 start-page: 33 year: 1987 end-page: 40 article-title: Vasodilatory effects and coexistence of CGRP and substance P in sensory nerves of cat dental pulp publication-title: Acta Physiol. Scand. – volume: 65 start-page: 1113 year: 1994 end-page: 1121 article-title: Substance P: an immunohistochemical and biochemical study in human gingival tissues. A role for neurogenic inflammation? publication-title: J. Periodontol. – volume: 24 start-page: 739 year: 1988 end-page: 768 article-title: Local effector function of capsaicin‐sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene‐related peptide and other neuropeptides publication-title: Neuroscience – volume: 28 start-page: 191 year: 1993 end-page: 196 article-title: Role of substance P (SP) in development of symptoms of neurogenic inflammationin the oral mucosa of the rat publication-title: J. Peridont. Res. – volume: 77 start-page: 160 year: 1998 article-title: Development of an rat dental pulp superfusion model publication-title: J. Dent. Res. – volume: 4 start-page: 617 year: 1961 end-page: 650 article-title: Neurohumoral features of afferent fibers in man publication-title: Arch. Neurol. – volume: 51 start-page: 264 year: 1972 end-page: 269 article-title: Neurogenic inflammatory responses publication-title: J. Dent. Res. – volume: 19 start-page: 494 year: 1994 article-title: Successive desensitization: a low pain/high dose technique for oral capsaicin delivery publication-title: Chem. Senses – volume: 31 start-page: 138 year: 1967 end-page: 151 article-title: Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin publication-title: Br. J. Pharmacol. – volume: 94 start-page: 219 year: 1986 end-page: 224 article-title: Calcitonin gene‐related peptide: a sensory transmitter in dental pulps? Scand publication-title: J. Dent. Res. – volume: 91 start-page: 455 year: 1989 end-page: 460 article-title: CGRP‐immunoreactive sensory nerve fibers in the submandibular gland of the rat publication-title: Histochemistry – volume: 9 start-page: 15 year: 1874 article-title: Über gefässerweiternde Nerven publication-title: Pflueger Arch. Ges. Physiol. – volume: 33 start-page: 149 year: 1988 end-page: 158 article-title: Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, γ‐MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva publication-title: Arch. Oral Biol. – volume: 86 start-page: 89 year: 1986b end-page: 95 article-title: Morphological changes of sensory CGRP‐immunoreactive and sympathetic nerves in peripheral tissues following chronic denervation publication-title: Histochemistry – volume: 579 start-page: 148 year: 1992 end-page: 151 article-title: Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents publication-title: Brain Res. – volume: 82 start-page: 183 year: 1999 end-page: 288 article-title: Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat publication-title: Pain – volume: 88 start-page: 273 year: 1999 end-page: 276 article-title: Oral mucositis in myelosuppressive cancer therapy publication-title: Oral Surg. Oral Med. Oral Pathol. – volume: 166 start-page: 39 year: 1994 end-page: 42 article-title: Plasma protein extravasation into the rat knee joint induced by calcitonin gene‐related peptide publication-title: Neurosci. Lett. – volume: 147 start-page: 452 year: 1997 end-page: 462 article-title: Sensory and motor denervation influence epidermal thickness in rat foot and glabrous skin publication-title: Exp. Neurol. – volume: 270 start-page: 741 year: 1977 end-page: 743 article-title: Pharmacologically induced selective degeration of chemosensitive primary sensory neurons publication-title: Nature – volume: 25 start-page: 276 year: 1990 end-page: 282 article-title: Experimentally‐induced neurogenic inflammationin the rat oral mucosa publication-title: J. Periodont. Res. – volume: 313 start-page: 54 year: 1985 end-page: 56 article-title: Calcitonin gene‐related peptide is a potent vasodilator publication-title: Nature – volume: 51 start-page: 160 year: 1999 end-page: 211 article-title: Vanilloid (capsaicin) receptors and mechanisms publication-title: Pharmacol. Rev. – volume: 419 start-page: 311 year: 1987 end-page: 314 article-title: Numerous nerves with calcitonin gene‐related peptide‐like immunoreactivity innervate junctional epithelium of rats publication-title: Brain Res. – volume: 14 start-page: 1 year: 1927 article-title: Influence of the cutaneous nerves on various reaction of the cutaneous vessels publication-title: Heart – volume: 73 start-page: 201 year: 1997 end-page: 207 article-title: Peripheral CGRP release as a marker for neurogenic inflammation: a model system for the study of neuropeptide secretion in rat paw skin publication-title: Pain – start-page: 33 year: 1968 end-page: 55 – volume: 86 start-page: 855 year: 1985 end-page: 860 article-title: Inflammatory edema induced by synergism between CGRP and mediators of increased vascular permeability publication-title: Br. J. Pharmacol. – volume: 114 start-page: 61 year: 1985 end-page: 66 article-title: Potentiation of tachykinin‐induced plasma protein extravasation by CGRP publication-title: Eur. J. Pharmacol. – volume: 64 start-page: 16 year: 1993 end-page: 23 article-title: Evidence for smoking as a major risk factor for periodontitis publication-title: J. Periodontol. – volume: 82 start-page: 67 year: 1985 end-page: 74 article-title: Calcitonin gene‐related peptide (CGRP) ‐immunoreacctive sensory and motor nerves of the mammalian palate publication-title: Histochemistry – ident: e_1_2_6_22_1 doi: 10.1111/j.1748-1716.1987.tb08108.x – ident: e_1_2_6_37_1 doi: 10.1038/270741a0 – ident: e_1_2_6_9_1 doi: 10.1038/39807 – volume: 71 start-page: 178 year: 1992 ident: e_1_2_6_34_1 article-title: An in vitro method to evaluate neuropeptide secretion from dental pulp publication-title: J. Dent. Res. – ident: e_1_2_6_30_1 doi: 10.1016/S0099-2399(06)81329-4 – ident: e_1_2_6_21_1 doi: 10.1016/0014-2999(85)90520-5 – volume: 94 start-page: 219 year: 1986 ident: e_1_2_6_61_1 article-title: Calcitonin gene‐related peptide: a sensory transmitter in dental pulps? Scand publication-title: J. Dent. Res. – ident: e_1_2_6_17_1 doi: 10.1159/000246682 – volume: 19 start-page: 494 year: 1994 ident: e_1_2_6_51_1 article-title: Successive desensitization: a low pain/high dose technique for oral capsaicin delivery publication-title: Chem. Senses – ident: e_1_2_6_26_1 doi: 10.1111/j.1600-0765.1995.tb01271.x – ident: e_1_2_6_52_1 doi: 10.1016/0003-9969(92)90128-U – ident: e_1_2_6_24_1 doi: 10.1111/j.1600-0765.1996.tb00489.x – ident: e_1_2_6_11_1 doi: 10.1111/j.1476-5381.1992.tb14472.x – ident: e_1_2_6_19_1 doi: 10.1111/j.1600-0765.1990.tb00916.x – ident: e_1_2_6_54_1 doi: 10.1111/j.1600-0714.1993.tb00116.x – ident: e_1_2_6_59_1 doi: 10.1016/0006-8993(86)90716-X – ident: e_1_2_6_27_1 doi: 10.1111/j.1600-051X.1992.tb02162.x – ident: e_1_2_6_4_1 doi: 10.1016/S0304-3959(99)00064-0 – ident: e_1_2_6_18_1 doi: 10.1007/BF00179044 – ident: e_1_2_6_20_1 doi: 10.1016/0167-0115(91)90019-D – ident: e_1_2_6_10_1 doi: 10.1001/archneur.1961.00450120031005 – ident: e_1_2_6_16_1 doi: 10.1016/0006-8993(94)01247-F – ident: e_1_2_6_29_1 doi: 10.1016/0304-3940(89)90139-0 – ident: e_1_2_6_55_1 doi: 10.1002/cne.902800211 – volume: 51 start-page: 160 year: 1999 ident: e_1_2_6_57_1 article-title: Vanilloid (capsaicin) receptors and mechanisms publication-title: Pharmacol. Rev. – ident: e_1_2_6_44_1 doi: 10.1016/0003-9969(95)00060-3 – ident: e_1_2_6_32_1 doi: 10.1016/0306-4522(88)90064-4 – ident: e_1_2_6_25_1 doi: 10.1111/j.1600-0765.1993.tb01068.x – ident: e_1_2_6_36_1 doi: 10.1111/j.1476-5381.1967.tb01984.x – ident: e_1_2_6_8_1 doi: 10.1016/0006-8993(87)90598-1 – ident: e_1_2_6_35_1 doi: 10.1016/B978-0-08-003267-2.50008-7 – ident: e_1_2_6_13_1 doi: 10.1016/0167-0115(92)90061-X – ident: e_1_2_6_28_1 doi: 10.1902/jop.1993.64.1.16 – ident: e_1_2_6_41_1 doi: 10.1016/0003-9969(93)90099-8 – ident: e_1_2_6_56_1 doi: 10.1007/BF00492515 – ident: e_1_2_6_62_1 doi: 10.1016/0196-9781(93)90037-H – ident: e_1_2_6_49_1 doi: 10.1111/j.1600-051X.1997.tb01192.x – volume: 77 start-page: 160 year: 1998 ident: e_1_2_6_5_1 article-title: Development of an in vitro rat dental pulp superfusion model publication-title: J. Dent. Res. – ident: e_1_2_6_31_1 doi: 10.1007/BF00315910 – ident: e_1_2_6_58_1 doi: 10.1016/0006-8993(92)90753-V – volume: 14 start-page: 1 year: 1927 ident: e_1_2_6_46_1 article-title: Influence of the cutaneous nerves on various reaction of the cutaneous vessels publication-title: Heart – ident: e_1_2_6_33_1 – volume: 23 start-page: 874 year: 1997 ident: e_1_2_6_45_1 article-title: Modulation of capsaicin‐evoked neuropeptide release by nicotine in the rat buccal musocsa publication-title: Soc. Neurosci. Abstr. – ident: e_1_2_6_3_1 doi: 10.1113/jphysiol.1901.sp000831 – ident: e_1_2_6_40_1 doi: 10.1159/000046488 – ident: e_1_2_6_7_1 doi: 10.1111/j.1476-5381.1985.tb11107.x – volume: 24 start-page: 1625 year: 1998 ident: e_1_2_6_14_1 article-title: Differential effects of neuronal nicotinic receptor agonists on capsaicin‐evoked CGRP release from peripheral terminals of primary sensory neurons publication-title: Soc. Neurosci. Abstract. – ident: e_1_2_6_23_1 doi: 10.1007/BF01612335 – ident: e_1_2_6_42_1 doi: 10.1016/0003-9969(94)90006-X – ident: e_1_2_6_47_1 doi: 10.1006/exnr.1997.6624 – ident: e_1_2_6_6_1 doi: 10.1038/313054a0 – volume-title: Pain and Headache year: 1992 ident: e_1_2_6_48_1 – ident: e_1_2_6_39_1 doi: 10.1016/0304-3940(94)90835-4 – ident: e_1_2_6_12_1 doi: 10.1038/sj.bjp.0701272 – ident: e_1_2_6_53_1 doi: 10.1007/BF00502092 – ident: e_1_2_6_50_1 doi: 10.1016/0003-9969(88)90039-8 – ident: e_1_2_6_2_1 doi: 10.1902/jop.1994.65.12.1113 – ident: e_1_2_6_15_1 doi: 10.1016/S1079-2104(99)70026-0 – ident: e_1_2_6_43_1 doi: 10.1016/S0304-3959(97)00108-5 – ident: e_1_2_6_38_1 doi: 10.1177/00220345720510020901 – ident: e_1_2_6_60_1 doi: 10.1007/BF00492350 |
| SSID | ssj0008645 |
| Score | 1.8691633 |
| Snippet | Many of the physiological hallmarks associated with neurogenic inflammatory processes in cutaneous tissues are similarly present within orofacial structures.... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1113 |
| SubjectTerms | Animals Bradykinin - pharmacology Calcimycin - pharmacology Calcitonin Gene-Related Peptide - metabolism Calcium - metabolism Capsaicin - analogs & derivatives Capsaicin - pharmacology Dinoprostone - pharmacology Disease Models, Animal Dose-Response Relationship, Drug exocytosis Histamine - pharmacology in vitro superfusion Inflammation Mediators - metabolism Ionophores - pharmacology Male Mouth Mucosa - drug effects Mouth Mucosa - innervation Mouth Mucosa - metabolism Neurogenic Inflammation - chemically induced Neurogenic Inflammation - metabolism Neurogenic Inflammation - physiopathology neuropeptide nociceptor Nociceptors - drug effects Nociceptors - metabolism Organ Culture Techniques pain Pain Measurement - drug effects Potassium Chloride - pharmacology Rats Rats, Sprague-Dawley sensory neuron Serotonin - pharmacology Trigeminal Nerve - drug effects Trigeminal Nerve - metabolism |
| Title | Capsaicin-evoked CGRP release from rat buccal mucosa: development of a model system for studying trigeminal mechanisms of neurogenic inflammation |
| URI | https://api.istex.fr/ark:/67375/WNG-B9KT27QG-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.0953-816x.2001.01736.x https://www.ncbi.nlm.nih.gov/pubmed/11683903 https://www.proquest.com/docview/1808661750 https://www.proquest.com/docview/72238241 https://pubmed.ncbi.nlm.nih.gov/PMC2814599 |
| Volume | 14 |
| WOSCitedRecordID | wos000171795700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEF1BggQvXFoK5lIWCfXNke1d7655K6EJgioqVRB5W63tNZg2TpVLFd74BCT-kC9hZu2kRBSpQkh-sGSP5fWc8R57Z84Q8iJLCy4KFftRFEifc574hgcQVyZOizBL88w4ndlDORio0Sg5avKfsBam1odY_3DDyHDvawxwk9ZdSAKnbvulg1JpvgrFEj_zwg5gi4kO8Ml2BDDmLdJ-fdz7cLh-LyvhWhavrEZNXk-9xnn5tTYmqzY-9-VlTPTPhMrfia6bqXp3_ucY75LbDV-l-zXA7pFrttoi2_sVfKuPv9I96jJI3a_5LXKzu-oet01-dM3ZzOCy_c9v3-355MTmtNs_PqLYpAVmTop1LRTgR9MFuPeUjjF13ryk-UUWE50U1FDXq4fWitMUKDZ1irgw49L5tPxkXVMyOrZYwVzOxjM0ciKdEBllRiGAAPN1feZ9MuwdDLtv_KYBhJ-JQAo_TwtUiy9EwkwipLGyyFBsiEsjUyZzGwGWgKNYZpPYGiB_RWbTXIgMNibZDmlVk8o-JNTGVrAgZSZPOWcsV1ESxlaqQnJlTZR7RK4crbNGHB17dJxqt0jPsaANXaHRFdi6M9TOFXrpkXBteVYLhFzBZs9haW1gpieYYCdj_XHQ16-Sd8NIvu_rrkeer8CmwX-4lmMqO1nMdKgAz8A-48Ajz_5yjgTqp4CheeRBDc-LGwwFEOOAwbA3gLs-AUXHN49U5WcnPh6pkMdJ4hHhgHvlMeuDtwPce_Svho_JLZf_5xIpn5DWfLqwT8mN7Hxezqa75Locqd0m5H8Bfb1Zcg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hBKlc-GihmK8uEurNxfaud21uJTQpNESlCiK31dpeQ9TGqeKkCjd-AhL_kF_CzNpxiShShZByiBRPlM288T7vzLwh5EWa5FzkUegGgSddznnsau5BXOkwyf00yVJtdWb7cjCIRqP4uB4HhL0wlT5Ec-CGkWHv1xjgeCD9sk5L2ihHrTQ38sUSn_P8PQAXE3tAKNscUBW2SPvNSfdjv7kxR8LOLF5ZjerCnirJefV3re1Wbfzjl1dR0T8rKn9nunar6t75r4u8S27XjJXuVxC7R26YYpNs7RfwtD75SneprSG1h_ObZKOzmh-3RX509HmpMXH_89t3czE9NRnt9E6OKY5pgb2TYmcLBQDSZAEOPqMTLJ7Xr2h2WcdEpznV1E7roZXmNAWSTa0mLuy5dD4bfzZ2LBmdGOxhHpeTEo2sTCfExjilEEKA-qpD8z4Zdg-GnUO3HgHhpsKTws2SHPXicxEzHQupjcxTlBviUsuEycwEgCZgKYaZODQa6F-emiQTIoUXk-wBaRXTwjwk1IRGMC9hOks4ZyyLgtgPjYxyySOjg8whcuVpldby6Dil40zZND3HljZ0hUJX4PBOX1lXqKVD_MbyvJIIuYbNrgVTY6Bnp1hiJ0P1adBTr-OjYSA_9FTHIc9XaFPgP8zm6MJMF6XyIwA08M_Qc8jOX66RQP4i4GgO2a7wefkDfQHU2GOw7DXkNheg7Pj6J8X4i5UfDyKfh3HsEGGRe-01q4N3A3z36F8Nd8jG4fB9X_XfDo4ek1u2GtCWVT4hrflsYZ6Sm-nFfFzOntWR_wvww1x6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bbtNAEF2hBgEvXFou5tZFQn1zsb3rXZu3kjYBGlmhCiJvq7W9hqiNE8VJFd74BCT-kC9hZu2kRBSpQkh5iBSP5c2c8R57Zs4Q8jJLCy6KKHSDwJMu5zx2NfcgrnSYFn6W5pm2OrM9mSTRcBj3m3FA2AtT60OsX7hhZNj7NQa4mebFqyYtaaMctdLcyBdLfM7z9wFcTOwDoWzxMBYQpa3Dk87H3vrGHAk7s3hlNWwKe-ok5-Xn2titWvjHLy-jon9WVP7OdO1W1bnzXxd5l9xuGCs9qCF2j1wz5TbZOSjhaX38le5RW0NqX85vk5vt1fy4HfKjraeVxsT9z2_fzfnk1OS03T3pUxzTAnsnxc4WCgCk6QIcfEbHWDyvX9P8oo6JTgqqqZ3WQ2vNaQokm1pNXNhz6Xw2-mzsWDI6NtjDPKrGFRpZmU6IjVFGIYQA9XWH5n0y6BwN2m_dZgSEmwlPCjdPC9SLL0TMdCykNrLIUG6ISy1TJnMTAJqApRhm4tBooH9FZtJciAw-TLIHZKuclOYRoSY0gnkp03nKOWN5FMR-aGRUSB4ZHeQOkStPq6yRR8cpHWfKpuk5trShKxS6Aod3-sq6Qi0d4q8tp7VEyBVs9iyY1gZ6dooldjJUn5KuehMfDwL5oavaDnmxQpsC_2E2R5dmsqiUHwGggX-GnkN2_3KMBPIXAUdzyMManxcX6Augxh6DZW8gd30Ayo5v_lKOvlj58SDyIb5ihwiL3CuvWR29T_Db43813CU3-ocd1XuXHD8ht2wxoK2qfEq25rOFeUauZ-fzUTV73gT-L_WVW_U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capsaicin%E2%80%90evoked+CGRP+release+from+rat+buccal+mucosa%3A+development+of+a+model+system+for+studying+trigeminal+mechanisms+of+neurogenic+inflammation&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Flores%2C+Christopher+M.&rft.au=Leong%2C+Anthony+S.&rft.au=O.+Dussor%2C+Gregory&rft.au=Hargreaves%2C+Kenneth+M.&rft.date=2001-10-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=14&rft.issue=7&rft.spage=1113&rft.epage=1120&rft_id=info:doi/10.1046%2Fj.0953-816x.2001.01736.x&rft.externalDBID=10.1046%252Fj.0953-816x.2001.01736.x&rft.externalDocID=EJN1736 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |