A coupled hidden Markov model for disease interactions

To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Royal Statistical Society Ročník 62; číslo 4; s. 609 - 627
Hlavní autoři: Sherlock, Chris, Xifara, Tatiana, Telfer, Sandra, Begon, Mike
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.08.2013
John Wiley & Sons Ltd
Oxford University Press
Témata:
ISSN:0035-9254, 1467-9876
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis–Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites.
AbstractList Summary To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis–Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites.
To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis–Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites.
To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis-Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites. Reprinted by permission of Blackwell Publishers
To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis-Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites. [PUBLICATION ABSTRACT]
To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis-Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites.To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis-Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites.
Author Begon, Mike
Xifara, Tatiana
Telfer, Sandra
Sherlock, Chris
Author_xml – sequence: 1
  givenname: Chris
  surname: Sherlock
  fullname: Sherlock, Chris
  organization: Lancaster University, UK
– sequence: 2
  givenname: Tatiana
  surname: Xifara
  fullname: Xifara, Tatiana
  email: t.xifara@lancaster.ac.uk
  organization: Lancaster University, UK
– sequence: 3
  givenname: Sandra
  surname: Telfer
  fullname: Telfer, Sandra
  organization: University of Aberdeen, UK
– sequence: 4
  givenname: Mike
  surname: Begon
  fullname: Begon, Mike
  organization: University of Liverpool, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24223436$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFDXtQJDYVUopfie0NUhl1pkilSLTA0vLYN9RDJh7spNB_j4e0o1Ih4G68ON89vq89tNOFDhB6SvAhyfEqpmQPCcWkeoAmhNeiVFLUO2iCMatKRSu-i_ZSWuIcBPNHaJdyShln9QTVR4UNw7oFV1x656Ar3pn4NVwVq-CgLZoQC-cTmASF73qIxvY-dOkxetiYNsGTm3cffZwdX0xPytP387fTo9PS1lhUJak4JWTBMZaMKe64c4Q4IbhdEGZxFlUjleENZ841klMw0lLsAEjDHTRsH70efdfDYgXOQtdH0-p19CsTr3UwXv-udP5SfwlXmknClKiywcGNQQzfBki9XvlkoW1NB2FImkhaV5IpSv6NcqqkZLL6D1dO8v-1ZCKjL-6hyzDELg9N5woVFTJ7Zur53T63Dd4uKgMvR8DGkFKEZosQrDdXoDdXoH9dQYbxPdj63mwWl2fk2z-nkDHlu2_h-i_m-sP5-fQ259mYs0x9iHdqFoJIobJejrpPPfzY6vm-dC2YqPTns7meXZydzN98YnrGfgKtFNs2
CitedBy_id crossref_primary_10_1016_j_ijpara_2017_11_006
crossref_primary_10_1111_ele_13610
crossref_primary_10_1016_j_jmva_2015_04_002
crossref_primary_10_1007_s10182_021_00395_8
crossref_primary_10_1109_TAI_2022_3227222
crossref_primary_10_1017_S0031182014000171
crossref_primary_10_1186_s13071_015_1167_9
crossref_primary_10_1109_TSP_2020_3025522
crossref_primary_10_1016_j_jmp_2024_102884
crossref_primary_10_1017_S0031182023000677
crossref_primary_10_1088_1742_6596_1490_1_012017
crossref_primary_10_1111_stan_12133
crossref_primary_10_1080_01621459_2023_2263202
crossref_primary_10_1111_1365_2656_13869
crossref_primary_10_7717_peerj_3254
crossref_primary_10_1080_10618600_2019_1654880
crossref_primary_10_1109_TPAMI_2023_3244130
crossref_primary_10_1515_ijb_2018_0023
crossref_primary_10_1177_1471082X20956423
Cites_doi 10.3201/eid1004.030455
10.1016/S0021-9975(97)80041-2
10.1214/ss/1177011136
10.1017/S0950268899002423
10.1016/0304-4076(95)01770-4
10.1080/00949659908811984
10.1198/016214502753479464
10.1089/vbz.2004.4.285
10.1111/j.0006-341X.2000.00733.x
10.1109/5.18626
10.1201/9781420011180
10.1126/science.1190333
10.1214/ss/1015346320
10.1109/WMVC.2007.12
10.1128/AEM.00625-08
10.1111/j.1467-9868.2006.00566.x
10.1023/A:1007649326333
10.1111/j.1365-2656.2011.01893.x
10.1017/S095026880100526X
10.1023/A:1008938201645
10.1128/AEM.02203-10
10.1016/j.epidem.2008.10.001
10.1007/s00442-009-1495-6
10.1111/j.1541-0420.2005.00318.x
10.1017/S0031182006001624
10.1128/JCM.42.7.3164-3168.2004
10.1198/1061860032030
10.1016/0167-7152(93)90127-5
10.1017/S0031182008000395
10.1214/aoms/1177697196
10.1049/ip-smt:20000851
10.3150/08-BEJ176
10.1093/biomet/82.4.711
10.1201/9781420010893
ContentType Journal Article
Copyright Copyright © 2013 The Royal Statistical Society and John Wiley & Sons Ltd.
2013 Royal Statistical Society
Copyright © 2013 The Royal Statistical Society and John Wiley & Sons Ltd
Copyright © 2013 The Royal Statistical Society and John Wiley & Sons Ltd 2013
Copyright_xml – notice: Copyright © 2013 The Royal Statistical Society and John Wiley & Sons Ltd.
– notice: 2013 Royal Statistical Society
– notice: Copyright © 2013 The Royal Statistical Society and John Wiley & Sons Ltd
– notice: Copyright © 2013 The Royal Statistical Society and John Wiley & Sons Ltd 2013
DBID BSCLL
24P
AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1111/rssc.12015
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
PubMed
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

PubMed

International Bibliography of the Social Sciences (IBSS)
CrossRef
International Bibliography of the Social Sciences (IBSS)
MEDLINE - Academic
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Computer Science
Public Health
EISSN 1467-9876
EndPage 627
ExternalDocumentID PMC3813975
3016686801
24223436
10_1111_rssc_12015
RSSC12015
24771879
ark_67375_WNG_FTNHGBV3_F
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 095171
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OC
1OL
29L
2AX
3-9
31~
33P
3R3
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AARHZ
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCSF
ABCUV
ABDFA
ABEJV
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFRR
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEFGJ
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AGQPQ
AGXDD
AHQJS
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMBMR
AMVHM
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
HF~
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
OJZSN
P2W
P2X
P4D
PQQKQ
PZZ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TUS
U5U
UAP
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
ZGI
ZL0
ZZTAW
~IA
~WT
ALUQN
1OB
24P
AAHHS
ABYAD
ACCFJ
ACTWD
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
JSODD
AAYXX
CITATION
O8X
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c6075-154211b40083394d4dd11d774cb13c04219f89a4f43ddf842ea8c20dee1f4def3
IEDL.DBID 24P
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321706600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-9254
IngestDate Tue Nov 04 01:33:34 EST 2025
Wed Oct 01 13:13:04 EDT 2025
Sun Nov 09 12:15:30 EST 2025
Sat Sep 27 21:44:29 EDT 2025
Mon Nov 10 21:41:28 EST 2025
Mon Jul 21 06:00:54 EDT 2025
Tue Nov 18 21:05:27 EST 2025
Sat Nov 29 02:38:22 EST 2025
Wed Jan 22 16:34:50 EST 2025
Thu Jul 03 21:14:35 EDT 2025
Tue Nov 11 03:33:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Gibbs sampler
Zoonosis
Adaptive Markov chain Monte Carlo sampling
Hidden Markov models
Forward–backward algorithm
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6075-154211b40083394d4dd11d774cb13c04219f89a4f43ddf842ea8c20dee1f4def3
Notes ArticleID:RSSC12015
istex:E9DDF63D59E18627355CBDF2B82397491A6478AD
ark:/67375/WNG-FTNHGBV3-F
Reuse of this article is permitted in accordance with the terms and conditions set out at
http://wileyonline library.com/onlineopen#OnlineOpen__Terms
.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssc.12015
PMID 24223436
PQID 1399278883
PQPubID 32577
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3813975
proquest_miscellaneous_1826583921
proquest_miscellaneous_1429883855
proquest_miscellaneous_1418136837
proquest_journals_1399278883
pubmed_primary_24223436
crossref_primary_10_1111_rssc_12015
crossref_citationtrail_10_1111_rssc_12015
wiley_primary_10_1111_rssc_12015_RSSC12015
jstor_primary_24771879
istex_primary_ark_67375_WNG_FTNHGBV3_F
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of the Royal Statistical Society
PublicationTitleAlternate J. R. Stat. Soc. C
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
References Robert, C. P., Celeux, G. and Diebolt, J. (1993) Bayesian estimation of hidden Markov chains: a stochastic implementation. Statist. Probab. Lett., 16, 77-83.
Chantrey, J., Meyer, H., Baxby, D., Begon, M., Bown, K. J., Hazel, S. M., Jones, T., Montgomery, W. I. and Bennett, M. (1999) Cowpox: reservoir hosts and geographic range. Epidem. Infectn, 122, 455-460.
Daniels, M. J. and Hogan, J. W. (2008) Missing Data in Longitudinal Data: Strategies for Bayesian Modelling and Sensitivity Analysis. Boca Raton: Chapman and Hall-CRC.
Bown, K. J., Bennett, M. and Begon, M. (2004) Flea-borne Bartonella grahamii and Bartonella taylorii in Bank Voles. Emergng Infect. Dis., 10, 684-687.
Burthe, S. J., Lambin, X., Telfer, S., Douglas, A., Beldomenico, P., Smith, A. and Begon, M. (2009) Individual growth rates in natural field voles, Microtus agrestis, populations exhibiting cyclic population dynamics. Oecologia, 162, 653-661.
Scott, S. L. (2002) Bayesian methods for hidden Markov models: recursive computing in the 21th century. J. Am. Statist. Ass., 97, 337-351.
Bai, Y., Calisher, C. H., Kosoy, M. Y., Root, J. J. and Doty, J. B. (2011) Persistent infection or successive reinfection of deer mice with Bartonella vinsonii subsp. arupensis. Appl. Environ. Microbiol., 77, 1728-1731.
Green, P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
Bown, K. J., Lambin, X., Telford, G. R., Ogden, N. H., Telfer, S., Woldehiwet, Z. and Birtles, R. J. (2008) Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl. Environ. Microbiol., 74, 7118-7125.
Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S. J., Paterson, S. and Begon, M. (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science, 330, 243-246.
Guihenneuc-Jouyaux, C., Richardson, S. and Longini, I. M. (2000) Modelling markers of disease progression by a hidden Markov process: application to characterising CD4 cell decline. Biometrics, 56, 733-741.
Baum, I. E., Petrie, Y., Soules, G. and Weiss, N. (1970) A maximisation technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41, 164-171.
Sherlock, C. and Roberts, G. (2009) Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli, 15, 774-798.
Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. and Sheldon, B. C. (2011) Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol., 80, 1207-1216.
Courtney, J. W. L., Kostelnik, M., Zeidner, N. S. and Massung, R. F. (2004) Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol., 42, 3164-3168.
Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds) (1996) Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
Birtles, R. J., Hazel, S. M., Bennett, M., Bown, K., Raoult, D. and Begon, M. (2001) Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents. Epidem. Infectn, 126, 323-329.
Robert, C. P., Rydén, G. and Titterington, D. M. (1999) Convergence controls for MCMC algorithms, with application to hidden Markov chains. J. Statist. Computn Simuln, 64, 327-355.
Pradel, R. (2005) Multievent: an extension of multistate capture-recapture models to uncertain states. Biometrics, 61, 442-447.
Rezek, I., Sykacek, P. and Roberts, S. J. (2000) Learning interaction dynamics with couple hidden Markov models. IEE Proc. Sci. Measmnt Technol., 147, 345-350.
Guédon, Y. (2003) Estimating hidden semi-Markov chains from discrete sequences. J. Computnl Graph Statist., 12, 604-639.
Chib, S. (1996) Calculating posterior distributions and modal estimates in Markov mixture models. J. Econmetr., 75, 79-97.
Collett, D. (2003) Modelling Binary Data. Boca Raton: Chapman and Hall-CRC.
Telfer, S., Begon, M., Bennett, M., Bown, K., Burthe, S., Lambin, X., Telford, G. and Birtles, R. (2007) Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics. Parasitology, 134, 413-425.
Robert, C. P. and Titterington, D. M. (1998) Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation. Statist. Comput., 8, 145-158.
Begon, M., Telfer, S., Burthe, S. J., Lambin, X., Smith, J. M. and Paterson, S. (2009) Effects of abundance on infection in natural populations: field voles and cowpox virus. Epidemics, 1, 35-46.
R Development Core Team (2012) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Fearnhead, P. and Sherlock, C. (2006) An exact Gibbs sampler for the Markov-modulated Poisson process. J. R. Statist. Soc. B, 68, 767-784.
Saul, K. and Jordan, M. (1999) Mixed memory Markov models: decomposing complex stochastic processes as mixtures of simpler ones. Mach. Learn., 37, 75-87.
Gelman, A. and Rubin, D. (1992) Inference from iterative simulation using multiple sequences. Statist. Sci., 7, 457-472.
Rabiner, L. R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, 257-286.
Sherlock, C., Fearnhead, P. and Roberts, G. O. (2010) The random walk Metropolis: linking theory and practice through a case study. Statist. Sci., 28, 172-190.
Zucchini, W. and MacDonald, I. L. (2009) Hidden Markov Models for Time Series: an Introduction using R. New York: Chapman and Hall-CRC.
Roberts, G. O. and Rosenthal, J. (2001) Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci., 16, 351-367.
Chadeau-Hyam, M., Clarke, P. S., Guihenneuc-Jouyaux, C., Cousens, S. N., Will, R. G. and Ghani, A. C. (2010) An application of hidden Markov models to the French variant Creutzfeldt-Jakob disease epidemic. Appl. Statist., 59, 839-853.
Bennett, M., Crouch, A. J., Begon, M., Duffy, B., Feore, S., Gaskell, R. M., Kelly, D. F., McCracken, C. M., Vicary, L. and Baxby, D. (1997) Cowpox in British voles and mice. J. Compar. Path., 116, 35-44.
Telfer, S., Birtles, R., Bennett, M., Lambin, X., Paterson, S. and Begon, M. (2008) Parasite interactions in natural populations: insights from longitudinal data. Parasitology, 135, 767-781.
Kosoy, M., Mandel, E., Green, D., Marston, E. and Childs, J. (2004) Prospective studies of Bartonella of rodents: part I, Demographic and temporal patterns in population dynamics. Vect. Borne Zoonotic Dis., 4, 285-295.
1997; 116
2004; 42
2010; 59
2012
2002; 97
2011; 80
2004; 4
2009
1997
2008
2011; 77
1996
2007
1999; 64
2008; 74
1999; 122
2003
2005; 61
2002
2001; 126
1996; 75
2003; 12
2004; 10
1992; 7
2007; 134
1995; 82
1989; 77
1993; 16
2006; 68
2000; 147
2000; 56
2010; 28
1999; 37
2010; 330
1970; 41
2009; 162
2001; 16
2008; 135
2009; 1
2009; 15
1998; 8
Telfer (2023032107355196800_) 2010; 330
Chib (2023032107355196800_) 1996; 75
Lachish (2023032107355196800_) 2011; 80
Telfer (2023032107355196800_) 2008; 135
Courtney (2023032107355196800_) 2004; 42
Rabiner (2023032107355196800_) 1989; 77
Gelman (2023032107355196800_) 1992; 7
Robert (2023032107355196800_) 1993; 16
Sherlock (2023032107355196800_) 2010; 28
Bown (2023032107355196800_) 2004; 10
Begon (2023032107355196800_) 2009; 1
Green (2023032107355196800_) 1995; 82
Pradel (2023032107355196800_) 2005; 61
Saul (2023032107355196800_) 1999; 37
Chadeau-Hyam (2023032107355196800_) 2010; 59
Guédon (2023032107355196800_) 2003; 12
Robert (2023032107355196800_) 1998; 8
Kosoy (2023032107355196800_) 2004; 4
Roberts (2023032107355196800_) 2001; 16
Gilks (2023032107355196800_) 1996
Scott (2023032107355196800_) 2002; 97
Brand (2023032107355196800_) 1997
Natarajan (2023032107355196800_) 2007
Birtles (2023032107355196800_) 2001; 126
R Development Core Team (2023032107355196800_) 2012
Baum (2023032107355196800_) 1970; 41
Collett (2023032107355196800_) 2003
Daniels (2023032107355196800_) 2008
Bennett (2023032107355196800_) 1997; 116
Bown (2023032107355196800_) 2008; 74
Burthe (2023032107355196800_) 2009; 162
Chantrey (2023032107355196800_) 1999; 122
Bai (2023032107355196800_) 2011; 77
Robert (2023032107355196800_) 1999; 64
Zucchini (2023032107355196800_) 2009
Sherlock (2023032107355196800_) 2009; 15
Fearnhead (2023032107355196800_) 2006; 68
Rezek (2023032107355196800_) 2000; 147
Zhong (2023032107355196800_) 2002
Guihenneuc-Jouyaux (2023032107355196800_) 2000; 56
Gelman (2023032107355196800_) 1996
Telfer (2023032107355196800_) 2007; 134
Xifara (2023032107355196800_) 2012
15671735 - Vector Borne Zoonotic Dis. 2004 Winter;4(4):285-95
17096870 - Parasitology. 2007 Mar;134(Pt 3):413-25
15200860 - Emerg Infect Dis. 2004 Apr;10(4):684-7
21848864 - J Anim Ecol. 2011 Nov;80(6):1207-16
10985209 - Biometrics. 2000 Sep;56(3):733-41
18474121 - Parasitology. 2008 Jun;135(7):767-81
18820068 - Appl Environ Microbiol. 2008 Dec;74(23 ):7118-25
15243077 - J Clin Microbiol. 2004 Jul;42(7):3164-8
21352750 - Epidemics. 2009 Mar;1(1):35-46
10459650 - Epidemiol Infect. 1999 Jun;122(3):455-60
11349984 - Epidemiol Infect. 2001 Apr;126(2):323-9
9076598 - J Comp Pathol. 1997 Jan;116(1):35-44
21239553 - Appl Environ Microbiol. 2011 Mar;77(5):1728-31
16011690 - Biometrics. 2005 Jun;61(2):442-7
19916066 - Oecologia. 2010 Mar;162(3):653-61
20929776 - Science. 2010 Oct 8;330(6001):243-6
References_xml – reference: Chantrey, J., Meyer, H., Baxby, D., Begon, M., Bown, K. J., Hazel, S. M., Jones, T., Montgomery, W. I. and Bennett, M. (1999) Cowpox: reservoir hosts and geographic range. Epidem. Infectn, 122, 455-460.
– reference: Guédon, Y. (2003) Estimating hidden semi-Markov chains from discrete sequences. J. Computnl Graph Statist., 12, 604-639.
– reference: Sherlock, C., Fearnhead, P. and Roberts, G. O. (2010) The random walk Metropolis: linking theory and practice through a case study. Statist. Sci., 28, 172-190.
– reference: Kosoy, M., Mandel, E., Green, D., Marston, E. and Childs, J. (2004) Prospective studies of Bartonella of rodents: part I, Demographic and temporal patterns in population dynamics. Vect. Borne Zoonotic Dis., 4, 285-295.
– reference: Pradel, R. (2005) Multievent: an extension of multistate capture-recapture models to uncertain states. Biometrics, 61, 442-447.
– reference: Lachish, S., Knowles, S. C. L., Alves, R., Wood, M. J. and Sheldon, B. C. (2011) Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol., 80, 1207-1216.
– reference: Bown, K. J., Bennett, M. and Begon, M. (2004) Flea-borne Bartonella grahamii and Bartonella taylorii in Bank Voles. Emergng Infect. Dis., 10, 684-687.
– reference: Telfer, S., Lambin, X., Birtles, R., Beldomenico, P., Burthe, S. J., Paterson, S. and Begon, M. (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science, 330, 243-246.
– reference: Begon, M., Telfer, S., Burthe, S. J., Lambin, X., Smith, J. M. and Paterson, S. (2009) Effects of abundance on infection in natural populations: field voles and cowpox virus. Epidemics, 1, 35-46.
– reference: R Development Core Team (2012) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
– reference: Chib, S. (1996) Calculating posterior distributions and modal estimates in Markov mixture models. J. Econmetr., 75, 79-97.
– reference: Rezek, I., Sykacek, P. and Roberts, S. J. (2000) Learning interaction dynamics with couple hidden Markov models. IEE Proc. Sci. Measmnt Technol., 147, 345-350.
– reference: Bown, K. J., Lambin, X., Telford, G. R., Ogden, N. H., Telfer, S., Woldehiwet, Z. and Birtles, R. J. (2008) Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl. Environ. Microbiol., 74, 7118-7125.
– reference: Collett, D. (2003) Modelling Binary Data. Boca Raton: Chapman and Hall-CRC.
– reference: Rabiner, L. R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, 257-286.
– reference: Sherlock, C. and Roberts, G. (2009) Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets. Bernoulli, 15, 774-798.
– reference: Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (eds) (1996) Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
– reference: Bai, Y., Calisher, C. H., Kosoy, M. Y., Root, J. J. and Doty, J. B. (2011) Persistent infection or successive reinfection of deer mice with Bartonella vinsonii subsp. arupensis. Appl. Environ. Microbiol., 77, 1728-1731.
– reference: Burthe, S. J., Lambin, X., Telfer, S., Douglas, A., Beldomenico, P., Smith, A. and Begon, M. (2009) Individual growth rates in natural field voles, Microtus agrestis, populations exhibiting cyclic population dynamics. Oecologia, 162, 653-661.
– reference: Robert, C. P., Rydén, G. and Titterington, D. M. (1999) Convergence controls for MCMC algorithms, with application to hidden Markov chains. J. Statist. Computn Simuln, 64, 327-355.
– reference: Guihenneuc-Jouyaux, C., Richardson, S. and Longini, I. M. (2000) Modelling markers of disease progression by a hidden Markov process: application to characterising CD4 cell decline. Biometrics, 56, 733-741.
– reference: Chadeau-Hyam, M., Clarke, P. S., Guihenneuc-Jouyaux, C., Cousens, S. N., Will, R. G. and Ghani, A. C. (2010) An application of hidden Markov models to the French variant Creutzfeldt-Jakob disease epidemic. Appl. Statist., 59, 839-853.
– reference: Telfer, S., Birtles, R., Bennett, M., Lambin, X., Paterson, S. and Begon, M. (2008) Parasite interactions in natural populations: insights from longitudinal data. Parasitology, 135, 767-781.
– reference: Gelman, A. and Rubin, D. (1992) Inference from iterative simulation using multiple sequences. Statist. Sci., 7, 457-472.
– reference: Bennett, M., Crouch, A. J., Begon, M., Duffy, B., Feore, S., Gaskell, R. M., Kelly, D. F., McCracken, C. M., Vicary, L. and Baxby, D. (1997) Cowpox in British voles and mice. J. Compar. Path., 116, 35-44.
– reference: Saul, K. and Jordan, M. (1999) Mixed memory Markov models: decomposing complex stochastic processes as mixtures of simpler ones. Mach. Learn., 37, 75-87.
– reference: Birtles, R. J., Hazel, S. M., Bennett, M., Bown, K., Raoult, D. and Begon, M. (2001) Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents. Epidem. Infectn, 126, 323-329.
– reference: Robert, C. P. and Titterington, D. M. (1998) Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation. Statist. Comput., 8, 145-158.
– reference: Baum, I. E., Petrie, Y., Soules, G. and Weiss, N. (1970) A maximisation technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41, 164-171.
– reference: Robert, C. P., Celeux, G. and Diebolt, J. (1993) Bayesian estimation of hidden Markov chains: a stochastic implementation. Statist. Probab. Lett., 16, 77-83.
– reference: Telfer, S., Begon, M., Bennett, M., Bown, K., Burthe, S., Lambin, X., Telford, G. and Birtles, R. (2007) Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics. Parasitology, 134, 413-425.
– reference: Fearnhead, P. and Sherlock, C. (2006) An exact Gibbs sampler for the Markov-modulated Poisson process. J. R. Statist. Soc. B, 68, 767-784.
– reference: Roberts, G. O. and Rosenthal, J. (2001) Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci., 16, 351-367.
– reference: Green, P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
– reference: Daniels, M. J. and Hogan, J. W. (2008) Missing Data in Longitudinal Data: Strategies for Bayesian Modelling and Sensitivity Analysis. Boca Raton: Chapman and Hall-CRC.
– reference: Scott, S. L. (2002) Bayesian methods for hidden Markov models: recursive computing in the 21th century. J. Am. Statist. Ass., 97, 337-351.
– reference: Courtney, J. W. L., Kostelnik, M., Zeidner, N. S. and Massung, R. F. (2004) Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol., 42, 3164-3168.
– reference: Zucchini, W. and MacDonald, I. L. (2009) Hidden Markov Models for Time Series: an Introduction using R. New York: Chapman and Hall-CRC.
– volume: 134
  start-page: 413
  year: 2007
  end-page: 425
  article-title: Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics
  publication-title: Parasitology
– year: 2009
– volume: 330
  start-page: 243
  year: 2010
  end-page: 246
  article-title: Species interactions in a parasite community drive infection risk in a wildlife population
  publication-title: Science
– volume: 10
  start-page: 684
  year: 2004
  end-page: 687
  article-title: Flea‐borne and in Bank Voles
  publication-title: Emergng Infect. Dis.
– volume: 116
  start-page: 35
  year: 1997
  end-page: 44
  article-title: Cowpox in British voles and mice
  publication-title: J. Compar. Path.
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
– volume: 59
  start-page: 839
  year: 2010
  end-page: 853
  article-title: An application of hidden Markov models to the French variant Creutzfeldt–Jakob disease epidemic
  publication-title: Appl. Statist.
– year: 2007
– year: 2003
– year: 1996
– volume: 64
  start-page: 327
  year: 1999
  end-page: 355
  article-title: Convergence controls for MCMC algorithms, with application to hidden Markov chains
  publication-title: J. Statist. Computn Simuln
– volume: 12
  start-page: 604
  year: 2003
  end-page: 639
  article-title: Estimating hidden semi‐Markov chains from discrete sequences
  publication-title: J. Computnl Graph Statist.
– volume: 7
  start-page: 457
  year: 1992
  end-page: 472
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Statist. Sci.
– volume: 135
  start-page: 767
  year: 2008
  end-page: 781
  article-title: Parasite interactions in natural populations: insights from longitudinal data
  publication-title: Parasitology
– volume: 147
  start-page: 345
  year: 2000
  end-page: 350
  article-title: Learning interaction dynamics with couple hidden Markov models
  publication-title: IEE Proc. Sci. Measmnt Technol.
– volume: 16
  start-page: 77
  year: 1993
  end-page: 83
  article-title: Bayesian estimation of hidden Markov chains: a stochastic implementation
  publication-title: Statist. Probab. Lett.
– volume: 68
  start-page: 767
  year: 2006
  end-page: 784
  article-title: An exact Gibbs sampler for the Markov‐modulated Poisson process
  publication-title: J. R. Statist. Soc. B
– volume: 82
  start-page: 711
  year: 1995
  end-page: 732
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
– volume: 8
  start-page: 145
  year: 1998
  end-page: 158
  article-title: Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation
  publication-title: Statist. Comput.
– year: 2012
– volume: 37
  start-page: 75
  year: 1999
  end-page: 87
  article-title: Mixed memory Markov models: decomposing complex stochastic processes as mixtures of simpler ones
  publication-title: Mach. Learn.
– volume: 122
  start-page: 455
  year: 1999
  end-page: 460
  article-title: Cowpox: reservoir hosts and geographic range
  publication-title: Epidem. Infectn
– volume: 41
  start-page: 164
  year: 1970
  end-page: 171
  article-title: A maximisation technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Statist.
– start-page: 1154
  year: 2002
  end-page: 1159
– volume: 75
  start-page: 79
  year: 1996
  end-page: 97
  article-title: Calculating posterior distributions and modal estimates in Markov mixture models
  publication-title: J. Econmetr.
– volume: 97
  start-page: 337
  year: 2002
  end-page: 351
  article-title: Bayesian methods for hidden Markov models: recursive computing in the 21th century
  publication-title: J. Am. Statist. Ass.
– volume: 162
  start-page: 653
  year: 2009
  end-page: 661
  article-title: Individual growth rates in natural field voles, , populations exhibiting cyclic population dynamics
  publication-title: Oecologia
– volume: 61
  start-page: 442
  year: 2005
  end-page: 447
  article-title: Multievent: an extension of multistate capture‐recapture models to uncertain states
  publication-title: Biometrics
– volume: 74
  start-page: 7118
  year: 2008
  end-page: 7125
  article-title: Relative importance of and as vectors for and in field vole ( ) populations
  publication-title: Appl. Environ. Microbiol.
– year: 2008
– volume: 56
  start-page: 733
  year: 2000
  end-page: 741
  article-title: Modelling markers of disease progression by a hidden Markov process: application to characterising CD4 cell decline
  publication-title: Biometrics
– volume: 16
  start-page: 351
  year: 2001
  end-page: 367
  article-title: Optimal scaling for various Metropolis‐Hastings algorithms
  publication-title: Statist. Sci.
– year: 1997
– volume: 4
  start-page: 285
  year: 2004
  end-page: 295
  article-title: Prospective studies of of rodents: part I, Demographic and temporal patterns in population dynamics
  publication-title: Vect. Borne Zoonotic Dis.
– volume: 28
  start-page: 172
  year: 2010
  end-page: 190
  article-title: The random walk Metropolis: linking theory and practice through a case study
  publication-title: Statist. Sci.
– volume: 1
  start-page: 35
  year: 2009
  end-page: 46
  article-title: Effects of abundance on infection in natural populations: field voles and cowpox virus
  publication-title: Epidemics
– volume: 80
  start-page: 1207
  year: 2011
  end-page: 1216
  article-title: Infection dynamics of endemic malaria in a wild bird population: parasite species‐dependent drivers of spatial and temporal variation in transmission rates
  publication-title: J. Anim. Ecol.
– volume: 126
  start-page: 323
  year: 2001
  end-page: 329
  article-title: Longitudinal monitoring of the dynamics of infections due to species in UK woodland rodents
  publication-title: Epidem. Infectn
– volume: 42
  start-page: 3164
  year: 2004
  end-page: 3168
  article-title: Multiplex real‐time PCR for detection of and
  publication-title: J. Clin. Microbiol.
– volume: 15
  start-page: 774
  year: 2009
  end-page: 798
  article-title: Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets
  publication-title: Bernoulli
– volume: 77
  start-page: 1728
  year: 2011
  end-page: 1731
  article-title: Persistent infection or successive reinfection of deer mice with subsp.
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  start-page: 684
  year: 2004
  ident: 2023032107355196800_
  article-title: Flea-borne Bartonella grahamii and Bartonella taylorii in Bank Voles
  publication-title: Emergng Infect. Dis.
  doi: 10.3201/eid1004.030455
– volume: 116
  start-page: 35
  year: 1997
  ident: 2023032107355196800_
  article-title: Cowpox in British voles and mice
  publication-title: J. Compar. Path.
  doi: 10.1016/S0021-9975(97)80041-2
– volume: 7
  start-page: 457
  year: 1992
  ident: 2023032107355196800_
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1177011136
– volume: 122
  start-page: 455
  year: 1999
  ident: 2023032107355196800_
  article-title: Cowpox: reservoir hosts and geographic range
  publication-title: Epidem. Infectn
  doi: 10.1017/S0950268899002423
– volume: 75
  start-page: 79
  year: 1996
  ident: 2023032107355196800_
  article-title: Calculating posterior distributions and modal estimates in Markov mixture models
  publication-title: J. Econmetr.
  doi: 10.1016/0304-4076(95)01770-4
– volume-title: R: a Language and Environment for Statistical Computing
  year: 2012
  ident: 2023032107355196800_
– volume: 28
  start-page: 172
  year: 2010
  ident: 2023032107355196800_
  article-title: The random walk Metropolis: linking theory and practice through a case study
  publication-title: Statist. Sci.
– volume: 64
  start-page: 327
  year: 1999
  ident: 2023032107355196800_
  article-title: Convergence controls for MCMC algorithms, with application to hidden Markov chains
  publication-title: J. Statist. Computn Simuln
  doi: 10.1080/00949659908811984
– volume: 97
  start-page: 337
  year: 2002
  ident: 2023032107355196800_
  article-title: Bayesian methods for hidden Markov models: recursive computing in the 21th century
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214502753479464
– start-page: 1154
  volume-title: Proc. Int. Jt Conf. Neural Networks
  year: 2002
  ident: 2023032107355196800_
– volume: 4
  start-page: 285
  year: 2004
  ident: 2023032107355196800_
  article-title: Prospective studies of Bartonella of rodents: part I, Demographic and temporal patterns in population dynamics
  publication-title: Vect. Borne Zoonotic Dis.
  doi: 10.1089/vbz.2004.4.285
– volume: 56
  start-page: 733
  year: 2000
  ident: 2023032107355196800_
  article-title: Modelling markers of disease progression by a hidden Markov process: application to characterising CD4 cell decline
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00733.x
– volume: 77
  start-page: 257
  year: 1989
  ident: 2023032107355196800_
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– volume-title: Missing Data in Longitudinal Data: Strategies for Bayesian Modelling and Sensitivity Analysis
  year: 2008
  ident: 2023032107355196800_
  doi: 10.1201/9781420011180
– volume: 330
  start-page: 243
  year: 2010
  ident: 2023032107355196800_
  article-title: Species interactions in a parasite community drive infection risk in a wildlife population
  publication-title: Science
  doi: 10.1126/science.1190333
– volume: 59
  start-page: 839
  year: 2010
  ident: 2023032107355196800_
  article-title: An application of hidden Markov models to the French variant Creutzfeldt–Jakob disease epidemic
  publication-title: Appl. Statist.
– volume: 16
  start-page: 351
  year: 2001
  ident: 2023032107355196800_
  article-title: Optimal scaling for various Metropolis-Hastings algorithms
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1015346320
– volume-title: Coupled hidden semi Markov models for activity recognition
  year: 2007
  ident: 2023032107355196800_
  doi: 10.1109/WMVC.2007.12
– volume: 74
  start-page: 7118
  year: 2008
  ident: 2023032107355196800_
  article-title: Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00625-08
– volume: 68
  start-page: 767
  year: 2006
  ident: 2023032107355196800_
  article-title: An exact Gibbs sampler for the Markov-modulated Poisson process
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2006.00566.x
– volume: 37
  start-page: 75
  year: 1999
  ident: 2023032107355196800_
  article-title: Mixed memory Markov models: decomposing complex stochastic processes as mixtures of simpler ones
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007649326333
– volume: 80
  start-page: 1207
  year: 2011
  ident: 2023032107355196800_
  article-title: Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2011.01893.x
– volume-title: Modelling Binary Data
  year: 2003
  ident: 2023032107355196800_
– volume: 126
  start-page: 323
  year: 2001
  ident: 2023032107355196800_
  article-title: Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents
  publication-title: Epidem. Infectn
  doi: 10.1017/S095026880100526X
– volume: 8
  start-page: 145
  year: 1998
  ident: 2023032107355196800_
  article-title: Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation
  publication-title: Statist. Comput.
  doi: 10.1023/A:1008938201645
– volume: 77
  start-page: 1728
  year: 2011
  ident: 2023032107355196800_
  article-title: Persistent infection or successive reinfection of deer mice with Bartonella vinsonii subsp. arupensis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02203-10
– volume: 1
  start-page: 35
  year: 2009
  ident: 2023032107355196800_
  article-title: Effects of abundance on infection in natural populations: field voles and cowpox virus
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2008.10.001
– volume-title: Coupled hidden Markov Models for modelling interacting processes
  year: 1997
  ident: 2023032107355196800_
– volume: 162
  start-page: 653
  year: 2009
  ident: 2023032107355196800_
  article-title: Individual growth rates in natural field voles, Microtus agrestis, populations exhibiting cyclic population dynamics
  publication-title: Oecologia
  doi: 10.1007/s00442-009-1495-6
– volume: 61
  start-page: 442
  year: 2005
  ident: 2023032107355196800_
  article-title: Multievent: an extension of multistate capture-recapture models to uncertain states
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00318.x
– volume: 134
  start-page: 413
  year: 2007
  ident: 2023032107355196800_
  article-title: Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics
  publication-title: Parasitology
  doi: 10.1017/S0031182006001624
– volume: 42
  start-page: 3164
  year: 2004
  ident: 2023032107355196800_
  article-title: Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.42.7.3164-3168.2004
– volume: 12
  start-page: 604
  year: 2003
  ident: 2023032107355196800_
  article-title: Estimating hidden semi-Markov chains from discrete sequences
  publication-title: J. Computnl Graph Statist.
  doi: 10.1198/1061860032030
– volume: 16
  start-page: 77
  year: 1993
  ident: 2023032107355196800_
  article-title: Bayesian estimation of hidden Markov chains: a stochastic implementation
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/0167-7152(93)90127-5
– volume: 135
  start-page: 767
  year: 2008
  ident: 2023032107355196800_
  article-title: Parasite interactions in natural populations: insights from longitudinal data
  publication-title: Parasitology
  doi: 10.1017/S0031182008000395
– volume-title: A hidden Markov model for disease interactions in field voles
  year: 2012
  ident: 2023032107355196800_
– volume-title: Markov Chain Monte Carlo in Practice
  year: 1996
  ident: 2023032107355196800_
– volume: 41
  start-page: 164
  year: 1970
  ident: 2023032107355196800_
  article-title: A maximisation technique occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177697196
– volume-title: Markov Chain Monte Carlo in Practice
  year: 1996
  ident: 2023032107355196800_
– volume: 147
  start-page: 345
  year: 2000
  ident: 2023032107355196800_
  article-title: Learning interaction dynamics with couple hidden Markov models
  publication-title: IEE Proc. Sci. Measmnt Technol.
  doi: 10.1049/ip-smt:20000851
– volume: 15
  start-page: 774
  year: 2009
  ident: 2023032107355196800_
  article-title: Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets
  publication-title: Bernoulli
  doi: 10.3150/08-BEJ176
– volume: 82
  start-page: 711
  year: 1995
  ident: 2023032107355196800_
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.711
– volume-title: Hidden Markov Models for Time Series: an Introduction using R
  year: 2009
  ident: 2023032107355196800_
  doi: 10.1201/9781420010893
– reference: 9076598 - J Comp Pathol. 1997 Jan;116(1):35-44
– reference: 21848864 - J Anim Ecol. 2011 Nov;80(6):1207-16
– reference: 21352750 - Epidemics. 2009 Mar;1(1):35-46
– reference: 19916066 - Oecologia. 2010 Mar;162(3):653-61
– reference: 21239553 - Appl Environ Microbiol. 2011 Mar;77(5):1728-31
– reference: 16011690 - Biometrics. 2005 Jun;61(2):442-7
– reference: 18820068 - Appl Environ Microbiol. 2008 Dec;74(23 ):7118-25
– reference: 17096870 - Parasitology. 2007 Mar;134(Pt 3):413-25
– reference: 11349984 - Epidemiol Infect. 2001 Apr;126(2):323-9
– reference: 10985209 - Biometrics. 2000 Sep;56(3):733-41
– reference: 15200860 - Emerg Infect Dis. 2004 Apr;10(4):684-7
– reference: 20929776 - Science. 2010 Oct 8;330(6001):243-6
– reference: 15671735 - Vector Borne Zoonotic Dis. 2004 Winter;4(4):285-95
– reference: 15243077 - J Clin Microbiol. 2004 Jul;42(7):3164-8
– reference: 10459650 - Epidemiol Infect. 1999 Jun;122(3):455-60
– reference: 18474121 - Parasitology. 2008 Jun;135(7):767-81
SSID ssj0000104
ssj0018311
Score 2.1787405
Snippet To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six...
Summary To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 609
SubjectTerms Adaptive Markov chain Monte Carlo sampling
Applied statistics
Bartonella
Covariance
Datasets
Discrete time
Disease
Disease models
Diseases
Economic theory
Forward-backward algorithm
Gibbs sampler
Hidden Markov models
Immune response
Infections
Inference
Logistic regression
Logistics
Longitudinal studies
Markov analysis
Markov chains
Markov models
Markovian processes
Mathematical models
Medical research
Monte Carlo simulation
Original
Parasites
Population (statistical)
Probability
Public health
Regression analysis
Samples
Sampling
Statistical analysis
Studies
Transition probabilities
Voles
Zoonosis
Title A coupled hidden Markov model for disease interactions
URI https://api.istex.fr/ark:/67375/WNG-FTNHGBV3-F/fulltext.pdf
https://www.jstor.org/stable/24771879
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssc.12015
https://www.ncbi.nlm.nih.gov/pubmed/24223436
https://www.proquest.com/docview/1399278883
https://www.proquest.com/docview/1418136837
https://www.proquest.com/docview/1429883855
https://www.proquest.com/docview/1826583921
https://pubmed.ncbi.nlm.nih.gov/PMC3813975
Volume 62
WOSCitedRecordID wos000321706600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1467-9876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018311
  issn: 0035-9254
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB5qz4e-WK1Wo7VEFEEhks1ubnfBl1pN-1CO0l_eW0h2N1QouXLxin--M5sf3mE5EF-OQD6Sy-xM9pvs7DcA78qCW1k6EVku40jwqoy0tCJiphCuiEtXeSWmqxM5majpVJ9uwOd-L0yrDzF8cKPI8O9rCvCibJaCfN405hPD-St9ACPGuKLGDYk4XRKPokyjW1BQnLFeoVFjUtQplVJRz58LrcxNIzLzr75M8T4C-ncd5TK_9RNUtv1_j_YYHnXENDxoPekJbLh6B7b7pg9h9w7YgS2ip62681MYH4Rmtri9cTa8Ji2SOqS9P7O70DfYCZEQh90KUEi6FPN2F0XzDC6zbxeHx1HXiSEyY-QUEfIsTBRLQYSNa2GFtYxZZI6mZNxg3DNdKV2ISnBrKyUSVyiTxNY5VgnrKr4Lm_Wsdi8grDDlTgupdVWmgtlEx9Yk2igea8M1VwF86McgN51MOXXLuMn7dIWsk3vrBPB2wN624hz3ot77oRwgaAgqZ5Np_n1ylGcXk-OjL1c8zwLY9WM9ABMhJXVjD2CvH_y8C_EmZyTpSx8QeABvhtMYnLTiUtRutkCMQALFx4rLdZhE40VUmq7BYBKYEpVlATxvfW7pTyLDE3wcgFzxxgFAAuKrZ-of115IHNka0lG870fvjWtsmJ-dnx_6o5f_An4FW4lvH0IFk3uw-XO-cK_hoblDP53v-3DFXzlV-zD6epZdnvwGVltCjw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BhsReNhgMAgOMQEhMCopjp4kfx0RXRIkmVsberMR2NKQpndp14s_nzvlBK6ZKiLdI-ZQ257v4O_v8HcDbshA2LZ0MrUijUIqqDFVqZchNIV0Rla7ySkxn4zTPs_NzddLW5tBZmEYfol9wo8jw32sKcFqQXory2XxuPnCcwJK7sClxmiE3j-XJknoUpRrtjkImOO8kGhVmRa1UKVX1_HnQyuS0SXb-1dUp3sZA_y6kXCa4foYa7vznuz2A7ZaassPGlx7CHVfvwk7X9oG1X4Fd2CKC2ug7P4LBITPTxdWls-yC1EhqRqd_pjfMt9hhSIlZuwfESJli1pyjmD-G78NPk6NR2PZiCM0AWUWITAtTxVISZRNKWmkt5xa5oym5MBj5XFWZKmQlhbVVJmNXZCaOrHO8ktZVYg826mntngKrMOlOilSpqkwkt7GKrImVyUSkjFAiC-B9NwjatELl1C_jUncJC1lHe-sE8KbHXjXyHLei3vmx7CFoCCpoSxP9Iz_Ww0k-Ov54JvQwgD0_2D0wlmlK_dgD2O9GX7dBPtecRH1pCUEE8Lq_jeFJey5F7aYLxEikUGKQiXQdJlb4kCxJ1mAwDUyIzPIAnjROt_QnkeNJMQggXXHHHkAS4qt36p8XXkoc-RoSUvzdA--Oa2yov52eHvmrZ_8CfgX3R5OvYz3-nH95DluxbyZC5ZP7sHE9W7gXcM_coM_OXvrY_Q3LyUPy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB70TqQvrVZro1VXFEEhks1ubrOPtTWteITSX_YtJLsbKpTccecV_3x3Npt4h-VAfAvkIz9mZ7LfZGe_AXhXlUyLyvBQMxGFnNVVKIXmIVUlN2VUmdopMV2ORZ6nV1fyxNfm4F6YVh-i_-GGkeG-1xjgZqrrpSifzefqE7UTWHIfhhy7yAxgeHiaXYyX9KMw2fBrCimjtBNplDYv8mKlWNfz51Ir09MQLf2rq1S8i4P-XUq5THHdHJVt_efbPYJNT07JfutNj-GeabZhq2v8QPx3YBs2kKK2Cs9PYLRP1GQxvTGaXKMeSUNw_8_klrgmO8SSYuJXgQhqU8zanRTzp3CRfTk_OA59N4ZQjSyvCC3XsslixZG0Mck115pSbdmjqihTNvaprFNZ8pozreuUx6ZMVRxpY2jNtanZDgyaSWN2gdQ27U5KIWVdJZzqWEZaxVKlLJKKSZYG8KEbhEJ5qXLsmHFTdCkLWqdw1gngbY-dtgIdd6Leu7HsIdYQWNImkuJ7flRk5_nx0edLVmQB7LjB7oExFwI7sgew141-4cN8XlCU9cWfCCyAN_1pG6C46lI2ZrKwGG5JFBulTKzDxNJeJE2SNRibCCZIZ2kAz1qnW3pIy_I4GwUgVtyxB6CI-OqZ5se1ExO3jM1SUnvfj84d19iwOD07O3BHz_8F_Boenhxmxfhr_u0FbMSumwjWT-7B4OdsYV7CA3VrXXb2ygfvb9fPRQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Coupled+Hidden+Markov+Model+for+Disease+Interactions&rft.jtitle=Journal+of+the+Royal+Statistical+Society+Series+C%3A+Applied+Statistics&rft.au=Sherlock%2C+Chris&rft.au=Xifara%2C+Tatiana&rft.au=Telfer%2C+Sandra&rft.au=Begon%2C+Mike&rft.date=2013-08-01&rft.issn=0035-9254&rft.eissn=1467-9876&rft.volume=62&rft.issue=4&rft.spage=609&rft.epage=627&rft_id=info:doi/10.1111%2Frssc.12015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_rssc_12015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9254&client=summon