Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals
DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error‐free, and th...
Gespeichert in:
| Veröffentlicht in: | The EMBO journal Jg. 28; H. 4; S. 383 - 393 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Chichester, UK
John Wiley & Sons, Ltd
18.02.2009
Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error‐free, and the third slow and error‐prone. A single gene,
REV3L
, encoding the catalytic subunit of DNA polymerase ζ (polζ), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two‐polymerase combinations with polζ dictate error‐prone or error‐free TLS across the same lesion. These results highlight the central role of polζ in both error‐prone and error‐free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two‐polymerase combinations. |
|---|---|
| AbstractList | DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error‐free, and the third slow and error‐prone. A single gene,
REV3L
, encoding the catalytic subunit of DNA polymerase ζ (polζ), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two‐polymerase combinations with polζ dictate error‐prone or error‐free TLS across the same lesion. These results highlight the central role of polζ in both error‐prone and error‐free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two‐polymerase combinations. DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations. DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (polzeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with polzeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of polzeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations. [PUBLICATION ABSTRACT] DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase ζ (polζ), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with polζ dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of polζ in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations. DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations. |
| Author | Ziv, Omer Friedberg, Errol C Wang, Zhigang Reißner, Thomas Adar, Sheera Carell, Thomas Shachar, Sigal Livneh, Zvi Geacintov, Nicholas Avkin, Sharon Wittschieben, John Chaney, Stephen |
| Author_xml | – sequence: 1 givenname: Sigal surname: Shachar fullname: Shachar, Sigal organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel – sequence: 2 givenname: Omer surname: Ziv fullname: Ziv, Omer organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel – sequence: 3 givenname: Sharon surname: Avkin fullname: Avkin, Sharon organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel – sequence: 4 givenname: Sheera surname: Adar fullname: Adar, Sheera organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel – sequence: 5 givenname: John surname: Wittschieben fullname: Wittschieben, John organization: Department of Pharmacology, University of Pittsburgh Medical School and University of Pittsburgh Cancer Institute, PA, Pittsburgh, USA – sequence: 6 givenname: Thomas surname: Reißner fullname: Reißner, Thomas organization: Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, München, Germany – sequence: 7 givenname: Stephen surname: Chaney fullname: Chaney, Stephen organization: Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, NC, Chapel Hill, USA – sequence: 8 givenname: Errol C surname: Friedberg fullname: Friedberg, Errol C organization: Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, TX, Dallas, USA – sequence: 9 givenname: Zhigang surname: Wang fullname: Wang, Zhigang organization: Graduate Center for Toxicology, University of Kentucky, KY, Lexington, USA – sequence: 10 givenname: Thomas surname: Carell fullname: Carell, Thomas organization: Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, München, Germany – sequence: 11 givenname: Nicholas surname: Geacintov fullname: Geacintov, Nicholas organization: Chemistry Department, New York University, NY, New York, USA – sequence: 12 givenname: Zvi surname: Livneh fullname: Livneh, Zvi email: zvi.livneh@weizmann.ac.il organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19153606$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1vEzEQtVARTQtXjmjFgdumHu_au3tBakspH205JIij5TjjxmHXDvaGkn-Pw4aoVKo4jUbz3syb947IgfMOCXkJdAy0qE-wm_nlmFFaj1kNT8gISkFzRit-QEaUCchLqJtDchTjklLK6wqekUNogBeCihFR0zufr3y76TCoiFmHeqGcjV3M5lb3qscMQ_AhNwExU26-a1ch6cj6oFxsMVrvsnc3p1ncuH6R2phZl3Wq61Qbn5OnJhV8savH5Ov7i-n5h_zqy-XH89OrXAtaQT5H3lADYGaaM9QFM7wxZs6F4TMFjANQwFJVpkwTU4IWQhsqEpY3HJQojsnbYe9qPetwrtElda1cBdupsJFeWfnvxNmFvPU_JROlgLJKC97sFgT_Y42xl52NGttWOfTrKIVoymQoJODrB8ClXweXnpPQcCZYXfEEenVfzl7HX-sToBwAOvgYAxqpbfI7WZnU2VYClduE5Z-E5TZhmRJOtPED2n7zY4RqINzZFjf_QcuL67NP22ZgngzMmEjuFsO9Px-7lQ8MG3v8tb-lwncpqqLi8tvNpeST6ZRNrifyc_EbRT7a-g |
| CODEN | EMJODG |
| CitedBy_id | crossref_primary_10_1016_j_cell_2019_05_028 crossref_primary_10_1093_nar_gkq403 crossref_primary_10_1093_nar_gkw1196 crossref_primary_10_4061_2010_750296 crossref_primary_10_1124_mol_109_058131 crossref_primary_10_1016_j_jmb_2013_09_022 crossref_primary_10_1074_jbc_RA119_009054 crossref_primary_10_1007_s13238_012_2102_x crossref_primary_10_1016_j_mrfmmm_2015_08_002 crossref_primary_10_1016_j_mrfmmm_2017_08_002 crossref_primary_10_1371_journal_pgen_1002262 crossref_primary_10_1002_cbic_201000211 crossref_primary_10_3389_fonc_2024_1516165 crossref_primary_10_1016_j_jbc_2022_102859 crossref_primary_10_1111_cas_13399 crossref_primary_10_3123_jemsge_34_77 crossref_primary_10_1093_nar_gkaa096 crossref_primary_10_1371_journal_pone_0081108 crossref_primary_10_1038_s41388_021_02032_9 crossref_primary_10_15252_embj_201490878 crossref_primary_10_1371_journal_pone_0120334 crossref_primary_10_1371_journal_pone_0140409 crossref_primary_10_1093_nar_gks1296 crossref_primary_10_3123_jemsge_34_89 crossref_primary_10_1016_j_bcp_2022_115323 crossref_primary_10_1007_s00412_016_0573_x crossref_primary_10_1186_s12885_024_12865_8 crossref_primary_10_1073_pnas_1507833112 crossref_primary_10_1038_emboj_2010_101 crossref_primary_10_1371_journal_pgen_1002800 crossref_primary_10_3390_ijms22010355 crossref_primary_10_1371_journal_pone_0083978 crossref_primary_10_1016_j_heliyon_2024_e27806 crossref_primary_10_1042_BCJ20190579 crossref_primary_10_1007_s11010_025_05291_2 crossref_primary_10_1371_journal_pgen_1001151 crossref_primary_10_1073_pnas_1217425110 crossref_primary_10_1093_nar_gkv076 crossref_primary_10_1073_pnas_1101951108 crossref_primary_10_1002_anie_201000414 crossref_primary_10_1016_j_dnarep_2009_10_004 crossref_primary_10_1016_j_dnarep_2020_103031 crossref_primary_10_1093_nar_gkw280 crossref_primary_10_1016_j_bbcan_2010_07_004 crossref_primary_10_1016_j_mrfmmm_2012_11_002 crossref_primary_10_1371_journal_pgen_1005759 crossref_primary_10_1016_j_dnarep_2009_09_006 crossref_primary_10_1269_jrr_10175 crossref_primary_10_1371_journal_pgen_1004419 crossref_primary_10_1007_s00018_009_0024_4 crossref_primary_10_1146_annurev_biochem_062917_012405 crossref_primary_10_1111_febs_14840 crossref_primary_10_1002_ange_201000414 crossref_primary_10_1038_nrc2998 crossref_primary_10_1073_pnas_1202681109 crossref_primary_10_1371_journal_pgen_1011181 crossref_primary_10_1371_journal_pone_0052472 crossref_primary_10_3389_fmolb_2021_811540 crossref_primary_10_1111_cas_14718 crossref_primary_10_3390_ijms242115799 crossref_primary_10_1093_nar_gku1385 crossref_primary_10_1038_nrm3289 crossref_primary_10_1038_ncomms6437 crossref_primary_10_3390_ijms19103255 crossref_primary_10_1134_S0006297920080039 crossref_primary_10_1007_s12035_017_0507_5 crossref_primary_10_1016_j_dnarep_2021_103052 crossref_primary_10_1038_s41598_021_00878_3 crossref_primary_10_1016_j_tiv_2017_04_017 crossref_primary_10_1038_s41467_024_47219_2 crossref_primary_10_1016_j_bpj_2025_04_014 crossref_primary_10_1074_jbc_RA118_003133 crossref_primary_10_1093_nar_gku1398 crossref_primary_10_1074_jbc_RA120_013780 crossref_primary_10_1093_carcin_bgp316 crossref_primary_10_1016_j_molcel_2020_11_029 crossref_primary_10_1073_pnas_1216894110 crossref_primary_10_1002_2211_5463_13099 crossref_primary_10_1093_nar_gkaa580 crossref_primary_10_1021_ja512547g crossref_primary_10_3390_biomedicines10050972 crossref_primary_10_1073_pnas_1812856115 crossref_primary_10_1042_BST0380110 crossref_primary_10_1016_j_dnarep_2016_05_007 crossref_primary_10_1016_j_dnarep_2016_05_004 crossref_primary_10_1016_j_dnarep_2015_09_023 crossref_primary_10_1038_s41467_017_01013_5 crossref_primary_10_1093_nar_gkr769 crossref_primary_10_1002_em_22146 crossref_primary_10_1158_0008_5472_CAN_18_3928 crossref_primary_10_1002_em_21731 crossref_primary_10_1155_2012_530963 crossref_primary_10_1002_em_21736 crossref_primary_10_1101_gad_1872810 crossref_primary_10_4061_2010_701472 crossref_primary_10_1091_mbc_e10_12_0938 crossref_primary_10_1093_nar_gks054 crossref_primary_10_1016_j_dnarep_2012_03_007 crossref_primary_10_3123_jemsge_34_63 crossref_primary_10_1101_gad_272229_115 crossref_primary_10_1016_j_pharmthera_2024_108642 crossref_primary_10_1080_10409238_2020_1768205 crossref_primary_10_1002_med_21278 crossref_primary_10_1016_j_jmb_2023_168275 crossref_primary_10_1074_jbc_M112_394841 crossref_primary_10_1016_j_dnarep_2015_01_001 crossref_primary_10_1016_j_dnarep_2015_01_004 crossref_primary_10_1016_j_mrfmmm_2016_08_004 crossref_primary_10_1080_21541264_2016_1181142 crossref_primary_10_3390_genes8010024 crossref_primary_10_1104_pp_110_166082 crossref_primary_10_1016_j_mrfmmm_2023_111834 crossref_primary_10_1073_pnas_1011409107 crossref_primary_10_1128_MCB_00071_09 crossref_primary_10_1371_journal_pone_0105482 crossref_primary_10_1038_emboj_2010_87 crossref_primary_10_1038_srep19552 crossref_primary_10_1124_mol_111_076828 crossref_primary_10_1073_pnas_1801149115 crossref_primary_10_1073_pnas_1917196117 crossref_primary_10_1128_MCB_00993_09 crossref_primary_10_1038_s41375_019_0641_3 crossref_primary_10_3390_genes15070832 crossref_primary_10_1016_j_tig_2020_12_003 crossref_primary_10_1016_j_dnarep_2019_102771 crossref_primary_10_1016_j_str_2024_09_007 crossref_primary_10_1074_jbc_M110_107920 crossref_primary_10_1016_j_celrep_2023_112887 crossref_primary_10_1093_nar_gkaf914 crossref_primary_10_1016_j_molcel_2021_08_016 crossref_primary_10_6061_clinics_2018_e478s crossref_primary_10_1093_nar_gkw204 crossref_primary_10_3390_ijms22136957 crossref_primary_10_1016_j_dnarep_2016_06_002 crossref_primary_10_1007_s12032_013_0500_4 crossref_primary_10_1038_s41467_017_02164_1 crossref_primary_10_1002_ejoc_201500144 crossref_primary_10_1158_0008_5472_CAN_09_4267 crossref_primary_10_4061_2010_643857 crossref_primary_10_1177_24755303211026023 crossref_primary_10_1016_j_dnarep_2021_103213 crossref_primary_10_1093_nar_gkp703 crossref_primary_10_1007_s00018_019_03299_8 crossref_primary_10_1074_jbc_M113_480459 crossref_primary_10_1016_j_dnarep_2013_12_008 crossref_primary_10_1038_onc_2011_384 crossref_primary_10_2147_JEP_S267383 crossref_primary_10_1002_cbic_201000724 crossref_primary_10_1073_pnas_0812548106 crossref_primary_10_1093_nar_gkp632 crossref_primary_10_1074_jbc_RA120_012830 crossref_primary_10_1002_cmdc_201900307 crossref_primary_10_1038_emboj_2008_303 crossref_primary_10_1111_gtc_13189 crossref_primary_10_1016_j_dnarep_2015_02_012 crossref_primary_10_1038_emboj_2008_301 crossref_primary_10_1073_pnas_1421365112 crossref_primary_10_1016_j_dnarep_2014_09_002 crossref_primary_10_3390_ijms12128513 crossref_primary_10_1002_em_22087 crossref_primary_10_1073_pnas_1204105109 crossref_primary_10_1093_nar_gku779 crossref_primary_10_1016_j_jmb_2018_04_023 crossref_primary_10_1016_j_bbapap_2009_06_010 crossref_primary_10_1093_nar_gkq170 crossref_primary_10_1038_nature09097 crossref_primary_10_1039_C000407N crossref_primary_10_1242_jcs_094748 crossref_primary_10_1016_j_mrgentox_2014_05_006 crossref_primary_10_1093_nar_gkr596 crossref_primary_10_1080_15384101_2018_1456296 crossref_primary_10_1074_jbc_M111_331728 crossref_primary_10_1016_j_dnarep_2011_04_032 crossref_primary_10_1016_j_bmc_2013_01_022 crossref_primary_10_1038_s41598_021_96692_y crossref_primary_10_1016_j_jmb_2013_05_029 crossref_primary_10_1093_nar_gkw485 crossref_primary_10_1134_S0026893314030066 crossref_primary_10_1016_j_dnarep_2025_103818 crossref_primary_10_1038_s41467_021_27872_7 crossref_primary_10_1016_j_neuro_2012_10_011 crossref_primary_10_1093_toxsci_kfs074 crossref_primary_10_1016_j_mrgentox_2013_03_005 crossref_primary_10_1016_j_mrgentox_2018_02_004 crossref_primary_10_1128_MCB_05117_11 crossref_primary_10_3109_10409230903501819 crossref_primary_10_1016_j_dnarep_2011_08_005 crossref_primary_10_1016_j_dnarep_2020_102943 crossref_primary_10_3390_biology7010005 crossref_primary_10_1073_pnas_1400512111 crossref_primary_10_3390_molecules24152805 crossref_primary_10_1016_j_molcel_2021_09_013 crossref_primary_10_1371_journal_pone_0018554 crossref_primary_10_1371_journal_pgen_1010051 crossref_primary_10_1371_journal_pone_0039596 |
| Cites_doi | 10.1074/jbc.274.45.31763 10.1038/sj.emboj.7600383 10.1016/S0968-0004(99)01523-6 10.1074/jbc.M501562200 10.1101/gad.882301 10.1073/pnas.222377899 10.1073/pnas.032594399 10.1126/science.272.5268.1646 10.1038/35023030 10.1126/science.283.5404.1001 10.1073/pnas.062038699 10.1073/pnas.0802727105 10.1126/science.1120615 10.1016/j.molcel.2005.11.015 10.1021/bi000130k 10.1146/annurev.biochem.71.083101.124707 10.1073/pnas.96.16.8919 10.1074/jbc.M004413200 10.1038/cr.2007.117 10.1074/jbc.R100019200 10.1016/j.molcel.2006.03.022 10.1093/emboj/19.22.6259 10.1016/0005-2787(76)90006-X 10.1016/j.dnarep.2008.06.008 10.1016/S0027-5107(02)00253-1 10.1038/21447 10.1158/0008-5472.CAN-04-1328 10.1016/j.dnarep.2006.07.002 10.1038/261593a0 10.1016/j.dnarep.2007.02.003 10.1101/gad.455407 10.1093/emboj/19.12.3100 10.1101/gad.1009802 10.1038/nature04318 10.1016/0022-2836(72)90418-4 10.1038/sj.onc.1209315 10.1158/0008-5472.CAN-03-3942 10.1021/bi0346704 10.1038/35010020 10.1021/bi00144a021 10.1093/nar/28.21.4138 10.1016/S1568-7864(02)00038-1 10.1038/nature01965 10.1093/nar/gkj446 10.1016/0022-2836(68)90445-2 10.1016/j.dnarep.2004.03.031 10.1126/science.1148242 10.1038/nature00991 10.1074/jbc.M409155200 10.1126/science.285.5425.263 10.1074/jbc.275.11.7447 10.1038/382729a0 10.1073/pnas.2433503100 10.1073/pnas.95.12.6876 10.1038/nature02352 10.1128/MCB.26.9.3527-3540.2006 10.1534/genetics.104.034611 10.1016/S1097-2765(04)00259-X 10.1101/gad.14.13.1589 10.1158/0008-5472.CAN-05-2982 10.1016/j.dnarep.2006.01.001 |
| ContentType | Journal Article |
| Copyright | European Molecular Biology Organization 2008 Copyright © 2008 European Molecular Biology Organization Copyright Nature Publishing Group Feb 18, 2009 Copyright © 2008, European Molecular Biology Organization 2008 |
| Copyright_xml | – notice: European Molecular Biology Organization 2008 – notice: Copyright © 2008 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Feb 18, 2009 – notice: Copyright © 2008, European Molecular Biology Organization 2008 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/emboj.2008.281 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Accurate and mutagenic two-polymerase TLS with polζ |
| EISSN | 1460-2075 |
| EndPage | 393 |
| ExternalDocumentID | PMC2646147 1647190731 19153606 10_1038_emboj_2008_281 EMBJ2008281 ark_67375_WNG_5STT2SMS_K |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA92528 – fundername: NCI NIH HHS grantid: R01 CA099194 – fundername: NCI NIH HHS grantid: R01 CA092528 – fundername: NCI NIH HHS grantid: R01 CA112412 – fundername: NIEHS NIH HHS grantid: ES11354 – fundername: NCI NIH HHS grantid: R01 CA098675 – fundername: NCI NIH HHS grantid: CA098675 – fundername: NCI NIH HHS grantid: CA 099194 – fundername: NCI NIH HHS grantid: CA112412 |
| GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 4.4 53G 5VS 70F 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANHP AANLZ AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYN AEUYR AFBPY AFFHD AFFNX AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HVGLF HYE KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RNS ROL RPM RZO SV3 TN5 TR2 UKHRP WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM O8X 24P 3V. 88A AAHHS ABJNI ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV M0L RHF WYJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c6071-de590f11fbc52ec32f59ffd56f5ba1251101e4a7f42f5f41c66cf0652e5951a63 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 237 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263556200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Nov 04 01:50:44 EST 2025 Tue Sep 30 22:59:18 EDT 2025 Mon Oct 06 17:20:27 EDT 2025 Thu Apr 03 07:07:04 EDT 2025 Sat Nov 29 03:24:30 EST 2025 Tue Nov 18 22:01:22 EST 2025 Wed Jan 22 17:06:08 EST 2025 Sat Nov 29 01:24:56 EST 2025 Tue Nov 11 03:33:21 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | carcinogenesis DNA repair mutagenesis DNA damage lesion bypass |
| Language | English |
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6071-de590f11fbc52ec32f59ffd56f5ba1251101e4a7f42f5f41c66cf0652e5951a63 |
| Notes | ArticleID:EMBJ2008281 istex:B964CBF19EFB01776736441F4889B17FF5998663 ark:/67375/WNG-5STT2SMS-K Supplementary Information ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://doi.org/10.1038/emboj.2008.281 |
| PMID | 19153606 |
| PQID | 195262875 |
| PQPubID | 35985 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2646147 proquest_miscellaneous_66942611 proquest_journals_195262875 pubmed_primary_19153606 crossref_citationtrail_10_1038_emboj_2008_281 crossref_primary_10_1038_emboj_2008_281 wiley_primary_10_1038_emboj_2008_281_EMBJ2008281 springer_journals_10_1038_emboj_2008_281 istex_primary_ark_67375_WNG_5STT2SMS_K |
| PublicationCentury | 2000 |
| PublicationDate | February 18, 2009 |
| PublicationDateYYYYMMDD | 2009-02-18 |
| PublicationDate_xml | – month: 02 year: 2009 text: February 18, 2009 day: 18 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: New York |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
| References | Soria G, Podhajcer O, Gottifredi V (2006) P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 25: 2829-2838 Avkin S, Adar S, Blander G, Livneh Z (2002) Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase. Proc Natl Acad Sci USA 99: 3764-3769 Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA Repair and Mutagenesis. Washington, DC: ASM Press Gibbs PE, McDonald J, Woodgate R, Lawrence CW (2005) The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutyl dimer. Genetics 169: 575-582 Goodman MF (2002) Error-prone DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71: 17-50 Napolitano R, Janel-Bintz R, Wagner J, Fuchs RPP (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV, and Pol V) are involved in induced mutagenesis. EMBO J 19: 6259-6265 Ogi T, Shinkai Y, Tanaka K, Ohmori H (2002) Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci USA 99: 15548-15553 Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF (1999) UmuD′(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96: 8919-8924 Lehmann AR, Fuchs RP (2006) Gaps and forks in DNA replication: rediscovering old models. DNA Repair (Amst) 5: 1495-1498 Johnson RE, Prakash S, Prakash L (1999b) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta. Science 283: 1001-1004 Vaisman A, Masutani C, Hanaoka F, Chaney SG (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. Biochemistry 39: 4575-4580 Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C (2006) Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol 26: 3527-3540 Nelson JR, Lawrence CW, Hinkle DC (1996b) Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272: 1646-1649 Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (1998) A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci USA 95: 6876-6880 Maor-Shoshani A, Ben-Ari V, Livneh Z (2003) Lesion bypass DNA polymerases replicate across non-DNA segments. Proc Natl Acad Sci USA 100: 14760-14765 Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wilder G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310: 1821-1824 Niimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A, Green CM, Lehmann AR (2008) Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA 105: 16125-16130 Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6: 891-899 Nelson JR, Lawrence CW, Hinkle DC (1996a) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382: 729-731 Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31: 291-304 Bassett E, King NM, Bryant MF, Hector S, Pendyala L, Chaney SG, Cordeiro-Stone M (2004) The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts. Cancer Res 64: 6469-6475 Gan GN, Wittschieben JP, Wittschieben BO, Wood RD (2008) DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 18: 174-183 Avkin S, Sevilya Z, Toube L, Geacintov NE, Chaney SG, Oren M, Livneh Z (2006) p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell 22: 407-413 Avkin S, Goldsmith M, Velasco-Miguel S, Geacintov N, Friedberg EC, Livneh Z (2004) Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The role of DNA polymerase κ. J Biol Chem 279: 53298-53305 Wu F, Lin X, Okuda T, Howell SB (2004) DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance. Cancer Res 64: 8029-8035 Masutani C, Kusumoto R, Iwai S, Hanaoka F (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J 19: 3100-3109 Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000a) Eukaryotic polymerases i and z act sequentially to bypass DNA lesions. Nature 406: 1015-1019 Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21: 3342-3355 Alt A, Lammens K, Chiocchini C, Lammens A, Pieck JC, Kuch D, Hopfner KP, Carell T (2007) Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318: 967-970 Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC (2006) A single amino acid governs enhanced activity of DinB DNA polymerases on damaged template. Nature 439: 225-228 Johnson RE, Washington MT, Prakash S, Prakash L (2000b) Fidelity of human DNA polymerase eta. J Biol Chem 275: 7447-7450 Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491-500 Maher VM, Ouellette LM, Curren RD, McCormick JJ (1976) Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261: 593-595 Adar S, Livneh Z (2006) Translesion DNA synthesis across non-DNA segments in cultured human cells. DNA Repair (Amst) 5: 479-490 Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191 Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev 14: 1589-1594 Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25: 143-147 Gerlach VL, Feaver WJ, Fischhaber PL, Friedberg EC (2001) Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene. J Biol Chem 276: 92-98 Wittschieben JP, Reshmi SC, Gollin SM, Wood RD (2006) Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res 66: 134-142 Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z (2008) Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproducts, in human cells lacking DNA polymerase eta. DNA Repair (Amst) 7: 1636-1646 Zhao B, Wang J, Geacintov NE, Wang Z (2006) Polh, polz and Rev1 together are required for G to T transversion mutations induced by the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells. Nucleic Acids Res 34: 417-425 Meneghini R (1976) Gaps in DNA synthesized by ultraviolet light-irradiated WI38 cells. Biochim Biophys Acta 425: 419-427 Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z (2000) Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res 28: 4138-4146 Washington MT, Johnson RE, Prakash L, Prakash S (2002) Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci USA 99: 1910-1914 Lawrence CW (2002) Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair (Amst) 1: 425-435 Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF (2000) Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404: 1014-1018 Bi X, Slater DM, Ohmori H, Vaziri C (2005) DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. J Biol Chem 280: 22343-22355 Li Z, Zhang H, McManus TP, McCormick JJ, Lawrence CW, Maher VM (2002) hREV3 is essential for eror-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat Res 510: 71-80 Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM, Prakash S, Prakash L (2001) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15: 945-954 McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA (2004) Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428: 97-100 Zander L, Bemark M (2004) Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment. DNA Repair (Amst) 3: 743-752 Reuven NB, Arad G, Maor-Shoshani A, Livneh Z (1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA and SSB, and specialized for translesion replication. J Biol Chem 274: 31763-31766 Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15-27 Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141 Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16: 1872-1883 Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23: 3886-3896 Xie Z, Braithwaite E, Guo D, Zhao B, Geacintov NE, Wang Z (2003) Mutagenesis of be 2002; 16 2004; 64 1996b; 272 2006; 34 2002; 510 2004; 23 2002; 99 2004; 3 2008; 7 2008; 105 1996a; 382 2000; 19 2000; 14 2006; 21 2006; 22 2006; 66 2000; 404 2006; 25 2006; 26 2007; 6 2001; 15 1999; 96 2000a; 406 1998; 95 2007; 21 2003; 42 2006; 439 1976; 261 2000; 28 2000; 25 2005; 310 2008; 18 1976; 425 2002; 1 2006; 5 2006 2002; 419 1999b; 283 1999a; 285 2004; 428 1992; 31 1972; 66 2000b; 275 2001; 276 2005; 280 2004; 279 2003; 425 2000; 39 2005; 169 2004; 14 1999; 274 1999; 399 2002; 71 2007; 318 2003; 100 1968; 31 emboj2008281-b43 emboj2008281-b44 emboj2008281-b46 emboj2008281-b40 emboj2008281-b41 emboj2008281-b42 emboj2008281-b47 emboj2008281-b48 emboj2008281-b49 emboj2008281-b60 emboj2008281-b2 emboj2008281-b1 emboj2008281-b4 emboj2008281-b3 emboj2008281-b6 emboj2008281-b10 emboj2008281-b54 emboj2008281-b5 emboj2008281-b11 emboj2008281-b55 emboj2008281-b8 emboj2008281-b12 emboj2008281-b56 emboj2008281-b7 emboj2008281-b13 emboj2008281-b57 emboj2008281-b50 emboj2008281-b9 emboj2008281-b51 emboj2008281-b52 emboj2008281-b53 emboj2008281-b18 emboj2008281-b19 emboj2008281-b14 emboj2008281-b58 emboj2008281-b15 emboj2008281-b59 emboj2008281-b16 emboj2008281-b17 Li Z (emboj2008281-b30) 2002; 510 emboj2008281-b21 emboj2008281-b22 emboj2008281-b23 emboj2008281-b24 emboj2008281-b61 emboj2008281-b62 emboj2008281-b20 emboj2008281-b29 emboj2008281-b25 emboj2008281-b26 emboj2008281-b27 emboj2008281-b28 emboj2008281-b32 emboj2008281-b33 emboj2008281-b34 emboj2008281-b35 emboj2008281-b31 Ohashi E (emboj2008281-b45) 2000; 14 emboj2008281-b36 emboj2008281-b37 Meneghini R (emboj2008281-b38) 1976; 425 emboj2008281-b39 16407842 - Oncogene. 2006 May 11;25(20):2829-38 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27 16357261 - Science. 2005 Dec 16;310(5755):1821-4 10385124 - Nature. 1999 Jun 17;399(6737):700-4 14503875 - Biochemistry. 2003 Sep 30;42(38):11253-62 130925 - Biochim Biophys Acta. 1976 Apr 2;425(4):419-27 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46 11891323 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3764-9 10801133 - Nature. 2000 Apr 27;404(6781):1014-8 16415180 - Nucleic Acids Res. 2006;34(2):417-25 11316789 - Genes Dev. 2001 Apr 15;15(8):945-54 19225445 - EMBO J. 2009 Feb 18;28(4):313-4 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96 15520212 - Cancer Res. 2004 Nov 1;64(21):8029-35 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 EMBO J. 2009 Apr 8;28(7):992 14999287 - Nature. 2004 Mar 4;428(6978):97-100 16611994 - Mol Cell Biol. 2006 May;26(9):3527-40 12154119 - Genes Dev. 2002 Aug 1;16(15):1872-83 5037019 - J Mol Biol. 1972 May 28;66(3):319-37 16407906 - Nature. 2006 Jan 12;439(7073):225-8 10694886 - Trends Biochem Sci. 2000 Mar;25(3):143-7 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 16678112 - Mol Cell. 2006 May 5;22(3):407-13 12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53 12459444 - Mutat Res. 2002 Dec 29;510(1-2):71-80 9974380 - Science. 1999 Feb 12;283(5404):1001-4 934300 - Nature. 1976 Jun 17;261(5561):593-5 18157155 - Cell Res. 2008 Jan;18(1):174-83 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8 15817457 - J Biol Chem. 2005 Jun 10;280(23):22343-55 10430871 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8919-24 10542196 - J Biol Chem. 1999 Nov 5;274(45):31763-6 10769112 - Biochemistry. 2000 Apr 25;39(16):4575-80 11080171 - EMBO J. 2000 Nov 15;19(22):6259-65 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304 12509231 - DNA Repair (Amst). 2002 Jun 21;1(6):425-35 10856253 - EMBO J. 2000 Jun 15;19(12):3100-9 11058110 - Nucleic Acids Res. 2000 Nov 1;28(21):4138-46 15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75 17991862 - Science. 2007 Nov 9;318(5852):967-70 10713043 - J Biol Chem. 2000 Mar 17;275(11):7447-50 17363342 - DNA Repair (Amst). 2007 Jul 1;6(7):891-9 10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 1637815 - Biochemistry. 1992 Jul 28;31(29):6794-800 11024016 - J Biol Chem. 2001 Jan 5;276(1):92-8 16473566 - DNA Repair (Amst). 2006 Apr 8;5(4):479-90 11371576 - J Biol Chem. 2001 Jul 13;276(28):25639-42 15520252 - Genetics. 2005 Feb;169(2):575-82 8751446 - Nature. 1996 Aug 22;382(6593):729-31 9618506 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6876-80 15177183 - DNA Repair (Amst). 2004 Jul 2;3(7):743-52 11842189 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1910-4 8658138 - Science. 1996 Jun 14;272(5268):1646-9 12226657 - Nature. 2002 Sep 12;419(6903):135-41 15149598 - Mol Cell. 2004 May 21;14(4):491-500 12045089 - Annu Rev Biochem. 2002;71:17-50 10398605 - Science. 1999 Jul 9;285(5425):263-5 12968183 - Nature. 2003 Sep 11;425(6954):188-91 18079180 - Genes Dev. 2007 Dec 15;21(24):3342-55 16397225 - Cancer Res. 2006 Jan 1;66(1):134-42 14657386 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14760-5 |
| References_xml | – reference: Nelson JR, Lawrence CW, Hinkle DC (1996a) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382: 729-731 – reference: Gan GN, Wittschieben JP, Wittschieben BO, Wood RD (2008) DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 18: 174-183 – reference: Lawrence CW (2002) Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair (Amst) 1: 425-435 – reference: Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141 – reference: Ogi T, Shinkai Y, Tanaka K, Ohmori H (2002) Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci USA 99: 15548-15553 – reference: Johnson RE, Prakash S, Prakash L (1999b) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta. Science 283: 1001-1004 – reference: Lehmann AR (1972) Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol 66: 319-337 – reference: Adar S, Livneh Z (2006) Translesion DNA synthesis across non-DNA segments in cultured human cells. DNA Repair (Amst) 5: 479-490 – reference: Soria G, Podhajcer O, Gottifredi V (2006) P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 25: 2829-2838 – reference: Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21: 3342-3355 – reference: Niimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A, Green CM, Lehmann AR (2008) Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA 105: 16125-16130 – reference: Avkin S, Adar S, Blander G, Livneh Z (2002) Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase. Proc Natl Acad Sci USA 99: 3764-3769 – reference: Goodman MF (2002) Error-prone DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71: 17-50 – reference: Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wilder G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310: 1821-1824 – reference: Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6: 891-899 – reference: Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31: 291-304 – reference: Wu F, Lin X, Okuda T, Howell SB (2004) DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance. Cancer Res 64: 8029-8035 – reference: Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM, Prakash S, Prakash L (2001) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15: 945-954 – reference: Lehmann AR, Fuchs RP (2006) Gaps and forks in DNA replication: rediscovering old models. DNA Repair (Amst) 5: 1495-1498 – reference: Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25: 143-147 – reference: Bi X, Slater DM, Ohmori H, Vaziri C (2005) DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. J Biol Chem 280: 22343-22355 – reference: Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (1998) A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci USA 95: 6876-6880 – reference: Zhao B, Wang J, Geacintov NE, Wang Z (2006) Polh, polz and Rev1 together are required for G to T transversion mutations induced by the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells. Nucleic Acids Res 34: 417-425 – reference: Gibbs PE, McDonald J, Woodgate R, Lawrence CW (2005) The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutyl dimer. Genetics 169: 575-582 – reference: Avkin S, Sevilya Z, Toube L, Geacintov NE, Chaney SG, Oren M, Livneh Z (2006) p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell 22: 407-413 – reference: Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev 14: 1589-1594 – reference: Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF (1999) UmuD′(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96: 8919-8924 – reference: Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000a) Eukaryotic polymerases i and z act sequentially to bypass DNA lesions. Nature 406: 1015-1019 – reference: Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191 – reference: Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16: 1872-1883 – reference: Livneh Z (2001) DNA damage control by novel DNA polymerases: translesion replication and mutagenesis. J Biol Chem 276: 25639-25642 – reference: Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC (2006) A single amino acid governs enhanced activity of DinB DNA polymerases on damaged template. Nature 439: 225-228 – reference: Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491-500 – reference: Alt A, Lammens K, Chiocchini C, Lammens A, Pieck JC, Kuch D, Hopfner KP, Carell T (2007) Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318: 967-970 – reference: Gerlach VL, Feaver WJ, Fischhaber PL, Friedberg EC (2001) Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene. J Biol Chem 276: 92-98 – reference: McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA (2004) Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428: 97-100 – reference: Spivak G, Hanawalt PC (1992) Translesion DNA syhthesis in the dihydrofolate reductase domain of UV-irradiated CHO cells. Biochemistry 31: 6794-6800 – reference: Xie Z, Braithwaite E, Guo D, Zhao B, Geacintov NE, Wang Z (2003) Mutagenesis of benzo[a]pyrene diol epoxide in yeast: requirement for DNA polymerase zeta and involvement of DNA polymerase eta. Biochemistry 42: 11253-11262 – reference: Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z (2008) Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproducts, in human cells lacking DNA polymerase eta. DNA Repair (Amst) 7: 1636-1646 – reference: Wittschieben JP, Reshmi SC, Gollin SM, Wood RD (2006) Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res 66: 134-142 – reference: Vaisman A, Masutani C, Hanaoka F, Chaney SG (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. Biochemistry 39: 4575-4580 – reference: Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15-27 – reference: Nelson JR, Lawrence CW, Hinkle DC (1996b) Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272: 1646-1649 – reference: Maor-Shoshani A, Ben-Ari V, Livneh Z (2003) Lesion bypass DNA polymerases replicate across non-DNA segments. Proc Natl Acad Sci USA 100: 14760-14765 – reference: Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF (2000) Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404: 1014-1018 – reference: Masutani C, Kusumoto R, Iwai S, Hanaoka F (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J 19: 3100-3109 – reference: Maher VM, Ouellette LM, Curren RD, McCormick JJ (1976) Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261: 593-595 – reference: Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C (2006) Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol 26: 3527-3540 – reference: Napolitano R, Janel-Bintz R, Wagner J, Fuchs RPP (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV, and Pol V) are involved in induced mutagenesis. EMBO J 19: 6259-6265 – reference: Li Z, Zhang H, McManus TP, McCormick JJ, Lawrence CW, Maher VM (2002) hREV3 is essential for eror-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat Res 510: 71-80 – reference: Johnson RE, Kondratick CM, Prakash S, Prakash L (1999a) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285: 263-265 – reference: Meneghini R (1976) Gaps in DNA synthesized by ultraviolet light-irradiated WI38 cells. Biochim Biophys Acta 425: 419-427 – reference: Avkin S, Goldsmith M, Velasco-Miguel S, Geacintov N, Friedberg EC, Livneh Z (2004) Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The role of DNA polymerase κ. J Biol Chem 279: 53298-53305 – reference: Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399: 700-704 – reference: Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA Repair and Mutagenesis. Washington, DC: ASM Press – reference: Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23: 3886-3896 – reference: Johnson RE, Washington MT, Prakash S, Prakash L (2000b) Fidelity of human DNA polymerase eta. J Biol Chem 275: 7447-7450 – reference: Washington MT, Johnson RE, Prakash L, Prakash S (2002) Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci USA 99: 1910-1914 – reference: Reuven NB, Arad G, Maor-Shoshani A, Livneh Z (1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA and SSB, and specialized for translesion replication. J Biol Chem 274: 31763-31766 – reference: Zander L, Bemark M (2004) Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment. DNA Repair (Amst) 3: 743-752 – reference: Bassett E, King NM, Bryant MF, Hector S, Pendyala L, Chaney SG, Cordeiro-Stone M (2004) The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts. Cancer Res 64: 6469-6475 – reference: Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z (2000) Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res 28: 4138-4146 – volume: 439 start-page: 225 year: 2006 end-page: 228 article-title: A single amino acid governs enhanced activity of DinB DNA polymerases on damaged template publication-title: Nature – volume: 283 start-page: 1001 year: 1999b end-page: 1004 article-title: Efficient bypass of a thymine‐thymine dimer by yeast DNA polymerase, Pol eta publication-title: Science – volume: 18 start-page: 174 year: 2008 end-page: 183 article-title: DNA polymerase zeta (pol zeta) in higher eukaryotes publication-title: Cell Res – volume: 19 start-page: 6259 year: 2000 end-page: 6265 article-title: All three SOS‐inducible DNA polymerases (Pol II, Pol IV, and Pol V) are involved in induced mutagenesis publication-title: EMBO J – volume: 279 start-page: 53298 year: 2004 end-page: 53305 article-title: Quantitative analysis of translesion DNA synthesis across a benzo[ ]pyrene‐guanine adduct in mammalian cells. The role of DNA polymerase κ publication-title: J Biol Chem – volume: 6 start-page: 891 year: 2007 end-page: 899 article-title: Translesion synthesis: Y‐family polymerases and the polymerase switch publication-title: DNA Repair (Amst) – volume: 31 start-page: 6794 year: 1992 end-page: 6800 article-title: Translesion DNA syhthesis in the dihydrofolate reductase domain of UV‐irradiated CHO cells publication-title: Biochemistry – volume: 14 start-page: 491 year: 2004 end-page: 500 article-title: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage publication-title: Mol Cell – volume: 99 start-page: 1910 year: 2002 end-page: 1914 article-title: Human DINB1‐encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 407 year: 2006 end-page: 413 article-title: p53 and p21 regulate error‐prone DNA repair to yield a lower mutation load publication-title: Mol Cell – volume: 274 start-page: 31763 year: 1999 end-page: 31766 article-title: The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA and SSB, and specialized for translesion replication publication-title: J Biol Chem – volume: 66 start-page: 134 year: 2006 end-page: 142 article-title: Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells publication-title: Cancer Res – volume: 28 start-page: 4138 year: 2000 end-page: 4146 article-title: Error‐free and error‐prone lesion bypass by human DNA polymerase κ publication-title: Nucleic Acids Res – volume: 285 start-page: 263 year: 1999a end-page: 265 article-title: hRAD30 mutations in the variant form of xeroderma pigmentosum publication-title: Science – volume: 399 start-page: 700 year: 1999 end-page: 704 article-title: The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta publication-title: Nature – volume: 64 start-page: 8029 year: 2004 end-page: 8035 article-title: DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance publication-title: Cancer Res – volume: 25 start-page: 143 year: 2000 end-page: 147 article-title: Eukaryotic DNA polymerases, a growing family publication-title: Trends Biochem Sci – volume: 382 start-page: 729 year: 1996a end-page: 731 article-title: Deoxycytidyl transferase activity of yeast protein publication-title: Nature – volume: 19 start-page: 3100 year: 2000 end-page: 3109 article-title: Mechanisms of accurate translesion synthesis by human DNA polymerase h publication-title: EMBO J – volume: 425 start-page: 419 year: 1976 end-page: 427 article-title: Gaps in DNA synthesized by ultraviolet light‐irradiated WI38 cells publication-title: Biochim Biophys Acta – volume: 425 start-page: 188 year: 2003 end-page: 191 article-title: Control of spontaneous and damage‐induced mutagenesis by SUMO and ubiquitin conjugation publication-title: Nature – volume: 96 start-page: 8919 year: 1999 end-page: 8924 article-title: UmuD′(2)C is an error‐prone DNA polymerase, pol V publication-title: Proc Natl Acad Sci USA – volume: 34 start-page: 417 year: 2006 end-page: 425 article-title: Polh, polz and Rev1 together are required for G to T transversion mutations induced by the (+)‐ and (−)‐trans‐anti‐BPDE‐N2‐dG DNA adducts in yeast cells publication-title: Nucleic Acids Res – volume: 272 start-page: 1646 year: 1996b end-page: 1649 article-title: Thymine‐thymine dimer bypass by yeast DNA polymerase zeta publication-title: Science – volume: 169 start-page: 575 year: 2005 end-page: 582 article-title: The relative roles of Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T‐T (6‐4) photoadduct and T‐T cis‐syn cyclobutyl dimer publication-title: Genetics – volume: 42 start-page: 11253 year: 2003 end-page: 11262 article-title: Mutagenesis of benzo[ ]pyrene diol epoxide in yeast: requirement for DNA polymerase zeta and involvement of DNA polymerase eta publication-title: Biochemistry – volume: 419 start-page: 135 year: 2002 end-page: 141 article-title: RAD6‐dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO publication-title: Nature – volume: 99 start-page: 3764 year: 2002 end-page: 3769 article-title: Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase publication-title: Proc Natl Acad Sci USA – volume: 406 start-page: 1015 year: 2000a end-page: 1019 article-title: Eukaryotic polymerases i and z act sequentially to bypass DNA lesions publication-title: Nature – volume: 39 start-page: 4575 year: 2000 end-page: 4580 article-title: Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta publication-title: Biochemistry – volume: 5 start-page: 1495 year: 2006 end-page: 1498 article-title: Gaps and forks in DNA replication: rediscovering old models publication-title: DNA Repair (Amst) – volume: 5 start-page: 479 year: 2006 end-page: 490 article-title: Translesion DNA synthesis across non‐DNA segments in cultured human cells publication-title: DNA Repair (Amst) – volume: 71 start-page: 17 year: 2002 end-page: 50 article-title: Error‐prone DNA polymerases in prokaryotes and eukaryotes publication-title: Annu Rev Biochem – volume: 64 start-page: 6469 year: 2004 end-page: 6475 article-title: The role of DNA polymerase eta in translesion synthesis past platinum‐DNA adducts in human fibroblasts publication-title: Cancer Res – volume: 3 start-page: 743 year: 2004 end-page: 752 article-title: Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment publication-title: DNA Repair (Amst) – volume: 428 start-page: 97 year: 2004 end-page: 100 article-title: Preferential cis‐syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity publication-title: Nature – volume: 16 start-page: 1872 year: 2002 end-page: 1883 article-title: Translesion DNA synthesis in eukaryotes: a one‐ or two‐polymerase affair publication-title: Genes Dev – volume: 276 start-page: 92 year: 2001 end-page: 98 article-title: Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene publication-title: J Biol Chem – volume: 100 start-page: 14760 year: 2003 end-page: 14765 article-title: Lesion bypass DNA polymerases replicate across non‐DNA segments publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 3342 year: 2007 end-page: 3355 article-title: Mismatch repair‐dependent processing of methylation damage gives rise to persistent single‐stranded gaps in newly replicated DNA publication-title: Genes Dev – volume: 318 start-page: 967 year: 2007 end-page: 970 article-title: Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta publication-title: Science – volume: 510 start-page: 71 year: 2002 end-page: 80 article-title: hREV3 is essential for eror‐prone translesion synthesis past UV or benzo[ ]pyrene diol epoxide‐induced DNA lesions in human fibroblasts publication-title: Mutat Res – volume: 66 start-page: 319 year: 1972 end-page: 337 article-title: Postreplication repair of DNA in ultraviolet‐irradiated mammalian cells publication-title: J Mol Biol – volume: 275 start-page: 7447 year: 2000b end-page: 7450 article-title: Fidelity of human DNA polymerase eta publication-title: J Biol Chem – volume: 105 start-page: 16125 year: 2008 end-page: 16130 article-title: Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 291 year: 1968 end-page: 304 article-title: Discontinuities in the DNA synthesized in an excision‐defective strain of following ultraviolet irradiation publication-title: J Mol Biol – volume: 25 start-page: 2829 year: 2006 end-page: 2838 article-title: P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation publication-title: Oncogene – volume: 21 start-page: 15 year: 2006 end-page: 27 article-title: Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions publication-title: Mol Cell – volume: 14 start-page: 1589 year: 2000 end-page: 1594 article-title: Error‐prone bypass of certain DNA lesions by the human DNA polymerase kappa publication-title: Genes Dev – volume: 310 start-page: 1821 year: 2005 end-page: 1824 article-title: Ubiquitin‐binding domains in Y‐family polymerases regulate translesion synthesis publication-title: Science – year: 2006 publication-title: DNA Repair and Mutagenesis – volume: 261 start-page: 593 year: 1976 end-page: 595 article-title: Frequency of ultraviolet light‐induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells publication-title: Nature – volume: 7 start-page: 1636 year: 2008 end-page: 1646 article-title: Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6‐4 photoproducts, in human cells lacking DNA polymerase eta publication-title: DNA Repair (Amst) – volume: 1 start-page: 425 year: 2002 end-page: 435 article-title: Cellular roles of DNA polymerase zeta and Rev1 protein publication-title: DNA Repair (Amst) – volume: 276 start-page: 25639 year: 2001 end-page: 25642 article-title: DNA damage control by novel DNA polymerases: translesion replication and mutagenesis publication-title: J Biol Chem – volume: 99 start-page: 15548 year: 2002 end-page: 15553 article-title: Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[ ]pyrene publication-title: Proc Natl Acad Sci USA – volume: 404 start-page: 1014 year: 2000 end-page: 1018 article-title: Roles of DNA polymerases IV and V in lesion‐targeted and untargeted SOS mutagenesis publication-title: Nature – volume: 23 start-page: 3886 year: 2004 end-page: 3896 article-title: Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination publication-title: EMBO J – volume: 95 start-page: 6876 year: 1998 end-page: 6880 article-title: A human homolog of the REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 3527 year: 2006 end-page: 3540 article-title: Rad18 regulates DNA polymerase kappa and is required for recovery from S‐phase checkpoint‐mediated arrest publication-title: Mol Cell Biol – volume: 280 start-page: 22343 year: 2005 end-page: 22355 article-title: DNA polymerase kappa is specifically required for recovery from the benzo[ ]pyrene‐dihydrodiol epoxide (BPDE)‐induced S‐phase checkpoint publication-title: J Biol Chem – volume: 15 start-page: 945 year: 2001 end-page: 954 article-title: Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites publication-title: Genes Dev – ident: emboj2008281-b47 doi: 10.1074/jbc.274.45.31763 – ident: emboj2008281-b56 doi: 10.1038/sj.emboj.7600383 – ident: emboj2008281-b19 doi: 10.1016/S0968-0004(99)01523-6 – ident: emboj2008281-b8 doi: 10.1074/jbc.M501562200 – ident: emboj2008281-b16 doi: 10.1101/gad.882301 – ident: emboj2008281-b44 doi: 10.1073/pnas.222377899 – ident: emboj2008281-b55 doi: 10.1073/pnas.032594399 – ident: emboj2008281-b42 doi: 10.1126/science.272.5268.1646 – ident: emboj2008281-b23 doi: 10.1038/35023030 – ident: emboj2008281-b22 doi: 10.1126/science.283.5404.1001 – ident: emboj2008281-b3 doi: 10.1073/pnas.062038699 – ident: emboj2008281-b43 doi: 10.1073/pnas.0802727105 – ident: emboj2008281-b9 doi: 10.1126/science.1120615 – ident: emboj2008281-b32 doi: 10.1016/j.molcel.2005.11.015 – ident: emboj2008281-b54 doi: 10.1021/bi000130k – ident: emboj2008281-b15 doi: 10.1146/annurev.biochem.71.083101.124707 – ident: emboj2008281-b53 doi: 10.1073/pnas.96.16.8919 – ident: emboj2008281-b12 doi: 10.1074/jbc.M004413200 – ident: emboj2008281-b11 doi: 10.1038/cr.2007.117 – ident: emboj2008281-b31 doi: 10.1074/jbc.R100019200 – ident: emboj2008281-b5 doi: 10.1016/j.molcel.2006.03.022 – ident: emboj2008281-b40 doi: 10.1093/emboj/19.22.6259 – volume: 425 start-page: 419 year: 1976 ident: emboj2008281-b38 publication-title: Biochim Biophys Acta doi: 10.1016/0005-2787(76)90006-X – ident: emboj2008281-b17 doi: 10.1016/j.dnarep.2008.06.008 – volume: 510 start-page: 71 year: 2002 ident: emboj2008281-b30 publication-title: Mutat Res doi: 10.1016/S0027-5107(02)00253-1 – ident: emboj2008281-b36 doi: 10.1038/21447 – ident: emboj2008281-b6 doi: 10.1158/0008-5472.CAN-04-1328 – ident: emboj2008281-b28 doi: 10.1016/j.dnarep.2006.07.002 – ident: emboj2008281-b33 doi: 10.1038/261593a0 – ident: emboj2008281-b29 doi: 10.1016/j.dnarep.2007.02.003 – ident: emboj2008281-b39 doi: 10.1101/gad.455407 – ident: emboj2008281-b35 doi: 10.1093/emboj/19.12.3100 – ident: emboj2008281-b46 doi: 10.1101/gad.1009802 – ident: emboj2008281-b20 doi: 10.1038/nature04318 – ident: emboj2008281-b10 – ident: emboj2008281-b27 doi: 10.1016/0022-2836(72)90418-4 – ident: emboj2008281-b49 doi: 10.1038/sj.onc.1209315 – ident: emboj2008281-b58 doi: 10.1158/0008-5472.CAN-03-3942 – ident: emboj2008281-b59 doi: 10.1021/bi0346704 – ident: emboj2008281-b52 doi: 10.1038/35010020 – ident: emboj2008281-b50 doi: 10.1021/bi00144a021 – ident: emboj2008281-b61 doi: 10.1093/nar/28.21.4138 – ident: emboj2008281-b26 doi: 10.1016/S1568-7864(02)00038-1 – ident: emboj2008281-b51 doi: 10.1038/nature01965 – ident: emboj2008281-b62 doi: 10.1093/nar/gkj446 – ident: emboj2008281-b48 doi: 10.1016/0022-2836(68)90445-2 – ident: emboj2008281-b60 doi: 10.1016/j.dnarep.2004.03.031 – ident: emboj2008281-b2 doi: 10.1126/science.1148242 – ident: emboj2008281-b18 doi: 10.1038/nature00991 – ident: emboj2008281-b4 doi: 10.1074/jbc.M409155200 – ident: emboj2008281-b21 doi: 10.1126/science.285.5425.263 – ident: emboj2008281-b24 doi: 10.1074/jbc.275.11.7447 – ident: emboj2008281-b41 doi: 10.1038/382729a0 – ident: emboj2008281-b34 doi: 10.1073/pnas.2433503100 – ident: emboj2008281-b14 doi: 10.1073/pnas.95.12.6876 – ident: emboj2008281-b37 doi: 10.1038/nature02352 – ident: emboj2008281-b7 doi: 10.1128/MCB.26.9.3527-3540.2006 – ident: emboj2008281-b13 doi: 10.1534/genetics.104.034611 – ident: emboj2008281-b25 doi: 10.1016/S1097-2765(04)00259-X – volume: 14 start-page: 1589 year: 2000 ident: emboj2008281-b45 publication-title: Genes Dev doi: 10.1101/gad.14.13.1589 – ident: emboj2008281-b57 doi: 10.1158/0008-5472.CAN-05-2982 – ident: emboj2008281-b1 doi: 10.1016/j.dnarep.2006.01.001 – reference: 11891323 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3764-9 – reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5 – reference: 16397225 - Cancer Res. 2006 Jan 1;66(1):134-42 – reference: 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27 – reference: 11058110 - Nucleic Acids Res. 2000 Nov 1;28(21):4138-46 – reference: 15520212 - Cancer Res. 2004 Nov 1;64(21):8029-35 – reference: 14503875 - Biochemistry. 2003 Sep 30;42(38):11253-62 – reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4 – reference: 11371576 - J Biol Chem. 2001 Jul 13;276(28):25639-42 – reference: 16407906 - Nature. 2006 Jan 12;439(7073):225-8 – reference: 934300 - Nature. 1976 Jun 17;261(5561):593-5 – reference: 15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75 – reference: 10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94 – reference: 10801133 - Nature. 2000 Apr 27;404(6781):1014-8 – reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500 – reference: 10542196 - J Biol Chem. 1999 Nov 5;274(45):31763-6 – reference: 16473566 - DNA Repair (Amst). 2006 Apr 8;5(4):479-90 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 16415180 - Nucleic Acids Res. 2006;34(2):417-25 – reference: 16678112 - Mol Cell. 2006 May 5;22(3):407-13 – reference: 1637815 - Biochemistry. 1992 Jul 28;31(29):6794-800 – reference: 8751446 - Nature. 1996 Aug 22;382(6593):729-31 – reference: 12045089 - Annu Rev Biochem. 2002;71:17-50 – reference: 18079180 - Genes Dev. 2007 Dec 15;21(24):3342-55 – reference: 11080171 - EMBO J. 2000 Nov 15;19(22):6259-65 – reference: 15817457 - J Biol Chem. 2005 Jun 10;280(23):22343-55 – reference: 16407842 - Oncogene. 2006 May 11;25(20):2829-38 – reference: 11842189 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1910-4 – reference: 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46 – reference: 9974380 - Science. 1999 Feb 12;283(5404):1001-4 – reference: 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8 – reference: 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304 – reference: 19225445 - EMBO J. 2009 Feb 18;28(4):313-4 – reference: 10694886 - Trends Biochem Sci. 2000 Mar;25(3):143-7 – reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 – reference: 14999287 - Nature. 2004 Mar 4;428(6978):97-100 – reference: 12509231 - DNA Repair (Amst). 2002 Jun 21;1(6):425-35 – reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4 – reference: 11316789 - Genes Dev. 2001 Apr 15;15(8):945-54 – reference: - EMBO J. 2009 Apr 8;28(7):992 – reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 – reference: 130925 - Biochim Biophys Acta. 1976 Apr 2;425(4):419-27 – reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 – reference: 12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53 – reference: 18157155 - Cell Res. 2008 Jan;18(1):174-83 – reference: 10430871 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8919-24 – reference: 15177183 - DNA Repair (Amst). 2004 Jul 2;3(7):743-52 – reference: 15520252 - Genetics. 2005 Feb;169(2):575-82 – reference: 17363342 - DNA Repair (Amst). 2007 Jul 1;6(7):891-9 – reference: 11024016 - J Biol Chem. 2001 Jan 5;276(1):92-8 – reference: 16611994 - Mol Cell Biol. 2006 May;26(9):3527-40 – reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91 – reference: 9618506 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6876-80 – reference: 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96 – reference: 12154119 - Genes Dev. 2002 Aug 1;16(15):1872-83 – reference: 8658138 - Science. 1996 Jun 14;272(5268):1646-9 – reference: 10769112 - Biochemistry. 2000 Apr 25;39(16):4575-80 – reference: 17991862 - Science. 2007 Nov 9;318(5852):967-70 – reference: 10856253 - EMBO J. 2000 Jun 15;19(12):3100-9 – reference: 5037019 - J Mol Biol. 1972 May 28;66(3):319-37 – reference: 10713043 - J Biol Chem. 2000 Mar 17;275(11):7447-50 – reference: 12459444 - Mutat Res. 2002 Dec 29;510(1-2):71-80 – reference: 14657386 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14760-5 |
| SSID | ssj0005871 |
| Score | 2.4300282 |
| Snippet | DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 383 |
| SubjectTerms | Animals carcinogenesis Catalysis Cell Line, Tumor Cellular biology Deoxyribonucleic acid Dimerization DNA DNA - chemistry DNA - metabolism DNA Damage DNA polymerase DNA repair DNA Replication DNA-Directed DNA Polymerase - chemistry DNA-Directed DNA Polymerase - metabolism Epistasis, Genetic Genomics Humans Kinetics lesion bypass Lesions Mammals Mice Molecular biology Mutagenesis Pyrimidine Dimers - chemistry RNA, Small Interfering - metabolism Xeroderma Pigmentosum Group A Protein - metabolism |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBcGFRykQysMHBFysxkn8OqFSWhDQVaVdoLfIcWwR2CRLsgX232M7j7KCwoFjZEexPWPP55nJNwA8zhgNmchyRJXIURIZjGTIM8SN0iK2Jo55AtMP79hkwk9OxHGfm9P2aZXDmegP6rxWzke-iwWJqIX35PniK3JFo1xwta-gcRFsOpKEyGfuHZ9leHB_3_IulgRzMXA2xnxXl1n9ucukjDhes0mbbnl__Alw_p43OQZP16Gtt02H1_9zVjfAtR6Uwr1Oi26CC7raApe7MpWrLXBlf6gKdwvI2fcaLer5yjmzWg1L7X4dLtqyhXmhHHKFumnqBplGayirvH-046o0XDrLONfOQwdfTvZgu6osAG2LFhYVLGVZ2s2wDd4fHsz2X6O-TANSjpwO5ZqI0GBsMkUireLIEGFMTqghmXT4ye56nUhmrCYQk2BFqTIW-UT2PYIljW-DjcqO4S6AlGWZdiiQa5nklAqqWMgVk2EuMp1kAUCDoFLVc5i7Uhrz1MfSY556wXa1Na1gA_B07L_o2DvO7fnEy33sJpsvLueNkfTj5FVKprNZND2apm8DsDNIMu23e5uOYgzAo7HVCsYFX2Sl69M2tZNxt1X7oTudEp0NSFirY--RAWBr6jV2cAzg6y1V8ckzgVs0a-EVC8CzQRF_GdM58wy9ov5jOdKDoxdvIs9viO_9dcY74GoXYIsQ5vfBxrI51Q_AJfVtWbTNQ78hfwLDET6O priority: 102 providerName: ProQuest |
| Title | Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals |
| URI | https://api.istex.fr/ark:/67375/WNG-5STT2SMS-K/fulltext.pdf https://link.springer.com/article/10.1038/emboj.2008.281 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2008.281 https://www.ncbi.nlm.nih.gov/pubmed/19153606 https://www.proquest.com/docview/195262875 https://www.proquest.com/docview/66942611 https://pubmed.ncbi.nlm.nih.gov/PMC2646147 |
| Volume | 28 |
| WOSCitedRecordID | wos000263556200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: M7P dateStart: 20000104 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: PCBAR dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: 7X7 dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: BENPR dateStart: 20000104 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: 8C1 dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: M2O dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENZACwMXHuVlCkEHBrh4sBzbko5tmvBqTKZJ29w8tiyBIXY6dgrkxk_gN_JLWMmO2wx0GIaLPGOvxpK86_0krb5F6GlCA4fyJLUDwVPbcxWxY4clNlNC8i64OGoITI_2aRiy6ZSPzp3ir_kh2gU3bRnmf60NPE6q5pi4DlyXeTL_VAdDuubsNfGMZR6_Cc9iPJiZcZlFFo8wvmJt7LKX69XXvNKmHuBvf4Kcv0dOttun6-DWeKfBzf_v1y10o0GmeKdWpdvokiy20NU6V-VyC13rrVLD3UEfJl_nP7__OJnPlnpNq5I4l_oEcVblFU4zoQEslmU5L0FKlVLiuEjbG9DfQuKFdpIzqRfr8F64g6tlAVi0yiqcFTiP8xzs4i46HPQnvdd2k7HBFpqnzk6lzx1FiEqE70rRdZXPlUr9QPlJrKEU_ACkF1MFSuErj4ggEApAkAv1fBIH3Xtoo4A2PEA4oEkiNSBkMvbSIOCBoA4TNHZSnkgvsZC9-mKRaOjMdVaNWWS21bssMgNZp9mEgbTQ81b-pCbyuFDymVGAViwuP-vwN-pHx-GryB9PJu54OI7eWWh7pSFRY_lVRLjvBjAN9S30pH0Kn0fvw8SFnJ9WEXRGT1zhRfdrbTprEAcHBFNKC9E1PWsFNBn4-pMi-2hIwQHYAtKiFnqx0shzbbqgn47Rw78MR9Qf7r51DdUhefjvVbbR9XoDzrUJe4Q2FuWpfIyuiC-LrCo76DKdUlMyKFmPdNDmbj8cHcB172BwuA93h-57XdJRxxj3LwP0TqA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctQwEO0KCVS4sITNBIgObBdVbI0tWweKykrCLFA1E8jN2LJUGMb2YE8I81H8YyR57DAFgVMOHF2SbS1P6tetVjfA09ints_iBFPOEuwS6eDIDmIcSC5YR4k43wQw_dDzB4Pg-Ji9X4KfzV0Y7VbZ7Ilmo04Krm3kmw7zCFX03ns9-YZ10ih9uNpk0KhR0RWzU6WxVa8Od9X0PiNkf2-0c4DnSQUw16HUcCI8ZkvHkTH3iOAdIj0mZeJR6cWRlvYKo8KNfKna7UnX4ZRyqeQ0Ue95TkQ76rtXYMXVipD2FCTvzj1KAqPfGZOO6wSsiRHZCTZFFhdfas9NEjgLMnBFT-ePPxHc3_0028PaRSptZOH-zf9sFG_BjTnpRlv1KrkNSyJfg2t1Gs7ZGqzuNFnv7kA0Oi3wpBjPtLGuEigT-mp0WmUVSlKumTkSZVmUWJZCoChP5o9qHHKBplryj4W2QKLdwRaqZrki2FVaoTRHWZRlarHfhaNL6es9WM5VGx4Aon4cC81yAxG5CaWMct8OuB_ZCYuFG1uAG2CEfB6jXacKGYfGV6AThAZIde5QBSQLXrT1J3V0kgtrPjc4a6tF5Vft0-d74cfBm9AbjkZk2B-GXQvWG-SE8-2sClvYWLDRlqqJ0YdLUS6KkypUndHauPrR_Rq05w1iSqoqPdkCfwHObQUd4XyxJE8_m0jniq0r-uhb8LIB_i9tuqCftlkY_xiOcK-__ZaY-I3Ow7_2eANWD0b9Xtg7HHTX4Xp9mEiwEzyC5Wl5Ih7DVf59mlblE7MZIPh02evmDLDNmtU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQh-3CUrZQoD4g4BKRzXZ8LJ0OS6dRxUxpb1bi2BCYJKNkCsyNn8Bv5JdgO0uJoEJIXOPnxMt7eZ_t5-8B8Dgh2CE0SW3MaWoHnnTt2AkTO5RcUF-5OGIITN9NSRSFJyf0sI0m1HdhGn6IfsNNW4b5X2sDF8tUtvfEdeS6yJPyYxMN6enL16MAUaxsczR-OzmansV5hGbVZTZaAjekHXOjHz4fvmHgmUZ6kL_-CXb-Hj3ZH6EOAa7xUJPr_6FvN8C1Fp7CnUafboILotgEl5qEletNcGW3yw93C7yffyl_fPu-LBdrvbFVC5gLfY04q_MaphnXKBaKqiorJSUrIWBcpP0D1eFCwJX2lAuhd-zgONqB9bpQgLTOapgVMI_zXBnHbXA02ZvvvrLbtA0212R1dioQdaTryoQjT3Dfk4hKmSIsURJrPKX-AiKIiVSagWTgcoy5VEjIU_WQG2P_DtgoVBvuAYhJkgiNCkMRBynGFHPihJzETkoTESQWsLspY7zlNNepNRbMnK37ITMD2eTaVANpgae9_LJh8zhX8onRgF4srj7pGDiC2HH0kqHZfO7NDmZs3wJbnYqw1vxr5lLkYbUWRRbY7kvV9OjDmLgQ5WnNVGf06lV96G6jTmcNosoLqXWlBchA0XoBzQg-LCmyD4YZXKFbBbeIBZ51KvlLm87pp2MU8S_DwfYOXrzxDN-he__fq2yDy4fjCZu-jva3wNXmQM6z3fAB2FhVp-IhuMg_r7K6etQa708lQEut |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90polymerase+mechanisms+dictate+error%E2%80%90free+and+error%E2%80%90prone+translesion+DNA+synthesis+in+mammals&rft.jtitle=The+EMBO+journal&rft.au=Shachar%2C+Sigal&rft.au=Ziv%2C+Omer&rft.au=Avkin%2C+Sharon&rft.au=Adar%2C+Sheera&rft.date=2009-02-18&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=28&rft.issue=4&rft.spage=383&rft.epage=393&rft_id=info:doi/10.1038%2Femboj.2008.281&rft.externalDBID=10.1038%252Femboj.2008.281&rft.externalDocID=EMBJ2008281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |