Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals

DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error‐free, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal Jg. 28; H. 4; S. 383 - 393
Hauptverfasser: Shachar, Sigal, Ziv, Omer, Avkin, Sharon, Adar, Sheera, Wittschieben, John, Reißner, Thomas, Chaney, Stephen, Friedberg, Errol C, Wang, Zhigang, Carell, Thomas, Geacintov, Nicholas, Livneh, Zvi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 18.02.2009
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Schlagworte:
ISSN:0261-4189, 1460-2075, 1460-2075
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error‐free, and the third slow and error‐prone. A single gene, REV3L , encoding the catalytic subunit of DNA polymerase ζ (polζ), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two‐polymerase combinations with polζ dictate error‐prone or error‐free TLS across the same lesion. These results highlight the central role of polζ in both error‐prone and error‐free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two‐polymerase combinations.
AbstractList DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error‐free, and the third slow and error‐prone. A single gene, REV3L , encoding the catalytic subunit of DNA polymerase ζ (polζ), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two‐polymerase combinations with polζ dictate error‐prone or error‐free TLS across the same lesion. These results highlight the central role of polζ in both error‐prone and error‐free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two‐polymerase combinations.
DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.
DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (polzeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with polzeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of polzeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations. [PUBLICATION ABSTRACT]
DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase ζ (polζ), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with polζ dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of polζ in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.
DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.
Author Ziv, Omer
Friedberg, Errol C
Wang, Zhigang
Reißner, Thomas
Adar, Sheera
Carell, Thomas
Shachar, Sigal
Livneh, Zvi
Geacintov, Nicholas
Avkin, Sharon
Wittschieben, John
Chaney, Stephen
Author_xml – sequence: 1
  givenname: Sigal
  surname: Shachar
  fullname: Shachar, Sigal
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
– sequence: 2
  givenname: Omer
  surname: Ziv
  fullname: Ziv, Omer
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
– sequence: 3
  givenname: Sharon
  surname: Avkin
  fullname: Avkin, Sharon
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
– sequence: 4
  givenname: Sheera
  surname: Adar
  fullname: Adar, Sheera
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
– sequence: 5
  givenname: John
  surname: Wittschieben
  fullname: Wittschieben, John
  organization: Department of Pharmacology, University of Pittsburgh Medical School and University of Pittsburgh Cancer Institute, PA, Pittsburgh, USA
– sequence: 6
  givenname: Thomas
  surname: Reißner
  fullname: Reißner, Thomas
  organization: Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, München, Germany
– sequence: 7
  givenname: Stephen
  surname: Chaney
  fullname: Chaney, Stephen
  organization: Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, NC, Chapel Hill, USA
– sequence: 8
  givenname: Errol C
  surname: Friedberg
  fullname: Friedberg, Errol C
  organization: Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, TX, Dallas, USA
– sequence: 9
  givenname: Zhigang
  surname: Wang
  fullname: Wang, Zhigang
  organization: Graduate Center for Toxicology, University of Kentucky, KY, Lexington, USA
– sequence: 10
  givenname: Thomas
  surname: Carell
  fullname: Carell, Thomas
  organization: Department of Chemistry and Biochemistry, Ludwig-Maximilians-University Munich, München, Germany
– sequence: 11
  givenname: Nicholas
  surname: Geacintov
  fullname: Geacintov, Nicholas
  organization: Chemistry Department, New York University, NY, New York, USA
– sequence: 12
  givenname: Zvi
  surname: Livneh
  fullname: Livneh, Zvi
  email: zvi.livneh@weizmann.ac.il
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19153606$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vEzEQtVARTQtXjmjFgdumHu_au3tBakspH205JIij5TjjxmHXDvaGkn-Pw4aoVKo4jUbz3syb947IgfMOCXkJdAy0qE-wm_nlmFFaj1kNT8gISkFzRit-QEaUCchLqJtDchTjklLK6wqekUNogBeCihFR0zufr3y76TCoiFmHeqGcjV3M5lb3qscMQ_AhNwExU26-a1ch6cj6oFxsMVrvsnc3p1ncuH6R2phZl3Wq61Qbn5OnJhV8savH5Ov7i-n5h_zqy-XH89OrXAtaQT5H3lADYGaaM9QFM7wxZs6F4TMFjANQwFJVpkwTU4IWQhsqEpY3HJQojsnbYe9qPetwrtElda1cBdupsJFeWfnvxNmFvPU_JROlgLJKC97sFgT_Y42xl52NGttWOfTrKIVoymQoJODrB8ClXweXnpPQcCZYXfEEenVfzl7HX-sToBwAOvgYAxqpbfI7WZnU2VYClduE5Z-E5TZhmRJOtPED2n7zY4RqINzZFjf_QcuL67NP22ZgngzMmEjuFsO9Px-7lQ8MG3v8tb-lwncpqqLi8tvNpeST6ZRNrifyc_EbRT7a-g
CODEN EMJODG
CitedBy_id crossref_primary_10_1016_j_cell_2019_05_028
crossref_primary_10_1093_nar_gkq403
crossref_primary_10_1093_nar_gkw1196
crossref_primary_10_4061_2010_750296
crossref_primary_10_1124_mol_109_058131
crossref_primary_10_1016_j_jmb_2013_09_022
crossref_primary_10_1074_jbc_RA119_009054
crossref_primary_10_1007_s13238_012_2102_x
crossref_primary_10_1016_j_mrfmmm_2015_08_002
crossref_primary_10_1016_j_mrfmmm_2017_08_002
crossref_primary_10_1371_journal_pgen_1002262
crossref_primary_10_1002_cbic_201000211
crossref_primary_10_3389_fonc_2024_1516165
crossref_primary_10_1016_j_jbc_2022_102859
crossref_primary_10_1111_cas_13399
crossref_primary_10_3123_jemsge_34_77
crossref_primary_10_1093_nar_gkaa096
crossref_primary_10_1371_journal_pone_0081108
crossref_primary_10_1038_s41388_021_02032_9
crossref_primary_10_15252_embj_201490878
crossref_primary_10_1371_journal_pone_0120334
crossref_primary_10_1371_journal_pone_0140409
crossref_primary_10_1093_nar_gks1296
crossref_primary_10_3123_jemsge_34_89
crossref_primary_10_1016_j_bcp_2022_115323
crossref_primary_10_1007_s00412_016_0573_x
crossref_primary_10_1186_s12885_024_12865_8
crossref_primary_10_1073_pnas_1507833112
crossref_primary_10_1038_emboj_2010_101
crossref_primary_10_1371_journal_pgen_1002800
crossref_primary_10_3390_ijms22010355
crossref_primary_10_1371_journal_pone_0083978
crossref_primary_10_1016_j_heliyon_2024_e27806
crossref_primary_10_1042_BCJ20190579
crossref_primary_10_1007_s11010_025_05291_2
crossref_primary_10_1371_journal_pgen_1001151
crossref_primary_10_1073_pnas_1217425110
crossref_primary_10_1093_nar_gkv076
crossref_primary_10_1073_pnas_1101951108
crossref_primary_10_1002_anie_201000414
crossref_primary_10_1016_j_dnarep_2009_10_004
crossref_primary_10_1016_j_dnarep_2020_103031
crossref_primary_10_1093_nar_gkw280
crossref_primary_10_1016_j_bbcan_2010_07_004
crossref_primary_10_1016_j_mrfmmm_2012_11_002
crossref_primary_10_1371_journal_pgen_1005759
crossref_primary_10_1016_j_dnarep_2009_09_006
crossref_primary_10_1269_jrr_10175
crossref_primary_10_1371_journal_pgen_1004419
crossref_primary_10_1007_s00018_009_0024_4
crossref_primary_10_1146_annurev_biochem_062917_012405
crossref_primary_10_1111_febs_14840
crossref_primary_10_1002_ange_201000414
crossref_primary_10_1038_nrc2998
crossref_primary_10_1073_pnas_1202681109
crossref_primary_10_1371_journal_pgen_1011181
crossref_primary_10_1371_journal_pone_0052472
crossref_primary_10_3389_fmolb_2021_811540
crossref_primary_10_1111_cas_14718
crossref_primary_10_3390_ijms242115799
crossref_primary_10_1093_nar_gku1385
crossref_primary_10_1038_nrm3289
crossref_primary_10_1038_ncomms6437
crossref_primary_10_3390_ijms19103255
crossref_primary_10_1134_S0006297920080039
crossref_primary_10_1007_s12035_017_0507_5
crossref_primary_10_1016_j_dnarep_2021_103052
crossref_primary_10_1038_s41598_021_00878_3
crossref_primary_10_1016_j_tiv_2017_04_017
crossref_primary_10_1038_s41467_024_47219_2
crossref_primary_10_1016_j_bpj_2025_04_014
crossref_primary_10_1074_jbc_RA118_003133
crossref_primary_10_1093_nar_gku1398
crossref_primary_10_1074_jbc_RA120_013780
crossref_primary_10_1093_carcin_bgp316
crossref_primary_10_1016_j_molcel_2020_11_029
crossref_primary_10_1073_pnas_1216894110
crossref_primary_10_1002_2211_5463_13099
crossref_primary_10_1093_nar_gkaa580
crossref_primary_10_1021_ja512547g
crossref_primary_10_3390_biomedicines10050972
crossref_primary_10_1073_pnas_1812856115
crossref_primary_10_1042_BST0380110
crossref_primary_10_1016_j_dnarep_2016_05_007
crossref_primary_10_1016_j_dnarep_2016_05_004
crossref_primary_10_1016_j_dnarep_2015_09_023
crossref_primary_10_1038_s41467_017_01013_5
crossref_primary_10_1093_nar_gkr769
crossref_primary_10_1002_em_22146
crossref_primary_10_1158_0008_5472_CAN_18_3928
crossref_primary_10_1002_em_21731
crossref_primary_10_1155_2012_530963
crossref_primary_10_1002_em_21736
crossref_primary_10_1101_gad_1872810
crossref_primary_10_4061_2010_701472
crossref_primary_10_1091_mbc_e10_12_0938
crossref_primary_10_1093_nar_gks054
crossref_primary_10_1016_j_dnarep_2012_03_007
crossref_primary_10_3123_jemsge_34_63
crossref_primary_10_1101_gad_272229_115
crossref_primary_10_1016_j_pharmthera_2024_108642
crossref_primary_10_1080_10409238_2020_1768205
crossref_primary_10_1002_med_21278
crossref_primary_10_1016_j_jmb_2023_168275
crossref_primary_10_1074_jbc_M112_394841
crossref_primary_10_1016_j_dnarep_2015_01_001
crossref_primary_10_1016_j_dnarep_2015_01_004
crossref_primary_10_1016_j_mrfmmm_2016_08_004
crossref_primary_10_1080_21541264_2016_1181142
crossref_primary_10_3390_genes8010024
crossref_primary_10_1104_pp_110_166082
crossref_primary_10_1016_j_mrfmmm_2023_111834
crossref_primary_10_1073_pnas_1011409107
crossref_primary_10_1128_MCB_00071_09
crossref_primary_10_1371_journal_pone_0105482
crossref_primary_10_1038_emboj_2010_87
crossref_primary_10_1038_srep19552
crossref_primary_10_1124_mol_111_076828
crossref_primary_10_1073_pnas_1801149115
crossref_primary_10_1073_pnas_1917196117
crossref_primary_10_1128_MCB_00993_09
crossref_primary_10_1038_s41375_019_0641_3
crossref_primary_10_3390_genes15070832
crossref_primary_10_1016_j_tig_2020_12_003
crossref_primary_10_1016_j_dnarep_2019_102771
crossref_primary_10_1016_j_str_2024_09_007
crossref_primary_10_1074_jbc_M110_107920
crossref_primary_10_1016_j_celrep_2023_112887
crossref_primary_10_1093_nar_gkaf914
crossref_primary_10_1016_j_molcel_2021_08_016
crossref_primary_10_6061_clinics_2018_e478s
crossref_primary_10_1093_nar_gkw204
crossref_primary_10_3390_ijms22136957
crossref_primary_10_1016_j_dnarep_2016_06_002
crossref_primary_10_1007_s12032_013_0500_4
crossref_primary_10_1038_s41467_017_02164_1
crossref_primary_10_1002_ejoc_201500144
crossref_primary_10_1158_0008_5472_CAN_09_4267
crossref_primary_10_4061_2010_643857
crossref_primary_10_1177_24755303211026023
crossref_primary_10_1016_j_dnarep_2021_103213
crossref_primary_10_1093_nar_gkp703
crossref_primary_10_1007_s00018_019_03299_8
crossref_primary_10_1074_jbc_M113_480459
crossref_primary_10_1016_j_dnarep_2013_12_008
crossref_primary_10_1038_onc_2011_384
crossref_primary_10_2147_JEP_S267383
crossref_primary_10_1002_cbic_201000724
crossref_primary_10_1073_pnas_0812548106
crossref_primary_10_1093_nar_gkp632
crossref_primary_10_1074_jbc_RA120_012830
crossref_primary_10_1002_cmdc_201900307
crossref_primary_10_1038_emboj_2008_303
crossref_primary_10_1111_gtc_13189
crossref_primary_10_1016_j_dnarep_2015_02_012
crossref_primary_10_1038_emboj_2008_301
crossref_primary_10_1073_pnas_1421365112
crossref_primary_10_1016_j_dnarep_2014_09_002
crossref_primary_10_3390_ijms12128513
crossref_primary_10_1002_em_22087
crossref_primary_10_1073_pnas_1204105109
crossref_primary_10_1093_nar_gku779
crossref_primary_10_1016_j_jmb_2018_04_023
crossref_primary_10_1016_j_bbapap_2009_06_010
crossref_primary_10_1093_nar_gkq170
crossref_primary_10_1038_nature09097
crossref_primary_10_1039_C000407N
crossref_primary_10_1242_jcs_094748
crossref_primary_10_1016_j_mrgentox_2014_05_006
crossref_primary_10_1093_nar_gkr596
crossref_primary_10_1080_15384101_2018_1456296
crossref_primary_10_1074_jbc_M111_331728
crossref_primary_10_1016_j_dnarep_2011_04_032
crossref_primary_10_1016_j_bmc_2013_01_022
crossref_primary_10_1038_s41598_021_96692_y
crossref_primary_10_1016_j_jmb_2013_05_029
crossref_primary_10_1093_nar_gkw485
crossref_primary_10_1134_S0026893314030066
crossref_primary_10_1016_j_dnarep_2025_103818
crossref_primary_10_1038_s41467_021_27872_7
crossref_primary_10_1016_j_neuro_2012_10_011
crossref_primary_10_1093_toxsci_kfs074
crossref_primary_10_1016_j_mrgentox_2013_03_005
crossref_primary_10_1016_j_mrgentox_2018_02_004
crossref_primary_10_1128_MCB_05117_11
crossref_primary_10_3109_10409230903501819
crossref_primary_10_1016_j_dnarep_2011_08_005
crossref_primary_10_1016_j_dnarep_2020_102943
crossref_primary_10_3390_biology7010005
crossref_primary_10_1073_pnas_1400512111
crossref_primary_10_3390_molecules24152805
crossref_primary_10_1016_j_molcel_2021_09_013
crossref_primary_10_1371_journal_pone_0018554
crossref_primary_10_1371_journal_pgen_1010051
crossref_primary_10_1371_journal_pone_0039596
Cites_doi 10.1074/jbc.274.45.31763
10.1038/sj.emboj.7600383
10.1016/S0968-0004(99)01523-6
10.1074/jbc.M501562200
10.1101/gad.882301
10.1073/pnas.222377899
10.1073/pnas.032594399
10.1126/science.272.5268.1646
10.1038/35023030
10.1126/science.283.5404.1001
10.1073/pnas.062038699
10.1073/pnas.0802727105
10.1126/science.1120615
10.1016/j.molcel.2005.11.015
10.1021/bi000130k
10.1146/annurev.biochem.71.083101.124707
10.1073/pnas.96.16.8919
10.1074/jbc.M004413200
10.1038/cr.2007.117
10.1074/jbc.R100019200
10.1016/j.molcel.2006.03.022
10.1093/emboj/19.22.6259
10.1016/0005-2787(76)90006-X
10.1016/j.dnarep.2008.06.008
10.1016/S0027-5107(02)00253-1
10.1038/21447
10.1158/0008-5472.CAN-04-1328
10.1016/j.dnarep.2006.07.002
10.1038/261593a0
10.1016/j.dnarep.2007.02.003
10.1101/gad.455407
10.1093/emboj/19.12.3100
10.1101/gad.1009802
10.1038/nature04318
10.1016/0022-2836(72)90418-4
10.1038/sj.onc.1209315
10.1158/0008-5472.CAN-03-3942
10.1021/bi0346704
10.1038/35010020
10.1021/bi00144a021
10.1093/nar/28.21.4138
10.1016/S1568-7864(02)00038-1
10.1038/nature01965
10.1093/nar/gkj446
10.1016/0022-2836(68)90445-2
10.1016/j.dnarep.2004.03.031
10.1126/science.1148242
10.1038/nature00991
10.1074/jbc.M409155200
10.1126/science.285.5425.263
10.1074/jbc.275.11.7447
10.1038/382729a0
10.1073/pnas.2433503100
10.1073/pnas.95.12.6876
10.1038/nature02352
10.1128/MCB.26.9.3527-3540.2006
10.1534/genetics.104.034611
10.1016/S1097-2765(04)00259-X
10.1101/gad.14.13.1589
10.1158/0008-5472.CAN-05-2982
10.1016/j.dnarep.2006.01.001
ContentType Journal Article
Copyright European Molecular Biology Organization 2008
Copyright © 2008 European Molecular Biology Organization
Copyright Nature Publishing Group Feb 18, 2009
Copyright © 2008, European Molecular Biology Organization 2008
Copyright_xml – notice: European Molecular Biology Organization 2008
– notice: Copyright © 2008 European Molecular Biology Organization
– notice: Copyright Nature Publishing Group Feb 18, 2009
– notice: Copyright © 2008, European Molecular Biology Organization 2008
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/emboj.2008.281
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Research Library Prep

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Accurate and mutagenic two-polymerase TLS with polζ
EISSN 1460-2075
EndPage 393
ExternalDocumentID PMC2646147
1647190731
19153606
10_1038_emboj_2008_281
EMBJ2008281
ark_67375_WNG_5STT2SMS_K
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA92528
– fundername: NCI NIH HHS
  grantid: R01 CA099194
– fundername: NCI NIH HHS
  grantid: R01 CA092528
– fundername: NCI NIH HHS
  grantid: R01 CA112412
– fundername: NIEHS NIH HHS
  grantid: ES11354
– fundername: NCI NIH HHS
  grantid: R01 CA098675
– fundername: NCI NIH HHS
  grantid: CA098675
– fundername: NCI NIH HHS
  grantid: CA 099194
– fundername: NCI NIH HHS
  grantid: CA112412
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
4.4
53G
5VS
70F
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANHP
AANLZ
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYN
AEUYR
AFBPY
AFFHD
AFFNX
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
D1J
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HVGLF
HYE
KQ8
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
ROL
RPM
RZO
SV3
TN5
TR2
UKHRP
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
O8X
24P
3V.
88A
AAHHS
ABJNI
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
M0L
RHF
WYJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6071-de590f11fbc52ec32f59ffd56f5ba1251101e4a7f42f5f41c66cf0652e5951a63
IEDL.DBID WIN
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263556200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
1460-2075
IngestDate Tue Nov 04 01:50:44 EST 2025
Tue Sep 30 22:59:18 EDT 2025
Mon Oct 06 17:20:27 EDT 2025
Thu Apr 03 07:07:04 EDT 2025
Sat Nov 29 03:24:30 EST 2025
Tue Nov 18 22:01:22 EST 2025
Wed Jan 22 17:06:08 EST 2025
Sat Nov 29 01:24:56 EST 2025
Tue Nov 11 03:33:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords carcinogenesis
DNA repair
mutagenesis
DNA damage
lesion bypass
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6071-de590f11fbc52ec32f59ffd56f5ba1251101e4a7f42f5f41c66cf0652e5951a63
Notes ArticleID:EMBJ2008281
istex:B964CBF19EFB01776736441F4889B17FF5998663
ark:/67375/WNG-5STT2SMS-K
Supplementary Information
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1038/emboj.2008.281
PMID 19153606
PQID 195262875
PQPubID 35985
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2646147
proquest_miscellaneous_66942611
proquest_journals_195262875
pubmed_primary_19153606
crossref_citationtrail_10_1038_emboj_2008_281
crossref_primary_10_1038_emboj_2008_281
wiley_primary_10_1038_emboj_2008_281_EMBJ2008281
springer_journals_10_1038_emboj_2008_281
istex_primary_ark_67375_WNG_5STT2SMS_K
PublicationCentury 2000
PublicationDate February 18, 2009
PublicationDateYYYYMMDD 2009-02-18
PublicationDate_xml – month: 02
  year: 2009
  text: February 18, 2009
  day: 18
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
– name: New York
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Soria G, Podhajcer O, Gottifredi V (2006) P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 25: 2829-2838
Avkin S, Adar S, Blander G, Livneh Z (2002) Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase. Proc Natl Acad Sci USA 99: 3764-3769
Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA Repair and Mutagenesis. Washington, DC: ASM Press
Gibbs PE, McDonald J, Woodgate R, Lawrence CW (2005) The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutyl dimer. Genetics 169: 575-582
Goodman MF (2002) Error-prone DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71: 17-50
Napolitano R, Janel-Bintz R, Wagner J, Fuchs RPP (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV, and Pol V) are involved in induced mutagenesis. EMBO J 19: 6259-6265
Ogi T, Shinkai Y, Tanaka K, Ohmori H (2002) Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci USA 99: 15548-15553
Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF (1999) UmuD′(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96: 8919-8924
Lehmann AR, Fuchs RP (2006) Gaps and forks in DNA replication: rediscovering old models. DNA Repair (Amst) 5: 1495-1498
Johnson RE, Prakash S, Prakash L (1999b) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta. Science 283: 1001-1004
Vaisman A, Masutani C, Hanaoka F, Chaney SG (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. Biochemistry 39: 4575-4580
Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C (2006) Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol 26: 3527-3540
Nelson JR, Lawrence CW, Hinkle DC (1996b) Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272: 1646-1649
Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (1998) A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci USA 95: 6876-6880
Maor-Shoshani A, Ben-Ari V, Livneh Z (2003) Lesion bypass DNA polymerases replicate across non-DNA segments. Proc Natl Acad Sci USA 100: 14760-14765
Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wilder G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310: 1821-1824
Niimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A, Green CM, Lehmann AR (2008) Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA 105: 16125-16130
Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6: 891-899
Nelson JR, Lawrence CW, Hinkle DC (1996a) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382: 729-731
Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31: 291-304
Bassett E, King NM, Bryant MF, Hector S, Pendyala L, Chaney SG, Cordeiro-Stone M (2004) The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts. Cancer Res 64: 6469-6475
Gan GN, Wittschieben JP, Wittschieben BO, Wood RD (2008) DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 18: 174-183
Avkin S, Sevilya Z, Toube L, Geacintov NE, Chaney SG, Oren M, Livneh Z (2006) p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell 22: 407-413
Avkin S, Goldsmith M, Velasco-Miguel S, Geacintov N, Friedberg EC, Livneh Z (2004) Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The role of DNA polymerase κ. J Biol Chem 279: 53298-53305
Wu F, Lin X, Okuda T, Howell SB (2004) DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance. Cancer Res 64: 8029-8035
Masutani C, Kusumoto R, Iwai S, Hanaoka F (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J 19: 3100-3109
Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000a) Eukaryotic polymerases i and z act sequentially to bypass DNA lesions. Nature 406: 1015-1019
Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21: 3342-3355
Alt A, Lammens K, Chiocchini C, Lammens A, Pieck JC, Kuch D, Hopfner KP, Carell T (2007) Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318: 967-970
Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC (2006) A single amino acid governs enhanced activity of DinB DNA polymerases on damaged template. Nature 439: 225-228
Johnson RE, Washington MT, Prakash S, Prakash L (2000b) Fidelity of human DNA polymerase eta. J Biol Chem 275: 7447-7450
Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491-500
Maher VM, Ouellette LM, Curren RD, McCormick JJ (1976) Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261: 593-595
Adar S, Livneh Z (2006) Translesion DNA synthesis across non-DNA segments in cultured human cells. DNA Repair (Amst) 5: 479-490
Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191
Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev 14: 1589-1594
Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25: 143-147
Gerlach VL, Feaver WJ, Fischhaber PL, Friedberg EC (2001) Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene. J Biol Chem 276: 92-98
Wittschieben JP, Reshmi SC, Gollin SM, Wood RD (2006) Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res 66: 134-142
Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z (2008) Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproducts, in human cells lacking DNA polymerase eta. DNA Repair (Amst) 7: 1636-1646
Zhao B, Wang J, Geacintov NE, Wang Z (2006) Polh, polz and Rev1 together are required for G to T transversion mutations induced by the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells. Nucleic Acids Res 34: 417-425
Meneghini R (1976) Gaps in DNA synthesized by ultraviolet light-irradiated WI38 cells. Biochim Biophys Acta 425: 419-427
Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z (2000) Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res 28: 4138-4146
Washington MT, Johnson RE, Prakash L, Prakash S (2002) Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci USA 99: 1910-1914
Lawrence CW (2002) Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair (Amst) 1: 425-435
Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF (2000) Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404: 1014-1018
Bi X, Slater DM, Ohmori H, Vaziri C (2005) DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. J Biol Chem 280: 22343-22355
Li Z, Zhang H, McManus TP, McCormick JJ, Lawrence CW, Maher VM (2002) hREV3 is essential for eror-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat Res 510: 71-80
Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM, Prakash S, Prakash L (2001) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15: 945-954
McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA (2004) Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428: 97-100
Zander L, Bemark M (2004) Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment. DNA Repair (Amst) 3: 743-752
Reuven NB, Arad G, Maor-Shoshani A, Livneh Z (1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA and SSB, and specialized for translesion replication. J Biol Chem 274: 31763-31766
Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15-27
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141
Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16: 1872-1883
Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23: 3886-3896
Xie Z, Braithwaite E, Guo D, Zhao B, Geacintov NE, Wang Z (2003) Mutagenesis of be
2002; 16
2004; 64
1996b; 272
2006; 34
2002; 510
2004; 23
2002; 99
2004; 3
2008; 7
2008; 105
1996a; 382
2000; 19
2000; 14
2006; 21
2006; 22
2006; 66
2000; 404
2006; 25
2006; 26
2007; 6
2001; 15
1999; 96
2000a; 406
1998; 95
2007; 21
2003; 42
2006; 439
1976; 261
2000; 28
2000; 25
2005; 310
2008; 18
1976; 425
2002; 1
2006; 5
2006
2002; 419
1999b; 283
1999a; 285
2004; 428
1992; 31
1972; 66
2000b; 275
2001; 276
2005; 280
2004; 279
2003; 425
2000; 39
2005; 169
2004; 14
1999; 274
1999; 399
2002; 71
2007; 318
2003; 100
1968; 31
emboj2008281-b43
emboj2008281-b44
emboj2008281-b46
emboj2008281-b40
emboj2008281-b41
emboj2008281-b42
emboj2008281-b47
emboj2008281-b48
emboj2008281-b49
emboj2008281-b60
emboj2008281-b2
emboj2008281-b1
emboj2008281-b4
emboj2008281-b3
emboj2008281-b6
emboj2008281-b10
emboj2008281-b54
emboj2008281-b5
emboj2008281-b11
emboj2008281-b55
emboj2008281-b8
emboj2008281-b12
emboj2008281-b56
emboj2008281-b7
emboj2008281-b13
emboj2008281-b57
emboj2008281-b50
emboj2008281-b9
emboj2008281-b51
emboj2008281-b52
emboj2008281-b53
emboj2008281-b18
emboj2008281-b19
emboj2008281-b14
emboj2008281-b58
emboj2008281-b15
emboj2008281-b59
emboj2008281-b16
emboj2008281-b17
Li Z (emboj2008281-b30) 2002; 510
emboj2008281-b21
emboj2008281-b22
emboj2008281-b23
emboj2008281-b24
emboj2008281-b61
emboj2008281-b62
emboj2008281-b20
emboj2008281-b29
emboj2008281-b25
emboj2008281-b26
emboj2008281-b27
emboj2008281-b28
emboj2008281-b32
emboj2008281-b33
emboj2008281-b34
emboj2008281-b35
emboj2008281-b31
Ohashi E (emboj2008281-b45) 2000; 14
emboj2008281-b36
emboj2008281-b37
Meneghini R (emboj2008281-b38) 1976; 425
emboj2008281-b39
16407842 - Oncogene. 2006 May 11;25(20):2829-38
16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
16357261 - Science. 2005 Dec 16;310(5755):1821-4
10385124 - Nature. 1999 Jun 17;399(6737):700-4
14503875 - Biochemistry. 2003 Sep 30;42(38):11253-62
130925 - Biochim Biophys Acta. 1976 Apr 2;425(4):419-27
18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
11891323 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3764-9
10801133 - Nature. 2000 Apr 27;404(6781):1014-8
16415180 - Nucleic Acids Res. 2006;34(2):417-25
11316789 - Genes Dev. 2001 Apr 15;15(8):945-54
19225445 - EMBO J. 2009 Feb 18;28(4):313-4
15359278 - EMBO J. 2004 Oct 1;23(19):3886-96
15520212 - Cancer Res. 2004 Nov 1;64(21):8029-35
18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
EMBO J. 2009 Apr 8;28(7):992
14999287 - Nature. 2004 Mar 4;428(6978):97-100
16611994 - Mol Cell Biol. 2006 May;26(9):3527-40
12154119 - Genes Dev. 2002 Aug 1;16(15):1872-83
5037019 - J Mol Biol. 1972 May 28;66(3):319-37
16407906 - Nature. 2006 Jan 12;439(7073):225-8
10694886 - Trends Biochem Sci. 2000 Mar;25(3):143-7
15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
16678112 - Mol Cell. 2006 May 5;22(3):407-13
12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53
12459444 - Mutat Res. 2002 Dec 29;510(1-2):71-80
9974380 - Science. 1999 Feb 12;283(5404):1001-4
934300 - Nature. 1976 Jun 17;261(5561):593-5
18157155 - Cell Res. 2008 Jan;18(1):174-83
16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
15817457 - J Biol Chem. 2005 Jun 10;280(23):22343-55
10430871 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8919-24
10542196 - J Biol Chem. 1999 Nov 5;274(45):31763-6
10769112 - Biochemistry. 2000 Apr 25;39(16):4575-80
11080171 - EMBO J. 2000 Nov 15;19(22):6259-65
4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304
12509231 - DNA Repair (Amst). 2002 Jun 21;1(6):425-35
10856253 - EMBO J. 2000 Jun 15;19(12):3100-9
11058110 - Nucleic Acids Res. 2000 Nov 1;28(21):4138-46
15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75
17991862 - Science. 2007 Nov 9;318(5852):967-70
10713043 - J Biol Chem. 2000 Mar 17;275(11):7447-50
17363342 - DNA Repair (Amst). 2007 Jul 1;6(7):891-9
10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94
10984059 - Nature. 2000 Aug 31;406(6799):1015-9
1637815 - Biochemistry. 1992 Jul 28;31(29):6794-800
11024016 - J Biol Chem. 2001 Jan 5;276(1):92-8
16473566 - DNA Repair (Amst). 2006 Apr 8;5(4):479-90
11371576 - J Biol Chem. 2001 Jul 13;276(28):25639-42
15520252 - Genetics. 2005 Feb;169(2):575-82
8751446 - Nature. 1996 Aug 22;382(6593):729-31
9618506 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6876-80
15177183 - DNA Repair (Amst). 2004 Jul 2;3(7):743-52
11842189 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1910-4
8658138 - Science. 1996 Jun 14;272(5268):1646-9
12226657 - Nature. 2002 Sep 12;419(6903):135-41
15149598 - Mol Cell. 2004 May 21;14(4):491-500
12045089 - Annu Rev Biochem. 2002;71:17-50
10398605 - Science. 1999 Jul 9;285(5425):263-5
12968183 - Nature. 2003 Sep 11;425(6954):188-91
18079180 - Genes Dev. 2007 Dec 15;21(24):3342-55
16397225 - Cancer Res. 2006 Jan 1;66(1):134-42
14657386 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14760-5
References_xml – reference: Nelson JR, Lawrence CW, Hinkle DC (1996a) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382: 729-731
– reference: Gan GN, Wittschieben JP, Wittschieben BO, Wood RD (2008) DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 18: 174-183
– reference: Lawrence CW (2002) Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair (Amst) 1: 425-435
– reference: Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141
– reference: Ogi T, Shinkai Y, Tanaka K, Ohmori H (2002) Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci USA 99: 15548-15553
– reference: Johnson RE, Prakash S, Prakash L (1999b) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta. Science 283: 1001-1004
– reference: Lehmann AR (1972) Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J Mol Biol 66: 319-337
– reference: Adar S, Livneh Z (2006) Translesion DNA synthesis across non-DNA segments in cultured human cells. DNA Repair (Amst) 5: 479-490
– reference: Soria G, Podhajcer O, Gottifredi V (2006) P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene 25: 2829-2838
– reference: Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21: 3342-3355
– reference: Niimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A, Green CM, Lehmann AR (2008) Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA 105: 16125-16130
– reference: Avkin S, Adar S, Blander G, Livneh Z (2002) Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase. Proc Natl Acad Sci USA 99: 3764-3769
– reference: Goodman MF (2002) Error-prone DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71: 17-50
– reference: Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wilder G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310: 1821-1824
– reference: Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6: 891-899
– reference: Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31: 291-304
– reference: Wu F, Lin X, Okuda T, Howell SB (2004) DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance. Cancer Res 64: 8029-8035
– reference: Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM, Prakash S, Prakash L (2001) Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev 15: 945-954
– reference: Lehmann AR, Fuchs RP (2006) Gaps and forks in DNA replication: rediscovering old models. DNA Repair (Amst) 5: 1495-1498
– reference: Hubscher U, Nasheuer HP, Syvaoja JE (2000) Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25: 143-147
– reference: Bi X, Slater DM, Ohmori H, Vaziri C (2005) DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. J Biol Chem 280: 22343-22355
– reference: Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (1998) A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci USA 95: 6876-6880
– reference: Zhao B, Wang J, Geacintov NE, Wang Z (2006) Polh, polz and Rev1 together are required for G to T transversion mutations induced by the (+)- and (−)-trans-anti-BPDE-N2-dG DNA adducts in yeast cells. Nucleic Acids Res 34: 417-425
– reference: Gibbs PE, McDonald J, Woodgate R, Lawrence CW (2005) The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutyl dimer. Genetics 169: 575-582
– reference: Avkin S, Sevilya Z, Toube L, Geacintov NE, Chaney SG, Oren M, Livneh Z (2006) p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell 22: 407-413
– reference: Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H (2000) Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa. Genes Dev 14: 1589-1594
– reference: Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF (1999) UmuD′(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96: 8919-8924
– reference: Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L (2000a) Eukaryotic polymerases i and z act sequentially to bypass DNA lesions. Nature 406: 1015-1019
– reference: Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191
– reference: Prakash S, Prakash L (2002) Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 16: 1872-1883
– reference: Livneh Z (2001) DNA damage control by novel DNA polymerases: translesion replication and mutagenesis. J Biol Chem 276: 25639-25642
– reference: Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC (2006) A single amino acid governs enhanced activity of DinB DNA polymerases on damaged template. Nature 439: 225-228
– reference: Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491-500
– reference: Alt A, Lammens K, Chiocchini C, Lammens A, Pieck JC, Kuch D, Hopfner KP, Carell T (2007) Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318: 967-970
– reference: Gerlach VL, Feaver WJ, Fischhaber PL, Friedberg EC (2001) Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene. J Biol Chem 276: 92-98
– reference: McCulloch SD, Kokoska RJ, Masutani C, Iwai S, Hanaoka F, Kunkel TA (2004) Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428: 97-100
– reference: Spivak G, Hanawalt PC (1992) Translesion DNA syhthesis in the dihydrofolate reductase domain of UV-irradiated CHO cells. Biochemistry 31: 6794-6800
– reference: Xie Z, Braithwaite E, Guo D, Zhao B, Geacintov NE, Wang Z (2003) Mutagenesis of benzo[a]pyrene diol epoxide in yeast: requirement for DNA polymerase zeta and involvement of DNA polymerase eta. Biochemistry 42: 11253-11262
– reference: Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z (2008) Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproducts, in human cells lacking DNA polymerase eta. DNA Repair (Amst) 7: 1636-1646
– reference: Wittschieben JP, Reshmi SC, Gollin SM, Wood RD (2006) Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res 66: 134-142
– reference: Vaisman A, Masutani C, Hanaoka F, Chaney SG (2000) Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. Biochemistry 39: 4575-4580
– reference: Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21: 15-27
– reference: Nelson JR, Lawrence CW, Hinkle DC (1996b) Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272: 1646-1649
– reference: Maor-Shoshani A, Ben-Ari V, Livneh Z (2003) Lesion bypass DNA polymerases replicate across non-DNA segments. Proc Natl Acad Sci USA 100: 14760-14765
– reference: Tang M, Pham P, Shen X, Taylor JS, O'Donnell M, Woodgate R, Goodman MF (2000) Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404: 1014-1018
– reference: Masutani C, Kusumoto R, Iwai S, Hanaoka F (2000) Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J 19: 3100-3109
– reference: Maher VM, Ouellette LM, Curren RD, McCormick JJ (1976) Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature 261: 593-595
– reference: Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C (2006) Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol 26: 3527-3540
– reference: Napolitano R, Janel-Bintz R, Wagner J, Fuchs RPP (2000) All three SOS-inducible DNA polymerases (Pol II, Pol IV, and Pol V) are involved in induced mutagenesis. EMBO J 19: 6259-6265
– reference: Li Z, Zhang H, McManus TP, McCormick JJ, Lawrence CW, Maher VM (2002) hREV3 is essential for eror-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat Res 510: 71-80
– reference: Johnson RE, Kondratick CM, Prakash S, Prakash L (1999a) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285: 263-265
– reference: Meneghini R (1976) Gaps in DNA synthesized by ultraviolet light-irradiated WI38 cells. Biochim Biophys Acta 425: 419-427
– reference: Avkin S, Goldsmith M, Velasco-Miguel S, Geacintov N, Friedberg EC, Livneh Z (2004) Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The role of DNA polymerase κ. J Biol Chem 279: 53298-53305
– reference: Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F (1999) The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399: 700-704
– reference: Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA Repair and Mutagenesis. Washington, DC: ASM Press
– reference: Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23: 3886-3896
– reference: Johnson RE, Washington MT, Prakash S, Prakash L (2000b) Fidelity of human DNA polymerase eta. J Biol Chem 275: 7447-7450
– reference: Washington MT, Johnson RE, Prakash L, Prakash S (2002) Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci USA 99: 1910-1914
– reference: Reuven NB, Arad G, Maor-Shoshani A, Livneh Z (1999) The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA and SSB, and specialized for translesion replication. J Biol Chem 274: 31763-31766
– reference: Zander L, Bemark M (2004) Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment. DNA Repair (Amst) 3: 743-752
– reference: Bassett E, King NM, Bryant MF, Hector S, Pendyala L, Chaney SG, Cordeiro-Stone M (2004) The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts. Cancer Res 64: 6469-6475
– reference: Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z (2000) Error-free and error-prone lesion bypass by human DNA polymerase κ in vitro. Nucleic Acids Res 28: 4138-4146
– volume: 439
  start-page: 225
  year: 2006
  end-page: 228
  article-title: A single amino acid governs enhanced activity of DinB DNA polymerases on damaged template
  publication-title: Nature
– volume: 283
  start-page: 1001
  year: 1999b
  end-page: 1004
  article-title: Efficient bypass of a thymine‐thymine dimer by yeast DNA polymerase, Pol eta
  publication-title: Science
– volume: 18
  start-page: 174
  year: 2008
  end-page: 183
  article-title: DNA polymerase zeta (pol zeta) in higher eukaryotes
  publication-title: Cell Res
– volume: 19
  start-page: 6259
  year: 2000
  end-page: 6265
  article-title: All three SOS‐inducible DNA polymerases (Pol II, Pol IV, and Pol V) are involved in induced mutagenesis
  publication-title: EMBO J
– volume: 279
  start-page: 53298
  year: 2004
  end-page: 53305
  article-title: Quantitative analysis of translesion DNA synthesis across a benzo[ ]pyrene‐guanine adduct in mammalian cells. The role of DNA polymerase κ
  publication-title: J Biol Chem
– volume: 6
  start-page: 891
  year: 2007
  end-page: 899
  article-title: Translesion synthesis: Y‐family polymerases and the polymerase switch
  publication-title: DNA Repair (Amst)
– volume: 31
  start-page: 6794
  year: 1992
  end-page: 6800
  article-title: Translesion DNA syhthesis in the dihydrofolate reductase domain of UV‐irradiated CHO cells
  publication-title: Biochemistry
– volume: 14
  start-page: 491
  year: 2004
  end-page: 500
  article-title: Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage
  publication-title: Mol Cell
– volume: 99
  start-page: 1910
  year: 2002
  end-page: 1914
  article-title: Human DINB1‐encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 407
  year: 2006
  end-page: 413
  article-title: p53 and p21 regulate error‐prone DNA repair to yield a lower mutation load
  publication-title: Mol Cell
– volume: 274
  start-page: 31763
  year: 1999
  end-page: 31766
  article-title: The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA and SSB, and specialized for translesion replication
  publication-title: J Biol Chem
– volume: 66
  start-page: 134
  year: 2006
  end-page: 142
  article-title: Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells
  publication-title: Cancer Res
– volume: 28
  start-page: 4138
  year: 2000
  end-page: 4146
  article-title: Error‐free and error‐prone lesion bypass by human DNA polymerase κ
  publication-title: Nucleic Acids Res
– volume: 285
  start-page: 263
  year: 1999a
  end-page: 265
  article-title: hRAD30 mutations in the variant form of xeroderma pigmentosum
  publication-title: Science
– volume: 399
  start-page: 700
  year: 1999
  end-page: 704
  article-title: The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta
  publication-title: Nature
– volume: 64
  start-page: 8029
  year: 2004
  end-page: 8035
  article-title: DNA polymerase zeta regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance
  publication-title: Cancer Res
– volume: 25
  start-page: 143
  year: 2000
  end-page: 147
  article-title: Eukaryotic DNA polymerases, a growing family
  publication-title: Trends Biochem Sci
– volume: 382
  start-page: 729
  year: 1996a
  end-page: 731
  article-title: Deoxycytidyl transferase activity of yeast protein
  publication-title: Nature
– volume: 19
  start-page: 3100
  year: 2000
  end-page: 3109
  article-title: Mechanisms of accurate translesion synthesis by human DNA polymerase h
  publication-title: EMBO J
– volume: 425
  start-page: 419
  year: 1976
  end-page: 427
  article-title: Gaps in DNA synthesized by ultraviolet light‐irradiated WI38 cells
  publication-title: Biochim Biophys Acta
– volume: 425
  start-page: 188
  year: 2003
  end-page: 191
  article-title: Control of spontaneous and damage‐induced mutagenesis by SUMO and ubiquitin conjugation
  publication-title: Nature
– volume: 96
  start-page: 8919
  year: 1999
  end-page: 8924
  article-title: UmuD′(2)C is an error‐prone DNA polymerase, pol V
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 417
  year: 2006
  end-page: 425
  article-title: Polh, polz and Rev1 together are required for G to T transversion mutations induced by the (+)‐ and (−)‐trans‐anti‐BPDE‐N2‐dG DNA adducts in yeast cells
  publication-title: Nucleic Acids Res
– volume: 272
  start-page: 1646
  year: 1996b
  end-page: 1649
  article-title: Thymine‐thymine dimer bypass by yeast DNA polymerase zeta
  publication-title: Science
– volume: 169
  start-page: 575
  year: 2005
  end-page: 582
  article-title: The relative roles of Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T‐T (6‐4) photoadduct and T‐T cis‐syn cyclobutyl dimer
  publication-title: Genetics
– volume: 42
  start-page: 11253
  year: 2003
  end-page: 11262
  article-title: Mutagenesis of benzo[ ]pyrene diol epoxide in yeast: requirement for DNA polymerase zeta and involvement of DNA polymerase eta
  publication-title: Biochemistry
– volume: 419
  start-page: 135
  year: 2002
  end-page: 141
  article-title: RAD6‐dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
  publication-title: Nature
– volume: 99
  start-page: 3764
  year: 2002
  end-page: 3769
  article-title: Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase
  publication-title: Proc Natl Acad Sci USA
– volume: 406
  start-page: 1015
  year: 2000a
  end-page: 1019
  article-title: Eukaryotic polymerases i and z act sequentially to bypass DNA lesions
  publication-title: Nature
– volume: 39
  start-page: 4575
  year: 2000
  end-page: 4580
  article-title: Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta
  publication-title: Biochemistry
– volume: 5
  start-page: 1495
  year: 2006
  end-page: 1498
  article-title: Gaps and forks in DNA replication: rediscovering old models
  publication-title: DNA Repair (Amst)
– volume: 5
  start-page: 479
  year: 2006
  end-page: 490
  article-title: Translesion DNA synthesis across non‐DNA segments in cultured human cells
  publication-title: DNA Repair (Amst)
– volume: 71
  start-page: 17
  year: 2002
  end-page: 50
  article-title: Error‐prone DNA polymerases in prokaryotes and eukaryotes
  publication-title: Annu Rev Biochem
– volume: 64
  start-page: 6469
  year: 2004
  end-page: 6475
  article-title: The role of DNA polymerase eta in translesion synthesis past platinum‐DNA adducts in human fibroblasts
  publication-title: Cancer Res
– volume: 3
  start-page: 743
  year: 2004
  end-page: 752
  article-title: Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment
  publication-title: DNA Repair (Amst)
– volume: 428
  start-page: 97
  year: 2004
  end-page: 100
  article-title: Preferential cis‐syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity
  publication-title: Nature
– volume: 16
  start-page: 1872
  year: 2002
  end-page: 1883
  article-title: Translesion DNA synthesis in eukaryotes: a one‐ or two‐polymerase affair
  publication-title: Genes Dev
– volume: 276
  start-page: 92
  year: 2001
  end-page: 98
  article-title: Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene
  publication-title: J Biol Chem
– volume: 100
  start-page: 14760
  year: 2003
  end-page: 14765
  article-title: Lesion bypass DNA polymerases replicate across non‐DNA segments
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 3342
  year: 2007
  end-page: 3355
  article-title: Mismatch repair‐dependent processing of methylation damage gives rise to persistent single‐stranded gaps in newly replicated DNA
  publication-title: Genes Dev
– volume: 318
  start-page: 967
  year: 2007
  end-page: 970
  article-title: Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta
  publication-title: Science
– volume: 510
  start-page: 71
  year: 2002
  end-page: 80
  article-title: hREV3 is essential for eror‐prone translesion synthesis past UV or benzo[ ]pyrene diol epoxide‐induced DNA lesions in human fibroblasts
  publication-title: Mutat Res
– volume: 66
  start-page: 319
  year: 1972
  end-page: 337
  article-title: Postreplication repair of DNA in ultraviolet‐irradiated mammalian cells
  publication-title: J Mol Biol
– volume: 275
  start-page: 7447
  year: 2000b
  end-page: 7450
  article-title: Fidelity of human DNA polymerase eta
  publication-title: J Biol Chem
– volume: 105
  start-page: 16125
  year: 2008
  end-page: 16130
  article-title: Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 291
  year: 1968
  end-page: 304
  article-title: Discontinuities in the DNA synthesized in an excision‐defective strain of following ultraviolet irradiation
  publication-title: J Mol Biol
– volume: 25
  start-page: 2829
  year: 2006
  end-page: 2838
  article-title: P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation
  publication-title: Oncogene
– volume: 21
  start-page: 15
  year: 2006
  end-page: 27
  article-title: Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
  publication-title: Mol Cell
– volume: 14
  start-page: 1589
  year: 2000
  end-page: 1594
  article-title: Error‐prone bypass of certain DNA lesions by the human DNA polymerase kappa
  publication-title: Genes Dev
– volume: 310
  start-page: 1821
  year: 2005
  end-page: 1824
  article-title: Ubiquitin‐binding domains in Y‐family polymerases regulate translesion synthesis
  publication-title: Science
– year: 2006
  publication-title: DNA Repair and Mutagenesis
– volume: 261
  start-page: 593
  year: 1976
  end-page: 595
  article-title: Frequency of ultraviolet light‐induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells
  publication-title: Nature
– volume: 7
  start-page: 1636
  year: 2008
  end-page: 1646
  article-title: Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6‐4 photoproducts, in human cells lacking DNA polymerase eta
  publication-title: DNA Repair (Amst)
– volume: 1
  start-page: 425
  year: 2002
  end-page: 435
  article-title: Cellular roles of DNA polymerase zeta and Rev1 protein
  publication-title: DNA Repair (Amst)
– volume: 276
  start-page: 25639
  year: 2001
  end-page: 25642
  article-title: DNA damage control by novel DNA polymerases: translesion replication and mutagenesis
  publication-title: J Biol Chem
– volume: 99
  start-page: 15548
  year: 2002
  end-page: 15553
  article-title: Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[ ]pyrene
  publication-title: Proc Natl Acad Sci USA
– volume: 404
  start-page: 1014
  year: 2000
  end-page: 1018
  article-title: Roles of DNA polymerases IV and V in lesion‐targeted and untargeted SOS mutagenesis
  publication-title: Nature
– volume: 23
  start-page: 3886
  year: 2004
  end-page: 3896
  article-title: Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination
  publication-title: EMBO J
– volume: 95
  start-page: 6876
  year: 1998
  end-page: 6880
  article-title: A human homolog of the REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 3527
  year: 2006
  end-page: 3540
  article-title: Rad18 regulates DNA polymerase kappa and is required for recovery from S‐phase checkpoint‐mediated arrest
  publication-title: Mol Cell Biol
– volume: 280
  start-page: 22343
  year: 2005
  end-page: 22355
  article-title: DNA polymerase kappa is specifically required for recovery from the benzo[ ]pyrene‐dihydrodiol epoxide (BPDE)‐induced S‐phase checkpoint
  publication-title: J Biol Chem
– volume: 15
  start-page: 945
  year: 2001
  end-page: 954
  article-title: Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites
  publication-title: Genes Dev
– ident: emboj2008281-b47
  doi: 10.1074/jbc.274.45.31763
– ident: emboj2008281-b56
  doi: 10.1038/sj.emboj.7600383
– ident: emboj2008281-b19
  doi: 10.1016/S0968-0004(99)01523-6
– ident: emboj2008281-b8
  doi: 10.1074/jbc.M501562200
– ident: emboj2008281-b16
  doi: 10.1101/gad.882301
– ident: emboj2008281-b44
  doi: 10.1073/pnas.222377899
– ident: emboj2008281-b55
  doi: 10.1073/pnas.032594399
– ident: emboj2008281-b42
  doi: 10.1126/science.272.5268.1646
– ident: emboj2008281-b23
  doi: 10.1038/35023030
– ident: emboj2008281-b22
  doi: 10.1126/science.283.5404.1001
– ident: emboj2008281-b3
  doi: 10.1073/pnas.062038699
– ident: emboj2008281-b43
  doi: 10.1073/pnas.0802727105
– ident: emboj2008281-b9
  doi: 10.1126/science.1120615
– ident: emboj2008281-b32
  doi: 10.1016/j.molcel.2005.11.015
– ident: emboj2008281-b54
  doi: 10.1021/bi000130k
– ident: emboj2008281-b15
  doi: 10.1146/annurev.biochem.71.083101.124707
– ident: emboj2008281-b53
  doi: 10.1073/pnas.96.16.8919
– ident: emboj2008281-b12
  doi: 10.1074/jbc.M004413200
– ident: emboj2008281-b11
  doi: 10.1038/cr.2007.117
– ident: emboj2008281-b31
  doi: 10.1074/jbc.R100019200
– ident: emboj2008281-b5
  doi: 10.1016/j.molcel.2006.03.022
– ident: emboj2008281-b40
  doi: 10.1093/emboj/19.22.6259
– volume: 425
  start-page: 419
  year: 1976
  ident: emboj2008281-b38
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2787(76)90006-X
– ident: emboj2008281-b17
  doi: 10.1016/j.dnarep.2008.06.008
– volume: 510
  start-page: 71
  year: 2002
  ident: emboj2008281-b30
  publication-title: Mutat Res
  doi: 10.1016/S0027-5107(02)00253-1
– ident: emboj2008281-b36
  doi: 10.1038/21447
– ident: emboj2008281-b6
  doi: 10.1158/0008-5472.CAN-04-1328
– ident: emboj2008281-b28
  doi: 10.1016/j.dnarep.2006.07.002
– ident: emboj2008281-b33
  doi: 10.1038/261593a0
– ident: emboj2008281-b29
  doi: 10.1016/j.dnarep.2007.02.003
– ident: emboj2008281-b39
  doi: 10.1101/gad.455407
– ident: emboj2008281-b35
  doi: 10.1093/emboj/19.12.3100
– ident: emboj2008281-b46
  doi: 10.1101/gad.1009802
– ident: emboj2008281-b20
  doi: 10.1038/nature04318
– ident: emboj2008281-b10
– ident: emboj2008281-b27
  doi: 10.1016/0022-2836(72)90418-4
– ident: emboj2008281-b49
  doi: 10.1038/sj.onc.1209315
– ident: emboj2008281-b58
  doi: 10.1158/0008-5472.CAN-03-3942
– ident: emboj2008281-b59
  doi: 10.1021/bi0346704
– ident: emboj2008281-b52
  doi: 10.1038/35010020
– ident: emboj2008281-b50
  doi: 10.1021/bi00144a021
– ident: emboj2008281-b61
  doi: 10.1093/nar/28.21.4138
– ident: emboj2008281-b26
  doi: 10.1016/S1568-7864(02)00038-1
– ident: emboj2008281-b51
  doi: 10.1038/nature01965
– ident: emboj2008281-b62
  doi: 10.1093/nar/gkj446
– ident: emboj2008281-b48
  doi: 10.1016/0022-2836(68)90445-2
– ident: emboj2008281-b60
  doi: 10.1016/j.dnarep.2004.03.031
– ident: emboj2008281-b2
  doi: 10.1126/science.1148242
– ident: emboj2008281-b18
  doi: 10.1038/nature00991
– ident: emboj2008281-b4
  doi: 10.1074/jbc.M409155200
– ident: emboj2008281-b21
  doi: 10.1126/science.285.5425.263
– ident: emboj2008281-b24
  doi: 10.1074/jbc.275.11.7447
– ident: emboj2008281-b41
  doi: 10.1038/382729a0
– ident: emboj2008281-b34
  doi: 10.1073/pnas.2433503100
– ident: emboj2008281-b14
  doi: 10.1073/pnas.95.12.6876
– ident: emboj2008281-b37
  doi: 10.1038/nature02352
– ident: emboj2008281-b7
  doi: 10.1128/MCB.26.9.3527-3540.2006
– ident: emboj2008281-b13
  doi: 10.1534/genetics.104.034611
– ident: emboj2008281-b25
  doi: 10.1016/S1097-2765(04)00259-X
– volume: 14
  start-page: 1589
  year: 2000
  ident: emboj2008281-b45
  publication-title: Genes Dev
  doi: 10.1101/gad.14.13.1589
– ident: emboj2008281-b57
  doi: 10.1158/0008-5472.CAN-05-2982
– ident: emboj2008281-b1
  doi: 10.1016/j.dnarep.2006.01.001
– reference: 11891323 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3764-9
– reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5
– reference: 16397225 - Cancer Res. 2006 Jan 1;66(1):134-42
– reference: 16387650 - Mol Cell. 2006 Jan 6;21(1):15-27
– reference: 11058110 - Nucleic Acids Res. 2000 Nov 1;28(21):4138-46
– reference: 15520212 - Cancer Res. 2004 Nov 1;64(21):8029-35
– reference: 14503875 - Biochemistry. 2003 Sep 30;42(38):11253-62
– reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4
– reference: 11371576 - J Biol Chem. 2001 Jul 13;276(28):25639-42
– reference: 16407906 - Nature. 2006 Jan 12;439(7073):225-8
– reference: 934300 - Nature. 1976 Jun 17;261(5561):593-5
– reference: 15374956 - Cancer Res. 2004 Sep 15;64(18):6469-75
– reference: 10887153 - Genes Dev. 2000 Jul 1;14(13):1589-94
– reference: 10801133 - Nature. 2000 Apr 27;404(6781):1014-8
– reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500
– reference: 10542196 - J Biol Chem. 1999 Nov 5;274(45):31763-6
– reference: 16473566 - DNA Repair (Amst). 2006 Apr 8;5(4):479-90
– reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41
– reference: 16415180 - Nucleic Acids Res. 2006;34(2):417-25
– reference: 16678112 - Mol Cell. 2006 May 5;22(3):407-13
– reference: 1637815 - Biochemistry. 1992 Jul 28;31(29):6794-800
– reference: 8751446 - Nature. 1996 Aug 22;382(6593):729-31
– reference: 12045089 - Annu Rev Biochem. 2002;71:17-50
– reference: 18079180 - Genes Dev. 2007 Dec 15;21(24):3342-55
– reference: 11080171 - EMBO J. 2000 Nov 15;19(22):6259-65
– reference: 15817457 - J Biol Chem. 2005 Jun 10;280(23):22343-55
– reference: 16407842 - Oncogene. 2006 May 11;25(20):2829-38
– reference: 11842189 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1910-4
– reference: 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
– reference: 9974380 - Science. 1999 Feb 12;283(5404):1001-4
– reference: 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
– reference: 4865486 - J Mol Biol. 1968 Jan 28;31(2):291-304
– reference: 19225445 - EMBO J. 2009 Feb 18;28(4):313-4
– reference: 10694886 - Trends Biochem Sci. 2000 Mar;25(3):143-7
– reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
– reference: 14999287 - Nature. 2004 Mar 4;428(6978):97-100
– reference: 12509231 - DNA Repair (Amst). 2002 Jun 21;1(6):425-35
– reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4
– reference: 11316789 - Genes Dev. 2001 Apr 15;15(8):945-54
– reference: - EMBO J. 2009 Apr 8;28(7):992
– reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
– reference: 130925 - Biochim Biophys Acta. 1976 Apr 2;425(4):419-27
– reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9
– reference: 12432099 - Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15548-53
– reference: 18157155 - Cell Res. 2008 Jan;18(1):174-83
– reference: 10430871 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8919-24
– reference: 15177183 - DNA Repair (Amst). 2004 Jul 2;3(7):743-52
– reference: 15520252 - Genetics. 2005 Feb;169(2):575-82
– reference: 17363342 - DNA Repair (Amst). 2007 Jul 1;6(7):891-9
– reference: 11024016 - J Biol Chem. 2001 Jan 5;276(1):92-8
– reference: 16611994 - Mol Cell Biol. 2006 May;26(9):3527-40
– reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91
– reference: 9618506 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6876-80
– reference: 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96
– reference: 12154119 - Genes Dev. 2002 Aug 1;16(15):1872-83
– reference: 8658138 - Science. 1996 Jun 14;272(5268):1646-9
– reference: 10769112 - Biochemistry. 2000 Apr 25;39(16):4575-80
– reference: 17991862 - Science. 2007 Nov 9;318(5852):967-70
– reference: 10856253 - EMBO J. 2000 Jun 15;19(12):3100-9
– reference: 5037019 - J Mol Biol. 1972 May 28;66(3):319-37
– reference: 10713043 - J Biol Chem. 2000 Mar 17;275(11):7447-50
– reference: 12459444 - Mutat Res. 2002 Dec 29;510(1-2):71-80
– reference: 14657386 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14760-5
SSID ssj0005871
Score 2.4300282
Snippet DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 383
SubjectTerms Animals
carcinogenesis
Catalysis
Cell Line, Tumor
Cellular biology
Deoxyribonucleic acid
Dimerization
DNA
DNA - chemistry
DNA - metabolism
DNA Damage
DNA polymerase
DNA repair
DNA Replication
DNA-Directed DNA Polymerase - chemistry
DNA-Directed DNA Polymerase - metabolism
Epistasis, Genetic
Genomics
Humans
Kinetics
lesion bypass
Lesions
Mammals
Mice
Molecular biology
Mutagenesis
Pyrimidine Dimers - chemistry
RNA, Small Interfering - metabolism
Xeroderma Pigmentosum Group A Protein - metabolism
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBcGFRykQysMHBFysxkn8OqFSWhDQVaVdoLfIcWwR2CRLsgX232M7j7KCwoFjZEexPWPP55nJNwA8zhgNmchyRJXIURIZjGTIM8SN0iK2Jo55AtMP79hkwk9OxHGfm9P2aZXDmegP6rxWzke-iwWJqIX35PniK3JFo1xwta-gcRFsOpKEyGfuHZ9leHB_3_IulgRzMXA2xnxXl1n9ucukjDhes0mbbnl__Alw_p43OQZP16Gtt02H1_9zVjfAtR6Uwr1Oi26CC7raApe7MpWrLXBlf6gKdwvI2fcaLer5yjmzWg1L7X4dLtqyhXmhHHKFumnqBplGayirvH-046o0XDrLONfOQwdfTvZgu6osAG2LFhYVLGVZ2s2wDd4fHsz2X6O-TANSjpwO5ZqI0GBsMkUireLIEGFMTqghmXT4ye56nUhmrCYQk2BFqTIW-UT2PYIljW-DjcqO4S6AlGWZdiiQa5nklAqqWMgVk2EuMp1kAUCDoFLVc5i7Uhrz1MfSY556wXa1Na1gA_B07L_o2DvO7fnEy33sJpsvLueNkfTj5FVKprNZND2apm8DsDNIMu23e5uOYgzAo7HVCsYFX2Sl69M2tZNxt1X7oTudEp0NSFirY--RAWBr6jV2cAzg6y1V8ckzgVs0a-EVC8CzQRF_GdM58wy9ov5jOdKDoxdvIs9viO_9dcY74GoXYIsQ5vfBxrI51Q_AJfVtWbTNQ78hfwLDET6O
  priority: 102
  providerName: ProQuest
Title Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals
URI https://api.istex.fr/ark:/67375/WNG-5STT2SMS-K/fulltext.pdf
https://link.springer.com/article/10.1038/emboj.2008.281
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2008.281
https://www.ncbi.nlm.nih.gov/pubmed/19153606
https://www.proquest.com/docview/195262875
https://www.proquest.com/docview/66942611
https://pubmed.ncbi.nlm.nih.gov/PMC2646147
Volume 28
WOSCitedRecordID wos000263556200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: M7P
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: PCBAR
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: 7X7
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: BENPR
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: 8C1
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: M2O
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENZACwMXHuVlCkEHBrh4sBzbko5tmvBqTKZJ29w8tiyBIXY6dgrkxk_gN_JLWMmO2wx0GIaLPGOvxpK86_0krb5F6GlCA4fyJLUDwVPbcxWxY4clNlNC8i64OGoITI_2aRiy6ZSPzp3ir_kh2gU3bRnmf60NPE6q5pi4DlyXeTL_VAdDuubsNfGMZR6_Cc9iPJiZcZlFFo8wvmJt7LKX69XXvNKmHuBvf4Kcv0dOttun6-DWeKfBzf_v1y10o0GmeKdWpdvokiy20NU6V-VyC13rrVLD3UEfJl_nP7__OJnPlnpNq5I4l_oEcVblFU4zoQEslmU5L0FKlVLiuEjbG9DfQuKFdpIzqRfr8F64g6tlAVi0yiqcFTiP8xzs4i46HPQnvdd2k7HBFpqnzk6lzx1FiEqE70rRdZXPlUr9QPlJrKEU_ACkF1MFSuErj4ggEApAkAv1fBIH3Xtoo4A2PEA4oEkiNSBkMvbSIOCBoA4TNHZSnkgvsZC9-mKRaOjMdVaNWWS21bssMgNZp9mEgbTQ81b-pCbyuFDymVGAViwuP-vwN-pHx-GryB9PJu54OI7eWWh7pSFRY_lVRLjvBjAN9S30pH0Kn0fvw8SFnJ9WEXRGT1zhRfdrbTprEAcHBFNKC9E1PWsFNBn4-pMi-2hIwQHYAtKiFnqx0shzbbqgn47Rw78MR9Qf7r51DdUhefjvVbbR9XoDzrUJe4Q2FuWpfIyuiC-LrCo76DKdUlMyKFmPdNDmbj8cHcB172BwuA93h-57XdJRxxj3LwP0TqA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctQwEO0KCVS4sITNBIgObBdVbI0tWweKykrCLFA1E8jN2LJUGMb2YE8I81H8YyR57DAFgVMOHF2SbS1P6tetVjfA09ints_iBFPOEuwS6eDIDmIcSC5YR4k43wQw_dDzB4Pg-Ji9X4KfzV0Y7VbZ7Ilmo04Krm3kmw7zCFX03ns9-YZ10ih9uNpk0KhR0RWzU6WxVa8Od9X0PiNkf2-0c4DnSQUw16HUcCI8ZkvHkTH3iOAdIj0mZeJR6cWRlvYKo8KNfKna7UnX4ZRyqeQ0Ue95TkQ76rtXYMXVipD2FCTvzj1KAqPfGZOO6wSsiRHZCTZFFhdfas9NEjgLMnBFT-ePPxHc3_0028PaRSptZOH-zf9sFG_BjTnpRlv1KrkNSyJfg2t1Gs7ZGqzuNFnv7kA0Oi3wpBjPtLGuEigT-mp0WmUVSlKumTkSZVmUWJZCoChP5o9qHHKBplryj4W2QKLdwRaqZrki2FVaoTRHWZRlarHfhaNL6es9WM5VGx4Aon4cC81yAxG5CaWMct8OuB_ZCYuFG1uAG2CEfB6jXacKGYfGV6AThAZIde5QBSQLXrT1J3V0kgtrPjc4a6tF5Vft0-d74cfBm9AbjkZk2B-GXQvWG-SE8-2sClvYWLDRlqqJ0YdLUS6KkypUndHauPrR_Rq05w1iSqoqPdkCfwHObQUd4XyxJE8_m0jniq0r-uhb8LIB_i9tuqCftlkY_xiOcK-__ZaY-I3Ow7_2eANWD0b9Xtg7HHTX4Xp9mEiwEzyC5Wl5Ih7DVf59mlblE7MZIPh02evmDLDNmtU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQh-3CUrZQoD4g4BKRzXZ8LJ0OS6dRxUxpb1bi2BCYJKNkCsyNn8Bv5JdgO0uJoEJIXOPnxMt7eZ_t5-8B8Dgh2CE0SW3MaWoHnnTt2AkTO5RcUF-5OGIITN9NSRSFJyf0sI0m1HdhGn6IfsNNW4b5X2sDF8tUtvfEdeS6yJPyYxMN6enL16MAUaxsczR-OzmansV5hGbVZTZaAjekHXOjHz4fvmHgmUZ6kL_-CXb-Hj3ZH6EOAa7xUJPr_6FvN8C1Fp7CnUafboILotgEl5qEletNcGW3yw93C7yffyl_fPu-LBdrvbFVC5gLfY04q_MaphnXKBaKqiorJSUrIWBcpP0D1eFCwJX2lAuhd-zgONqB9bpQgLTOapgVMI_zXBnHbXA02ZvvvrLbtA0212R1dioQdaTryoQjT3Dfk4hKmSIsURJrPKX-AiKIiVSagWTgcoy5VEjIU_WQG2P_DtgoVBvuAYhJkgiNCkMRBynGFHPihJzETkoTESQWsLspY7zlNNepNRbMnK37ITMD2eTaVANpgae9_LJh8zhX8onRgF4srj7pGDiC2HH0kqHZfO7NDmZs3wJbnYqw1vxr5lLkYbUWRRbY7kvV9OjDmLgQ5WnNVGf06lV96G6jTmcNosoLqXWlBchA0XoBzQg-LCmyD4YZXKFbBbeIBZ51KvlLm87pp2MU8S_DwfYOXrzxDN-he__fq2yDy4fjCZu-jva3wNXmQM6z3fAB2FhVp-IhuMg_r7K6etQa708lQEut
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90polymerase+mechanisms+dictate+error%E2%80%90free+and+error%E2%80%90prone+translesion+DNA+synthesis+in+mammals&rft.jtitle=The+EMBO+journal&rft.au=Shachar%2C+Sigal&rft.au=Ziv%2C+Omer&rft.au=Avkin%2C+Sharon&rft.au=Adar%2C+Sheera&rft.date=2009-02-18&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=28&rft.issue=4&rft.spage=383&rft.epage=393&rft_id=info:doi/10.1038%2Femboj.2008.281&rft.externalDBID=10.1038%252Femboj.2008.281&rft.externalDocID=EMBJ2008281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon