Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases
Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness an...
Gespeichert in:
| Veröffentlicht in: | NPJ digital medicine Jg. 4; H. 1; S. 96 - 14 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
10.06.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2398-6352, 2398-6352 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics. |
|---|---|
| AbstractList | Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics. Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics. Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics. |
| ArticleNumber | 96 |
| Author | Kuznetsova, Masha Syrowatka, Ania Alsubai, Ava Craig, Kelly Jean Thomas Beckman, Adam L. Bain, Paul A. Hu, Jianying Rhee, Kyu Bates, David W. Jackson, Gretchen Purcell |
| Author_xml | – sequence: 1 givenname: Ania orcidid: 0000-0002-7161-9770 surname: Syrowatka fullname: Syrowatka, Ania email: asyrowatka@bwh.harvard.edu organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 2 givenname: Masha orcidid: 0000-0001-6710-526X surname: Kuznetsova fullname: Kuznetsova, Masha organization: Harvard Business School – sequence: 3 givenname: Ava surname: Alsubai fullname: Alsubai, Ava organization: Division of General Internal Medicine, Brigham and Women’s Hospital – sequence: 4 givenname: Adam L. surname: Beckman fullname: Beckman, Adam L. organization: Harvard Medical School, Harvard Business School – sequence: 5 givenname: Paul A. surname: Bain fullname: Bain, Paul A. organization: Countway Library of Medicine, Harvard Medical School – sequence: 6 givenname: Kelly Jean Thomas orcidid: 0000-0002-9954-2795 surname: Craig fullname: Craig, Kelly Jean Thomas organization: IBM Watson Health – sequence: 7 givenname: Jianying surname: Hu fullname: Hu, Jianying organization: IBM Research, Center for Computational Health – sequence: 8 givenname: Gretchen Purcell orcidid: 0000-0002-3242-8058 surname: Jackson fullname: Jackson, Gretchen Purcell organization: IBM Watson Health, Department of Pediatric Surgery, Vanderbilt University Medical Center – sequence: 9 givenname: Kyu surname: Rhee fullname: Rhee, Kyu organization: IBM Watson Health, CVS Health – sequence: 10 givenname: David W. orcidid: 0000-0001-6268-1540 surname: Bates fullname: Bates, David W. organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard T. H. Chan School of Public Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34112939$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9v1DAQxSNUREvpF-CALHHhErAdx7E5IKGKP5VW4gJna9aeBC9ZO9jJov32eLultD30ZMt-7-d543lenYQYsKpeMvqW0Ua9y4J1QtaUs5pS0epaPanOeKNVLZuWn9zZn1YXOW8opZwKpYV8Vp02gjGuG31WLSvcYYLBh4FAmn3vrYeR-DDjOPoBg0XSx0QmCA633pIp4QQJXcCcSTkkCfMUQ8b3BEi2cTqQEu48_iFzJN5hKNQ9-YV7smQkFjLmF9XTHsaMFzfrefXj86fvl1_r1bcvV5cfV7WVVM517xwyQAVCCY2CtkpyBm2rdCcaqnnXS6kdg7W2Fta9dtB2zoFU3ZpRDdCcV1dHrouwMVPyW0h7E8Gb64OYBnMIbUc0HaAVXY-8bUBYBYpyrteu5aioANkV1ocja1rWW3S25Eow3oPevwn-pxniziimuaayAN7cAFL8vWCezdZnW9oMAeOSDW9LQiZlqeC8ev1AuolLCqVVRdWU9JJyVVSv7lZ0W8q_3y0CfhTYFHNO2N9KGDWHKTLHKTJlisz1FJkDVT0wWT_D7OMhlR8ftzZHay7vhAHT_7Ifcf0FItjdfg |
| CitedBy_id | crossref_primary_10_1002_jmv_70559 crossref_primary_10_3390_ijerph22040568 crossref_primary_10_21202_jdtl_2025_7 crossref_primary_10_1016_j_jshs_2023_09_010 crossref_primary_10_1097_MCC_0000000000000945 crossref_primary_10_1017_ash_2021_222 crossref_primary_10_1186_s12879_022_07219_3 crossref_primary_10_3390_ijerph22071104 crossref_primary_10_3389_fpubh_2022_1100401 crossref_primary_10_2196_44461 crossref_primary_10_1186_s43593_025_00085_x crossref_primary_10_52645_MJHS_2024_4_07 crossref_primary_10_1007_s11846_023_00696_z crossref_primary_10_1146_annurev_lawsocsci_050520_101947 crossref_primary_10_3390_jpm11090886 crossref_primary_10_1177_10943420231201154 crossref_primary_10_2196_40589 crossref_primary_10_3389_fpubh_2025_1613869 crossref_primary_10_1016_j_pce_2022_103163 crossref_primary_10_3390_ijerph182312447 crossref_primary_10_1371_journal_pone_0269311 crossref_primary_10_1007_s10916_024_02136_1 crossref_primary_10_1007_s12144_025_08015_3 crossref_primary_10_1080_03036758_2022_2121290 crossref_primary_10_3390_math10162927 crossref_primary_10_1016_j_puhe_2024_04_040 crossref_primary_10_3390_foods14020239 crossref_primary_10_1093_jamiaopen_ooae014 crossref_primary_10_1007_s11553_022_00984_8 crossref_primary_10_1186_s43088_022_00293_1 crossref_primary_10_3390_amh70020011 crossref_primary_10_1016_j_jtherbio_2025_104075 crossref_primary_10_1002_for_3082 crossref_primary_10_1016_j_imj_2025_100186 crossref_primary_10_1590_0102_311xen243722 crossref_primary_10_2196_49185 crossref_primary_10_1590_0102_311xpt243722 crossref_primary_10_3389_fbrio_2024_1326958 crossref_primary_10_1038_s44184_023_00046_7 crossref_primary_10_3389_frai_2023_985469 crossref_primary_10_1002_der2_241 crossref_primary_10_1371_journal_pdig_0000132 crossref_primary_10_3390_microorganisms12050988 crossref_primary_10_1038_s41467_024_55461_x crossref_primary_10_2196_45815 crossref_primary_10_1017_cts_2023_26 crossref_primary_10_1038_s41598_022_17953_y crossref_primary_10_1007_s12553_024_00886_z crossref_primary_10_1590_1413_81232025306_03522025 crossref_primary_10_1007_s40121_022_00707_8 crossref_primary_10_1007_s10115_024_02192_6 crossref_primary_10_1590_1413_81232025306_03522025en crossref_primary_10_1038_s41591_022_01981_2 crossref_primary_10_3390_info15100626 crossref_primary_10_3389_frai_2025_1623090 |
| Cites_doi | 10.1016/S2589-7500(20)30217-X 10.1007/s10015-010-0874-8 10.1118/1.1819532 10.1142/S0219519405001370 10.1016/j.jbi.2016.05.005 10.1371/journal.pone.0019467 10.2196/24018 10.1016/j.imu.2020.100378 10.21037/atm-20-3073 10.1016/j.procs.2015.10.120 10.1002/cpt.1796 10.1016/j.acra.2010.11.013 10.1016/j.asoc.2020.106897 10.1109/TFUZZ.2013.2251638 10.1080/03091900500225136 10.1017/S0950268807009284 10.3233/JIFS-169992 10.1016/j.jbi.2015.08.019 10.1371/journal.pone.0246120 10.7717/peerj.10083 10.1093/cid/ciaa443 10.1371/journal.pone.0232391 10.3390/ijerph17062032 10.1186/2041-1480-2-S5-S9 10.1038/s41591-020-0931-3 10.1007/s10916-020-01597-4 10.1186/1471-2288-14-99 10.1504/IJKEDM.2014.066219 10.7326/M19-0872 10.3389/fmicb.2018.00343 10.2196/19446 10.1007/s11538-015-0111-7 10.1016/j.chaos.2005.01.064 10.1038/s41746-020-00372-6 10.1016/j.smhl.2020.100178 10.1038/s41598-021-83784-y 10.2196/18828 10.1038/s41598-020-75912-x 10.1016/j.eswa.2009.09.028 10.1001/jama.2020.20717 10.1016/j.medj.2020.10.002 10.1016/j.hlpt.2018.04.006 10.1093/jamia/ocaa112 10.7326/M18-0850 10.1038/s41591-020-1132-9 10.1136/bmj.m1328 10.1371/journal.pcbi.1008837 10.1038/s41467-020-18297-9 10.1007/s10393-018-1338-1 10.7554/eLife.58227 10.1016/j.resconrec.2016.07.009 10.1093/ije/dyaa171 10.1016/j.ijmedinf.2020.104258 10.1056/NEJMoa2006100 10.1101/2020.04.24.20078477 10.1101/2020.05.06.079798 10.1101/2020.04.06.20039909 10.1101/2020.04.16.20063990 10.1101/2020.03.09.20032219 10.1101/2020.04.19.20069948 10.1101/2020.04.09.20059055 10.1007/978-3-642-13639-9_17 10.1513/AnnalsATS.202006-698OC 10.1109/WSC.2011.6147834 10.1007/978-981-10-3147-2_19 10.1101/2020.05.05.20083436 10.1101/2020.04.02.20051136 10.1101/2020.04.10.20061036 10.1101/2020.05.10.20097527 10.1109/HIS.2006.264917 10.1109/BIBM.2013.6732566 10.1145/1964858.1964874 10.1101/2020.04.25.20079129 10.1101/2020.04.09.20059840 10.1101/2020.04.17.20059535 10.1109/CIP.2010.5604088 10.1101/2020.04.04.20052092 10.1111/jir.12730 10.1101/2020.04.29.20085472 10.2196/21801 10.5220/0003780600610070 10.1101/2020.04.03.020602 10.1101/2020.05.18.20105841 10.1142/9789812701534_0111 10.1101/2020.03.25.20043331 10.1101/2020.03.30.014555 10.1101/2020.04.03.20052084 10.3390/jcm9030674 10.1101/2020.05.14.20102533 10.1101/2020.04.19.20068072 10.1093/cid/ciaa1383 10.3115/1614025.1614029 10.1109/WH.2016.7764557 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1038/s41746-021-00459-8 |
| DatabaseName | Springer Nature Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : Directory of Open Access Journals [open access] |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 2398-6352 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_7aec47fe253a4c8a80229bd52e804a67 PMC8192906 34112939 10_1038_s41746_021_00459_8 |
| Genre | Journal Article Scoping Review |
| GrantInformation_xml | – fundername: IBM Watson – fundername: ; |
| GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PIMPY RNT RPM SNYQT UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PPXIY NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c606t-fdde1ae8a4849e4058621a55897430927f669d1ab9ccabf9da57dda687b109aa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2398-6352 |
| IngestDate | Tue Oct 14 19:02:30 EDT 2025 Tue Nov 04 01:55:50 EST 2025 Fri Sep 05 12:43:27 EDT 2025 Tue Oct 07 06:58:19 EDT 2025 Mon Jul 21 05:27:28 EDT 2025 Tue Nov 18 22:06:34 EST 2025 Sat Nov 29 02:05:38 EST 2025 Fri Feb 21 02:39:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-fdde1ae8a4849e4058621a55897430927f669d1ab9ccabf9da57dda687b109aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-3 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-7161-9770 0000-0001-6710-526X 0000-0001-6268-1540 0000-0002-9954-2795 0000-0002-3242-8058 |
| OpenAccessLink | https://doaj.org/article/7aec47fe253a4c8a80229bd52e804a67 |
| PMID | 34112939 |
| PQID | 2539746028 |
| PQPubID | 5061815 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7aec47fe253a4c8a80229bd52e804a67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192906 proquest_miscellaneous_2540516625 proquest_journals_2539746028 pubmed_primary_34112939 crossref_primary_10_1038_s41746_021_00459_8 crossref_citationtrail_10_1038_s41746_021_00459_8 springer_journals_10_1038_s41746_021_00459_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-10 |
| PublicationDateYYYYMMDD | 2021-06-10 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | NPJ digital medicine |
| PublicationTitleAbbrev | npj Digit. Med |
| PublicationTitleAlternate | NPJ Digit Med |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Aviso (CR94) 2018; 128 Li, Wang, Xue, Zhao, Zhu (CR71) 2020; 17 Jain, Kumar (CR105) 2015; 70 CR39 CR38 CR37 Jiang (CR56) 2020; 63 CR35 CR34 Wollenstein-Betech, Cassandras, Paschalidis (CR57) 2020; 142 CR32 CR31 CR30 Tsunoda, Shinya, Suzuki (CR127) 2011; 16 Chavan, Samant, Bapat, Chowdhary (CR84) 2015; 7 Vaid (CR61) 2020; 22 Holmgren, Apathy, Adler-Milstein (CR85) 2020; 27 Xuanyang, Yuchang, Shouhong, Xi (CR115) 2005; 2005 Biswas, Sinha, Purakayastha, Marbaniang (CR119) 2014; 9 Mei (CR41) 2020; 26 Bates, Heitmueller, Kakad, Saria (CR89) 2018; 7 CR49 CR46 CR45 CR44 Bilinski, Emanuel (CR1) 2020; 324 Badillo (CR5) 2020; 107 Bai, Jin (CR90) 2005; 26 Fong, Li, Dey, Crespo, Herrera-Viedma (CR14) 2020; 6 Tricco (CR3) 2018; 169 Watson (CR12) 2021; 17 López Pineda (CR99) 2015; 58 CR51 CR50 Collier, Son, Nguyen (CR104) 2011; 2 CR131 Jain, Kumar (CR106) 2018; 45 Biswas, Sinha, Baruah, Purkayastha (CR120) 2014; 3 Randhawa (CR82) 2020; 15 Ibrahim (CR17) 2020; 16 Raghav, Dhavachelvan (CR122) 2019; 36 Jin (CR48) 2021; 98 CR69 CR68 CR67 CR66 Wagner (CR47) 2020; 9 CR63 Mehta, Julaiti, Griffin, Kumara (CR18) 2020; 6 Mei (CR92) 2014; 22 Laguzet, Turinici (CR128) 2015; 77 Mansiaux, Carrat (CR121) 2014; 14 Berry (CR88) 2018; 15 Ng (CR110) 2005; 32 CR79 CR78 CR77 CR76 CR75 Lopez (CR93) 2015; 415 CR74 CR114 Heldt (CR59) 2021; 11 CR73 CR72 CR112 CR70 Ayyoubzadeh, Ayyoubzadeh, Zahedi, Ahmadi, Kalhori (CR7) 2020; 6 CR118 CR2 Tessmer, Ito, Omori (CR95) 2018; 9 CR6 Imran (CR33) 2020; 20 CR8 Brinati (CR42) 2020; 44 CR9 Ng, Chong, Kaw (CR109) 2005; 5 Gong (CR55) 2020; 71 CR87 CR86 CR124 CR125 Gudbjartsson (CR83) 2020; 382 CR81 CR80 Bi, Goodman, Kaminsky, Lessler (CR4) 2019; 188 Das, Mishra, Gopalan (CR58) 2020; 8 Signorini, Segre, Polgreen (CR103) 2011; 6 CR129 Ng, Chong (CR111) 2006; 30 Zoabi, Deri-Rozov, Shomron (CR43) 2021; 4 CR19 CR16 CR15 Chen, Liao (CR130) 2008; 136 CR13 CR11 Quek, Irawan, Ng (CR113) 2010; 37 CR10 CR98 CR97 CR96 (CR126) 2020; 27 CR91 Xie (CR116) 2006; 3755 Al-Najjar, Al-Rousan (CR65) 2020; 24 Wynants (CR36) 2020; 369 Shoer (CR53) 2021; 2 Pourhomayoun, Shakibi (CR54) 2021; 20 Barda (CR64) 2020; 11 CR29 CR28 CR27 CR26 Martin (CR52) 2020; 10 CR25 CR24 Hu (CR60) 2020; 49 CR23 CR22 Feng (CR40) 2021; 9 Bates, Auerbach, Schulam, Wright, Saria (CR123) 2020; 172 CR21 CR20 CR102 CR100 CR101 Al-garadi, Khan, Varathan, Mujtaba, Al-Kabsi (CR107) 2016; 62 Yadaw (CR62) 2020; 2 CR108 Yao, Dwyer, Summers, Mollura (CR117) 2011; 18 A Martin (459_CR52) 2020; 10 A Imran (459_CR33) 2020; 20 MA Al-garadi (459_CR107) 2016; 62 459_CR34 459_CR31 459_CR32 459_CR30 S Jin (459_CR48) 2021; 98 N Collier (459_CR104) 2011; 2 K Tsunoda (459_CR127) 2011; 16 AJ Holmgren (459_CR85) 2020; 27 S Badillo (459_CR5) 2020; 107 459_CR39 XG Jiang (459_CR56) 2020; 63 HL Tessmer (459_CR95) 2018; 9 459_CR37 459_CR38 459_CR35 IHME COVID-19 Forecasting Team. (459_CR126) 2020; 27 R Chavan (459_CR84) 2015; 7 VK Jain (459_CR105) 2015; 70 J Gong (459_CR55) 2020; 71 A Bilinski (459_CR1) 2020; 324 A López Pineda (459_CR99) 2015; 58 S Shoer (459_CR53) 2021; 2 D Brinati (459_CR42) 2020; 44 AK Das (459_CR58) 2020; 8 S Mei (459_CR92) 2014; 22 N Barda (459_CR64) 2020; 11 EYK Ng (459_CR109) 2005; 5 459_CR44 459_CR45 459_CR2 AS Yadaw (459_CR62) 2020; 2 M Mehta (459_CR18) 2020; 6 459_CR49 459_CR46 SM Ayyoubzadeh (459_CR7) 2020; 6 459_CR100 459_CR6 459_CR8 459_CR101 459_CR9 459_CR102 S Li (459_CR71) 2020; 17 GS Randhawa (459_CR82) 2020; 15 459_CR51 459_CR50 SJ Fong (459_CR14) 2020; 6 FS Heldt (459_CR59) 2021; 11 X Xuanyang (459_CR115) 2005; 2005 YP Bai (459_CR90) 2005; 26 H Al-Najjar (459_CR65) 2020; 24 X Mei (459_CR41) 2020; 26 459_CR66 459_CR67 459_CR63 XY Xie (459_CR116) 2006; 3755 T Wagner (459_CR47) 2020; 9 RS Raghav (459_CR122) 2019; 36 459_CR68 459_CR69 459_CR125 GL Watson (459_CR12) 2021; 17 459_CR124 459_CR70 M Pourhomayoun (459_CR54) 2021; 20 459_CR77 459_CR78 459_CR75 459_CR76 SC Chen (459_CR130) 2008; 136 459_CR73 459_CR74 459_CR72 459_CR118 C Quek (459_CR113) 2010; 37 SK Biswas (459_CR119) 2014; 9 459_CR79 L Laguzet (459_CR128) 2015; 77 459_CR114 459_CR112 Y Mansiaux (459_CR121) 2014; 14 EYK Ng (459_CR110) 2005; 32 459_CR80 459_CR81 C Hu (459_CR60) 2020; 49 459_CR86 459_CR87 DF Gudbjartsson (459_CR83) 2020; 382 KB Aviso (459_CR94) 2018; 128 459_CR108 Y Zoabi (459_CR43) 2021; 4 D Lopez (459_CR93) 2015; 415 J Yao (459_CR117) 2011; 18 SK Biswas (459_CR120) 2014; 3 459_CR91 A Vaid (459_CR61) 2020; 22 459_CR11 A Signorini (459_CR103) 2011; 6 459_CR97 VK Jain (459_CR106) 2018; 45 EYK Ng (459_CR111) 2006; 30 459_CR10 L Wynants (459_CR36) 2020; 369 S Wollenstein-Betech (459_CR57) 2020; 142 459_CR98 459_CR96 Q Bi (459_CR4) 2019; 188 459_CR19 459_CR15 459_CR16 459_CR13 C Feng (459_CR40) 2021; 9 K Berry (459_CR88) 2018; 15 459_CR131 MR Ibrahim (459_CR17) 2020; 16 459_CR22 459_CR23 459_CR20 DW Bates (459_CR89) 2018; 7 459_CR21 AC Tricco (459_CR3) 2018; 169 459_CR129 459_CR28 459_CR29 459_CR26 459_CR27 DW Bates (459_CR123) 2020; 172 459_CR24 459_CR25 |
| References_xml | – ident: CR45 – ident: CR22 – ident: CR97 – ident: CR68 – ident: CR74 – ident: CR39 – ident: CR16 – volume: 2 start-page: e516 year: 2020 end-page: e525 ident: CR62 article-title: Clinical features of COVID-19 mortality: development and validation of a clinical prediction model publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30217-X – ident: CR51 – volume: 16 start-page: 1 year: 2011 end-page: 4 ident: CR127 article-title: Investigation of efficient protection from an influenza pandemic using CARMS publication-title: Artif. Life Robot. doi: 10.1007/s10015-010-0874-8 – volume: 32 start-page: 93 year: 2005 end-page: 97 ident: CR110 article-title: Is thermal scanner losing its bite in mass screening of fever due to SARS? publication-title: Med. Phys. doi: 10.1118/1.1819532 – ident: CR80 – ident: CR77 – ident: CR8 – volume: 5 start-page: 165 year: 2005 end-page: 190 ident: CR109 article-title: Classification of human facial and aural temperature using neural networks and IR fever scanner: a responsible second look publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519405001370 – ident: CR25 – volume: 62 start-page: 1 year: 2016 end-page: 11 ident: CR107 article-title: Using online social networks to track a pandemic: a systematic review publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2016.05.005 – ident: CR129 – ident: CR101 – volume: 6 start-page: e19467 year: 2011 ident: CR103 article-title: The use of Twitter to track levels of disease activity and public concern in the U.S. during the Influenza A H1N1 Pandemic publication-title: PLoS ONE doi: 10.1371/journal.pone.0019467 – ident: CR19 – volume: 22 start-page: e24018 year: 2020 ident: CR61 article-title: Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: Model development and validation publication-title: J. Med. Internet Res. doi: 10.2196/24018 – volume: 188 start-page: 2222 year: 2019 end-page: 2239 ident: CR4 article-title: What is machine learning? A primer for the epidemiologist publication-title: Am. J. Epidemiol. – volume: 20 start-page: 100378 year: 2020 ident: CR33 article-title: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app publication-title: Inf. Med. Unlocked doi: 10.1016/j.imu.2020.100378 – ident: CR11 – volume: 3755 start-page: 282 year: 2006 end-page: 294 ident: CR116 article-title: Mining X-ray images of SARS patients publication-title: Data Min. Theory Methodol. Tech. Appl. – ident: CR112 – volume: 7 start-page: 70 year: 2015 end-page: 75 ident: CR84 article-title: Protein modeling and docking of curcurin against neuraminidase, hemagglutinin proteins of pandemic influenza H1N1/2009 publication-title: J. Pharm. Sci. – volume: 9 start-page: 201 year: 2021 ident: CR40 article-title: A novel artificial intelligence-assisted triage tool to aid in the diagnosis of suspected COVID-19 pneumonia cases in fever clinics publication-title: Ann Transl Med doi: 10.21037/atm-20-3073 – ident: CR100 – volume: 70 start-page: 801 year: 2015 end-page: 807 ident: CR105 article-title: An effective approach to track levels of influenza-A (H1N1) pandemic in India using twitter publication-title: Procedia Computer Sci. doi: 10.1016/j.procs.2015.10.120 – ident: CR66 – ident: CR91 – ident: CR72 – volume: 107 start-page: 871 year: 2020 end-page: 885 ident: CR5 article-title: An introduction to machine learning publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1796 – volume: 18 start-page: 306 year: 2011 end-page: 314 ident: CR117 article-title: Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification publication-title: Acad. Radiol. doi: 10.1016/j.acra.2010.11.013 – ident: CR30 – ident: CR10 – ident: CR6 – ident: CR86 – ident: CR63 – ident: CR27 – volume: 98 start-page: 106897 year: 2021 ident: CR48 article-title: AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106897 – ident: CR108 – ident: CR69 – ident: CR44 – volume: 22 start-page: 264 year: 2014 end-page: 273 ident: CR92 article-title: Individual decision making can drive epidemics: a fuzzy cognitive map study publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2251638 – volume: 30 start-page: 330 year: 2006 end-page: 337 ident: CR111 article-title: ANN-based mapping of febrile subjects in mass thermogram screening: facts and myths publication-title: J. Med. Eng. Technol. doi: 10.1080/03091900500225136 – ident: CR38 – volume: 136 start-page: 1035 year: 2008 end-page: 1045 ident: CR130 article-title: Modelling control measures to reduce the impact of pandemic influenza among schoolchildren publication-title: Epidemiol. Infect. doi: 10.1017/S0950268807009284 – volume: 415 start-page: 195 year: 2015 end-page: 208 ident: CR93 article-title: Assessment of vaccination strategies using fuzzy multi-criteria decision making publication-title: Proc. Fifth Int. Conf. Fuzzy Neuro Comput. – volume: 36 start-page: 4361 year: 2019 end-page: 4373 ident: CR122 article-title: Bigdata fog based cyber physical system for classifying, identifying and prevention of SARS disease publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169992 – ident: CR13 – volume: 58 start-page: 60 year: 2015 end-page: 69 ident: CR99 article-title: Comparison of machine learning classifiers for influenza detection from emergency department free-text reports publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2015.08.019 – volume: 16 start-page: e0246120 year: 2020 ident: CR17 article-title: Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe publication-title: PLoS ONE doi: 10.1371/journal.pone.0246120 – volume: 8 start-page: e10083 year: 2020 ident: CR58 article-title: Predicting CoVID-19 community mortality risk using machine learning and development of an online prognostic tool publication-title: PeerJ doi: 10.7717/peerj.10083 – ident: CR114 – volume: 71 start-page: 833 year: 2020 end-page: 840 ident: CR55 article-title: A tool for early prediction of severe Coronavirus Disease 2019 (COVID-19): a multicenter study using the risk nomogram in Wuhan and Guangdong, China publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa443 – volume: 15 start-page: e0232391 year: 2020 ident: CR82 article-title: Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study publication-title: PLoS ONE doi: 10.1371/journal.pone.0232391 – volume: 17 start-page: 2032 year: 2020 ident: CR71 article-title: The impact of COVID-19 epidemic declaration on psychological consequences: a study on active Weibo users publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17062032 – volume: 2 year: 2011 ident: CR104 article-title: OMG U got flu? Analysis of shared health messages for bio-surveillance publication-title: J. Biomed. Semant. doi: 10.1186/2041-1480-2-S5-S9 – volume: 26 start-page: 1224 year: 2020 end-page: 1228 ident: CR41 article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0931-3 – ident: CR24 – ident: CR70 – ident: CR125 – ident: CR102 – volume: 44 start-page: 1 year: 2020 end-page: 12 ident: CR42 article-title: Detection of COVID-19 infection from routine blood exams with machine learning: A feasibility study publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01597-4 – volume: 9 start-page: 57 year: 2014 end-page: 70 ident: CR119 article-title: Hybrid expert system using case based reasoning and neural network for classification publication-title: Biol. Inspired Cogn. Archit. – ident: CR49 – ident: CR87 – volume: 14 start-page: 1 year: 2014 end-page: 10 ident: CR121 article-title: Detection of independent associations in a large epidemiologic dataset: a comparison of random forests, boosted regression trees, conventional and penalized logistic regression for identifying independent factors associated with H1N1pdm influenza infections publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-99 – ident: CR131 – volume: 6 start-page: 132 year: 2020 end-page: 140 ident: CR14 article-title: Finding an accurate early forecasting model from small dataset: a case of 2019-nCoV novel coronavirus outbreak publication-title: Int. J. Interact. Multimed. Artif. Intell. – volume: 3 start-page: 1 year: 2014 end-page: 19 ident: CR120 article-title: Intelligent decision support system of swine flu prediction using novel case classification algorithm publication-title: Int J. Knowl. Eng. Data Min. doi: 10.1504/IJKEDM.2014.066219 – volume: 172 start-page: S137 year: 2020 end-page: S144 ident: CR123 article-title: Reporting and implementing interventions involving machine learning and artificial intelligence publication-title: Ann. Intern. Med. doi: 10.7326/M19-0872 – volume: 9 start-page: 343 year: 2018 ident: CR95 article-title: Can machines learn respiratory virus epidemiology?: A comparative study of likelihood-free methods for the estimation of epidemiological dynamics publication-title: Front. Microbiol doi: 10.3389/fmicb.2018.00343 – ident: CR35 – volume: 63 start-page: 537 year: 2020 end-page: 551 ident: CR56 article-title: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity publication-title: Comput. Mater. Contin. – ident: CR29 – volume: 6 start-page: e19446 year: 2020 ident: CR18 article-title: Early stage machine learning–based prediction of US county vulnerability to the COVID-19 pandemic: machine learning approach publication-title: JMIR Public Health Surveill. doi: 10.2196/19446 – volume: 77 start-page: 1955 year: 2015 end-page: 1984 ident: CR128 article-title: Individual vaccination as Nash Equilibrium in a SIR model with application to the 2009-2010 Influenza A (H1N1) Epidemic in France publication-title: Bull. Math. Biol. doi: 10.1007/s11538-015-0111-7 – volume: 2005 start-page: 7459 year: 2005 end-page: 7462 ident: CR115 article-title: Computer aided detection of SARS based on radiographs data mining. In publication-title: Conf. Proc. IEEE Eng. Med Biol. Soc. – ident: CR21 – ident: CR46 – volume: 26 start-page: 559 year: 2005 end-page: 569 ident: CR90 article-title: Prediction of SARS epidemic by BP neural networks with online prediction strategy publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.01.064 – ident: CR96 – ident: CR67 – ident: CR75 – ident: CR15 – volume: 4 start-page: 1 year: 2021 end-page: 5 ident: CR43 article-title: Machine learning-based prediction of COVID-19 diagnosis based on symptoms publication-title: NPJ Digit Med. doi: 10.1038/s41746-020-00372-6 – ident: CR50 – volume: 20 start-page: 100178 year: 2021 ident: CR54 article-title: Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making publication-title: Smart Health doi: 10.1016/j.smhl.2020.100178 – volume: 11 year: 2021 ident: CR59 article-title: Early risk assessment for COVID-19 patients from emergency department data using machine learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-83784-y – volume: 6 start-page: e18828 year: 2020 ident: CR7 article-title: Predicting COVID-19 incidence through analysis of Google Trends data in Iran: data mining and deep learning pilot study publication-title: JMIR Public Health Surveill. doi: 10.2196/18828 – ident: CR9 – volume: 10 start-page: 1 year: 2020 end-page: 7 ident: CR52 article-title: An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot publication-title: Sci. Rep. doi: 10.1038/s41598-020-75912-x – volume: 37 start-page: 3040 year: 2010 end-page: 3054 ident: CR113 article-title: A novel brain-inspired neural cognitive approach to SARS thermal image analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.028 – ident: CR32 – volume: 324 start-page: 2100 year: 2020 end-page: 2102 ident: CR1 article-title: COVID-19 and excess all-cause mortality in the US and 18 comparison countries publication-title: JAMA doi: 10.1001/jama.2020.20717 – volume: 2 start-page: 196 year: 2021 end-page: 208 ident: CR53 article-title: A prediction model to prioritize individuals for a SARS-CoV-2 test built from national symptom surveys publication-title: Med doi: 10.1016/j.medj.2020.10.002 – ident: CR78 – ident: CR81 – volume: 7 start-page: 211 year: 2018 end-page: 216 ident: CR89 article-title: Why policymakers should care about “big data” in healthcare publication-title: Health Policy Technol. doi: 10.1016/j.hlpt.2018.04.006 – ident: CR26 – volume: 27 start-page: 1306 year: 2020 end-page: 1309 ident: CR85 article-title: Barriers to hospital electronic public health reporting and implications for the COVID-19 Pandemic publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa112 – volume: 45 start-page: 8 year: 2018 end-page: 14 ident: CR106 article-title: Rough set based intelligent approach for identification of H1N1 suspect using social media publication-title: Kuwait J. Sci. – volume: 169 start-page: 467 year: 2018 end-page: 473 ident: CR3 article-title: PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation publication-title: Ann. Intern. Med. doi: 10.7326/M18-0850 – volume: 27 start-page: 94 year: 2020 end-page: 105 ident: CR126 article-title: Modeling COVID-19 scenarios for the United States publication-title: Nat. Med. doi: 10.1038/s41591-020-1132-9 – ident: CR2 – ident: CR37 – volume: 369 start-page: m1328 year: 2020 ident: CR36 article-title: Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal publication-title: BMJ doi: 10.1136/bmj.m1328 – ident: CR79 – volume: 17 start-page: e1008837 year: 2021 ident: CR12 article-title: Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008837 – volume: 11 year: 2020 ident: CR64 article-title: Developing a COVID-19 mortality risk prediction model when individual-level data are not available publication-title: Nat. Commun. doi: 10.1038/s41467-020-18297-9 – ident: CR98 – ident: CR23 – volume: 24 start-page: 3400 year: 2020 end-page: 3403 ident: CR65 article-title: A classifier prediction model to predict the status of Coronavirus COVID-19 patients in South Korea publication-title: Eur. Rev. Med. Pharmacol Sci. – ident: CR124 – ident: CR73 – volume: 15 start-page: 244 year: 2018 end-page: 258 ident: CR88 article-title: The economic case for a pandemic fund publication-title: EcoHealth doi: 10.1007/s10393-018-1338-1 – volume: 9 start-page: e58227 year: 2020 ident: CR47 article-title: Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis publication-title: eLife doi: 10.7554/eLife.58227 – volume: 128 start-page: 250 year: 2018 end-page: 258 ident: CR94 article-title: Allocating human resources in organizations operating under crisis conditions: A fuzzy input-output optimization modeling framework publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2016.07.009 – ident: CR31 – volume: 49 start-page: 1918 year: 2020 end-page: 1929 ident: CR60 article-title: Early prediction of mortality risk among patients with severe COVID-19, using machine learning publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyaa171 – ident: CR118 – ident: CR34 – volume: 142 start-page: 104258 year: 2020 ident: CR57 article-title: Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: hospitalizations, mortality, and the need for an ICU or ventilator publication-title: Med Inf. doi: 10.1016/j.ijmedinf.2020.104258 – ident: CR76 – volume: 382 start-page: 2302 year: 2020 end-page: 2315 ident: CR83 article-title: Spread of SARS-CoV-2 in the Icelandic population publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2006100 – ident: CR28 – ident: CR20 – ident: 459_CR13 doi: 10.1101/2020.04.24.20078477 – volume: 107 start-page: 871 year: 2020 ident: 459_CR5 publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1796 – ident: 459_CR75 doi: 10.1101/2020.05.06.079798 – ident: 459_CR22 doi: 10.1101/2020.04.06.20039909 – volume: 4 start-page: 1 year: 2021 ident: 459_CR43 publication-title: NPJ Digit Med. doi: 10.1038/s41746-020-00372-6 – volume: 36 start-page: 4361 year: 2019 ident: 459_CR122 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169992 – ident: 459_CR70 doi: 10.1101/2020.04.16.20063990 – volume: 6 start-page: e19446 year: 2020 ident: 459_CR18 publication-title: JMIR Public Health Surveill. doi: 10.2196/19446 – volume: 14 start-page: 1 year: 2014 ident: 459_CR121 publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-14-99 – volume: 324 start-page: 2100 year: 2020 ident: 459_CR1 publication-title: JAMA doi: 10.1001/jama.2020.20717 – volume: 70 start-page: 801 year: 2015 ident: 459_CR105 publication-title: Procedia Computer Sci. doi: 10.1016/j.procs.2015.10.120 – volume: 2005 start-page: 7459 year: 2005 ident: 459_CR115 publication-title: Conf. Proc. IEEE Eng. Med Biol. Soc. – ident: 459_CR27 – ident: 459_CR79 – volume: 128 start-page: 250 year: 2018 ident: 459_CR94 publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2016.07.009 – volume: 32 start-page: 93 year: 2005 ident: 459_CR110 publication-title: Med. Phys. doi: 10.1118/1.1819532 – ident: 459_CR46 doi: 10.1101/2020.03.09.20032219 – volume: 8 start-page: e10083 year: 2020 ident: 459_CR58 publication-title: PeerJ doi: 10.7717/peerj.10083 – volume: 2 start-page: e516 year: 2020 ident: 459_CR62 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30217-X – ident: 459_CR80 – volume: 77 start-page: 1955 year: 2015 ident: 459_CR128 publication-title: Bull. Math. Biol. doi: 10.1007/s11538-015-0111-7 – volume: 7 start-page: 211 year: 2018 ident: 459_CR89 publication-title: Health Policy Technol. doi: 10.1016/j.hlpt.2018.04.006 – volume: 11 year: 2020 ident: 459_CR64 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18297-9 – volume: 71 start-page: 833 year: 2020 ident: 459_CR55 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa443 – volume: 7 start-page: 70 year: 2015 ident: 459_CR84 publication-title: J. Pharm. Sci. – ident: 459_CR21 doi: 10.1101/2020.04.19.20069948 – volume: 9 start-page: 57 year: 2014 ident: 459_CR119 publication-title: Biol. Inspired Cogn. Archit. – ident: 459_CR11 doi: 10.1101/2020.04.09.20059055 – volume: 2 start-page: 196 year: 2021 ident: 459_CR53 publication-title: Med doi: 10.1016/j.medj.2020.10.002 – ident: 459_CR112 doi: 10.1007/978-3-642-13639-9_17 – volume: 2 year: 2011 ident: 459_CR104 publication-title: J. Biomed. Semant. doi: 10.1186/2041-1480-2-S5-S9 – volume: 16 start-page: 1 year: 2011 ident: 459_CR127 publication-title: Artif. Life Robot. doi: 10.1007/s10015-010-0874-8 – ident: 459_CR35 – ident: 459_CR101 – volume: 27 start-page: 1306 year: 2020 ident: 459_CR85 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa112 – volume: 6 start-page: e18828 year: 2020 ident: 459_CR7 publication-title: JMIR Public Health Surveill. doi: 10.2196/18828 – ident: 459_CR2 – volume: 16 start-page: e0246120 year: 2020 ident: 459_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0246120 – ident: 459_CR68 doi: 10.1513/AnnalsATS.202006-698OC – volume: 18 start-page: 306 year: 2011 ident: 459_CR117 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2010.11.013 – volume: 37 start-page: 3040 year: 2010 ident: 459_CR113 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.028 – ident: 459_CR129 doi: 10.1109/WSC.2011.6147834 – ident: 459_CR114 doi: 10.1007/978-981-10-3147-2_19 – ident: 459_CR20 doi: 10.1101/2020.05.05.20083436 – ident: 459_CR50 – ident: 459_CR44 doi: 10.1101/2020.04.02.20051136 – volume: 26 start-page: 1224 year: 2020 ident: 459_CR41 publication-title: Nat. Med. doi: 10.1038/s41591-020-0931-3 – volume: 172 start-page: S137 year: 2020 ident: 459_CR123 publication-title: Ann. Intern. Med. doi: 10.7326/M19-0872 – ident: 459_CR45 doi: 10.1101/2020.04.10.20061036 – ident: 459_CR29 – volume: 188 start-page: 2222 year: 2019 ident: 459_CR4 publication-title: Am. J. Epidemiol. – ident: 459_CR16 doi: 10.1101/2020.05.10.20097527 – volume: 15 start-page: 244 year: 2018 ident: 459_CR88 publication-title: EcoHealth doi: 10.1007/s10393-018-1338-1 – volume: 5 start-page: 165 year: 2005 ident: 459_CR109 publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519405001370 – volume: 15 start-page: e0232391 year: 2020 ident: 459_CR82 publication-title: PLoS ONE doi: 10.1371/journal.pone.0232391 – volume: 62 start-page: 1 year: 2016 ident: 459_CR107 publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2016.05.005 – volume: 11 year: 2021 ident: 459_CR59 publication-title: Sci. Rep. doi: 10.1038/s41598-021-83784-y – ident: 459_CR118 doi: 10.1109/HIS.2006.264917 – ident: 459_CR86 – volume: 58 start-page: 60 year: 2015 ident: 459_CR99 publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2015.08.019 – volume: 3755 start-page: 282 year: 2006 ident: 459_CR116 publication-title: Data Min. Theory Methodol. Tech. Appl. – ident: 459_CR24 – ident: 459_CR98 doi: 10.1109/BIBM.2013.6732566 – ident: 459_CR49 – ident: 459_CR66 – volume: 3 start-page: 1 year: 2014 ident: 459_CR120 publication-title: Int J. Knowl. Eng. Data Min. doi: 10.1504/IJKEDM.2014.066219 – ident: 459_CR102 doi: 10.1145/1964858.1964874 – volume: 44 start-page: 1 year: 2020 ident: 459_CR42 publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01597-4 – ident: 459_CR77 doi: 10.1101/2020.04.25.20079129 – volume: 6 start-page: e19467 year: 2011 ident: 459_CR103 publication-title: PLoS ONE doi: 10.1371/journal.pone.0019467 – ident: 459_CR81 – volume: 415 start-page: 195 year: 2015 ident: 459_CR93 publication-title: Proc. Fifth Int. Conf. Fuzzy Neuro Comput. – volume: 17 start-page: e1008837 year: 2021 ident: 459_CR12 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008837 – volume: 20 start-page: 100178 year: 2021 ident: 459_CR54 publication-title: Smart Health doi: 10.1016/j.smhl.2020.100178 – volume: 22 start-page: e24018 year: 2020 ident: 459_CR61 publication-title: J. Med. Internet Res. doi: 10.2196/24018 – volume: 22 start-page: 264 year: 2014 ident: 459_CR92 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2251638 – ident: 459_CR31 doi: 10.1101/2020.04.09.20059840 – volume: 142 start-page: 104258 year: 2020 ident: 459_CR57 publication-title: Med Inf. doi: 10.1016/j.ijmedinf.2020.104258 – ident: 459_CR23 – ident: 459_CR9 doi: 10.1101/2020.04.17.20059535 – volume: 382 start-page: 2302 year: 2020 ident: 459_CR83 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2006100 – volume: 6 start-page: 132 year: 2020 ident: 459_CR14 publication-title: Int. J. Interact. Multimed. Artif. Intell. – volume: 20 start-page: 100378 year: 2020 ident: 459_CR33 publication-title: Inf. Med. Unlocked doi: 10.1016/j.imu.2020.100378 – ident: 459_CR69 – volume: 17 start-page: 2032 year: 2020 ident: 459_CR71 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17062032 – ident: 459_CR100 doi: 10.1109/CIP.2010.5604088 – volume: 169 start-page: 467 year: 2018 ident: 459_CR3 publication-title: Ann. Intern. Med. doi: 10.7326/M18-0850 – ident: 459_CR37 doi: 10.1101/2020.04.04.20052092 – ident: 459_CR125 – ident: 459_CR72 doi: 10.1111/jir.12730 – ident: 459_CR30 doi: 10.1101/2020.04.29.20085472 – volume: 24 start-page: 3400 year: 2020 ident: 459_CR65 publication-title: Eur. Rev. Med. Pharmacol Sci. – ident: 459_CR32 – volume: 63 start-page: 537 year: 2020 ident: 459_CR56 publication-title: Comput. Mater. Contin. – ident: 459_CR67 doi: 10.2196/21801 – ident: 459_CR96 doi: 10.5220/0003780600610070 – volume: 45 start-page: 8 year: 2018 ident: 459_CR106 publication-title: Kuwait J. Sci. – volume: 30 start-page: 330 year: 2006 ident: 459_CR111 publication-title: J. Med. Eng. Technol. doi: 10.1080/03091900500225136 – ident: 459_CR76 doi: 10.1101/2020.04.03.020602 – ident: 459_CR19 – volume: 136 start-page: 1035 year: 2008 ident: 459_CR130 publication-title: Epidemiol. Infect. doi: 10.1017/S0950268807009284 – ident: 459_CR78 – ident: 459_CR26 – volume: 49 start-page: 1918 year: 2020 ident: 459_CR60 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyaa171 – ident: 459_CR38 doi: 10.1101/2020.05.18.20105841 – ident: 459_CR91 doi: 10.1142/9789812701534_0111 – volume: 9 start-page: 201 year: 2021 ident: 459_CR40 publication-title: Ann Transl Med doi: 10.21037/atm-20-3073 – ident: 459_CR63 doi: 10.1101/2020.03.25.20043331 – ident: 459_CR74 doi: 10.1101/2020.03.30.014555 – ident: 459_CR87 – ident: 459_CR6 – volume: 98 start-page: 106897 year: 2021 ident: 459_CR48 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106897 – ident: 459_CR8 doi: 10.1101/2020.04.03.20052084 – ident: 459_CR124 – ident: 459_CR15 doi: 10.3390/jcm9030674 – volume: 369 start-page: m1328 year: 2020 ident: 459_CR36 publication-title: BMJ doi: 10.1136/bmj.m1328 – ident: 459_CR25 – volume: 26 start-page: 559 year: 2005 ident: 459_CR90 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2005.01.064 – ident: 459_CR73 – volume: 9 start-page: e58227 year: 2020 ident: 459_CR47 publication-title: eLife doi: 10.7554/eLife.58227 – ident: 459_CR39 doi: 10.1101/2020.05.14.20102533 – ident: 459_CR10 doi: 10.1101/2020.04.19.20068072 – ident: 459_CR34 – ident: 459_CR131 doi: 10.1093/cid/ciaa1383 – ident: 459_CR97 doi: 10.3115/1614025.1614029 – ident: 459_CR51 – ident: 459_CR108 doi: 10.1109/WH.2016.7764557 – volume: 10 start-page: 1 year: 2020 ident: 459_CR52 publication-title: Sci. Rep. doi: 10.1038/s41598-020-75912-x – ident: 459_CR28 – volume: 9 start-page: 343 year: 2018 ident: 459_CR95 publication-title: Front. Microbiol doi: 10.3389/fmicb.2018.00343 – volume: 27 start-page: 94 year: 2020 ident: 459_CR126 publication-title: Nat. Med. doi: 10.1038/s41591-020-1132-9 |
| SSID | ssj0002048946 |
| Score | 2.4193218 |
| SecondaryResourceType | review_article |
| Snippet | Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage... Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 96 |
| SubjectTerms | 692/699/255/2514 692/700/1538 692/700/478/174 Artificial intelligence Biomedicine Biotechnology COVID-19 Digital technology Health informatics Medicine Medicine & Public Health Pandemics Public health Review Review Article |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgJ8SgUAgUZiRtEzcPxgwsCRMUBKg4g7c1yHAdWosmS7CLx75lxvCnLoxeOSZzIznyeGc8T4InjKJZlYVMUBjblqhGp9XjmEYq7omp4a70KzSbkyYlaLPSHaHAbY1jllicGRt30jmzkR0WFkpMLFIcvVt9S6hpF3tXYQuMiXKK22YRzuZCzjYWK0mouYq5MVqqjkaMGTlG3eIZGZUanakcehbL9f9M1_wyZ_M1vGsTR8Y3_XchNuB4VUfZyQs4tuOC7fbjyPrra9-HaZNBjU57Sbdi884j60NOIEdymyhNs-UtJT4YKMFuRVfoUX1wNPkS3Ey9leJMNUziuf84so2QY-tKUOcPWPVuGjOH2B0OuwjajZw7l63gHPh2_-fj6bRp7NqQOj0LrtEV2mSN9LVdce9QG8cSU26pSuOYy04VshdBNbmuN0Klb3dhKNo0VStZ5pq0tD2Cv6zt_D1iN-FJ566mZEpdS1S1elLzkrq6LpqwTyLeUMy4WNKe-Gl9NcKyXykzUNkhtE6htVAJP53dWUzmPc0e_IkDMI6kUd7jRD59N3NlGWu-4xGlWpeVOWcpd1nVTFV5l3AqZwOEWBybyh9GcgSCBx_Nj3NnkrrGd7zc0Bn9fLvCAmsDdCX3zTFD3IEVNJyB3cLkz1d0n3fJLqB5OFfB0JhJ4tkXw2bT-_Svun7-KB3C1CJtKoFw_hL31sPEP4bL7vl6Ow6OwK38CW_1ASQ priority: 102 providerName: ProQuest |
| Title | Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases |
| URI | https://link.springer.com/article/10.1038/s41746-021-00459-8 https://www.ncbi.nlm.nih.gov/pubmed/34112939 https://www.proquest.com/docview/2539746028 https://www.proquest.com/docview/2540516625 https://pubmed.ncbi.nlm.nih.gov/PMC8192906 https://doaj.org/article/7aec47fe253a4c8a80229bd52e804a67 |
| Volume | 4 |
| WOSCitedRecordID | wos000663661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7X7 dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7RV dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: PIMPY dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BghAXxJvAbmUkbhBtHo4fe2PRrkBiq2oFqJws23G0QZBWTYvEv9-xnZZ2eV24REriVu48PDOdmW8AXliKZpkXOkVjoFMqapZqhzEPE9QWVU0b7UQYNsHHYzGdysnWqC9fExbhgSPhDrl2lvLGFVWpqRXat4ZKU1eFExnVLPSRZ1xuBVNfQnqNCknZ0CWTleKwp-h7-3pbjJ7RjZGp2LFEAbD_d17mr8WSVzKmwRCd3oU7gwdJXsed34NrrrsPt86GHPkDWL13KJ5h-BDxPy9CRJB2C3uToKdK5v7v42-tJfOFC2Xo_tAj-JAsYt2sOyKa-K4V_02xxYUsZ6QNrb3ND4LqT1a9IxYNYf8QPp6efHjzNh2GK6QWY5Zl2uC5liMjNBVUOnTbMLTJdVUJDDDKTBa8YUzWuTYSeWwaWeuK17Vmgps8k1qXj2Cvm3XuCRCDgiByZBGeDpRzYRq8KWlJrTFFXZoE8jWhlR2Qx_0AjK8qZMBLoSJzFDJHBeYokcDLzWfmEXfjr6uPPf82Kz1mdniAkqQGSVL_kqQE9tfcV4Mi9woXI0EYemEJPN-8RhX0eRXdudnKr0Hy5QwjyQQeR2HZ7ASdBO9RyQT4jhjtbHX3TddeBJhvD1UnM5bAq7XA_dzWn0nx9H-Q4hncLoKmMDTT-7C3XKzcAdy035dtvxjBdX7-yV-nPFzFCG4cn4wn56OghHg3eXc2-XwJUD4zfg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUwRIiKVsgQJGghNEzeJ4QUKIreqoM6M5FKk9GSdxYCTIDMkMqH-K38izs5Rh6a0Hjkkcy3G-995n-y0AjzOKZplH2kdjoH0qcuZrg2seJmgWJTkttBGu2ASfTMThoZxuwI8uFsa6VXY60SnqfJ7ZPfKdKEHLSRmaw5eLr76tGmVPV7sSGg0s9s3xd1yy1S-Gb_H_Pomi3XcHb_b8tqqAnyFZX_oFCnSII9BUUGmQryCnD3WSCOw-DmTEC8ZkHupU4selhcx1wvNcM8HTMJBax9jvOdikCPZgAJvT4Xh61O_q2DS4krI2OieIxU5NkfNbP19ctSN9kr5Ys4CuUMDf2O2fTpq_ndQ6A7h79X-bumtwpaXa5FUjG9dhw5RbcGHcOhNsweVmy5I0kVg3YDUyKNeuahOxAtXk1iCzX5KWEqT4ZGH33b_gi4vKOP99ay0I3iRV43BsnhNNbLiP7amJDSLLOZm5mOjimKDeJKvakAwZRH0T3p_JJNyCQTkvzR0gKUqQCAtjy0VRzkVa4EVMY5qlaZTHqQdhhxSVtSnbbeWQz8q5DsRCNehSiC7l0KWEB0_7dxZNwpJTW7-2AOxb2mTj7sa8-qha3aW4NhnlOMwk1jQT2kZnyzRPIiMCqhn3YLvDnWo1YK1OQOfBo_4x6i57IKVLM1_ZNjh9IcMluAe3G7T3I0F2Zamo9ICvycHaUNeflLNPLj-6zfEnA-bBs05iTob176m4e_pXPISLewfjkRoNJ_v34FLkBJohi9mGwbJamftwPvu2nNXVg1YnEPhw1rL0EwlDn8w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+artificial+intelligence+for+pandemic+preparedness+and+response%3A+a+scoping+review+to+identify+key+use+cases&rft.jtitle=NPJ+digital+medicine&rft.au=Syrowatka%2C+Ania&rft.au=Kuznetsova%2C+Masha&rft.au=Alsubai%2C+Ava&rft.au=Beckman%2C+Adam+L&rft.date=2021-06-10&rft.issn=2398-6352&rft.eissn=2398-6352&rft.volume=4&rft.issue=1&rft.spage=96&rft_id=info:doi/10.1038%2Fs41746-021-00459-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |