Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases

Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine Jg. 4; H. 1; S. 96 - 14
Hauptverfasser: Syrowatka, Ania, Kuznetsova, Masha, Alsubai, Ava, Beckman, Adam L., Bain, Paul A., Craig, Kelly Jean Thomas, Hu, Jianying, Jackson, Gretchen Purcell, Rhee, Kyu, Bates, David W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 10.06.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2398-6352, 2398-6352
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.
AbstractList Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.
Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.
Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.
ArticleNumber 96
Author Kuznetsova, Masha
Syrowatka, Ania
Alsubai, Ava
Craig, Kelly Jean Thomas
Beckman, Adam L.
Bain, Paul A.
Hu, Jianying
Rhee, Kyu
Bates, David W.
Jackson, Gretchen Purcell
Author_xml – sequence: 1
  givenname: Ania
  orcidid: 0000-0002-7161-9770
  surname: Syrowatka
  fullname: Syrowatka, Ania
  email: asyrowatka@bwh.harvard.edu
  organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 2
  givenname: Masha
  orcidid: 0000-0001-6710-526X
  surname: Kuznetsova
  fullname: Kuznetsova, Masha
  organization: Harvard Business School
– sequence: 3
  givenname: Ava
  surname: Alsubai
  fullname: Alsubai, Ava
  organization: Division of General Internal Medicine, Brigham and Women’s Hospital
– sequence: 4
  givenname: Adam L.
  surname: Beckman
  fullname: Beckman, Adam L.
  organization: Harvard Medical School, Harvard Business School
– sequence: 5
  givenname: Paul A.
  surname: Bain
  fullname: Bain, Paul A.
  organization: Countway Library of Medicine, Harvard Medical School
– sequence: 6
  givenname: Kelly Jean Thomas
  orcidid: 0000-0002-9954-2795
  surname: Craig
  fullname: Craig, Kelly Jean Thomas
  organization: IBM Watson Health
– sequence: 7
  givenname: Jianying
  surname: Hu
  fullname: Hu, Jianying
  organization: IBM Research, Center for Computational Health
– sequence: 8
  givenname: Gretchen Purcell
  orcidid: 0000-0002-3242-8058
  surname: Jackson
  fullname: Jackson, Gretchen Purcell
  organization: IBM Watson Health, Department of Pediatric Surgery, Vanderbilt University Medical Center
– sequence: 9
  givenname: Kyu
  surname: Rhee
  fullname: Rhee, Kyu
  organization: IBM Watson Health, CVS Health
– sequence: 10
  givenname: David W.
  orcidid: 0000-0001-6268-1540
  surname: Bates
  fullname: Bates, David W.
  organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard T. H. Chan School of Public Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34112939$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpF-CALHHhErAdx7E5IKGKP5VW4gJna9aeBC9ZO9jJov32eLultD30ZMt-7-d543lenYQYsKpeMvqW0Ua9y4J1QtaUs5pS0epaPanOeKNVLZuWn9zZn1YXOW8opZwKpYV8Vp02gjGuG31WLSvcYYLBh4FAmn3vrYeR-DDjOPoBg0XSx0QmCA633pIp4QQJXcCcSTkkCfMUQ8b3BEi2cTqQEu48_iFzJN5hKNQ9-YV7smQkFjLmF9XTHsaMFzfrefXj86fvl1_r1bcvV5cfV7WVVM517xwyQAVCCY2CtkpyBm2rdCcaqnnXS6kdg7W2Fta9dtB2zoFU3ZpRDdCcV1dHrouwMVPyW0h7E8Gb64OYBnMIbUc0HaAVXY-8bUBYBYpyrteu5aioANkV1ocja1rWW3S25Eow3oPevwn-pxniziimuaayAN7cAFL8vWCezdZnW9oMAeOSDW9LQiZlqeC8ev1AuolLCqVVRdWU9JJyVVSv7lZ0W8q_3y0CfhTYFHNO2N9KGDWHKTLHKTJlisz1FJkDVT0wWT_D7OMhlR8ftzZHay7vhAHT_7Ifcf0FItjdfg
CitedBy_id crossref_primary_10_1002_jmv_70559
crossref_primary_10_3390_ijerph22040568
crossref_primary_10_21202_jdtl_2025_7
crossref_primary_10_1016_j_jshs_2023_09_010
crossref_primary_10_1097_MCC_0000000000000945
crossref_primary_10_1017_ash_2021_222
crossref_primary_10_1186_s12879_022_07219_3
crossref_primary_10_3390_ijerph22071104
crossref_primary_10_3389_fpubh_2022_1100401
crossref_primary_10_2196_44461
crossref_primary_10_1186_s43593_025_00085_x
crossref_primary_10_52645_MJHS_2024_4_07
crossref_primary_10_1007_s11846_023_00696_z
crossref_primary_10_1146_annurev_lawsocsci_050520_101947
crossref_primary_10_3390_jpm11090886
crossref_primary_10_1177_10943420231201154
crossref_primary_10_2196_40589
crossref_primary_10_3389_fpubh_2025_1613869
crossref_primary_10_1016_j_pce_2022_103163
crossref_primary_10_3390_ijerph182312447
crossref_primary_10_1371_journal_pone_0269311
crossref_primary_10_1007_s10916_024_02136_1
crossref_primary_10_1007_s12144_025_08015_3
crossref_primary_10_1080_03036758_2022_2121290
crossref_primary_10_3390_math10162927
crossref_primary_10_1016_j_puhe_2024_04_040
crossref_primary_10_3390_foods14020239
crossref_primary_10_1093_jamiaopen_ooae014
crossref_primary_10_1007_s11553_022_00984_8
crossref_primary_10_1186_s43088_022_00293_1
crossref_primary_10_3390_amh70020011
crossref_primary_10_1016_j_jtherbio_2025_104075
crossref_primary_10_1002_for_3082
crossref_primary_10_1016_j_imj_2025_100186
crossref_primary_10_1590_0102_311xen243722
crossref_primary_10_2196_49185
crossref_primary_10_1590_0102_311xpt243722
crossref_primary_10_3389_fbrio_2024_1326958
crossref_primary_10_1038_s44184_023_00046_7
crossref_primary_10_3389_frai_2023_985469
crossref_primary_10_1002_der2_241
crossref_primary_10_1371_journal_pdig_0000132
crossref_primary_10_3390_microorganisms12050988
crossref_primary_10_1038_s41467_024_55461_x
crossref_primary_10_2196_45815
crossref_primary_10_1017_cts_2023_26
crossref_primary_10_1038_s41598_022_17953_y
crossref_primary_10_1007_s12553_024_00886_z
crossref_primary_10_1590_1413_81232025306_03522025
crossref_primary_10_1007_s40121_022_00707_8
crossref_primary_10_1007_s10115_024_02192_6
crossref_primary_10_1590_1413_81232025306_03522025en
crossref_primary_10_1038_s41591_022_01981_2
crossref_primary_10_3390_info15100626
crossref_primary_10_3389_frai_2025_1623090
Cites_doi 10.1016/S2589-7500(20)30217-X
10.1007/s10015-010-0874-8
10.1118/1.1819532
10.1142/S0219519405001370
10.1016/j.jbi.2016.05.005
10.1371/journal.pone.0019467
10.2196/24018
10.1016/j.imu.2020.100378
10.21037/atm-20-3073
10.1016/j.procs.2015.10.120
10.1002/cpt.1796
10.1016/j.acra.2010.11.013
10.1016/j.asoc.2020.106897
10.1109/TFUZZ.2013.2251638
10.1080/03091900500225136
10.1017/S0950268807009284
10.3233/JIFS-169992
10.1016/j.jbi.2015.08.019
10.1371/journal.pone.0246120
10.7717/peerj.10083
10.1093/cid/ciaa443
10.1371/journal.pone.0232391
10.3390/ijerph17062032
10.1186/2041-1480-2-S5-S9
10.1038/s41591-020-0931-3
10.1007/s10916-020-01597-4
10.1186/1471-2288-14-99
10.1504/IJKEDM.2014.066219
10.7326/M19-0872
10.3389/fmicb.2018.00343
10.2196/19446
10.1007/s11538-015-0111-7
10.1016/j.chaos.2005.01.064
10.1038/s41746-020-00372-6
10.1016/j.smhl.2020.100178
10.1038/s41598-021-83784-y
10.2196/18828
10.1038/s41598-020-75912-x
10.1016/j.eswa.2009.09.028
10.1001/jama.2020.20717
10.1016/j.medj.2020.10.002
10.1016/j.hlpt.2018.04.006
10.1093/jamia/ocaa112
10.7326/M18-0850
10.1038/s41591-020-1132-9
10.1136/bmj.m1328
10.1371/journal.pcbi.1008837
10.1038/s41467-020-18297-9
10.1007/s10393-018-1338-1
10.7554/eLife.58227
10.1016/j.resconrec.2016.07.009
10.1093/ije/dyaa171
10.1016/j.ijmedinf.2020.104258
10.1056/NEJMoa2006100
10.1101/2020.04.24.20078477
10.1101/2020.05.06.079798
10.1101/2020.04.06.20039909
10.1101/2020.04.16.20063990
10.1101/2020.03.09.20032219
10.1101/2020.04.19.20069948
10.1101/2020.04.09.20059055
10.1007/978-3-642-13639-9_17
10.1513/AnnalsATS.202006-698OC
10.1109/WSC.2011.6147834
10.1007/978-981-10-3147-2_19
10.1101/2020.05.05.20083436
10.1101/2020.04.02.20051136
10.1101/2020.04.10.20061036
10.1101/2020.05.10.20097527
10.1109/HIS.2006.264917
10.1109/BIBM.2013.6732566
10.1145/1964858.1964874
10.1101/2020.04.25.20079129
10.1101/2020.04.09.20059840
10.1101/2020.04.17.20059535
10.1109/CIP.2010.5604088
10.1101/2020.04.04.20052092
10.1111/jir.12730
10.1101/2020.04.29.20085472
10.2196/21801
10.5220/0003780600610070
10.1101/2020.04.03.020602
10.1101/2020.05.18.20105841
10.1142/9789812701534_0111
10.1101/2020.03.25.20043331
10.1101/2020.03.30.014555
10.1101/2020.04.03.20052084
10.3390/jcm9030674
10.1101/2020.05.14.20102533
10.1101/2020.04.19.20068072
10.1093/cid/ciaa1383
10.3115/1614025.1614029
10.1109/WH.2016.7764557
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41746-021-00459-8
DatabaseName Springer Nature Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2398-6352
EndPage 14
ExternalDocumentID oai_doaj_org_article_7aec47fe253a4c8a80229bd52e804a67
PMC8192906
34112939
10_1038_s41746_021_00459_8
Genre Journal Article
Scoping Review
GrantInformation_xml – fundername: IBM Watson
– fundername: ;
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PPXIY
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-fdde1ae8a4849e4058621a55897430927f669d1ab9ccabf9da57dda687b109aa3
IEDL.DBID DOA
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2398-6352
IngestDate Tue Oct 14 19:02:30 EDT 2025
Tue Nov 04 01:55:50 EST 2025
Fri Sep 05 12:43:27 EDT 2025
Tue Oct 07 06:58:19 EDT 2025
Mon Jul 21 05:27:28 EDT 2025
Tue Nov 18 22:06:34 EST 2025
Sat Nov 29 02:05:38 EST 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-fdde1ae8a4849e4058621a55897430927f669d1ab9ccabf9da57dda687b109aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7161-9770
0000-0001-6710-526X
0000-0001-6268-1540
0000-0002-9954-2795
0000-0002-3242-8058
OpenAccessLink https://doaj.org/article/7aec47fe253a4c8a80229bd52e804a67
PMID 34112939
PQID 2539746028
PQPubID 5061815
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_7aec47fe253a4c8a80229bd52e804a67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192906
proquest_miscellaneous_2540516625
proquest_journals_2539746028
pubmed_primary_34112939
crossref_primary_10_1038_s41746_021_00459_8
crossref_citationtrail_10_1038_s41746_021_00459_8
springer_journals_10_1038_s41746_021_00459_8
PublicationCentury 2000
PublicationDate 2021-06-10
PublicationDateYYYYMMDD 2021-06-10
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ digital medicine
PublicationTitleAbbrev npj Digit. Med
PublicationTitleAlternate NPJ Digit Med
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Aviso (CR94) 2018; 128
Li, Wang, Xue, Zhao, Zhu (CR71) 2020; 17
Jain, Kumar (CR105) 2015; 70
CR39
CR38
CR37
Jiang (CR56) 2020; 63
CR35
CR34
Wollenstein-Betech, Cassandras, Paschalidis (CR57) 2020; 142
CR32
CR31
CR30
Tsunoda, Shinya, Suzuki (CR127) 2011; 16
Chavan, Samant, Bapat, Chowdhary (CR84) 2015; 7
Vaid (CR61) 2020; 22
Holmgren, Apathy, Adler-Milstein (CR85) 2020; 27
Xuanyang, Yuchang, Shouhong, Xi (CR115) 2005; 2005
Biswas, Sinha, Purakayastha, Marbaniang (CR119) 2014; 9
Mei (CR41) 2020; 26
Bates, Heitmueller, Kakad, Saria (CR89) 2018; 7
CR49
CR46
CR45
CR44
Bilinski, Emanuel (CR1) 2020; 324
Badillo (CR5) 2020; 107
Bai, Jin (CR90) 2005; 26
Fong, Li, Dey, Crespo, Herrera-Viedma (CR14) 2020; 6
Tricco (CR3) 2018; 169
Watson (CR12) 2021; 17
López Pineda (CR99) 2015; 58
CR51
CR50
Collier, Son, Nguyen (CR104) 2011; 2
CR131
Jain, Kumar (CR106) 2018; 45
Biswas, Sinha, Baruah, Purkayastha (CR120) 2014; 3
Randhawa (CR82) 2020; 15
Ibrahim (CR17) 2020; 16
Raghav, Dhavachelvan (CR122) 2019; 36
Jin (CR48) 2021; 98
CR69
CR68
CR67
CR66
Wagner (CR47) 2020; 9
CR63
Mehta, Julaiti, Griffin, Kumara (CR18) 2020; 6
Mei (CR92) 2014; 22
Laguzet, Turinici (CR128) 2015; 77
Mansiaux, Carrat (CR121) 2014; 14
Berry (CR88) 2018; 15
Ng (CR110) 2005; 32
CR79
CR78
CR77
CR76
CR75
Lopez (CR93) 2015; 415
CR74
CR114
Heldt (CR59) 2021; 11
CR73
CR72
CR112
CR70
Ayyoubzadeh, Ayyoubzadeh, Zahedi, Ahmadi, Kalhori (CR7) 2020; 6
CR118
CR2
Tessmer, Ito, Omori (CR95) 2018; 9
CR6
Imran (CR33) 2020; 20
CR8
Brinati (CR42) 2020; 44
CR9
Ng, Chong, Kaw (CR109) 2005; 5
Gong (CR55) 2020; 71
CR87
CR86
CR124
CR125
Gudbjartsson (CR83) 2020; 382
CR81
CR80
Bi, Goodman, Kaminsky, Lessler (CR4) 2019; 188
Das, Mishra, Gopalan (CR58) 2020; 8
Signorini, Segre, Polgreen (CR103) 2011; 6
CR129
Ng, Chong (CR111) 2006; 30
Zoabi, Deri-Rozov, Shomron (CR43) 2021; 4
CR19
CR16
CR15
Chen, Liao (CR130) 2008; 136
CR13
CR11
Quek, Irawan, Ng (CR113) 2010; 37
CR10
CR98
CR97
CR96
(CR126) 2020; 27
CR91
Xie (CR116) 2006; 3755
Al-Najjar, Al-Rousan (CR65) 2020; 24
Wynants (CR36) 2020; 369
Shoer (CR53) 2021; 2
Pourhomayoun, Shakibi (CR54) 2021; 20
Barda (CR64) 2020; 11
CR29
CR28
CR27
CR26
Martin (CR52) 2020; 10
CR25
CR24
Hu (CR60) 2020; 49
CR23
CR22
Feng (CR40) 2021; 9
Bates, Auerbach, Schulam, Wright, Saria (CR123) 2020; 172
CR21
CR20
CR102
CR100
CR101
Al-garadi, Khan, Varathan, Mujtaba, Al-Kabsi (CR107) 2016; 62
Yadaw (CR62) 2020; 2
CR108
Yao, Dwyer, Summers, Mollura (CR117) 2011; 18
A Martin (459_CR52) 2020; 10
A Imran (459_CR33) 2020; 20
MA Al-garadi (459_CR107) 2016; 62
459_CR34
459_CR31
459_CR32
459_CR30
S Jin (459_CR48) 2021; 98
N Collier (459_CR104) 2011; 2
K Tsunoda (459_CR127) 2011; 16
AJ Holmgren (459_CR85) 2020; 27
S Badillo (459_CR5) 2020; 107
459_CR39
XG Jiang (459_CR56) 2020; 63
HL Tessmer (459_CR95) 2018; 9
459_CR37
459_CR38
459_CR35
IHME COVID-19 Forecasting Team. (459_CR126) 2020; 27
R Chavan (459_CR84) 2015; 7
VK Jain (459_CR105) 2015; 70
J Gong (459_CR55) 2020; 71
A Bilinski (459_CR1) 2020; 324
A López Pineda (459_CR99) 2015; 58
S Shoer (459_CR53) 2021; 2
D Brinati (459_CR42) 2020; 44
AK Das (459_CR58) 2020; 8
S Mei (459_CR92) 2014; 22
N Barda (459_CR64) 2020; 11
EYK Ng (459_CR109) 2005; 5
459_CR44
459_CR45
459_CR2
AS Yadaw (459_CR62) 2020; 2
M Mehta (459_CR18) 2020; 6
459_CR49
459_CR46
SM Ayyoubzadeh (459_CR7) 2020; 6
459_CR100
459_CR6
459_CR8
459_CR101
459_CR9
459_CR102
S Li (459_CR71) 2020; 17
GS Randhawa (459_CR82) 2020; 15
459_CR51
459_CR50
SJ Fong (459_CR14) 2020; 6
FS Heldt (459_CR59) 2021; 11
X Xuanyang (459_CR115) 2005; 2005
YP Bai (459_CR90) 2005; 26
H Al-Najjar (459_CR65) 2020; 24
X Mei (459_CR41) 2020; 26
459_CR66
459_CR67
459_CR63
XY Xie (459_CR116) 2006; 3755
T Wagner (459_CR47) 2020; 9
RS Raghav (459_CR122) 2019; 36
459_CR68
459_CR69
459_CR125
GL Watson (459_CR12) 2021; 17
459_CR124
459_CR70
M Pourhomayoun (459_CR54) 2021; 20
459_CR77
459_CR78
459_CR75
459_CR76
SC Chen (459_CR130) 2008; 136
459_CR73
459_CR74
459_CR72
459_CR118
C Quek (459_CR113) 2010; 37
SK Biswas (459_CR119) 2014; 9
459_CR79
L Laguzet (459_CR128) 2015; 77
459_CR114
459_CR112
Y Mansiaux (459_CR121) 2014; 14
EYK Ng (459_CR110) 2005; 32
459_CR80
459_CR81
C Hu (459_CR60) 2020; 49
459_CR86
459_CR87
DF Gudbjartsson (459_CR83) 2020; 382
KB Aviso (459_CR94) 2018; 128
459_CR108
Y Zoabi (459_CR43) 2021; 4
D Lopez (459_CR93) 2015; 415
J Yao (459_CR117) 2011; 18
SK Biswas (459_CR120) 2014; 3
459_CR91
A Vaid (459_CR61) 2020; 22
459_CR11
A Signorini (459_CR103) 2011; 6
459_CR97
VK Jain (459_CR106) 2018; 45
EYK Ng (459_CR111) 2006; 30
459_CR10
L Wynants (459_CR36) 2020; 369
S Wollenstein-Betech (459_CR57) 2020; 142
459_CR98
459_CR96
Q Bi (459_CR4) 2019; 188
459_CR19
459_CR15
459_CR16
459_CR13
C Feng (459_CR40) 2021; 9
K Berry (459_CR88) 2018; 15
459_CR131
MR Ibrahim (459_CR17) 2020; 16
459_CR22
459_CR23
459_CR20
DW Bates (459_CR89) 2018; 7
459_CR21
AC Tricco (459_CR3) 2018; 169
459_CR129
459_CR28
459_CR29
459_CR26
459_CR27
DW Bates (459_CR123) 2020; 172
459_CR24
459_CR25
References_xml – ident: CR45
– ident: CR22
– ident: CR97
– ident: CR68
– ident: CR74
– ident: CR39
– ident: CR16
– volume: 2
  start-page: e516
  year: 2020
  end-page: e525
  ident: CR62
  article-title: Clinical features of COVID-19 mortality: development and validation of a clinical prediction model
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30217-X
– ident: CR51
– volume: 16
  start-page: 1
  year: 2011
  end-page: 4
  ident: CR127
  article-title: Investigation of efficient protection from an influenza pandemic using CARMS
  publication-title: Artif. Life Robot.
  doi: 10.1007/s10015-010-0874-8
– volume: 32
  start-page: 93
  year: 2005
  end-page: 97
  ident: CR110
  article-title: Is thermal scanner losing its bite in mass screening of fever due to SARS?
  publication-title: Med. Phys.
  doi: 10.1118/1.1819532
– ident: CR80
– ident: CR77
– ident: CR8
– volume: 5
  start-page: 165
  year: 2005
  end-page: 190
  ident: CR109
  article-title: Classification of human facial and aural temperature using neural networks and IR fever scanner: a responsible second look
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519405001370
– ident: CR25
– volume: 62
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR107
  article-title: Using online social networks to track a pandemic: a systematic review
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2016.05.005
– ident: CR129
– ident: CR101
– volume: 6
  start-page: e19467
  year: 2011
  ident: CR103
  article-title: The use of Twitter to track levels of disease activity and public concern in the U.S. during the Influenza A H1N1 Pandemic
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019467
– ident: CR19
– volume: 22
  start-page: e24018
  year: 2020
  ident: CR61
  article-title: Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: Model development and validation
  publication-title: J. Med. Internet Res.
  doi: 10.2196/24018
– volume: 188
  start-page: 2222
  year: 2019
  end-page: 2239
  ident: CR4
  article-title: What is machine learning? A primer for the epidemiologist
  publication-title: Am. J. Epidemiol.
– volume: 20
  start-page: 100378
  year: 2020
  ident: CR33
  article-title: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2020.100378
– ident: CR11
– volume: 3755
  start-page: 282
  year: 2006
  end-page: 294
  ident: CR116
  article-title: Mining X-ray images of SARS patients
  publication-title: Data Min. Theory Methodol. Tech. Appl.
– ident: CR112
– volume: 7
  start-page: 70
  year: 2015
  end-page: 75
  ident: CR84
  article-title: Protein modeling and docking of curcurin against neuraminidase, hemagglutinin proteins of pandemic influenza H1N1/2009
  publication-title: J. Pharm. Sci.
– volume: 9
  start-page: 201
  year: 2021
  ident: CR40
  article-title: A novel artificial intelligence-assisted triage tool to aid in the diagnosis of suspected COVID-19 pneumonia cases in fever clinics
  publication-title: Ann Transl Med
  doi: 10.21037/atm-20-3073
– ident: CR100
– volume: 70
  start-page: 801
  year: 2015
  end-page: 807
  ident: CR105
  article-title: An effective approach to track levels of influenza-A (H1N1) pandemic in India using twitter
  publication-title: Procedia Computer Sci.
  doi: 10.1016/j.procs.2015.10.120
– ident: CR66
– ident: CR91
– ident: CR72
– volume: 107
  start-page: 871
  year: 2020
  end-page: 885
  ident: CR5
  article-title: An introduction to machine learning
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.1796
– volume: 18
  start-page: 306
  year: 2011
  end-page: 314
  ident: CR117
  article-title: Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2010.11.013
– ident: CR30
– ident: CR10
– ident: CR6
– ident: CR86
– ident: CR63
– ident: CR27
– volume: 98
  start-page: 106897
  year: 2021
  ident: CR48
  article-title: AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106897
– ident: CR108
– ident: CR69
– ident: CR44
– volume: 22
  start-page: 264
  year: 2014
  end-page: 273
  ident: CR92
  article-title: Individual decision making can drive epidemics: a fuzzy cognitive map study
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2251638
– volume: 30
  start-page: 330
  year: 2006
  end-page: 337
  ident: CR111
  article-title: ANN-based mapping of febrile subjects in mass thermogram screening: facts and myths
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900500225136
– ident: CR38
– volume: 136
  start-page: 1035
  year: 2008
  end-page: 1045
  ident: CR130
  article-title: Modelling control measures to reduce the impact of pandemic influenza among schoolchildren
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268807009284
– volume: 415
  start-page: 195
  year: 2015
  end-page: 208
  ident: CR93
  article-title: Assessment of vaccination strategies using fuzzy multi-criteria decision making
  publication-title: Proc. Fifth Int. Conf. Fuzzy Neuro Comput.
– volume: 36
  start-page: 4361
  year: 2019
  end-page: 4373
  ident: CR122
  article-title: Bigdata fog based cyber physical system for classifying, identifying and prevention of SARS disease
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169992
– ident: CR13
– volume: 58
  start-page: 60
  year: 2015
  end-page: 69
  ident: CR99
  article-title: Comparison of machine learning classifiers for influenza detection from emergency department free-text reports
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2015.08.019
– volume: 16
  start-page: e0246120
  year: 2020
  ident: CR17
  article-title: Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0246120
– volume: 8
  start-page: e10083
  year: 2020
  ident: CR58
  article-title: Predicting CoVID-19 community mortality risk using machine learning and development of an online prognostic tool
  publication-title: PeerJ
  doi: 10.7717/peerj.10083
– ident: CR114
– volume: 71
  start-page: 833
  year: 2020
  end-page: 840
  ident: CR55
  article-title: A tool for early prediction of severe Coronavirus Disease 2019 (COVID-19): a multicenter study using the risk nomogram in Wuhan and Guangdong, China
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa443
– volume: 15
  start-page: e0232391
  year: 2020
  ident: CR82
  article-title: Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0232391
– volume: 17
  start-page: 2032
  year: 2020
  ident: CR71
  article-title: The impact of COVID-19 epidemic declaration on psychological consequences: a study on active Weibo users
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17062032
– volume: 2
  year: 2011
  ident: CR104
  article-title: OMG U got flu? Analysis of shared health messages for bio-surveillance
  publication-title: J. Biomed. Semant.
  doi: 10.1186/2041-1480-2-S5-S9
– volume: 26
  start-page: 1224
  year: 2020
  end-page: 1228
  ident: CR41
  article-title: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0931-3
– ident: CR24
– ident: CR70
– ident: CR125
– ident: CR102
– volume: 44
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR42
  article-title: Detection of COVID-19 infection from routine blood exams with machine learning: A feasibility study
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01597-4
– volume: 9
  start-page: 57
  year: 2014
  end-page: 70
  ident: CR119
  article-title: Hybrid expert system using case based reasoning and neural network for classification
  publication-title: Biol. Inspired Cogn. Archit.
– ident: CR49
– ident: CR87
– volume: 14
  start-page: 1
  year: 2014
  end-page: 10
  ident: CR121
  article-title: Detection of independent associations in a large epidemiologic dataset: a comparison of random forests, boosted regression trees, conventional and penalized logistic regression for identifying independent factors associated with H1N1pdm influenza infections
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-99
– ident: CR131
– volume: 6
  start-page: 132
  year: 2020
  end-page: 140
  ident: CR14
  article-title: Finding an accurate early forecasting model from small dataset: a case of 2019-nCoV novel coronavirus outbreak
  publication-title: Int. J. Interact. Multimed. Artif. Intell.
– volume: 3
  start-page: 1
  year: 2014
  end-page: 19
  ident: CR120
  article-title: Intelligent decision support system of swine flu prediction using novel case classification algorithm
  publication-title: Int J. Knowl. Eng. Data Min.
  doi: 10.1504/IJKEDM.2014.066219
– volume: 172
  start-page: S137
  year: 2020
  end-page: S144
  ident: CR123
  article-title: Reporting and implementing interventions involving machine learning and artificial intelligence
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M19-0872
– volume: 9
  start-page: 343
  year: 2018
  ident: CR95
  article-title: Can machines learn respiratory virus epidemiology?: A comparative study of likelihood-free methods for the estimation of epidemiological dynamics
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2018.00343
– ident: CR35
– volume: 63
  start-page: 537
  year: 2020
  end-page: 551
  ident: CR56
  article-title: Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity
  publication-title: Comput. Mater. Contin.
– ident: CR29
– volume: 6
  start-page: e19446
  year: 2020
  ident: CR18
  article-title: Early stage machine learning–based prediction of US county vulnerability to the COVID-19 pandemic: machine learning approach
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/19446
– volume: 77
  start-page: 1955
  year: 2015
  end-page: 1984
  ident: CR128
  article-title: Individual vaccination as Nash Equilibrium in a SIR model with application to the 2009-2010 Influenza A (H1N1) Epidemic in France
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-015-0111-7
– volume: 2005
  start-page: 7459
  year: 2005
  end-page: 7462
  ident: CR115
  article-title: Computer aided detection of SARS based on radiographs data mining. In
  publication-title: Conf. Proc. IEEE Eng. Med Biol. Soc.
– ident: CR21
– ident: CR46
– volume: 26
  start-page: 559
  year: 2005
  end-page: 569
  ident: CR90
  article-title: Prediction of SARS epidemic by BP neural networks with online prediction strategy
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.01.064
– ident: CR96
– ident: CR67
– ident: CR75
– ident: CR15
– volume: 4
  start-page: 1
  year: 2021
  end-page: 5
  ident: CR43
  article-title: Machine learning-based prediction of COVID-19 diagnosis based on symptoms
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-020-00372-6
– ident: CR50
– volume: 20
  start-page: 100178
  year: 2021
  ident: CR54
  article-title: Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2020.100178
– volume: 11
  year: 2021
  ident: CR59
  article-title: Early risk assessment for COVID-19 patients from emergency department data using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83784-y
– volume: 6
  start-page: e18828
  year: 2020
  ident: CR7
  article-title: Predicting COVID-19 incidence through analysis of Google Trends data in Iran: data mining and deep learning pilot study
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/18828
– ident: CR9
– volume: 10
  start-page: 1
  year: 2020
  end-page: 7
  ident: CR52
  article-title: An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75912-x
– volume: 37
  start-page: 3040
  year: 2010
  end-page: 3054
  ident: CR113
  article-title: A novel brain-inspired neural cognitive approach to SARS thermal image analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.028
– ident: CR32
– volume: 324
  start-page: 2100
  year: 2020
  end-page: 2102
  ident: CR1
  article-title: COVID-19 and excess all-cause mortality in the US and 18 comparison countries
  publication-title: JAMA
  doi: 10.1001/jama.2020.20717
– volume: 2
  start-page: 196
  year: 2021
  end-page: 208
  ident: CR53
  article-title: A prediction model to prioritize individuals for a SARS-CoV-2 test built from national symptom surveys
  publication-title: Med
  doi: 10.1016/j.medj.2020.10.002
– ident: CR78
– ident: CR81
– volume: 7
  start-page: 211
  year: 2018
  end-page: 216
  ident: CR89
  article-title: Why policymakers should care about “big data” in healthcare
  publication-title: Health Policy Technol.
  doi: 10.1016/j.hlpt.2018.04.006
– ident: CR26
– volume: 27
  start-page: 1306
  year: 2020
  end-page: 1309
  ident: CR85
  article-title: Barriers to hospital electronic public health reporting and implications for the COVID-19 Pandemic
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocaa112
– volume: 45
  start-page: 8
  year: 2018
  end-page: 14
  ident: CR106
  article-title: Rough set based intelligent approach for identification of H1N1 suspect using social media
  publication-title: Kuwait J. Sci.
– volume: 169
  start-page: 467
  year: 2018
  end-page: 473
  ident: CR3
  article-title: PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M18-0850
– volume: 27
  start-page: 94
  year: 2020
  end-page: 105
  ident: CR126
  article-title: Modeling COVID-19 scenarios for the United States
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1132-9
– ident: CR2
– ident: CR37
– volume: 369
  start-page: m1328
  year: 2020
  ident: CR36
  article-title: Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal
  publication-title: BMJ
  doi: 10.1136/bmj.m1328
– ident: CR79
– volume: 17
  start-page: e1008837
  year: 2021
  ident: CR12
  article-title: Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008837
– volume: 11
  year: 2020
  ident: CR64
  article-title: Developing a COVID-19 mortality risk prediction model when individual-level data are not available
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18297-9
– ident: CR98
– ident: CR23
– volume: 24
  start-page: 3400
  year: 2020
  end-page: 3403
  ident: CR65
  article-title: A classifier prediction model to predict the status of Coronavirus COVID-19 patients in South Korea
  publication-title: Eur. Rev. Med. Pharmacol Sci.
– ident: CR124
– ident: CR73
– volume: 15
  start-page: 244
  year: 2018
  end-page: 258
  ident: CR88
  article-title: The economic case for a pandemic fund
  publication-title: EcoHealth
  doi: 10.1007/s10393-018-1338-1
– volume: 9
  start-page: e58227
  year: 2020
  ident: CR47
  article-title: Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis
  publication-title: eLife
  doi: 10.7554/eLife.58227
– volume: 128
  start-page: 250
  year: 2018
  end-page: 258
  ident: CR94
  article-title: Allocating human resources in organizations operating under crisis conditions: A fuzzy input-output optimization modeling framework
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2016.07.009
– ident: CR31
– volume: 49
  start-page: 1918
  year: 2020
  end-page: 1929
  ident: CR60
  article-title: Early prediction of mortality risk among patients with severe COVID-19, using machine learning
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyaa171
– ident: CR118
– ident: CR34
– volume: 142
  start-page: 104258
  year: 2020
  ident: CR57
  article-title: Personalized predictive models for symptomatic COVID-19 patients using basic preconditions: hospitalizations, mortality, and the need for an ICU or ventilator
  publication-title: Med Inf.
  doi: 10.1016/j.ijmedinf.2020.104258
– ident: CR76
– volume: 382
  start-page: 2302
  year: 2020
  end-page: 2315
  ident: CR83
  article-title: Spread of SARS-CoV-2 in the Icelandic population
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2006100
– ident: CR28
– ident: CR20
– ident: 459_CR13
  doi: 10.1101/2020.04.24.20078477
– volume: 107
  start-page: 871
  year: 2020
  ident: 459_CR5
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.1796
– ident: 459_CR75
  doi: 10.1101/2020.05.06.079798
– ident: 459_CR22
  doi: 10.1101/2020.04.06.20039909
– volume: 4
  start-page: 1
  year: 2021
  ident: 459_CR43
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-020-00372-6
– volume: 36
  start-page: 4361
  year: 2019
  ident: 459_CR122
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169992
– ident: 459_CR70
  doi: 10.1101/2020.04.16.20063990
– volume: 6
  start-page: e19446
  year: 2020
  ident: 459_CR18
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/19446
– volume: 14
  start-page: 1
  year: 2014
  ident: 459_CR121
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-14-99
– volume: 324
  start-page: 2100
  year: 2020
  ident: 459_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2020.20717
– volume: 70
  start-page: 801
  year: 2015
  ident: 459_CR105
  publication-title: Procedia Computer Sci.
  doi: 10.1016/j.procs.2015.10.120
– volume: 2005
  start-page: 7459
  year: 2005
  ident: 459_CR115
  publication-title: Conf. Proc. IEEE Eng. Med Biol. Soc.
– ident: 459_CR27
– ident: 459_CR79
– volume: 128
  start-page: 250
  year: 2018
  ident: 459_CR94
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2016.07.009
– volume: 32
  start-page: 93
  year: 2005
  ident: 459_CR110
  publication-title: Med. Phys.
  doi: 10.1118/1.1819532
– ident: 459_CR46
  doi: 10.1101/2020.03.09.20032219
– volume: 8
  start-page: e10083
  year: 2020
  ident: 459_CR58
  publication-title: PeerJ
  doi: 10.7717/peerj.10083
– volume: 2
  start-page: e516
  year: 2020
  ident: 459_CR62
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30217-X
– ident: 459_CR80
– volume: 77
  start-page: 1955
  year: 2015
  ident: 459_CR128
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-015-0111-7
– volume: 7
  start-page: 211
  year: 2018
  ident: 459_CR89
  publication-title: Health Policy Technol.
  doi: 10.1016/j.hlpt.2018.04.006
– volume: 11
  year: 2020
  ident: 459_CR64
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18297-9
– volume: 71
  start-page: 833
  year: 2020
  ident: 459_CR55
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa443
– volume: 7
  start-page: 70
  year: 2015
  ident: 459_CR84
  publication-title: J. Pharm. Sci.
– ident: 459_CR21
  doi: 10.1101/2020.04.19.20069948
– volume: 9
  start-page: 57
  year: 2014
  ident: 459_CR119
  publication-title: Biol. Inspired Cogn. Archit.
– ident: 459_CR11
  doi: 10.1101/2020.04.09.20059055
– volume: 2
  start-page: 196
  year: 2021
  ident: 459_CR53
  publication-title: Med
  doi: 10.1016/j.medj.2020.10.002
– ident: 459_CR112
  doi: 10.1007/978-3-642-13639-9_17
– volume: 2
  year: 2011
  ident: 459_CR104
  publication-title: J. Biomed. Semant.
  doi: 10.1186/2041-1480-2-S5-S9
– volume: 16
  start-page: 1
  year: 2011
  ident: 459_CR127
  publication-title: Artif. Life Robot.
  doi: 10.1007/s10015-010-0874-8
– ident: 459_CR35
– ident: 459_CR101
– volume: 27
  start-page: 1306
  year: 2020
  ident: 459_CR85
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocaa112
– volume: 6
  start-page: e18828
  year: 2020
  ident: 459_CR7
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/18828
– ident: 459_CR2
– volume: 16
  start-page: e0246120
  year: 2020
  ident: 459_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0246120
– ident: 459_CR68
  doi: 10.1513/AnnalsATS.202006-698OC
– volume: 18
  start-page: 306
  year: 2011
  ident: 459_CR117
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2010.11.013
– volume: 37
  start-page: 3040
  year: 2010
  ident: 459_CR113
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.028
– ident: 459_CR129
  doi: 10.1109/WSC.2011.6147834
– ident: 459_CR114
  doi: 10.1007/978-981-10-3147-2_19
– ident: 459_CR20
  doi: 10.1101/2020.05.05.20083436
– ident: 459_CR50
– ident: 459_CR44
  doi: 10.1101/2020.04.02.20051136
– volume: 26
  start-page: 1224
  year: 2020
  ident: 459_CR41
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0931-3
– volume: 172
  start-page: S137
  year: 2020
  ident: 459_CR123
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M19-0872
– ident: 459_CR45
  doi: 10.1101/2020.04.10.20061036
– ident: 459_CR29
– volume: 188
  start-page: 2222
  year: 2019
  ident: 459_CR4
  publication-title: Am. J. Epidemiol.
– ident: 459_CR16
  doi: 10.1101/2020.05.10.20097527
– volume: 15
  start-page: 244
  year: 2018
  ident: 459_CR88
  publication-title: EcoHealth
  doi: 10.1007/s10393-018-1338-1
– volume: 5
  start-page: 165
  year: 2005
  ident: 459_CR109
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519405001370
– volume: 15
  start-page: e0232391
  year: 2020
  ident: 459_CR82
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0232391
– volume: 62
  start-page: 1
  year: 2016
  ident: 459_CR107
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2016.05.005
– volume: 11
  year: 2021
  ident: 459_CR59
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83784-y
– ident: 459_CR118
  doi: 10.1109/HIS.2006.264917
– ident: 459_CR86
– volume: 58
  start-page: 60
  year: 2015
  ident: 459_CR99
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2015.08.019
– volume: 3755
  start-page: 282
  year: 2006
  ident: 459_CR116
  publication-title: Data Min. Theory Methodol. Tech. Appl.
– ident: 459_CR24
– ident: 459_CR98
  doi: 10.1109/BIBM.2013.6732566
– ident: 459_CR49
– ident: 459_CR66
– volume: 3
  start-page: 1
  year: 2014
  ident: 459_CR120
  publication-title: Int J. Knowl. Eng. Data Min.
  doi: 10.1504/IJKEDM.2014.066219
– ident: 459_CR102
  doi: 10.1145/1964858.1964874
– volume: 44
  start-page: 1
  year: 2020
  ident: 459_CR42
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01597-4
– ident: 459_CR77
  doi: 10.1101/2020.04.25.20079129
– volume: 6
  start-page: e19467
  year: 2011
  ident: 459_CR103
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019467
– ident: 459_CR81
– volume: 415
  start-page: 195
  year: 2015
  ident: 459_CR93
  publication-title: Proc. Fifth Int. Conf. Fuzzy Neuro Comput.
– volume: 17
  start-page: e1008837
  year: 2021
  ident: 459_CR12
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008837
– volume: 20
  start-page: 100178
  year: 2021
  ident: 459_CR54
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2020.100178
– volume: 22
  start-page: e24018
  year: 2020
  ident: 459_CR61
  publication-title: J. Med. Internet Res.
  doi: 10.2196/24018
– volume: 22
  start-page: 264
  year: 2014
  ident: 459_CR92
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2251638
– ident: 459_CR31
  doi: 10.1101/2020.04.09.20059840
– volume: 142
  start-page: 104258
  year: 2020
  ident: 459_CR57
  publication-title: Med Inf.
  doi: 10.1016/j.ijmedinf.2020.104258
– ident: 459_CR23
– ident: 459_CR9
  doi: 10.1101/2020.04.17.20059535
– volume: 382
  start-page: 2302
  year: 2020
  ident: 459_CR83
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2006100
– volume: 6
  start-page: 132
  year: 2020
  ident: 459_CR14
  publication-title: Int. J. Interact. Multimed. Artif. Intell.
– volume: 20
  start-page: 100378
  year: 2020
  ident: 459_CR33
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2020.100378
– ident: 459_CR69
– volume: 17
  start-page: 2032
  year: 2020
  ident: 459_CR71
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17062032
– ident: 459_CR100
  doi: 10.1109/CIP.2010.5604088
– volume: 169
  start-page: 467
  year: 2018
  ident: 459_CR3
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M18-0850
– ident: 459_CR37
  doi: 10.1101/2020.04.04.20052092
– ident: 459_CR125
– ident: 459_CR72
  doi: 10.1111/jir.12730
– ident: 459_CR30
  doi: 10.1101/2020.04.29.20085472
– volume: 24
  start-page: 3400
  year: 2020
  ident: 459_CR65
  publication-title: Eur. Rev. Med. Pharmacol Sci.
– ident: 459_CR32
– volume: 63
  start-page: 537
  year: 2020
  ident: 459_CR56
  publication-title: Comput. Mater. Contin.
– ident: 459_CR67
  doi: 10.2196/21801
– ident: 459_CR96
  doi: 10.5220/0003780600610070
– volume: 45
  start-page: 8
  year: 2018
  ident: 459_CR106
  publication-title: Kuwait J. Sci.
– volume: 30
  start-page: 330
  year: 2006
  ident: 459_CR111
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900500225136
– ident: 459_CR76
  doi: 10.1101/2020.04.03.020602
– ident: 459_CR19
– volume: 136
  start-page: 1035
  year: 2008
  ident: 459_CR130
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268807009284
– ident: 459_CR78
– ident: 459_CR26
– volume: 49
  start-page: 1918
  year: 2020
  ident: 459_CR60
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyaa171
– ident: 459_CR38
  doi: 10.1101/2020.05.18.20105841
– ident: 459_CR91
  doi: 10.1142/9789812701534_0111
– volume: 9
  start-page: 201
  year: 2021
  ident: 459_CR40
  publication-title: Ann Transl Med
  doi: 10.21037/atm-20-3073
– ident: 459_CR63
  doi: 10.1101/2020.03.25.20043331
– ident: 459_CR74
  doi: 10.1101/2020.03.30.014555
– ident: 459_CR87
– ident: 459_CR6
– volume: 98
  start-page: 106897
  year: 2021
  ident: 459_CR48
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106897
– ident: 459_CR8
  doi: 10.1101/2020.04.03.20052084
– ident: 459_CR124
– ident: 459_CR15
  doi: 10.3390/jcm9030674
– volume: 369
  start-page: m1328
  year: 2020
  ident: 459_CR36
  publication-title: BMJ
  doi: 10.1136/bmj.m1328
– ident: 459_CR25
– volume: 26
  start-page: 559
  year: 2005
  ident: 459_CR90
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.01.064
– ident: 459_CR73
– volume: 9
  start-page: e58227
  year: 2020
  ident: 459_CR47
  publication-title: eLife
  doi: 10.7554/eLife.58227
– ident: 459_CR39
  doi: 10.1101/2020.05.14.20102533
– ident: 459_CR10
  doi: 10.1101/2020.04.19.20068072
– ident: 459_CR34
– ident: 459_CR131
  doi: 10.1093/cid/ciaa1383
– ident: 459_CR97
  doi: 10.3115/1614025.1614029
– ident: 459_CR51
– ident: 459_CR108
  doi: 10.1109/WH.2016.7764557
– volume: 10
  start-page: 1
  year: 2020
  ident: 459_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75912-x
– ident: 459_CR28
– volume: 9
  start-page: 343
  year: 2018
  ident: 459_CR95
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2018.00343
– volume: 27
  start-page: 94
  year: 2020
  ident: 459_CR126
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1132-9
SSID ssj0002048946
Score 2.4193218
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage...
Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms 692/699/255/2514
692/700/1538
692/700/478/174
Artificial intelligence
Biomedicine
Biotechnology
COVID-19
Digital technology
Health informatics
Medicine
Medicine & Public Health
Pandemics
Public health
Review
Review Article
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQQgJ8SgUAgUZiRtEzcPxgwsCRMUBKg4g7c1yHAdWosmS7CLx75lxvCnLoxeOSZzIznyeGc8T4InjKJZlYVMUBjblqhGp9XjmEYq7omp4a70KzSbkyYlaLPSHaHAbY1jllicGRt30jmzkR0WFkpMLFIcvVt9S6hpF3tXYQuMiXKK22YRzuZCzjYWK0mouYq5MVqqjkaMGTlG3eIZGZUanakcehbL9f9M1_wyZ_M1vGsTR8Y3_XchNuB4VUfZyQs4tuOC7fbjyPrra9-HaZNBjU57Sbdi884j60NOIEdymyhNs-UtJT4YKMFuRVfoUX1wNPkS3Ey9leJMNUziuf84so2QY-tKUOcPWPVuGjOH2B0OuwjajZw7l63gHPh2_-fj6bRp7NqQOj0LrtEV2mSN9LVdce9QG8cSU26pSuOYy04VshdBNbmuN0Klb3dhKNo0VStZ5pq0tD2Cv6zt_D1iN-FJ566mZEpdS1S1elLzkrq6LpqwTyLeUMy4WNKe-Gl9NcKyXykzUNkhtE6htVAJP53dWUzmPc0e_IkDMI6kUd7jRD59N3NlGWu-4xGlWpeVOWcpd1nVTFV5l3AqZwOEWBybyh9GcgSCBx_Nj3NnkrrGd7zc0Bn9fLvCAmsDdCX3zTFD3IEVNJyB3cLkz1d0n3fJLqB5OFfB0JhJ4tkXw2bT-_Svun7-KB3C1CJtKoFw_hL31sPEP4bL7vl6Ow6OwK38CW_1ASQ
  priority: 102
  providerName: ProQuest
Title Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases
URI https://link.springer.com/article/10.1038/s41746-021-00459-8
https://www.ncbi.nlm.nih.gov/pubmed/34112939
https://www.proquest.com/docview/2539746028
https://www.proquest.com/docview/2540516625
https://pubmed.ncbi.nlm.nih.gov/PMC8192906
https://doaj.org/article/7aec47fe253a4c8a80229bd52e804a67
Volume 4
WOSCitedRecordID wos000663661500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7X7
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7RV
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BghAXxJvAbmUkbhBtHo4fe2PRrkBiq2oFqJws23G0QZBWTYvEv9-xnZZ2eV24REriVu48PDOdmW8AXliKZpkXOkVjoFMqapZqhzEPE9QWVU0b7UQYNsHHYzGdysnWqC9fExbhgSPhDrl2lvLGFVWpqRXat4ZKU1eFExnVLPSRZ1xuBVNfQnqNCknZ0CWTleKwp-h7-3pbjJ7RjZGp2LFEAbD_d17mr8WSVzKmwRCd3oU7gwdJXsed34NrrrsPt86GHPkDWL13KJ5h-BDxPy9CRJB2C3uToKdK5v7v42-tJfOFC2Xo_tAj-JAsYt2sOyKa-K4V_02xxYUsZ6QNrb3ND4LqT1a9IxYNYf8QPp6efHjzNh2GK6QWY5Zl2uC5liMjNBVUOnTbMLTJdVUJDDDKTBa8YUzWuTYSeWwaWeuK17Vmgps8k1qXj2Cvm3XuCRCDgiByZBGeDpRzYRq8KWlJrTFFXZoE8jWhlR2Qx_0AjK8qZMBLoSJzFDJHBeYokcDLzWfmEXfjr6uPPf82Kz1mdniAkqQGSVL_kqQE9tfcV4Mi9woXI0EYemEJPN-8RhX0eRXdudnKr0Hy5QwjyQQeR2HZ7ASdBO9RyQT4jhjtbHX3TddeBJhvD1UnM5bAq7XA_dzWn0nx9H-Q4hncLoKmMDTT-7C3XKzcAdy035dtvxjBdX7-yV-nPFzFCG4cn4wn56OghHg3eXc2-XwJUD4zfg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUwRIiKVsgQJGghNEzeJ4QUKIreqoM6M5FKk9GSdxYCTIDMkMqH-K38izs5Rh6a0Hjkkcy3G-995n-y0AjzOKZplH2kdjoH0qcuZrg2seJmgWJTkttBGu2ASfTMThoZxuwI8uFsa6VXY60SnqfJ7ZPfKdKEHLSRmaw5eLr76tGmVPV7sSGg0s9s3xd1yy1S-Gb_H_Pomi3XcHb_b8tqqAnyFZX_oFCnSII9BUUGmQryCnD3WSCOw-DmTEC8ZkHupU4selhcx1wvNcM8HTMJBax9jvOdikCPZgAJvT4Xh61O_q2DS4krI2OieIxU5NkfNbP19ctSN9kr5Ys4CuUMDf2O2fTpq_ndQ6A7h79X-bumtwpaXa5FUjG9dhw5RbcGHcOhNsweVmy5I0kVg3YDUyKNeuahOxAtXk1iCzX5KWEqT4ZGH33b_gi4vKOP99ay0I3iRV43BsnhNNbLiP7amJDSLLOZm5mOjimKDeJKvakAwZRH0T3p_JJNyCQTkvzR0gKUqQCAtjy0VRzkVa4EVMY5qlaZTHqQdhhxSVtSnbbeWQz8q5DsRCNehSiC7l0KWEB0_7dxZNwpJTW7-2AOxb2mTj7sa8-qha3aW4NhnlOMwk1jQT2kZnyzRPIiMCqhn3YLvDnWo1YK1OQOfBo_4x6i57IKVLM1_ZNjh9IcMluAe3G7T3I0F2Zamo9ICvycHaUNeflLNPLj-6zfEnA-bBs05iTob176m4e_pXPISLewfjkRoNJ_v34FLkBJohi9mGwbJamftwPvu2nNXVg1YnEPhw1rL0EwlDn8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+artificial+intelligence+for+pandemic+preparedness+and+response%3A+a+scoping+review+to+identify+key+use+cases&rft.jtitle=NPJ+digital+medicine&rft.au=Syrowatka%2C+Ania&rft.au=Kuznetsova%2C+Masha&rft.au=Alsubai%2C+Ava&rft.au=Beckman%2C+Adam+L&rft.date=2021-06-10&rft.issn=2398-6352&rft.eissn=2398-6352&rft.volume=4&rft.issue=1&rft.spage=96&rft_id=info:doi/10.1038%2Fs41746-021-00459-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon