Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens

Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning ele...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 12; číslo 1; s. 2658 - 10
Hlavní autori: Mendes, Carolina Rosai, Dilarri, Guilherme, Forsan, Carolina Froes, Sapata, Vinícius de Moraes Ruy, Lopes, Paulo Renato Matos, de Moraes, Peterson Bueno, Montagnolli, Renato Nallin, Ferreira, Henrique, Bidoia, Ederio Dino
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 16.02.2022
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli , Staphylococcus aureus , Pseudomonas aeruginosa , and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis ( amy ::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn 2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
AbstractList Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli , Staphylococcus aureus , Pseudomonas aeruginosa , and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis ( amy ::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn 2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
Abstract Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
ArticleNumber 2658
Author Bidoia, Ederio Dino
Mendes, Carolina Rosai
Ferreira, Henrique
Forsan, Carolina Froes
Sapata, Vinícius de Moraes Ruy
Lopes, Paulo Renato Matos
de Moraes, Peterson Bueno
Montagnolli, Renato Nallin
Dilarri, Guilherme
Author_xml – sequence: 1
  givenname: Carolina Rosai
  surname: Mendes
  fullname: Mendes, Carolina Rosai
  email: carolina.rosai@unesp.br
  organization: Department of General and Applied Biology, Sao Paulo State University (UNESP)
– sequence: 2
  givenname: Guilherme
  surname: Dilarri
  fullname: Dilarri, Guilherme
  organization: Department of General and Applied Biology, Sao Paulo State University (UNESP)
– sequence: 3
  givenname: Carolina Froes
  surname: Forsan
  fullname: Forsan, Carolina Froes
  organization: Department of General and Applied Biology, Sao Paulo State University (UNESP)
– sequence: 4
  givenname: Vinícius de Moraes Ruy
  surname: Sapata
  fullname: Sapata, Vinícius de Moraes Ruy
  organization: Department of General and Applied Biology, Sao Paulo State University (UNESP)
– sequence: 5
  givenname: Paulo Renato Matos
  surname: Lopes
  fullname: Lopes, Paulo Renato Matos
  organization: College of Technology and Agricultural Sciences, Sao Paulo State University (UNESP)
– sequence: 6
  givenname: Peterson Bueno
  surname: de Moraes
  fullname: de Moraes, Peterson Bueno
  organization: School of Technology, State University of Campinas (UNICAMP)
– sequence: 7
  givenname: Renato Nallin
  surname: Montagnolli
  fullname: Montagnolli, Renato Nallin
  organization: Department of General and Applied Biology, Sao Paulo State University (UNESP), Department of Natural Sciences, Mathematics and Education, Agricultural Sciences Centre, Federal University of Sao Carlos (UFSCar)
– sequence: 8
  givenname: Henrique
  surname: Ferreira
  fullname: Ferreira, Henrique
  organization: Department of General and Applied Biology, Sao Paulo State University (UNESP)
– sequence: 9
  givenname: Ederio Dino
  surname: Bidoia
  fullname: Bidoia, Ederio Dino
  organization: Department of General and Applied Biology, Sao Paulo State University (UNESP)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35173244$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAYhSNUREvpC7BAkdiwCfgee4NUVbRUqsQG1tYfx8l4lNiD7UEdnh53MvS2qDe24u-cHNvnbXXkg7dV9R6jzxhR-SUxzJVsECENEoK3ze5VdUIQ4w2hhBw9Wh9XZymtURmcKIbVm-qYctxSwthJ1Z377Dow2UYHU10WLvgafF9niKPN9WzNCrxLc6rDUP913tTh1vW29uDDBmJ2ZrKphhGcT7l-sNpAXoXR-vSuej3AlOzZYT6tfl1--3nxvbn5cXV9cX7TGIFEbgZppUSKlmS8H7giLaWC94QZxhX0kjDBmKJIMDG0HZadFaCspVaBwGgY6Gl1vfj2AdZ6E90McacDOL3_EOKoD3E1w4YOoiMKA2Octh1DpjeU0ZYzzllfvL4uXpttN9veWJ8jTE9Mn-54t9Jj-KOl5IhJWQw-HQxi-L21KevZJWOnCbwN26SJIEpyIRkp6Mdn6Dpsoy9XtaewIK0ShfrwONF9lP9PWQCyACaGlKId7hGM9F1l9FIZXSqj95XRuyKSz0TGZbjrQDmVm16W0kWayn_8aOND7BdU_wBEFdXs
CitedBy_id crossref_primary_10_3390_ijms24076249
crossref_primary_10_1016_j_ijbiomac_2023_126886
crossref_primary_10_1016_j_surfin_2025_107447
crossref_primary_10_4103_jpbs_jpbs_854_24
crossref_primary_10_1016_j_cplett_2024_141318
crossref_primary_10_1007_s11274_024_03984_2
crossref_primary_10_1016_j_surfin_2025_107567
crossref_primary_10_1093_lambio_ovae136
crossref_primary_10_1016_j_ica_2024_122155
crossref_primary_10_1002_ppsc_202400005
crossref_primary_10_3390_antibiotics13090803
crossref_primary_10_3390_polym16060771
crossref_primary_10_1007_s44371_024_00007_9
crossref_primary_10_1007_s12668_024_01530_w
crossref_primary_10_1007_s12668_024_01576_w
crossref_primary_10_3389_fbioe_2024_1417742
crossref_primary_10_1016_j_micpath_2025_107661
crossref_primary_10_1007_s00289_023_04887_2
crossref_primary_10_1016_j_fpsl_2025_101536
crossref_primary_10_1016_j_snb_2025_137743
crossref_primary_10_1680_jbibn_24_00015
crossref_primary_10_3390_nano14221851
crossref_primary_10_1002_adfm_202423212
crossref_primary_10_1038_s41598_024_54460_8
crossref_primary_10_1007_s11274_024_03925_z
crossref_primary_10_3390_polym17010109
crossref_primary_10_1007_s42452_025_07558_1
crossref_primary_10_1016_j_ijhydene_2025_02_239
crossref_primary_10_1007_s12668_025_02065_4
crossref_primary_10_1186_s12866_024_03463_6
crossref_primary_10_1021_acsomega_5c06546
crossref_primary_10_1016_j_matpr_2022_12_159
crossref_primary_10_3390_nano14161346
crossref_primary_10_1016_j_apmt_2024_102138
crossref_primary_10_1016_j_mimet_2025_107189
crossref_primary_10_1016_j_ijbiomac_2025_141241
crossref_primary_10_1016_j_jafr_2025_101759
crossref_primary_10_1038_s41598_024_76090_w
crossref_primary_10_1016_j_cscee_2024_100749
crossref_primary_10_3390_jcs8110475
crossref_primary_10_1007_s44174_025_00373_7
crossref_primary_10_1016_j_ijbiomac_2023_126787
crossref_primary_10_1080_15226514_2025_2530018
crossref_primary_10_1007_s10876_024_02763_1
crossref_primary_10_1016_j_jddst_2024_106395
crossref_primary_10_1007_s12668_024_01492_z
crossref_primary_10_3390_jfb16050189
crossref_primary_10_3390_app14146274
crossref_primary_10_1016_j_ceramint_2025_04_353
crossref_primary_10_3390_md21050297
crossref_primary_10_1016_j_susmat_2023_e00597
crossref_primary_10_1007_s00449_025_03178_6
crossref_primary_10_1016_j_heliyon_2024_e37939
crossref_primary_10_1016_j_jobb_2024_10_004
crossref_primary_10_3390_jfb15070195
crossref_primary_10_3390_jmse10101546
crossref_primary_10_1007_s10971_024_06557_9
crossref_primary_10_1016_j_jics_2024_101375
crossref_primary_10_2298_JSC240319079A
crossref_primary_10_3390_nano15050369
crossref_primary_10_1016_j_micpath_2025_107563
crossref_primary_10_1515_gps_2024_0237
crossref_primary_10_1016_j_colsurfa_2024_135419
crossref_primary_10_1016_j_burns_2025_107700
crossref_primary_10_1016_j_colsurfa_2023_132308
crossref_primary_10_1039_D4TB02427C
crossref_primary_10_1038_s41598_025_16849_x
crossref_primary_10_1186_s12951_025_03309_x
crossref_primary_10_1016_j_jece_2023_111870
crossref_primary_10_1088_2053_1591_ad7a5a
crossref_primary_10_1002_slct_202405722
crossref_primary_10_1016_j_fbio_2024_104175
crossref_primary_10_1007_s10123_024_00594_8
crossref_primary_10_2174_0115701808265088230922110240
crossref_primary_10_7759_cureus_83506
crossref_primary_10_1007_s00339_023_06957_8
crossref_primary_10_1007_s10904_024_03076_6
crossref_primary_10_1007_s13726_024_01320_x
crossref_primary_10_1088_1361_6528_ad40b8
crossref_primary_10_1007_s12223_024_01158_z
crossref_primary_10_1039_D3NH00385J
crossref_primary_10_1002_slct_202501622
crossref_primary_10_1007_s42535_025_01244_8
crossref_primary_10_3390_ma17122853
crossref_primary_10_1007_s10971_024_06625_0
crossref_primary_10_1080_10667857_2025_2505057
crossref_primary_10_1515_revic_2023_0022
crossref_primary_10_1007_s10904_024_03159_4
crossref_primary_10_1007_s42452_024_05750_3
crossref_primary_10_1088_1748_605X_ad1df7
crossref_primary_10_1016_j_aquatox_2023_106578
crossref_primary_10_1016_j_ijbiomac_2025_140376
crossref_primary_10_1016_j_mtcomm_2024_109059
crossref_primary_10_1016_j_micpath_2024_107156
crossref_primary_10_3390_molecules29235555
crossref_primary_10_1016_j_jhazmat_2023_132517
crossref_primary_10_1007_s11665_024_10462_1
crossref_primary_10_1016_j_ijbiomac_2023_127533
crossref_primary_10_3390_nano15131030
crossref_primary_10_3390_biomimetics8060488
crossref_primary_10_1016_j_fpsl_2025_101586
crossref_primary_10_3389_fbioe_2023_1283898
crossref_primary_10_1016_j_nxmate_2024_100161
crossref_primary_10_3390_textiles3020015
crossref_primary_10_1016_j_aej_2025_04_085
crossref_primary_10_1016_j_chemosphere_2024_141864
crossref_primary_10_1016_j_nxnano_2025_100222
crossref_primary_10_1039_D4RA06117A
crossref_primary_10_1016_j_rsci_2025_04_012
crossref_primary_10_1080_00405000_2025_2515624
crossref_primary_10_1007_s10123_023_00391_9
crossref_primary_10_3390_membranes13040387
crossref_primary_10_1016_j_nxmate_2025_100725
crossref_primary_10_1111_1346_8138_16903
crossref_primary_10_1016_j_ijbiomac_2024_130391
crossref_primary_10_1016_j_nanoso_2025_101472
crossref_primary_10_1155_ijod_8406448
crossref_primary_10_3390_biomimetics8050444
crossref_primary_10_1016_j_toxlet_2025_08_004
crossref_primary_10_1088_1757_899X_1300_1_012025
crossref_primary_10_1016_j_jece_2025_116296
crossref_primary_10_1016_j_snb_2024_137022
crossref_primary_10_1016_j_tifs_2025_105101
crossref_primary_10_1016_j_ceramint_2025_09_153
crossref_primary_10_3390_gels11060459
crossref_primary_10_3390_membranes13010056
crossref_primary_10_1007_s44340_025_00027_w
crossref_primary_10_3390_plants12152826
crossref_primary_10_1007_s12221_025_00908_1
crossref_primary_10_1016_j_impact_2023_100479
crossref_primary_10_1007_s10971_024_06346_4
crossref_primary_10_1039_D4RA04046E
crossref_primary_10_1016_j_surfin_2023_102741
crossref_primary_10_3390_coatings13050941
crossref_primary_10_1007_s10924_024_03205_9
crossref_primary_10_3390_polym14235228
crossref_primary_10_1007_s13538_024_01685_7
crossref_primary_10_1016_j_molliq_2024_126037
crossref_primary_10_3389_fmicb_2022_1067284
crossref_primary_10_1002_slct_202501523
crossref_primary_10_3390_ijms26157154
crossref_primary_10_1016_j_fbio_2025_107077
crossref_primary_10_1007_s11483_025_09996_1
crossref_primary_10_1007_s10534_024_00595_0
crossref_primary_10_1007_s13399_023_05175_9
crossref_primary_10_1016_j_cbi_2024_111245
crossref_primary_10_1016_j_ceramint_2023_04_106
crossref_primary_10_1016_j_cej_2024_153803
crossref_primary_10_1016_j_inoche_2025_114826
crossref_primary_10_1016_j_jphotochem_2025_116365
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_1016_j_clay_2023_107112
crossref_primary_10_1016_j_ijbiomac_2023_127433
crossref_primary_10_3390_nano12152635
crossref_primary_10_1016_j_pdpdt_2022_103160
crossref_primary_10_1155_bca_5541535
crossref_primary_10_1016_j_micromeso_2024_113295
crossref_primary_10_1007_s10876_024_02761_3
crossref_primary_10_1016_j_ijbiomac_2024_135934
crossref_primary_10_1016_j_jiec_2024_08_035
crossref_primary_10_1016_j_jwpe_2023_104337
crossref_primary_10_1007_s00339_023_07033_x
crossref_primary_10_1007_s43939_025_00301_y
crossref_primary_10_1007_s00396_025_05410_x
crossref_primary_10_1016_j_inoche_2022_109819
crossref_primary_10_1007_s00289_023_04912_4
crossref_primary_10_1155_2023_5019838
crossref_primary_10_1016_j_ceramint_2024_12_243
crossref_primary_10_1007_s13369_024_09590_6
crossref_primary_10_1016_j_fm_2025_104760
crossref_primary_10_1016_j_mtchem_2024_102446
crossref_primary_10_26634_jms_12_1_20892
crossref_primary_10_1007_s42247_022_00443_2
crossref_primary_10_1186_s13036_023_00371_7
crossref_primary_10_3390_jfb15020036
crossref_primary_10_3390_nano13142033
crossref_primary_10_3390_polysaccharides6030085
crossref_primary_10_1007_s00339_024_07296_y
crossref_primary_10_1016_j_jece_2025_118940
crossref_primary_10_1016_j_jwpe_2025_108606
crossref_primary_10_3390_coatings13111921
crossref_primary_10_1051_bioconf_202516501002
crossref_primary_10_1007_s42535_025_01337_4
crossref_primary_10_3390_inorganics13070233
crossref_primary_10_3390_microorganisms11020369
crossref_primary_10_1186_s12951_023_02042_7
crossref_primary_10_3390_polym15234577
crossref_primary_10_1042_BSR20241102
crossref_primary_10_1080_10837450_2024_2448620
crossref_primary_10_1186_s12934_024_02535_6
crossref_primary_10_1002_advs_202303326
crossref_primary_10_1016_j_jddst_2024_105675
crossref_primary_10_1016_j_lwt_2024_115791
crossref_primary_10_3390_gels11060427
crossref_primary_10_1007_s12666_025_03720_w
crossref_primary_10_1016_j_mtcomm_2024_110239
crossref_primary_10_1016_j_jcis_2023_08_136
crossref_primary_10_3390_cryst15050397
crossref_primary_10_1007_s11696_024_03721_x
crossref_primary_10_1007_s00449_024_03035_y
crossref_primary_10_3390_gels9070581
crossref_primary_10_3390_catal13050900
crossref_primary_10_1007_s12668_025_01891_w
crossref_primary_10_1016_j_biopha_2023_115875
crossref_primary_10_1016_j_ijhydene_2025_04_109
crossref_primary_10_1088_1742_6596_2980_1_012028
crossref_primary_10_1186_s12866_024_03587_9
crossref_primary_10_1007_s13206_025_00231_0
crossref_primary_10_1007_s00289_024_05505_5
crossref_primary_10_1186_s12951_025_03283_4
crossref_primary_10_3390_antibiotics13030220
crossref_primary_10_3390_nano14151264
crossref_primary_10_1016_j_surfin_2025_106750
crossref_primary_10_1016_j_colsurfb_2024_113804
crossref_primary_10_3390_pharmaceutics17050648
crossref_primary_10_3390_jfb15040103
crossref_primary_10_1016_j_cis_2025_103634
crossref_primary_10_1088_1402_4896_adbd86
crossref_primary_10_1016_j_ceramint_2025_07_187
crossref_primary_10_3390_ijms24065183
crossref_primary_10_1002_app_57696
crossref_primary_10_3390_vetsci12040333
crossref_primary_10_5826_mrm_2025_1018
crossref_primary_10_1016_j_rinma_2025_100755
crossref_primary_10_1371_journal_pone_0308982
crossref_primary_10_3390_polym16172526
crossref_primary_10_1016_j_colsurfb_2025_114747
crossref_primary_10_3390_polym15102335
crossref_primary_10_1016_j_ultsonch_2024_107096
crossref_primary_10_1590_1519_6984_289190
crossref_primary_10_1016_j_matchemphys_2025_131020
crossref_primary_10_1016_j_cej_2024_154414
crossref_primary_10_1002_nano_202400155
crossref_primary_10_1016_j_ijbiomac_2024_138618
crossref_primary_10_1016_j_matchemphys_2025_130972
crossref_primary_10_1088_2631_6331_ad45a8
crossref_primary_10_3762_bjnano_16_61
crossref_primary_10_1007_s00253_024_13355_4
crossref_primary_10_1016_j_inoche_2025_114989
crossref_primary_10_1007_s44174_025_00474_3
crossref_primary_10_1007_s11270_025_08329_9
crossref_primary_10_1080_87559129_2025_2458563
crossref_primary_10_1016_j_apsusc_2025_162739
crossref_primary_10_1080_26896583_2023_2293443
crossref_primary_10_3390_pharmaceutics17020209
crossref_primary_10_1016_j_indcrop_2025_121736
crossref_primary_10_1002_slct_202500151
crossref_primary_10_1016_j_apsusc_2025_162734
crossref_primary_10_2147_IJN_S487188
crossref_primary_10_3389_fbioe_2023_1177981
crossref_primary_10_1016_j_nxmate_2025_100869
crossref_primary_10_1016_j_jics_2025_102107
crossref_primary_10_3390_biology11101393
crossref_primary_10_1016_j_ijbiomac_2025_141853
crossref_primary_10_1016_j_jece_2025_117364
crossref_primary_10_3390_antibiotics11091208
crossref_primary_10_1016_j_inoche_2024_113049
crossref_primary_10_1016_j_aqrep_2025_103058
crossref_primary_10_1016_j_inoche_2024_113724
crossref_primary_10_3390_catal14060337
crossref_primary_10_3390_coatings14121501
crossref_primary_10_1002_cbic_202300542
crossref_primary_10_1007_s10876_024_02733_7
crossref_primary_10_1088_2043_6262_addd24
crossref_primary_10_1007_s11581_024_05695_y
crossref_primary_10_1038_s41598_025_16326_5
crossref_primary_10_47853_FAS_2025_e11
crossref_primary_10_1016_j_sajb_2025_04_009
crossref_primary_10_3390_app14114612
crossref_primary_10_1016_j_rechem_2025_102460
crossref_primary_10_1007_s00289_025_05770_y
crossref_primary_10_1007_s11033_023_09146_1
crossref_primary_10_1016_j_matchemphys_2022_126951
crossref_primary_10_1038_s41598_025_10572_3
crossref_primary_10_1016_j_jddst_2023_105290
crossref_primary_10_1016_j_chemosphere_2024_141691
crossref_primary_10_1016_j_jenvman_2024_121307
crossref_primary_10_1016_j_envres_2024_119450
crossref_primary_10_3389_fvets_2025_1645900
crossref_primary_10_3390_nano15110809
crossref_primary_10_1016_j_ceramint_2023_10_166
crossref_primary_10_1016_j_cscee_2025_101114
crossref_primary_10_1371_journal_pone_0313224
crossref_primary_10_1007_s10948_024_06760_3
crossref_primary_10_1038_s41598_023_39423_9
crossref_primary_10_1016_j_colsurfb_2025_114529
crossref_primary_10_1007_s40199_024_00505_2
crossref_primary_10_1016_j_ceramint_2024_04_104
crossref_primary_10_1007_s12010_022_04265_0
crossref_primary_10_1016_j_mseb_2024_117649
crossref_primary_10_1016_j_ijbiomac_2024_129799
crossref_primary_10_1016_j_heliyon_2024_e39098
crossref_primary_10_1016_j_apmt_2024_102201
crossref_primary_10_1038_s41598_024_74163_4
crossref_primary_10_51847_GWDzyB0aCm
crossref_primary_10_1016_j_ceramint_2023_11_098
crossref_primary_10_3390_ceramics8020045
crossref_primary_10_61186_joavm_7_22_1321
crossref_primary_10_3390_nano13202775
crossref_primary_10_1007_s00284_024_03953_w
crossref_primary_10_1007_s11356_023_26261_5
crossref_primary_10_1016_j_nxnano_2025_100183
crossref_primary_10_1007_s43939_025_00320_9
crossref_primary_10_1016_j_mtbio_2025_101833
crossref_primary_10_2478_lpts_2024_0042
crossref_primary_10_1007_s11664_024_11469_z
crossref_primary_10_1557_s43578_025_01688_3
crossref_primary_10_3390_polym16243455
crossref_primary_10_1016_j_bioactmat_2024_12_003
crossref_primary_10_3390_polym16202904
crossref_primary_10_3390_catal15080793
crossref_primary_10_1088_1361_6528_aded1a
crossref_primary_10_3390_nano12173066
crossref_primary_10_1002_cbdv_202402563
crossref_primary_10_1038_s41598_025_87355_3
crossref_primary_10_1016_j_mtcomm_2023_106747
crossref_primary_10_3389_fmolb_2025_1601811
crossref_primary_10_1002_cplu_202300450
crossref_primary_10_1007_s12668_024_01471_4
crossref_primary_10_1155_ijm_8746754
crossref_primary_10_3390_ma15103602
crossref_primary_10_1016_j_molstruc_2025_144059
crossref_primary_10_3390_nano15181405
crossref_primary_10_1016_j_rechem_2025_102717
crossref_primary_10_1016_j_apmt_2024_102335
crossref_primary_10_1016_j_inoche_2024_113478
crossref_primary_10_1080_10667857_2025_2509992
crossref_primary_10_1002_app_56606
crossref_primary_10_1007_s11033_024_10039_0
crossref_primary_10_1186_s12866_023_02832_x
crossref_primary_10_1016_j_fpsl_2025_101623
crossref_primary_10_1016_j_mtsust_2024_100983
crossref_primary_10_1186_s11671_025_04327_2
crossref_primary_10_1016_j_jwpe_2025_108216
crossref_primary_10_3390_nano12173058
crossref_primary_10_1016_j_inoche_2025_115066
crossref_primary_10_1002_app_57941
crossref_primary_10_1007_s10924_024_03468_2
crossref_primary_10_1039_D4RA05761A
crossref_primary_10_1016_j_colsurfa_2023_131135
crossref_primary_10_1016_j_jece_2024_112833
crossref_primary_10_1038_s41598_024_75296_2
crossref_primary_10_1080_00032719_2024_2372674
crossref_primary_10_58240_1829006X_2025_21_4_191
crossref_primary_10_1186_s12866_023_02930_w
crossref_primary_10_1016_j_jmbbm_2024_106581
crossref_primary_10_3390_ijms26157583
crossref_primary_10_1007_s44187_025_00487_3
crossref_primary_10_1016_j_afres_2025_100765
crossref_primary_10_1016_j_ijbiomac_2025_140962
crossref_primary_10_1016_j_inoche_2024_113809
crossref_primary_10_1007_s11581_024_05710_2
crossref_primary_10_54392_irjmt25112
crossref_primary_10_1039_D5TB00516G
crossref_primary_10_3390_nano15030230
crossref_primary_10_1155_2022_9989282
crossref_primary_10_1007_s00449_024_03001_8
crossref_primary_10_1016_j_ijbiomac_2025_144089
crossref_primary_10_1016_j_ifset_2025_104091
crossref_primary_10_1007_s10904_025_03681_z
crossref_primary_10_1177_08927057241292298
crossref_primary_10_1016_j_carbpol_2025_124213
crossref_primary_10_1038_s41598_024_69632_9
crossref_primary_10_1016_j_bcab_2023_103006
crossref_primary_10_1016_j_micpath_2022_105778
crossref_primary_10_1088_1361_6528_acb2d1
crossref_primary_10_1039_D4RA03573A
crossref_primary_10_1186_s40643_025_00857_w
crossref_primary_10_1007_s11033_024_09289_9
crossref_primary_10_1007_s13399_024_05554_w
crossref_primary_10_1016_j_cej_2025_163849
crossref_primary_10_1186_s13036_023_00326_y
crossref_primary_10_3390_polym17162185
crossref_primary_10_1007_s41204_025_00429_5
crossref_primary_10_1007_s00210_025_04266_w
crossref_primary_10_1007_s42250_024_00954_x
crossref_primary_10_1016_j_fbio_2025_106966
crossref_primary_10_1016_j_ijbiomac_2025_144773
crossref_primary_10_1007_s10876_024_02728_4
crossref_primary_10_1016_j_bioorg_2025_108527
crossref_primary_10_1080_09205063_2025_2490079
crossref_primary_10_1016_j_matchemphys_2025_131249
Cites_doi 10.1080/02772248.2013.803796
10.1016/j.chemosphere.2020.128607
10.3389/fmicb.2015.00390
10.1016/j.ecoenv.2020.111158
10.1016/j.ijleo.2020.164556
10.3390/ma7042833
10.1016/j.mssp.2018.03.017
10.1002/aoc.5827
10.1016/j.jpap.2021.100021
10.1111/jam.15125
10.1186/s11671-018-2532-3
10.1111/febs.15489
10.1016/j.cbi.2018.03.008
10.1186/s11671-020-03418-6
10.1016/j.jsamd.2018.11.001
10.1080/19443994.2013.810356
10.1021/acs.chemrev.0c00587
10.1021/acs.jmedchem.5b01098
10.1016/j.jallcom.2017.08.142
10.1016/j.ijbiomac.2018.11.228
10.1002/jemt.23182
10.1111/jam.14407
10.1016/j.jpha.2015.11.005
10.1016/S1003-6326(20)65323-7
10.3389/fmicb.2018.01218
10.1016/j.jscs.2020.03.003
10.1016/j.cep.2014.11.010
10.1016/j.ultsonch.2015.03.016
10.1155/2018/1062562
10.1073/pnas.1606656113
10.1016/j.mib.2016.08.008
10.3390/ijms21176305
10.1016/j.bioorg.2019.103169
10.1038/s41598-021-84768-8
10.1007/s40820-015-0040-x
10.1007/s10924-020-02030-0
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-06657-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_41c3f6b291a44537b40cdc343754554d
PMC8850488
35173244
10_1038_s41598_022_06657_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: http://dx.doi.org/10.13039/501100002322
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2017/07306-9; 2015/50162-2
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: ;
– fundername: ;
  grantid: 2017/07306-9; 2015/50162-2
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-f8e880931735df59273365d24c459ad824644930646f7b18be6a9ee3e9a610ff3
IEDL.DBID DOA
ISICitedReferencesCount 452
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757107700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:26:20 EST 2025
Tue Nov 04 01:56:49 EST 2025
Fri Sep 05 13:59:11 EDT 2025
Tue Oct 07 07:38:21 EDT 2025
Thu Jan 02 22:55:31 EST 2025
Sat Nov 29 02:51:29 EST 2025
Tue Nov 18 19:56:07 EST 2025
Fri Feb 21 02:39:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-f8e880931735df59273365d24c459ad824644930646f7b18be6a9ee3e9a610ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/41c3f6b291a44537b40cdc343754554d
PMID 35173244
PQID 2629162796
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_41c3f6b291a44537b40cdc343754554d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8850488
proquest_miscellaneous_2629856842
proquest_journals_2629162796
pubmed_primary_35173244
crossref_primary_10_1038_s41598_022_06657_y
crossref_citationtrail_10_1038_s41598_022_06657_y
springer_journals_10_1038_s41598_022_06657_y
PublicationCentury 2000
PublicationDate 2022-02-16
PublicationDateYYYYMMDD 2022-02-16
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Balouiri, Sadiki, Ibnsouda (CR21) 2016; 6
Qi, Cheng, Yu, Ho (CR3) 2017; 727
Liao, Jin, Li, Tjong (CR4) 2020; 21
Zubair, Akhtar (CR31) 2020; 30
Vijayakumara, Mahadevana, Arulmozhia, Sriramb (CR22) 2018; 82
Anitha (CR28) 2018; 3
Pachaiappan, Rajendran, Show, Manavalan, Naushad (CR1) 2020; 272
Kołodziejczak-Radzimska, Jesionowski (CR6) 2014; 7
(CR5) 2011
Sheik, Raj, Kottaisamy, Vasantha (CR24) 2020; 24
Siddiqi, Rahman, Husen (CR13) 2018; 13
Khataee, Karimi, Zarei, Joo (CR25) 2015; 24
Tiwari, Mishra, Gadani, Solanki, Shah, Tiwari (CR10) 2018; 9
Burman, Saini, Kumar (CR15) 2013; 95
Jiang, Pi, Cai (CR9) 2018; 2018
Yusof, Zain, Pauzi (CR29) 2019; 124
Zanet (CR7) 2019; 127
Padilla-Cruz, Garza-Cervantes, Vasto-Anzaldo, García-Rivas, León-Buitimea, Morones-Ramírez (CR2) 2021; 11
Mendes, Dilarri, Stradioto, Lopes, Bidoia, Montagnolli (CR20) 2021; 29
Du, Pichoff, Lutkenhaus (CR32) 2016; 113
Han (CR16) 2021; 288
Abebe, Zereffa, Tadesse, Murthy (CR36) 2020; 15
Naqvi (CR37) 2019; 45
Agarwal, Menon, Kumar, Rajeshkumar (CR14) 2018; 286
Tripathy, Sahu (CR17) 2019; 91
Molnár (CR19) 2020; 206
Xiao, Goley (CR34) 2016; 34
Dilarri, Caccalano, Zamuner, Domingues, Ferreira (CR35) 2021; 131
Sirelkhatim (CR26) 2015; 7
Hurley, Santos, Nepomuceno, Huynh, Shaw, Weibel (CR33) 2016; 59
Raj (CR38) 2021; 6
Saqib (CR30) 2019; 84
Karekar (CR12) 2015; 87
Alothman, Albaqami (CR11) 2020; 34
Hoseinzadeh, Alikhani, Samarghandi, Shirzad-Siboni (CR8) 2014; 52
Król (CR18) 2015; 6
Lundstedt, Kahne, Ruiz (CR27) 2020; 121
Subbiah, Muthukumaran, Raja (CR23) 2020; 208
SE Karekar (6657_CR12) 2015; 87
N Zubair (6657_CR31) 2020; 30
R Pachaiappan (6657_CR1) 2020; 272
KS Siddiqi (6657_CR13) 2018; 13
Á Molnár (6657_CR19) 2020; 206
C Liao (6657_CR4) 2020; 21
G Dilarri (6657_CR35) 2021; 131
J Jiang (6657_CR9) 2018; 2018
MS Sheik (6657_CR24) 2020; 24
A Sirelkhatim (6657_CR26) 2015; 7
S Saqib (6657_CR30) 2019; 84
R Anitha (6657_CR28) 2018; 3
FDA (6657_CR5) 2011
KA Hurley (6657_CR33) 2016; 59
J Xiao (6657_CR34) 2016; 34
E Król (6657_CR18) 2015; 6
E Lundstedt (6657_CR27) 2020; 121
NB Raj (6657_CR38) 2021; 6
AL Padilla-Cruz (6657_CR2) 2021; 11
S Du (6657_CR32) 2016; 113
A Kołodziejczak-Radzimska (6657_CR6) 2014; 7
AA Alothman (6657_CR11) 2020; 34
S Vijayakumara (6657_CR22) 2018; 82
A Khataee (6657_CR25) 2015; 24
H Han (6657_CR16) 2021; 288
U Burman (6657_CR15) 2013; 95
QUA Naqvi (6657_CR37) 2019; 45
CR Mendes (6657_CR20) 2021; 29
V Tiwari (6657_CR10) 2018; 9
B Abebe (6657_CR36) 2020; 15
E Hoseinzadeh (6657_CR8) 2014; 52
R Subbiah (6657_CR23) 2020; 208
K Qi (6657_CR3) 2017; 727
H Agarwal (6657_CR14) 2018; 286
S Tripathy (6657_CR17) 2019; 91
V Zanet (6657_CR7) 2019; 127
M Balouiri (6657_CR21) 2016; 6
NAA Yusof (6657_CR29) 2019; 124
References_xml – volume: 95
  start-page: 605
  year: 2013
  end-page: 612
  ident: CR15
  article-title: Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings
  publication-title: Toxicol. Environ. Chem.
  doi: 10.1080/02772248.2013.803796
– volume: 272
  start-page: 128607
  year: 2020
  ident: CR1
  article-title: Metal oxide nanocomposites for bactericidal effect: A review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128607
– volume: 6
  start-page: 390
  year: 2015
  ident: CR18
  article-title: Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00390
– volume: 206
  start-page: 111
  year: 2020
  end-page: 158
  ident: CR19
  article-title: ZnO nanoparticles induce cell wall remodeling and modify ROS/RNS signalling in roots of Brassica seedlings
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111158
– volume: 208
  start-page: 156
  year: 2020
  end-page: 166
  ident: CR23
  article-title: Biosynthesis, structural, photoluminescence and photocatalytic performance of Mn/Mg dual doped ZnO nanostructures using leaf extract
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164556
– volume: 7
  start-page: 2833
  year: 2014
  end-page: 2881
  ident: CR6
  article-title: Zinc oxide from synthesis to application: A review
  publication-title: Materials
  doi: 10.3390/ma7042833
– volume: 82
  start-page: 39
  year: 2018
  end-page: 45
  ident: CR22
  article-title: Green synthesis of zinc oxide nanoparticles using leaf extracts: Characterization and antimicrobial analysis
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2018.03.017
– volume: 34
  start-page: 5827
  year: 2020
  ident: CR11
  article-title: Nano sized Cu (II) and Zn (II) complexes and their use as a precursor for synthesis of CuO and ZnO nanoparticles: A study on their sonochemical synthesis, characterization, and DNA/binding/cleavage, anticancer, and antimicrobial activities
  publication-title: Appl. Organometal. Chem.
  doi: 10.1002/aoc.5827
– volume: 6
  start-page: 100021
  year: 2021
  ident: CR38
  article-title: Harnessing ZnO nanoparticles for antimicrobial and photocatalytic activities
  publication-title: J. Photochem. Photobiol.
  doi: 10.1016/j.jpap.2021.100021
– volume: 131
  start-page: 2488
  year: 2021
  end-page: 2499
  ident: CR35
  article-title: Hexanoic acid: A new potential substitute for copper-based agrochemicals against citrus canker
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.15125
– volume: 13
  start-page: 141
  year: 2018
  ident: CR13
  article-title: Properties of zinc oxide nanoparticles and their activity against microbes
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2532-3
– volume: 288
  start-page: 1091
  year: 2021
  end-page: 1106
  ident: CR16
  article-title: Recent progress of bacterial FtsZ inhibitors with a focus on peptides
  publication-title: FEBS J.
  doi: 10.1111/febs.15489
– volume: 286
  start-page: 60
  year: 2018
  end-page: 70
  ident: CR14
  article-title: Mechanistic study of the antibacterial action of zinc oxide nanoparticles synthesized using green route
  publication-title: Chemico-Biol. Inter.
  doi: 10.1016/j.cbi.2018.03.008
– volume: 15
  start-page: 190
  year: 2020
  ident: CR36
  article-title: A review on enhancing the antibacteril activity of ZnO: Mechanisms and microscopic investigation
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-020-03418-6
– year: 2011
  ident: CR5
  publication-title: Part 182—Substances Generally Recognized as Safe
– volume: 3
  start-page: 440
  year: 2018
  end-page: 451
  ident: CR28
  article-title: Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the fruit mediated facile green combustion method
  publication-title: J. Sci. Adv. Mater. Devices
  doi: 10.1016/j.jsamd.2018.11.001
– volume: 52
  start-page: 4969
  year: 2014
  end-page: 4976
  ident: CR8
  article-title: Antimicrobial potential of synthesized zinc oxide nanoparticles against gram positive and gram negative bacteria
  publication-title: Desalinat. Water Treat.
  doi: 10.1080/19443994.2013.810356
– volume: 121
  start-page: 5098
  year: 2020
  end-page: 5123
  ident: CR27
  article-title: Assembly and maintenance of lipids at the bacterial outer membrane
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00587
– volume: 59
  start-page: 6975
  year: 2016
  end-page: 6998
  ident: CR33
  article-title: Targeting the bacterial division protein ftsz
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01098
– volume: 727
  start-page: 792
  year: 2017
  end-page: 820
  ident: CR3
  article-title: Review on the improvement of the photocatalytic and antibacterial activities of ZnO
  publication-title: J. Alloy. Compds.
  doi: 10.1016/j.jallcom.2017.08.142
– volume: 45
  start-page: 147
  year: 2019
  end-page: 159
  ident: CR37
  article-title: Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles
  publication-title: J. Biol. Phys.
  doi: 10.1016/j.ijbiomac.2018.11.228
– volume: 84
  start-page: 415
  year: 2019
  end-page: 420
  ident: CR30
  article-title: Synthesis, characterization and use of iron oxide nano particles for antibacterial activity
  publication-title: Microsc. Res. Technol.
  doi: 10.1002/jemt.23182
– volume: 127
  start-page: 1391
  year: 2019
  end-page: 1402
  ident: CR7
  article-title: Activity evaluation of pure and doped zinc oxide nanoparticles against
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14407
– volume: 6
  start-page: 71
  year: 2016
  end-page: 79
  ident: CR21
  article-title: Methods for in vitro evaluating antimicrobial activity: A review
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2015.11.005
– volume: 30
  start-page: 1605
  year: 2020
  end-page: 1614
  ident: CR31
  article-title: Morphology controlled synthesis of ZnO nanoparticles for in-vitro evaluation of antibacterial activity
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(20)65323-7
– volume: 9
  start-page: 1218
  year: 2018
  ident: CR10
  article-title: Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01218
– volume: 24
  start-page: 393
  year: 2020
  end-page: 406
  ident: CR24
  article-title: Biosynthesis of ZnO nanoparticles through extract from plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2020.03.003
– volume: 87
  start-page: 51
  year: 2015
  end-page: 59
  ident: CR12
  article-title: Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method
  publication-title: Chem. Eng.
  doi: 10.1016/j.cep.2014.11.010
– volume: 24
  start-page: 393
  year: 2015
  end-page: 406
  ident: CR25
  article-title: Eu-doped ZnO nanoparticles: Sonochemical synthesis, characterization, and sonocatalytic application
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.03.016
– volume: 2018
  start-page: 18
  year: 2018
  ident: CR9
  article-title: The advancing of zinc oxide nanoparticles for biomedical applications
  publication-title: Bioinorg. Chem. Appl.
  doi: 10.1155/2018/1062562
– volume: 113
  start-page: 52
  year: 2016
  end-page: 61
  ident: CR32
  article-title: FtsEX acts on FtsA to regulate divisome assembly and activity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1606656113
– volume: 34
  start-page: 90
  year: 2016
  end-page: 96
  ident: CR34
  article-title: Redefining the roles of the ftsz-ring in bacterial cytokinesis
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2016.08.008
– volume: 124
  start-page: 1132
  year: 2019
  end-page: 1136
  ident: CR29
  article-title: Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.11.228
– volume: 21
  start-page: 6305
  issue: 17
  year: 2020
  ident: CR4
  article-title: Interactions of zinc oxide nanostructures with mammalian cells: Cytotoxicity and photocatalytic toxicity
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21176305
– volume: 91
  start-page: 103
  year: 2019
  end-page: 169
  ident: CR17
  article-title: FtsZ inhibitors as a new genera of antibacterial agents
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2019.103169
– volume: 11
  start-page: 5351
  year: 2021
  ident: CR2
  article-title: Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84768-8
– volume: 7
  start-page: 219
  year: 2015
  end-page: 242
  ident: CR26
  article-title: Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-015-0040-x
– volume: 29
  start-page: 2214
  year: 2021
  end-page: 2226
  ident: CR20
  article-title: Zeta potential mechanisms applied to cellular immobilization: A study with on dye adsorption
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-020-02030-0
– volume: 34
  start-page: 5827
  year: 2020
  ident: 6657_CR11
  publication-title: Appl. Organometal. Chem.
  doi: 10.1002/aoc.5827
– volume: 206
  start-page: 111
  year: 2020
  ident: 6657_CR19
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111158
– volume: 6
  start-page: 390
  year: 2015
  ident: 6657_CR18
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00390
– volume: 87
  start-page: 51
  year: 2015
  ident: 6657_CR12
  publication-title: Chem. Eng.
  doi: 10.1016/j.cep.2014.11.010
– volume: 3
  start-page: 440
  year: 2018
  ident: 6657_CR28
  publication-title: J. Sci. Adv. Mater. Devices
  doi: 10.1016/j.jsamd.2018.11.001
– volume: 124
  start-page: 1132
  year: 2019
  ident: 6657_CR29
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.11.228
– volume: 95
  start-page: 605
  year: 2013
  ident: 6657_CR15
  publication-title: Toxicol. Environ. Chem.
  doi: 10.1080/02772248.2013.803796
– volume: 15
  start-page: 190
  year: 2020
  ident: 6657_CR36
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-020-03418-6
– volume: 272
  start-page: 128607
  year: 2020
  ident: 6657_CR1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128607
– volume: 727
  start-page: 792
  year: 2017
  ident: 6657_CR3
  publication-title: J. Alloy. Compds.
  doi: 10.1016/j.jallcom.2017.08.142
– volume: 121
  start-page: 5098
  year: 2020
  ident: 6657_CR27
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00587
– volume: 21
  start-page: 6305
  issue: 17
  year: 2020
  ident: 6657_CR4
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21176305
– volume: 13
  start-page: 141
  year: 2018
  ident: 6657_CR13
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2532-3
– volume: 24
  start-page: 393
  year: 2015
  ident: 6657_CR25
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.03.016
– volume: 52
  start-page: 4969
  year: 2014
  ident: 6657_CR8
  publication-title: Desalinat. Water Treat.
  doi: 10.1080/19443994.2013.810356
– volume: 288
  start-page: 1091
  year: 2021
  ident: 6657_CR16
  publication-title: FEBS J.
  doi: 10.1111/febs.15489
– volume: 7
  start-page: 219
  year: 2015
  ident: 6657_CR26
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-015-0040-x
– volume: 34
  start-page: 90
  year: 2016
  ident: 6657_CR34
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2016.08.008
– volume: 286
  start-page: 60
  year: 2018
  ident: 6657_CR14
  publication-title: Chemico-Biol. Inter.
  doi: 10.1016/j.cbi.2018.03.008
– volume: 11
  start-page: 5351
  year: 2021
  ident: 6657_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84768-8
– volume: 2018
  start-page: 18
  year: 2018
  ident: 6657_CR9
  publication-title: Bioinorg. Chem. Appl.
  doi: 10.1155/2018/1062562
– volume: 113
  start-page: 52
  year: 2016
  ident: 6657_CR32
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1606656113
– volume: 29
  start-page: 2214
  year: 2021
  ident: 6657_CR20
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-020-02030-0
– volume: 24
  start-page: 393
  year: 2020
  ident: 6657_CR24
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2020.03.003
– volume: 6
  start-page: 100021
  year: 2021
  ident: 6657_CR38
  publication-title: J. Photochem. Photobiol.
  doi: 10.1016/j.jpap.2021.100021
– volume: 9
  start-page: 1218
  year: 2018
  ident: 6657_CR10
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01218
– volume: 30
  start-page: 1605
  year: 2020
  ident: 6657_CR31
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(20)65323-7
– volume: 45
  start-page: 147
  year: 2019
  ident: 6657_CR37
  publication-title: J. Biol. Phys.
  doi: 10.1016/j.ijbiomac.2018.11.228
– volume: 7
  start-page: 2833
  year: 2014
  ident: 6657_CR6
  publication-title: Materials
  doi: 10.3390/ma7042833
– volume: 208
  start-page: 156
  year: 2020
  ident: 6657_CR23
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.164556
– volume-title: Part 182—Substances Generally Recognized as Safe
  year: 2011
  ident: 6657_CR5
– volume: 82
  start-page: 39
  year: 2018
  ident: 6657_CR22
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2018.03.017
– volume: 84
  start-page: 415
  year: 2019
  ident: 6657_CR30
  publication-title: Microsc. Res. Technol.
  doi: 10.1002/jemt.23182
– volume: 6
  start-page: 71
  year: 2016
  ident: 6657_CR21
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2015.11.005
– volume: 91
  start-page: 103
  year: 2019
  ident: 6657_CR17
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2019.103169
– volume: 59
  start-page: 6975
  year: 2016
  ident: 6657_CR33
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01098
– volume: 127
  start-page: 1391
  year: 2019
  ident: 6657_CR7
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14407
– volume: 131
  start-page: 2488
  year: 2021
  ident: 6657_CR35
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.15125
SSID ssj0000529419
Score 2.7192304
Snippet Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of...
Abstract Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2658
SubjectTerms 631/326/2522
631/326/41
639/925/357/354
Antimicrobial activity
Antimicrobial agents
Bacillus subtilis - drug effects
Bacillus subtilis - metabolism
Cell division
Cytoplasmic membranes
Dose-Response Relationship, Drug
Drug Resistance, Bacterial
E coli
Electrostatic properties
Escherichia coli - drug effects
Escherichia coli - metabolism
Fluorescence microscopy
Humanities and Social Sciences
Infrared spectroscopy
Metal Nanoparticles
Microbial Sensitivity Tests - methods
Microscopy
multidisciplinary
Nanoparticles
Prediction models
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
Scanning electron microscopy
Science
Science (multidisciplinary)
Staphylococcus aureus - drug effects
Staphylococcus aureus - metabolism
Static Electricity
X-ray diffraction
Zinc oxide
Zinc Oxide - pharmacology
Zinc oxides
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiQuvB-BgozEDaImtpM4J9SiVhzQqkKAerMc22kjUadstojl1zN2vFktj164xpPI8Tz8zYw9A_BKCyYyYxC5cdQmrgq0g6hYKYI5alSmlA7xji8fqvlcnJzUxzHgNsRjlWubGAy16bWPke_RkiKSoVVdvr34lvquUT67GltoXIcdX6mMz2Dn4HB-_HGKsvg8Fs_reFsmY2JvwB3L3ypDHyxkHdLV1o4UCvf_DW3-eWjyt8xp2JCO7vzvr9yF2xGKkv1Rdu7BNevuw82xOeXqATT7btk1YzFnJBsvQBDlDBlPj5Nz628Nd8P5QPqW_OycJv2PzljilENXPJ64I-pUdYhByeZTvgtyj4I7PITPR4ef3r1PY0eGVKOjs0xbYVHfa8QcrDBtUVNfTLEwlGte1MoIyhFe1d6pKduqyUVjS1Vby2ytEKa1LXsEM9c7-wRInTeGWtrYirecafT6sqKhira6MqUxeQL5mitSx3LlvmvGVxnS5kzIkZMSOSkDJ-UqgdfTOxdjsY4rqQ88sydKX2g7POgXpzIukuS5Zm3ZIMMU5wWrGp5poxn3nYMRiZkEdtc8llH7B7lhcAIvp2HUW5-MUc72lyONKHwWNIHHo2RNM2EFLjDirgSqLZnbmur2iOvOQm1wIQpvkxN4s5bOzbT-vRRPr_6LZ3CLBoWhaV7uwmy5uLTP4Yb-vuyGxYuoc78AIJk0eg
  priority: 102
  providerName: ProQuest
Title Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens
URI https://link.springer.com/article/10.1038/s41598-022-06657-y
https://www.ncbi.nlm.nih.gov/pubmed/35173244
https://www.proquest.com/docview/2629162796
https://www.proquest.com/docview/2629856842
https://pubmed.ncbi.nlm.nih.gov/PMC8850488
https://doaj.org/article/41c3f6b291a44537b40cdc343754554d
Volume 12
WOSCitedRecordID wos000757107700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviDeBsjISN4i6sZ3EPraoFUh0FSFAyylybKdEok7VbBHLr2dsZ7ddnhcuPiSzkTUP-5sd-xuA51owMTUGkRvHaOIqx3UQAytFMEeNmiqlw_8dH9-Ws5mYz2V1pdWXPxMW6YGj4vZ4pllbNFRmivOclQ2faqMZ961bcSs0fvVF1HMlmYqs3lTyTI63ZKZM7A24U_nbZJh7hWpDutzYiQJh_-9Q5q-HJX-qmIaN6Og23BoRJNmPM78D16y7CzdjT8nlPWj23aJrIgczisV7C0Q5Q-Khb3Jq_WXfbjgdSN-S753TpP_WGUuccphBjwfliDpRHUJHcvkp37y4R38b7sOHo8P3r16nYyOFVGN-skhbYTFMJUIFlps2l9RzIOaGcs1zqYygHFGR9LlI0ZZNJhpbKGkts1Ihumpb9gC2XO_sIyAyawy1tLElbznTmKxN84Yq2urSFMZkCWQrpdZ6ZBn3zS6-1KHazUQdDVGjIepgiHqZwIv1b84ix8ZfpQ-8rdaSnh87PECvqUcl1f_ymgR2V5aux6AdalqgfEFLWSTwbP0aw83XUJSz_UWUEbkvXibwMDrGeiYsRwUjXEqg3HCZjaluvnHd50DpLUTul9IEXq6c63Jaf1bF4_-hiiewQ0NU0DQrdmFrcX5hn8IN_XXRDecTuF7OyzCKCWwfHM6qd5MQajge08qPJY7b1Zvj6tMPwp8q4A
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFE3tpM4B4TKo2rVZcWhoL25ju20kdpk2WyB5UfxGxk7ya6WR289cE2cyHG-mfnseQE804KJgTHI3DhKE1cx6kEUrBDJHDVqoJT25x2fh-loJMbj7OMa_OxzYVxYZa8TvaI2tXZn5Js0ochkaJolrydfQtc1ynlX-xYaLSz27PwbbtmaV7vv8P8-p3T7_f7bnbDrKhBqJOuzsBAWMZuh3WSxKeKMuoKAsaFc8zhTRlCOFCFzxDwp0jwSuU1UZi2zmUKqURQM33sBLqIeT10IWTpOF2c6zmvGo6zLzRkwsdmgfXQ5bLjj8z6OcL5i_3ybgL9x2z9DNH_z03rzt339f1u4G3CtI9pkq5WMm7Bmq1twuW29Ob8N-VY1K_O2VDUOa9M7iKoMaWPjyYl1OdFlc9KQuiA_ykqT-ntpLKlUVU_6eEKiDlWJDJssX-V6PNcols0d-HQuH3gX1qu6sveBZFFuqKW5TXnBmcY97SDOqaKFTk1iTBRA1KNA6q4Yu-sJcix9UAATskWORORIjxw5D-DF4plJW4rkzNFvHLgWI10ZcX-hnh7KbpEkjzQrkhwBojiPWZrzgTaacdcXGXmmCWCjx5TsdFsjl4AK4OniNmol52pSla1P2zEidj7eAO61SF7MhMW4wMgqA0hXML4y1dU7VXnkK58LETuLE8DLXhqW0_r3Ujw4-yuewJWd_Q9DOdwd7T2Eq9QLKw2jZAPWZ9NT-wgu6a-zspk-9tJO4OC8peQXhKONXA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmgmXrIcECqUEVXLaA6AenMd2ymRaDJMpsDw0_h1PDvJjIaltx64Jk7kON9777PfBvBEpywdGoPMjaM0cSVQD6JghUjmqFFDpbQ_7_i4n4zH6cFBNtmAn30ujAur7HWiV9Sm1u6MfEBjikyGJlk8KLqwiMnO6OX0S-g6SDlPa99Oo4XInl18w-1b82J3B__1U0pHb96_fht2HQZCjcR9HhapRfxmaEOZMIXIqCsOKAzlmotMmZRypAuZI-lxkeRRmttYZdYymymkHUXB8L3n4HzChXDS9Y5Oluc7zoPGo6zL0xmydNCgrXT5bLj78_6OcLFmC33LgL_x3D_DNX_z2XpTOLr6Py_iNbjSEXCy3UrMddiw1Q242LbkXNyEfLual3lbwhqHtWkfRFWGtDHz5Ni6XOmyOW5IXZAfZaVJ_b00llSqqqd9nCFRR6pE5k1Wr3K9n2sU1-YWfDiTD7wNm1Vd2btAsig31NLcJrzgTONedyhyqmihExMbEwUQ9YiQuivS7nqFfJY-WIClskWRRBRJjyK5CODZ8plpW6Lk1NGvHNCWI115cX-hnh3JbpEkjzQr4hzBojgXLMn5UBvNuOuXjPzTBLDV40t2Oq-RK3AF8Hh5G7WVc0GpytYn7ZhUON9vAHdaVC9nwgQuMLLNAJI1vK9Ndf1OVX7yFdHTVDhLFMDzXjJW0_r3Utw7_SsewSUUDrm_O967D5epl1saRvEWbM5nJ_YBXNBf52Uze-gFn8DhWQvJL-yVlik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+action+and+target+mechanisms+of+zinc+oxide+nanoparticles+against+bacterial+pathogens&rft.jtitle=Scientific+reports&rft.au=Mendes%2C+Carolina+Rosai&rft.au=Dilarri%2C+Guilherme&rft.au=Forsan%2C+Carolina+Froes&rft.au=Sapata%2C+Vin%C3%ADcius+de+Moraes+Ruy&rft.date=2022-02-16&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=2658&rft_id=info:doi/10.1038%2Fs41598-022-06657-y&rft_id=info%3Apmid%2F35173244&rft.externalDocID=35173244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon