Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning ele...
Uložené v:
| Vydané v: | Scientific reports Ročník 12; číslo 1; s. 2658 - 10 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
16.02.2022
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria
Escherichia coli
,
Staphylococcus aureus
,
Pseudomonas aeruginosa
, and the Gram-positive model
Bacillus subtilis
was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of
B. subtilis
(
amy
::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn
2+
ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance. |
|---|---|
| AbstractList | Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria
Escherichia coli
,
Staphylococcus aureus
,
Pseudomonas aeruginosa
, and the Gram-positive model
Bacillus subtilis
was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of
B. subtilis
(
amy
::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn
2+
ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance. Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance. Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance. Abstract Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance. Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance. Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn2+ ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance. |
| ArticleNumber | 2658 |
| Author | Bidoia, Ederio Dino Mendes, Carolina Rosai Ferreira, Henrique Forsan, Carolina Froes Sapata, Vinícius de Moraes Ruy Lopes, Paulo Renato Matos de Moraes, Peterson Bueno Montagnolli, Renato Nallin Dilarri, Guilherme |
| Author_xml | – sequence: 1 givenname: Carolina Rosai surname: Mendes fullname: Mendes, Carolina Rosai email: carolina.rosai@unesp.br organization: Department of General and Applied Biology, Sao Paulo State University (UNESP) – sequence: 2 givenname: Guilherme surname: Dilarri fullname: Dilarri, Guilherme organization: Department of General and Applied Biology, Sao Paulo State University (UNESP) – sequence: 3 givenname: Carolina Froes surname: Forsan fullname: Forsan, Carolina Froes organization: Department of General and Applied Biology, Sao Paulo State University (UNESP) – sequence: 4 givenname: Vinícius de Moraes Ruy surname: Sapata fullname: Sapata, Vinícius de Moraes Ruy organization: Department of General and Applied Biology, Sao Paulo State University (UNESP) – sequence: 5 givenname: Paulo Renato Matos surname: Lopes fullname: Lopes, Paulo Renato Matos organization: College of Technology and Agricultural Sciences, Sao Paulo State University (UNESP) – sequence: 6 givenname: Peterson Bueno surname: de Moraes fullname: de Moraes, Peterson Bueno organization: School of Technology, State University of Campinas (UNICAMP) – sequence: 7 givenname: Renato Nallin surname: Montagnolli fullname: Montagnolli, Renato Nallin organization: Department of General and Applied Biology, Sao Paulo State University (UNESP), Department of Natural Sciences, Mathematics and Education, Agricultural Sciences Centre, Federal University of Sao Carlos (UFSCar) – sequence: 8 givenname: Henrique surname: Ferreira fullname: Ferreira, Henrique organization: Department of General and Applied Biology, Sao Paulo State University (UNESP) – sequence: 9 givenname: Ederio Dino surname: Bidoia fullname: Bidoia, Ederio Dino organization: Department of General and Applied Biology, Sao Paulo State University (UNESP) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35173244$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAYhSNUREvpC7BAkdiwCfgee4NUVbRUqsQG1tYfx8l4lNiD7UEdnh53MvS2qDe24u-cHNvnbXXkg7dV9R6jzxhR-SUxzJVsECENEoK3ze5VdUIQ4w2hhBw9Wh9XZymtURmcKIbVm-qYctxSwthJ1Z377Dow2UYHU10WLvgafF9niKPN9WzNCrxLc6rDUP913tTh1vW29uDDBmJ2ZrKphhGcT7l-sNpAXoXR-vSuej3AlOzZYT6tfl1--3nxvbn5cXV9cX7TGIFEbgZppUSKlmS8H7giLaWC94QZxhX0kjDBmKJIMDG0HZadFaCspVaBwGgY6Gl1vfj2AdZ6E90McacDOL3_EOKoD3E1w4YOoiMKA2Octh1DpjeU0ZYzzllfvL4uXpttN9veWJ8jTE9Mn-54t9Jj-KOl5IhJWQw-HQxi-L21KevZJWOnCbwN26SJIEpyIRkp6Mdn6Dpsoy9XtaewIK0ShfrwONF9lP9PWQCyACaGlKId7hGM9F1l9FIZXSqj95XRuyKSz0TGZbjrQDmVm16W0kWayn_8aOND7BdU_wBEFdXs |
| CitedBy_id | crossref_primary_10_3390_ijms24076249 crossref_primary_10_1016_j_ijbiomac_2023_126886 crossref_primary_10_1016_j_surfin_2025_107447 crossref_primary_10_4103_jpbs_jpbs_854_24 crossref_primary_10_1016_j_cplett_2024_141318 crossref_primary_10_1007_s11274_024_03984_2 crossref_primary_10_1016_j_surfin_2025_107567 crossref_primary_10_1093_lambio_ovae136 crossref_primary_10_1016_j_ica_2024_122155 crossref_primary_10_1002_ppsc_202400005 crossref_primary_10_3390_antibiotics13090803 crossref_primary_10_3390_polym16060771 crossref_primary_10_1007_s44371_024_00007_9 crossref_primary_10_1007_s12668_024_01530_w crossref_primary_10_1007_s12668_024_01576_w crossref_primary_10_3389_fbioe_2024_1417742 crossref_primary_10_1016_j_micpath_2025_107661 crossref_primary_10_1007_s00289_023_04887_2 crossref_primary_10_1016_j_fpsl_2025_101536 crossref_primary_10_1016_j_snb_2025_137743 crossref_primary_10_1680_jbibn_24_00015 crossref_primary_10_3390_nano14221851 crossref_primary_10_1002_adfm_202423212 crossref_primary_10_1038_s41598_024_54460_8 crossref_primary_10_1007_s11274_024_03925_z crossref_primary_10_3390_polym17010109 crossref_primary_10_1007_s42452_025_07558_1 crossref_primary_10_1016_j_ijhydene_2025_02_239 crossref_primary_10_1007_s12668_025_02065_4 crossref_primary_10_1186_s12866_024_03463_6 crossref_primary_10_1021_acsomega_5c06546 crossref_primary_10_1016_j_matpr_2022_12_159 crossref_primary_10_3390_nano14161346 crossref_primary_10_1016_j_apmt_2024_102138 crossref_primary_10_1016_j_mimet_2025_107189 crossref_primary_10_1016_j_ijbiomac_2025_141241 crossref_primary_10_1016_j_jafr_2025_101759 crossref_primary_10_1038_s41598_024_76090_w crossref_primary_10_1016_j_cscee_2024_100749 crossref_primary_10_3390_jcs8110475 crossref_primary_10_1007_s44174_025_00373_7 crossref_primary_10_1016_j_ijbiomac_2023_126787 crossref_primary_10_1080_15226514_2025_2530018 crossref_primary_10_1007_s10876_024_02763_1 crossref_primary_10_1016_j_jddst_2024_106395 crossref_primary_10_1007_s12668_024_01492_z crossref_primary_10_3390_jfb16050189 crossref_primary_10_3390_app14146274 crossref_primary_10_1016_j_ceramint_2025_04_353 crossref_primary_10_3390_md21050297 crossref_primary_10_1016_j_susmat_2023_e00597 crossref_primary_10_1007_s00449_025_03178_6 crossref_primary_10_1016_j_heliyon_2024_e37939 crossref_primary_10_1016_j_jobb_2024_10_004 crossref_primary_10_3390_jfb15070195 crossref_primary_10_3390_jmse10101546 crossref_primary_10_1007_s10971_024_06557_9 crossref_primary_10_1016_j_jics_2024_101375 crossref_primary_10_2298_JSC240319079A crossref_primary_10_3390_nano15050369 crossref_primary_10_1016_j_micpath_2025_107563 crossref_primary_10_1515_gps_2024_0237 crossref_primary_10_1016_j_colsurfa_2024_135419 crossref_primary_10_1016_j_burns_2025_107700 crossref_primary_10_1016_j_colsurfa_2023_132308 crossref_primary_10_1039_D4TB02427C crossref_primary_10_1038_s41598_025_16849_x crossref_primary_10_1186_s12951_025_03309_x crossref_primary_10_1016_j_jece_2023_111870 crossref_primary_10_1088_2053_1591_ad7a5a crossref_primary_10_1002_slct_202405722 crossref_primary_10_1016_j_fbio_2024_104175 crossref_primary_10_1007_s10123_024_00594_8 crossref_primary_10_2174_0115701808265088230922110240 crossref_primary_10_7759_cureus_83506 crossref_primary_10_1007_s00339_023_06957_8 crossref_primary_10_1007_s10904_024_03076_6 crossref_primary_10_1007_s13726_024_01320_x crossref_primary_10_1088_1361_6528_ad40b8 crossref_primary_10_1007_s12223_024_01158_z crossref_primary_10_1039_D3NH00385J crossref_primary_10_1002_slct_202501622 crossref_primary_10_1007_s42535_025_01244_8 crossref_primary_10_3390_ma17122853 crossref_primary_10_1007_s10971_024_06625_0 crossref_primary_10_1080_10667857_2025_2505057 crossref_primary_10_1515_revic_2023_0022 crossref_primary_10_1007_s10904_024_03159_4 crossref_primary_10_1007_s42452_024_05750_3 crossref_primary_10_1088_1748_605X_ad1df7 crossref_primary_10_1016_j_aquatox_2023_106578 crossref_primary_10_1016_j_ijbiomac_2025_140376 crossref_primary_10_1016_j_mtcomm_2024_109059 crossref_primary_10_1016_j_micpath_2024_107156 crossref_primary_10_3390_molecules29235555 crossref_primary_10_1016_j_jhazmat_2023_132517 crossref_primary_10_1007_s11665_024_10462_1 crossref_primary_10_1016_j_ijbiomac_2023_127533 crossref_primary_10_3390_nano15131030 crossref_primary_10_3390_biomimetics8060488 crossref_primary_10_1016_j_fpsl_2025_101586 crossref_primary_10_3389_fbioe_2023_1283898 crossref_primary_10_1016_j_nxmate_2024_100161 crossref_primary_10_3390_textiles3020015 crossref_primary_10_1016_j_aej_2025_04_085 crossref_primary_10_1016_j_chemosphere_2024_141864 crossref_primary_10_1016_j_nxnano_2025_100222 crossref_primary_10_1039_D4RA06117A crossref_primary_10_1016_j_rsci_2025_04_012 crossref_primary_10_1080_00405000_2025_2515624 crossref_primary_10_1007_s10123_023_00391_9 crossref_primary_10_3390_membranes13040387 crossref_primary_10_1016_j_nxmate_2025_100725 crossref_primary_10_1111_1346_8138_16903 crossref_primary_10_1016_j_ijbiomac_2024_130391 crossref_primary_10_1016_j_nanoso_2025_101472 crossref_primary_10_1155_ijod_8406448 crossref_primary_10_3390_biomimetics8050444 crossref_primary_10_1016_j_toxlet_2025_08_004 crossref_primary_10_1088_1757_899X_1300_1_012025 crossref_primary_10_1016_j_jece_2025_116296 crossref_primary_10_1016_j_snb_2024_137022 crossref_primary_10_1016_j_tifs_2025_105101 crossref_primary_10_1016_j_ceramint_2025_09_153 crossref_primary_10_3390_gels11060459 crossref_primary_10_3390_membranes13010056 crossref_primary_10_1007_s44340_025_00027_w crossref_primary_10_3390_plants12152826 crossref_primary_10_1007_s12221_025_00908_1 crossref_primary_10_1016_j_impact_2023_100479 crossref_primary_10_1007_s10971_024_06346_4 crossref_primary_10_1039_D4RA04046E crossref_primary_10_1016_j_surfin_2023_102741 crossref_primary_10_3390_coatings13050941 crossref_primary_10_1007_s10924_024_03205_9 crossref_primary_10_3390_polym14235228 crossref_primary_10_1007_s13538_024_01685_7 crossref_primary_10_1016_j_molliq_2024_126037 crossref_primary_10_3389_fmicb_2022_1067284 crossref_primary_10_1002_slct_202501523 crossref_primary_10_3390_ijms26157154 crossref_primary_10_1016_j_fbio_2025_107077 crossref_primary_10_1007_s11483_025_09996_1 crossref_primary_10_1007_s10534_024_00595_0 crossref_primary_10_1007_s13399_023_05175_9 crossref_primary_10_1016_j_cbi_2024_111245 crossref_primary_10_1016_j_ceramint_2023_04_106 crossref_primary_10_1016_j_cej_2024_153803 crossref_primary_10_1016_j_inoche_2025_114826 crossref_primary_10_1016_j_jphotochem_2025_116365 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_1016_j_clay_2023_107112 crossref_primary_10_1016_j_ijbiomac_2023_127433 crossref_primary_10_3390_nano12152635 crossref_primary_10_1016_j_pdpdt_2022_103160 crossref_primary_10_1155_bca_5541535 crossref_primary_10_1016_j_micromeso_2024_113295 crossref_primary_10_1007_s10876_024_02761_3 crossref_primary_10_1016_j_ijbiomac_2024_135934 crossref_primary_10_1016_j_jiec_2024_08_035 crossref_primary_10_1016_j_jwpe_2023_104337 crossref_primary_10_1007_s00339_023_07033_x crossref_primary_10_1007_s43939_025_00301_y crossref_primary_10_1007_s00396_025_05410_x crossref_primary_10_1016_j_inoche_2022_109819 crossref_primary_10_1007_s00289_023_04912_4 crossref_primary_10_1155_2023_5019838 crossref_primary_10_1016_j_ceramint_2024_12_243 crossref_primary_10_1007_s13369_024_09590_6 crossref_primary_10_1016_j_fm_2025_104760 crossref_primary_10_1016_j_mtchem_2024_102446 crossref_primary_10_26634_jms_12_1_20892 crossref_primary_10_1007_s42247_022_00443_2 crossref_primary_10_1186_s13036_023_00371_7 crossref_primary_10_3390_jfb15020036 crossref_primary_10_3390_nano13142033 crossref_primary_10_3390_polysaccharides6030085 crossref_primary_10_1007_s00339_024_07296_y crossref_primary_10_1016_j_jece_2025_118940 crossref_primary_10_1016_j_jwpe_2025_108606 crossref_primary_10_3390_coatings13111921 crossref_primary_10_1051_bioconf_202516501002 crossref_primary_10_1007_s42535_025_01337_4 crossref_primary_10_3390_inorganics13070233 crossref_primary_10_3390_microorganisms11020369 crossref_primary_10_1186_s12951_023_02042_7 crossref_primary_10_3390_polym15234577 crossref_primary_10_1042_BSR20241102 crossref_primary_10_1080_10837450_2024_2448620 crossref_primary_10_1186_s12934_024_02535_6 crossref_primary_10_1002_advs_202303326 crossref_primary_10_1016_j_jddst_2024_105675 crossref_primary_10_1016_j_lwt_2024_115791 crossref_primary_10_3390_gels11060427 crossref_primary_10_1007_s12666_025_03720_w crossref_primary_10_1016_j_mtcomm_2024_110239 crossref_primary_10_1016_j_jcis_2023_08_136 crossref_primary_10_3390_cryst15050397 crossref_primary_10_1007_s11696_024_03721_x crossref_primary_10_1007_s00449_024_03035_y crossref_primary_10_3390_gels9070581 crossref_primary_10_3390_catal13050900 crossref_primary_10_1007_s12668_025_01891_w crossref_primary_10_1016_j_biopha_2023_115875 crossref_primary_10_1016_j_ijhydene_2025_04_109 crossref_primary_10_1088_1742_6596_2980_1_012028 crossref_primary_10_1186_s12866_024_03587_9 crossref_primary_10_1007_s13206_025_00231_0 crossref_primary_10_1007_s00289_024_05505_5 crossref_primary_10_1186_s12951_025_03283_4 crossref_primary_10_3390_antibiotics13030220 crossref_primary_10_3390_nano14151264 crossref_primary_10_1016_j_surfin_2025_106750 crossref_primary_10_1016_j_colsurfb_2024_113804 crossref_primary_10_3390_pharmaceutics17050648 crossref_primary_10_3390_jfb15040103 crossref_primary_10_1016_j_cis_2025_103634 crossref_primary_10_1088_1402_4896_adbd86 crossref_primary_10_1016_j_ceramint_2025_07_187 crossref_primary_10_3390_ijms24065183 crossref_primary_10_1002_app_57696 crossref_primary_10_3390_vetsci12040333 crossref_primary_10_5826_mrm_2025_1018 crossref_primary_10_1016_j_rinma_2025_100755 crossref_primary_10_1371_journal_pone_0308982 crossref_primary_10_3390_polym16172526 crossref_primary_10_1016_j_colsurfb_2025_114747 crossref_primary_10_3390_polym15102335 crossref_primary_10_1016_j_ultsonch_2024_107096 crossref_primary_10_1590_1519_6984_289190 crossref_primary_10_1016_j_matchemphys_2025_131020 crossref_primary_10_1016_j_cej_2024_154414 crossref_primary_10_1002_nano_202400155 crossref_primary_10_1016_j_ijbiomac_2024_138618 crossref_primary_10_1016_j_matchemphys_2025_130972 crossref_primary_10_1088_2631_6331_ad45a8 crossref_primary_10_3762_bjnano_16_61 crossref_primary_10_1007_s00253_024_13355_4 crossref_primary_10_1016_j_inoche_2025_114989 crossref_primary_10_1007_s44174_025_00474_3 crossref_primary_10_1007_s11270_025_08329_9 crossref_primary_10_1080_87559129_2025_2458563 crossref_primary_10_1016_j_apsusc_2025_162739 crossref_primary_10_1080_26896583_2023_2293443 crossref_primary_10_3390_pharmaceutics17020209 crossref_primary_10_1016_j_indcrop_2025_121736 crossref_primary_10_1002_slct_202500151 crossref_primary_10_1016_j_apsusc_2025_162734 crossref_primary_10_2147_IJN_S487188 crossref_primary_10_3389_fbioe_2023_1177981 crossref_primary_10_1016_j_nxmate_2025_100869 crossref_primary_10_1016_j_jics_2025_102107 crossref_primary_10_3390_biology11101393 crossref_primary_10_1016_j_ijbiomac_2025_141853 crossref_primary_10_1016_j_jece_2025_117364 crossref_primary_10_3390_antibiotics11091208 crossref_primary_10_1016_j_inoche_2024_113049 crossref_primary_10_1016_j_aqrep_2025_103058 crossref_primary_10_1016_j_inoche_2024_113724 crossref_primary_10_3390_catal14060337 crossref_primary_10_3390_coatings14121501 crossref_primary_10_1002_cbic_202300542 crossref_primary_10_1007_s10876_024_02733_7 crossref_primary_10_1088_2043_6262_addd24 crossref_primary_10_1007_s11581_024_05695_y crossref_primary_10_1038_s41598_025_16326_5 crossref_primary_10_47853_FAS_2025_e11 crossref_primary_10_1016_j_sajb_2025_04_009 crossref_primary_10_3390_app14114612 crossref_primary_10_1016_j_rechem_2025_102460 crossref_primary_10_1007_s00289_025_05770_y crossref_primary_10_1007_s11033_023_09146_1 crossref_primary_10_1016_j_matchemphys_2022_126951 crossref_primary_10_1038_s41598_025_10572_3 crossref_primary_10_1016_j_jddst_2023_105290 crossref_primary_10_1016_j_chemosphere_2024_141691 crossref_primary_10_1016_j_jenvman_2024_121307 crossref_primary_10_1016_j_envres_2024_119450 crossref_primary_10_3389_fvets_2025_1645900 crossref_primary_10_3390_nano15110809 crossref_primary_10_1016_j_ceramint_2023_10_166 crossref_primary_10_1016_j_cscee_2025_101114 crossref_primary_10_1371_journal_pone_0313224 crossref_primary_10_1007_s10948_024_06760_3 crossref_primary_10_1038_s41598_023_39423_9 crossref_primary_10_1016_j_colsurfb_2025_114529 crossref_primary_10_1007_s40199_024_00505_2 crossref_primary_10_1016_j_ceramint_2024_04_104 crossref_primary_10_1007_s12010_022_04265_0 crossref_primary_10_1016_j_mseb_2024_117649 crossref_primary_10_1016_j_ijbiomac_2024_129799 crossref_primary_10_1016_j_heliyon_2024_e39098 crossref_primary_10_1016_j_apmt_2024_102201 crossref_primary_10_1038_s41598_024_74163_4 crossref_primary_10_51847_GWDzyB0aCm crossref_primary_10_1016_j_ceramint_2023_11_098 crossref_primary_10_3390_ceramics8020045 crossref_primary_10_61186_joavm_7_22_1321 crossref_primary_10_3390_nano13202775 crossref_primary_10_1007_s00284_024_03953_w crossref_primary_10_1007_s11356_023_26261_5 crossref_primary_10_1016_j_nxnano_2025_100183 crossref_primary_10_1007_s43939_025_00320_9 crossref_primary_10_1016_j_mtbio_2025_101833 crossref_primary_10_2478_lpts_2024_0042 crossref_primary_10_1007_s11664_024_11469_z crossref_primary_10_1557_s43578_025_01688_3 crossref_primary_10_3390_polym16243455 crossref_primary_10_1016_j_bioactmat_2024_12_003 crossref_primary_10_3390_polym16202904 crossref_primary_10_3390_catal15080793 crossref_primary_10_1088_1361_6528_aded1a crossref_primary_10_3390_nano12173066 crossref_primary_10_1002_cbdv_202402563 crossref_primary_10_1038_s41598_025_87355_3 crossref_primary_10_1016_j_mtcomm_2023_106747 crossref_primary_10_3389_fmolb_2025_1601811 crossref_primary_10_1002_cplu_202300450 crossref_primary_10_1007_s12668_024_01471_4 crossref_primary_10_1155_ijm_8746754 crossref_primary_10_3390_ma15103602 crossref_primary_10_1016_j_molstruc_2025_144059 crossref_primary_10_3390_nano15181405 crossref_primary_10_1016_j_rechem_2025_102717 crossref_primary_10_1016_j_apmt_2024_102335 crossref_primary_10_1016_j_inoche_2024_113478 crossref_primary_10_1080_10667857_2025_2509992 crossref_primary_10_1002_app_56606 crossref_primary_10_1007_s11033_024_10039_0 crossref_primary_10_1186_s12866_023_02832_x crossref_primary_10_1016_j_fpsl_2025_101623 crossref_primary_10_1016_j_mtsust_2024_100983 crossref_primary_10_1186_s11671_025_04327_2 crossref_primary_10_1016_j_jwpe_2025_108216 crossref_primary_10_3390_nano12173058 crossref_primary_10_1016_j_inoche_2025_115066 crossref_primary_10_1002_app_57941 crossref_primary_10_1007_s10924_024_03468_2 crossref_primary_10_1039_D4RA05761A crossref_primary_10_1016_j_colsurfa_2023_131135 crossref_primary_10_1016_j_jece_2024_112833 crossref_primary_10_1038_s41598_024_75296_2 crossref_primary_10_1080_00032719_2024_2372674 crossref_primary_10_58240_1829006X_2025_21_4_191 crossref_primary_10_1186_s12866_023_02930_w crossref_primary_10_1016_j_jmbbm_2024_106581 crossref_primary_10_3390_ijms26157583 crossref_primary_10_1007_s44187_025_00487_3 crossref_primary_10_1016_j_afres_2025_100765 crossref_primary_10_1016_j_ijbiomac_2025_140962 crossref_primary_10_1016_j_inoche_2024_113809 crossref_primary_10_1007_s11581_024_05710_2 crossref_primary_10_54392_irjmt25112 crossref_primary_10_1039_D5TB00516G crossref_primary_10_3390_nano15030230 crossref_primary_10_1155_2022_9989282 crossref_primary_10_1007_s00449_024_03001_8 crossref_primary_10_1016_j_ijbiomac_2025_144089 crossref_primary_10_1016_j_ifset_2025_104091 crossref_primary_10_1007_s10904_025_03681_z crossref_primary_10_1177_08927057241292298 crossref_primary_10_1016_j_carbpol_2025_124213 crossref_primary_10_1038_s41598_024_69632_9 crossref_primary_10_1016_j_bcab_2023_103006 crossref_primary_10_1016_j_micpath_2022_105778 crossref_primary_10_1088_1361_6528_acb2d1 crossref_primary_10_1039_D4RA03573A crossref_primary_10_1186_s40643_025_00857_w crossref_primary_10_1007_s11033_024_09289_9 crossref_primary_10_1007_s13399_024_05554_w crossref_primary_10_1016_j_cej_2025_163849 crossref_primary_10_1186_s13036_023_00326_y crossref_primary_10_3390_polym17162185 crossref_primary_10_1007_s41204_025_00429_5 crossref_primary_10_1007_s00210_025_04266_w crossref_primary_10_1007_s42250_024_00954_x crossref_primary_10_1016_j_fbio_2025_106966 crossref_primary_10_1016_j_ijbiomac_2025_144773 crossref_primary_10_1007_s10876_024_02728_4 crossref_primary_10_1016_j_bioorg_2025_108527 crossref_primary_10_1080_09205063_2025_2490079 crossref_primary_10_1016_j_matchemphys_2025_131249 |
| Cites_doi | 10.1080/02772248.2013.803796 10.1016/j.chemosphere.2020.128607 10.3389/fmicb.2015.00390 10.1016/j.ecoenv.2020.111158 10.1016/j.ijleo.2020.164556 10.3390/ma7042833 10.1016/j.mssp.2018.03.017 10.1002/aoc.5827 10.1016/j.jpap.2021.100021 10.1111/jam.15125 10.1186/s11671-018-2532-3 10.1111/febs.15489 10.1016/j.cbi.2018.03.008 10.1186/s11671-020-03418-6 10.1016/j.jsamd.2018.11.001 10.1080/19443994.2013.810356 10.1021/acs.chemrev.0c00587 10.1021/acs.jmedchem.5b01098 10.1016/j.jallcom.2017.08.142 10.1016/j.ijbiomac.2018.11.228 10.1002/jemt.23182 10.1111/jam.14407 10.1016/j.jpha.2015.11.005 10.1016/S1003-6326(20)65323-7 10.3389/fmicb.2018.01218 10.1016/j.jscs.2020.03.003 10.1016/j.cep.2014.11.010 10.1016/j.ultsonch.2015.03.016 10.1155/2018/1062562 10.1073/pnas.1606656113 10.1016/j.mib.2016.08.008 10.3390/ijms21176305 10.1016/j.bioorg.2019.103169 10.1038/s41598-021-84768-8 10.1007/s40820-015-0040-x 10.1007/s10924-020-02030-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-06657-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_41c3f6b291a44537b40cdc343754554d PMC8850488 35173244 10_1038_s41598_022_06657_y |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: http://dx.doi.org/10.13039/501100002322 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2017/07306-9; 2015/50162-2 funderid: http://dx.doi.org/10.13039/501100001807 – fundername: ; – fundername: ; grantid: 2017/07306-9; 2015/50162-2 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c606t-f8e880931735df59273365d24c459ad824644930646f7b18be6a9ee3e9a610ff3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 452 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757107700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:26:20 EST 2025 Tue Nov 04 01:56:49 EST 2025 Fri Sep 05 13:59:11 EDT 2025 Tue Oct 07 07:38:21 EDT 2025 Thu Jan 02 22:55:31 EST 2025 Sat Nov 29 02:51:29 EST 2025 Tue Nov 18 19:56:07 EST 2025 Fri Feb 21 02:39:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-f8e880931735df59273365d24c459ad824644930646f7b18be6a9ee3e9a610ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/41c3f6b291a44537b40cdc343754554d |
| PMID | 35173244 |
| PQID | 2629162796 |
| PQPubID | 2041939 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_41c3f6b291a44537b40cdc343754554d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8850488 proquest_miscellaneous_2629856842 proquest_journals_2629162796 pubmed_primary_35173244 crossref_primary_10_1038_s41598_022_06657_y crossref_citationtrail_10_1038_s41598_022_06657_y springer_journals_10_1038_s41598_022_06657_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-16 |
| PublicationDateYYYYMMDD | 2022-02-16 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Balouiri, Sadiki, Ibnsouda (CR21) 2016; 6 Qi, Cheng, Yu, Ho (CR3) 2017; 727 Liao, Jin, Li, Tjong (CR4) 2020; 21 Zubair, Akhtar (CR31) 2020; 30 Vijayakumara, Mahadevana, Arulmozhia, Sriramb (CR22) 2018; 82 Anitha (CR28) 2018; 3 Pachaiappan, Rajendran, Show, Manavalan, Naushad (CR1) 2020; 272 Kołodziejczak-Radzimska, Jesionowski (CR6) 2014; 7 (CR5) 2011 Sheik, Raj, Kottaisamy, Vasantha (CR24) 2020; 24 Siddiqi, Rahman, Husen (CR13) 2018; 13 Khataee, Karimi, Zarei, Joo (CR25) 2015; 24 Tiwari, Mishra, Gadani, Solanki, Shah, Tiwari (CR10) 2018; 9 Burman, Saini, Kumar (CR15) 2013; 95 Jiang, Pi, Cai (CR9) 2018; 2018 Yusof, Zain, Pauzi (CR29) 2019; 124 Zanet (CR7) 2019; 127 Padilla-Cruz, Garza-Cervantes, Vasto-Anzaldo, García-Rivas, León-Buitimea, Morones-Ramírez (CR2) 2021; 11 Mendes, Dilarri, Stradioto, Lopes, Bidoia, Montagnolli (CR20) 2021; 29 Du, Pichoff, Lutkenhaus (CR32) 2016; 113 Han (CR16) 2021; 288 Abebe, Zereffa, Tadesse, Murthy (CR36) 2020; 15 Naqvi (CR37) 2019; 45 Agarwal, Menon, Kumar, Rajeshkumar (CR14) 2018; 286 Tripathy, Sahu (CR17) 2019; 91 Molnár (CR19) 2020; 206 Xiao, Goley (CR34) 2016; 34 Dilarri, Caccalano, Zamuner, Domingues, Ferreira (CR35) 2021; 131 Sirelkhatim (CR26) 2015; 7 Hurley, Santos, Nepomuceno, Huynh, Shaw, Weibel (CR33) 2016; 59 Raj (CR38) 2021; 6 Saqib (CR30) 2019; 84 Karekar (CR12) 2015; 87 Alothman, Albaqami (CR11) 2020; 34 Hoseinzadeh, Alikhani, Samarghandi, Shirzad-Siboni (CR8) 2014; 52 Król (CR18) 2015; 6 Lundstedt, Kahne, Ruiz (CR27) 2020; 121 Subbiah, Muthukumaran, Raja (CR23) 2020; 208 SE Karekar (6657_CR12) 2015; 87 N Zubair (6657_CR31) 2020; 30 R Pachaiappan (6657_CR1) 2020; 272 KS Siddiqi (6657_CR13) 2018; 13 Á Molnár (6657_CR19) 2020; 206 C Liao (6657_CR4) 2020; 21 G Dilarri (6657_CR35) 2021; 131 J Jiang (6657_CR9) 2018; 2018 MS Sheik (6657_CR24) 2020; 24 A Sirelkhatim (6657_CR26) 2015; 7 S Saqib (6657_CR30) 2019; 84 R Anitha (6657_CR28) 2018; 3 FDA (6657_CR5) 2011 KA Hurley (6657_CR33) 2016; 59 J Xiao (6657_CR34) 2016; 34 E Król (6657_CR18) 2015; 6 E Lundstedt (6657_CR27) 2020; 121 NB Raj (6657_CR38) 2021; 6 AL Padilla-Cruz (6657_CR2) 2021; 11 S Du (6657_CR32) 2016; 113 A Kołodziejczak-Radzimska (6657_CR6) 2014; 7 AA Alothman (6657_CR11) 2020; 34 S Vijayakumara (6657_CR22) 2018; 82 A Khataee (6657_CR25) 2015; 24 H Han (6657_CR16) 2021; 288 U Burman (6657_CR15) 2013; 95 QUA Naqvi (6657_CR37) 2019; 45 CR Mendes (6657_CR20) 2021; 29 V Tiwari (6657_CR10) 2018; 9 B Abebe (6657_CR36) 2020; 15 E Hoseinzadeh (6657_CR8) 2014; 52 R Subbiah (6657_CR23) 2020; 208 K Qi (6657_CR3) 2017; 727 H Agarwal (6657_CR14) 2018; 286 S Tripathy (6657_CR17) 2019; 91 V Zanet (6657_CR7) 2019; 127 M Balouiri (6657_CR21) 2016; 6 NAA Yusof (6657_CR29) 2019; 124 |
| References_xml | – volume: 95 start-page: 605 year: 2013 end-page: 612 ident: CR15 article-title: Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings publication-title: Toxicol. Environ. Chem. doi: 10.1080/02772248.2013.803796 – volume: 272 start-page: 128607 year: 2020 ident: CR1 article-title: Metal oxide nanocomposites for bactericidal effect: A review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128607 – volume: 6 start-page: 390 year: 2015 ident: CR18 article-title: Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00390 – volume: 206 start-page: 111 year: 2020 end-page: 158 ident: CR19 article-title: ZnO nanoparticles induce cell wall remodeling and modify ROS/RNS signalling in roots of Brassica seedlings publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111158 – volume: 208 start-page: 156 year: 2020 end-page: 166 ident: CR23 article-title: Biosynthesis, structural, photoluminescence and photocatalytic performance of Mn/Mg dual doped ZnO nanostructures using leaf extract publication-title: Optik doi: 10.1016/j.ijleo.2020.164556 – volume: 7 start-page: 2833 year: 2014 end-page: 2881 ident: CR6 article-title: Zinc oxide from synthesis to application: A review publication-title: Materials doi: 10.3390/ma7042833 – volume: 82 start-page: 39 year: 2018 end-page: 45 ident: CR22 article-title: Green synthesis of zinc oxide nanoparticles using leaf extracts: Characterization and antimicrobial analysis publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2018.03.017 – volume: 34 start-page: 5827 year: 2020 ident: CR11 article-title: Nano sized Cu (II) and Zn (II) complexes and their use as a precursor for synthesis of CuO and ZnO nanoparticles: A study on their sonochemical synthesis, characterization, and DNA/binding/cleavage, anticancer, and antimicrobial activities publication-title: Appl. Organometal. Chem. doi: 10.1002/aoc.5827 – volume: 6 start-page: 100021 year: 2021 ident: CR38 article-title: Harnessing ZnO nanoparticles for antimicrobial and photocatalytic activities publication-title: J. Photochem. Photobiol. doi: 10.1016/j.jpap.2021.100021 – volume: 131 start-page: 2488 year: 2021 end-page: 2499 ident: CR35 article-title: Hexanoic acid: A new potential substitute for copper-based agrochemicals against citrus canker publication-title: J. Appl. Microbiol. doi: 10.1111/jam.15125 – volume: 13 start-page: 141 year: 2018 ident: CR13 article-title: Properties of zinc oxide nanoparticles and their activity against microbes publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2532-3 – volume: 288 start-page: 1091 year: 2021 end-page: 1106 ident: CR16 article-title: Recent progress of bacterial FtsZ inhibitors with a focus on peptides publication-title: FEBS J. doi: 10.1111/febs.15489 – volume: 286 start-page: 60 year: 2018 end-page: 70 ident: CR14 article-title: Mechanistic study of the antibacterial action of zinc oxide nanoparticles synthesized using green route publication-title: Chemico-Biol. Inter. doi: 10.1016/j.cbi.2018.03.008 – volume: 15 start-page: 190 year: 2020 ident: CR36 article-title: A review on enhancing the antibacteril activity of ZnO: Mechanisms and microscopic investigation publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-020-03418-6 – year: 2011 ident: CR5 publication-title: Part 182—Substances Generally Recognized as Safe – volume: 3 start-page: 440 year: 2018 end-page: 451 ident: CR28 article-title: Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the fruit mediated facile green combustion method publication-title: J. Sci. Adv. Mater. Devices doi: 10.1016/j.jsamd.2018.11.001 – volume: 52 start-page: 4969 year: 2014 end-page: 4976 ident: CR8 article-title: Antimicrobial potential of synthesized zinc oxide nanoparticles against gram positive and gram negative bacteria publication-title: Desalinat. Water Treat. doi: 10.1080/19443994.2013.810356 – volume: 121 start-page: 5098 year: 2020 end-page: 5123 ident: CR27 article-title: Assembly and maintenance of lipids at the bacterial outer membrane publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00587 – volume: 59 start-page: 6975 year: 2016 end-page: 6998 ident: CR33 article-title: Targeting the bacterial division protein ftsz publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01098 – volume: 727 start-page: 792 year: 2017 end-page: 820 ident: CR3 article-title: Review on the improvement of the photocatalytic and antibacterial activities of ZnO publication-title: J. Alloy. Compds. doi: 10.1016/j.jallcom.2017.08.142 – volume: 45 start-page: 147 year: 2019 end-page: 159 ident: CR37 article-title: Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles publication-title: J. Biol. Phys. doi: 10.1016/j.ijbiomac.2018.11.228 – volume: 84 start-page: 415 year: 2019 end-page: 420 ident: CR30 article-title: Synthesis, characterization and use of iron oxide nano particles for antibacterial activity publication-title: Microsc. Res. Technol. doi: 10.1002/jemt.23182 – volume: 127 start-page: 1391 year: 2019 end-page: 1402 ident: CR7 article-title: Activity evaluation of pure and doped zinc oxide nanoparticles against publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14407 – volume: 6 start-page: 71 year: 2016 end-page: 79 ident: CR21 article-title: Methods for in vitro evaluating antimicrobial activity: A review publication-title: J. Pharm. Anal. doi: 10.1016/j.jpha.2015.11.005 – volume: 30 start-page: 1605 year: 2020 end-page: 1614 ident: CR31 article-title: Morphology controlled synthesis of ZnO nanoparticles for in-vitro evaluation of antibacterial activity publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(20)65323-7 – volume: 9 start-page: 1218 year: 2018 ident: CR10 article-title: Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01218 – volume: 24 start-page: 393 year: 2020 end-page: 406 ident: CR24 article-title: Biosynthesis of ZnO nanoparticles through extract from plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2020.03.003 – volume: 87 start-page: 51 year: 2015 end-page: 59 ident: CR12 article-title: Synthesis of zinc molybdate and zinc phosphomolybdate nanopigments by an ultrasound assisted route: Advantage over conventional method publication-title: Chem. Eng. doi: 10.1016/j.cep.2014.11.010 – volume: 24 start-page: 393 year: 2015 end-page: 406 ident: CR25 article-title: Eu-doped ZnO nanoparticles: Sonochemical synthesis, characterization, and sonocatalytic application publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.03.016 – volume: 2018 start-page: 18 year: 2018 ident: CR9 article-title: The advancing of zinc oxide nanoparticles for biomedical applications publication-title: Bioinorg. Chem. Appl. doi: 10.1155/2018/1062562 – volume: 113 start-page: 52 year: 2016 end-page: 61 ident: CR32 article-title: FtsEX acts on FtsA to regulate divisome assembly and activity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1606656113 – volume: 34 start-page: 90 year: 2016 end-page: 96 ident: CR34 article-title: Redefining the roles of the ftsz-ring in bacterial cytokinesis publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2016.08.008 – volume: 124 start-page: 1132 year: 2019 end-page: 1136 ident: CR29 article-title: Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.11.228 – volume: 21 start-page: 6305 issue: 17 year: 2020 ident: CR4 article-title: Interactions of zinc oxide nanostructures with mammalian cells: Cytotoxicity and photocatalytic toxicity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21176305 – volume: 91 start-page: 103 year: 2019 end-page: 169 ident: CR17 article-title: FtsZ inhibitors as a new genera of antibacterial agents publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.103169 – volume: 11 start-page: 5351 year: 2021 ident: CR2 article-title: Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens publication-title: Sci. Rep. doi: 10.1038/s41598-021-84768-8 – volume: 7 start-page: 219 year: 2015 end-page: 242 ident: CR26 article-title: Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism publication-title: Nano-Micro Lett. doi: 10.1007/s40820-015-0040-x – volume: 29 start-page: 2214 year: 2021 end-page: 2226 ident: CR20 article-title: Zeta potential mechanisms applied to cellular immobilization: A study with on dye adsorption publication-title: J. Polym. Environ. doi: 10.1007/s10924-020-02030-0 – volume: 34 start-page: 5827 year: 2020 ident: 6657_CR11 publication-title: Appl. Organometal. Chem. doi: 10.1002/aoc.5827 – volume: 206 start-page: 111 year: 2020 ident: 6657_CR19 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111158 – volume: 6 start-page: 390 year: 2015 ident: 6657_CR18 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00390 – volume: 87 start-page: 51 year: 2015 ident: 6657_CR12 publication-title: Chem. Eng. doi: 10.1016/j.cep.2014.11.010 – volume: 3 start-page: 440 year: 2018 ident: 6657_CR28 publication-title: J. Sci. Adv. Mater. Devices doi: 10.1016/j.jsamd.2018.11.001 – volume: 124 start-page: 1132 year: 2019 ident: 6657_CR29 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.11.228 – volume: 95 start-page: 605 year: 2013 ident: 6657_CR15 publication-title: Toxicol. Environ. Chem. doi: 10.1080/02772248.2013.803796 – volume: 15 start-page: 190 year: 2020 ident: 6657_CR36 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-020-03418-6 – volume: 272 start-page: 128607 year: 2020 ident: 6657_CR1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128607 – volume: 727 start-page: 792 year: 2017 ident: 6657_CR3 publication-title: J. Alloy. Compds. doi: 10.1016/j.jallcom.2017.08.142 – volume: 121 start-page: 5098 year: 2020 ident: 6657_CR27 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00587 – volume: 21 start-page: 6305 issue: 17 year: 2020 ident: 6657_CR4 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21176305 – volume: 13 start-page: 141 year: 2018 ident: 6657_CR13 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2532-3 – volume: 24 start-page: 393 year: 2015 ident: 6657_CR25 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.03.016 – volume: 52 start-page: 4969 year: 2014 ident: 6657_CR8 publication-title: Desalinat. Water Treat. doi: 10.1080/19443994.2013.810356 – volume: 288 start-page: 1091 year: 2021 ident: 6657_CR16 publication-title: FEBS J. doi: 10.1111/febs.15489 – volume: 7 start-page: 219 year: 2015 ident: 6657_CR26 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-015-0040-x – volume: 34 start-page: 90 year: 2016 ident: 6657_CR34 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2016.08.008 – volume: 286 start-page: 60 year: 2018 ident: 6657_CR14 publication-title: Chemico-Biol. Inter. doi: 10.1016/j.cbi.2018.03.008 – volume: 11 start-page: 5351 year: 2021 ident: 6657_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-021-84768-8 – volume: 2018 start-page: 18 year: 2018 ident: 6657_CR9 publication-title: Bioinorg. Chem. Appl. doi: 10.1155/2018/1062562 – volume: 113 start-page: 52 year: 2016 ident: 6657_CR32 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1606656113 – volume: 29 start-page: 2214 year: 2021 ident: 6657_CR20 publication-title: J. Polym. Environ. doi: 10.1007/s10924-020-02030-0 – volume: 24 start-page: 393 year: 2020 ident: 6657_CR24 publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2020.03.003 – volume: 6 start-page: 100021 year: 2021 ident: 6657_CR38 publication-title: J. Photochem. Photobiol. doi: 10.1016/j.jpap.2021.100021 – volume: 9 start-page: 1218 year: 2018 ident: 6657_CR10 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01218 – volume: 30 start-page: 1605 year: 2020 ident: 6657_CR31 publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(20)65323-7 – volume: 45 start-page: 147 year: 2019 ident: 6657_CR37 publication-title: J. Biol. Phys. doi: 10.1016/j.ijbiomac.2018.11.228 – volume: 7 start-page: 2833 year: 2014 ident: 6657_CR6 publication-title: Materials doi: 10.3390/ma7042833 – volume: 208 start-page: 156 year: 2020 ident: 6657_CR23 publication-title: Optik doi: 10.1016/j.ijleo.2020.164556 – volume-title: Part 182—Substances Generally Recognized as Safe year: 2011 ident: 6657_CR5 – volume: 82 start-page: 39 year: 2018 ident: 6657_CR22 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2018.03.017 – volume: 84 start-page: 415 year: 2019 ident: 6657_CR30 publication-title: Microsc. Res. Technol. doi: 10.1002/jemt.23182 – volume: 6 start-page: 71 year: 2016 ident: 6657_CR21 publication-title: J. Pharm. Anal. doi: 10.1016/j.jpha.2015.11.005 – volume: 91 start-page: 103 year: 2019 ident: 6657_CR17 publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.103169 – volume: 59 start-page: 6975 year: 2016 ident: 6657_CR33 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01098 – volume: 127 start-page: 1391 year: 2019 ident: 6657_CR7 publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14407 – volume: 131 start-page: 2488 year: 2021 ident: 6657_CR35 publication-title: J. Appl. Microbiol. doi: 10.1111/jam.15125 |
| SSID | ssj0000529419 |
| Score | 2.7192304 |
| Snippet | Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of... Abstract Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2658 |
| SubjectTerms | 631/326/2522 631/326/41 639/925/357/354 Antimicrobial activity Antimicrobial agents Bacillus subtilis - drug effects Bacillus subtilis - metabolism Cell division Cytoplasmic membranes Dose-Response Relationship, Drug Drug Resistance, Bacterial E coli Electrostatic properties Escherichia coli - drug effects Escherichia coli - metabolism Fluorescence microscopy Humanities and Social Sciences Infrared spectroscopy Metal Nanoparticles Microbial Sensitivity Tests - methods Microscopy multidisciplinary Nanoparticles Prediction models Pseudomonas aeruginosa - drug effects Pseudomonas aeruginosa - metabolism Reactive oxygen species Reactive Oxygen Species - metabolism Scanning electron microscopy Science Science (multidisciplinary) Staphylococcus aureus - drug effects Staphylococcus aureus - metabolism Static Electricity X-ray diffraction Zinc oxide Zinc Oxide - pharmacology Zinc oxides |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiQuvB-BgozEDaImtpM4J9SiVhzQqkKAerMc22kjUadstojl1zN2vFktj164xpPI8Tz8zYw9A_BKCyYyYxC5cdQmrgq0g6hYKYI5alSmlA7xji8fqvlcnJzUxzHgNsRjlWubGAy16bWPke_RkiKSoVVdvr34lvquUT67GltoXIcdX6mMz2Dn4HB-_HGKsvg8Fs_reFsmY2JvwB3L3ypDHyxkHdLV1o4UCvf_DW3-eWjyt8xp2JCO7vzvr9yF2xGKkv1Rdu7BNevuw82xOeXqATT7btk1YzFnJBsvQBDlDBlPj5Nz628Nd8P5QPqW_OycJv2PzljilENXPJ64I-pUdYhByeZTvgtyj4I7PITPR4ef3r1PY0eGVKOjs0xbYVHfa8QcrDBtUVNfTLEwlGte1MoIyhFe1d6pKduqyUVjS1Vby2ytEKa1LXsEM9c7-wRInTeGWtrYirecafT6sqKhira6MqUxeQL5mitSx3LlvmvGVxnS5kzIkZMSOSkDJ-UqgdfTOxdjsY4rqQ88sydKX2g7POgXpzIukuS5Zm3ZIMMU5wWrGp5poxn3nYMRiZkEdtc8llH7B7lhcAIvp2HUW5-MUc72lyONKHwWNIHHo2RNM2EFLjDirgSqLZnbmur2iOvOQm1wIQpvkxN4s5bOzbT-vRRPr_6LZ3CLBoWhaV7uwmy5uLTP4Yb-vuyGxYuoc78AIJk0eg priority: 102 providerName: ProQuest |
| Title | Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens |
| URI | https://link.springer.com/article/10.1038/s41598-022-06657-y https://www.ncbi.nlm.nih.gov/pubmed/35173244 https://www.proquest.com/docview/2629162796 https://www.proquest.com/docview/2629856842 https://pubmed.ncbi.nlm.nih.gov/PMC8850488 https://doaj.org/article/41c3f6b291a44537b40cdc343754554d |
| Volume | 12 |
| WOSCitedRecordID | wos000757107700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviDeBsjISN4i6sZ3EPraoFUh0FSFAyylybKdEok7VbBHLr2dsZ7ddnhcuPiSzkTUP-5sd-xuA51owMTUGkRvHaOIqx3UQAytFMEeNmiqlw_8dH9-Ws5mYz2V1pdWXPxMW6YGj4vZ4pllbNFRmivOclQ2faqMZ961bcSs0fvVF1HMlmYqs3lTyTI63ZKZM7A24U_nbZJh7hWpDutzYiQJh_-9Q5q-HJX-qmIaN6Og23BoRJNmPM78D16y7CzdjT8nlPWj23aJrIgczisV7C0Q5Q-Khb3Jq_WXfbjgdSN-S753TpP_WGUuccphBjwfliDpRHUJHcvkp37y4R38b7sOHo8P3r16nYyOFVGN-skhbYTFMJUIFlps2l9RzIOaGcs1zqYygHFGR9LlI0ZZNJhpbKGkts1Ihumpb9gC2XO_sIyAyawy1tLElbznTmKxN84Yq2urSFMZkCWQrpdZ6ZBn3zS6-1KHazUQdDVGjIepgiHqZwIv1b84ix8ZfpQ-8rdaSnh87PECvqUcl1f_ymgR2V5aux6AdalqgfEFLWSTwbP0aw83XUJSz_UWUEbkvXibwMDrGeiYsRwUjXEqg3HCZjaluvnHd50DpLUTul9IEXq6c63Jaf1bF4_-hiiewQ0NU0DQrdmFrcX5hn8IN_XXRDecTuF7OyzCKCWwfHM6qd5MQajge08qPJY7b1Zvj6tMPwp8q4A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFE3tpM4B4TKo2rVZcWhoL25ju20kdpk2WyB5UfxGxk7ya6WR289cE2cyHG-mfnseQE804KJgTHI3DhKE1cx6kEUrBDJHDVqoJT25x2fh-loJMbj7OMa_OxzYVxYZa8TvaI2tXZn5Js0ochkaJolrydfQtc1ynlX-xYaLSz27PwbbtmaV7vv8P8-p3T7_f7bnbDrKhBqJOuzsBAWMZuh3WSxKeKMuoKAsaFc8zhTRlCOFCFzxDwp0jwSuU1UZi2zmUKqURQM33sBLqIeT10IWTpOF2c6zmvGo6zLzRkwsdmgfXQ5bLjj8z6OcL5i_3ybgL9x2z9DNH_z03rzt339f1u4G3CtI9pkq5WMm7Bmq1twuW29Ob8N-VY1K_O2VDUOa9M7iKoMaWPjyYl1OdFlc9KQuiA_ykqT-ntpLKlUVU_6eEKiDlWJDJssX-V6PNcols0d-HQuH3gX1qu6sveBZFFuqKW5TXnBmcY97SDOqaKFTk1iTBRA1KNA6q4Yu-sJcix9UAATskWORORIjxw5D-DF4plJW4rkzNFvHLgWI10ZcX-hnh7KbpEkjzQrkhwBojiPWZrzgTaacdcXGXmmCWCjx5TsdFsjl4AK4OniNmol52pSla1P2zEidj7eAO61SF7MhMW4wMgqA0hXML4y1dU7VXnkK58LETuLE8DLXhqW0_r3Ujw4-yuewJWd_Q9DOdwd7T2Eq9QLKw2jZAPWZ9NT-wgu6a-zspk-9tJO4OC8peQXhKONXA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmgmXrIcECqUEVXLaA6AenMd2ymRaDJMpsDw0_h1PDvJjIaltx64Jk7kON9777PfBvBEpywdGoPMjaM0cSVQD6JghUjmqFFDpbQ_7_i4n4zH6cFBNtmAn30ujAur7HWiV9Sm1u6MfEBjikyGJlk8KLqwiMnO6OX0S-g6SDlPa99Oo4XInl18w-1b82J3B__1U0pHb96_fht2HQZCjcR9HhapRfxmaEOZMIXIqCsOKAzlmotMmZRypAuZI-lxkeRRmttYZdYymymkHUXB8L3n4HzChXDS9Y5Oluc7zoPGo6zL0xmydNCgrXT5bLj78_6OcLFmC33LgL_x3D_DNX_z2XpTOLr6Py_iNbjSEXCy3UrMddiw1Q242LbkXNyEfLual3lbwhqHtWkfRFWGtDHz5Ni6XOmyOW5IXZAfZaVJ_b00llSqqqd9nCFRR6pE5k1Wr3K9n2sU1-YWfDiTD7wNm1Vd2btAsig31NLcJrzgTONedyhyqmihExMbEwUQ9YiQuivS7nqFfJY-WIClskWRRBRJjyK5CODZ8plpW6Lk1NGvHNCWI115cX-hnh3JbpEkjzQr4hzBojgXLMn5UBvNuOuXjPzTBLDV40t2Oq-RK3AF8Hh5G7WVc0GpytYn7ZhUON9vAHdaVC9nwgQuMLLNAJI1vK9Ndf1OVX7yFdHTVDhLFMDzXjJW0_r3Utw7_SsewSUUDrm_O967D5epl1saRvEWbM5nJ_YBXNBf52Uze-gFn8DhWQvJL-yVlik |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibacterial+action+and+target+mechanisms+of+zinc+oxide+nanoparticles+against+bacterial+pathogens&rft.jtitle=Scientific+reports&rft.au=Mendes%2C+Carolina+Rosai&rft.au=Dilarri%2C+Guilherme&rft.au=Forsan%2C+Carolina+Froes&rft.au=Sapata%2C+Vin%C3%ADcius+de+Moraes+Ruy&rft.date=2022-02-16&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=2658&rft_id=info:doi/10.1038%2Fs41598-022-06657-y&rft_id=info%3Apmid%2F35173244&rft.externalDocID=35173244 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |