Dynamics of online hate and misinformation

Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 11; H. 1; S. 22083 - 12
Hauptverfasser: Cinelli, Matteo, Pelicon, Andraž, Mozetič, Igor, Quattrociocchi, Walter, Novak, Petra Kralj, Zollo, Fabiana
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 11.11.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of “pure haters”, meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents’ community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin’s law, online debates tend to degenerate towards increasingly toxic exchanges of views.
AbstractList Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of “pure haters”, meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents’ community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin’s law, online debates tend to degenerate towards increasingly toxic exchanges of views.
Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of "pure haters", meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents' community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin's law, online debates tend to degenerate towards increasingly toxic exchanges of views.Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of "pure haters", meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents' community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin's law, online debates tend to degenerate towards increasingly toxic exchanges of views.
Abstract Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of “pure haters”, meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents’ community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin’s law, online debates tend to degenerate towards increasingly toxic exchanges of views.
ArticleNumber 22083
Author Cinelli, Matteo
Zollo, Fabiana
Mozetič, Igor
Pelicon, Andraž
Novak, Petra Kralj
Quattrociocchi, Walter
Author_xml – sequence: 1
  givenname: Matteo
  surname: Cinelli
  fullname: Cinelli, Matteo
  organization: Ca’ Foscari University of Venice
– sequence: 2
  givenname: Andraž
  surname: Pelicon
  fullname: Pelicon, Andraž
  organization: Jozef Stefan Institute, Jozef Stefan International Postgraduate School
– sequence: 3
  givenname: Igor
  surname: Mozetič
  fullname: Mozetič, Igor
  organization: Jozef Stefan Institute
– sequence: 4
  givenname: Walter
  surname: Quattrociocchi
  fullname: Quattrociocchi, Walter
  organization: Sapienza University of Rome
– sequence: 5
  givenname: Petra Kralj
  surname: Novak
  fullname: Novak, Petra Kralj
  organization: Jozef Stefan Institute
– sequence: 6
  givenname: Fabiana
  surname: Zollo
  fullname: Zollo, Fabiana
  email: fabiana.zollo@unive.it
  organization: Ca’ Foscari University of Venice
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34764344$$D View this record in MEDLINE/PubMed
BookMark eNp9kktLJDEUhcPgMDqOf2AWUuBGBmrM-7ERxHkoCG50HVJJqk1TlWhSrfjvJ92l42NhNgk33zkc7r1fwVZM0QPwHcGfCBJ5VChiSrYQoxYiKkX78AnsYEhZiwnGW6_e22CvlCWsh2FFkfoCtgkVnBJKd8CPX4_RjMGWJvVNikOIvrkxk29MdM0YSoh9yqOZQorfwOfeDMXvPd274PrP76vTs_bi8u_56clFaznkU-scVMRLq5xktFeQMOWwI6IjHeowkdQhLmoVeyNVJb1Swva449iaWrJkF5zPvi6Zpb7NYTT5UScT9KaQ8kKbPAU7eO2dxIxTJQzqaF8NIKccc9EjohT1onodz163q270zvo4ZTO8MX37E8ONXqR7LZlkStBqcPhkkNPdypdJ16ZYPwwm-rQqGq8pySFmFT14hy7TKsfaqjXFkZAEyUrtv070P8rzSCogZ8DmVEr2vbZh2gygBgyDRlCvF0DPC6DrAujNAuiHKsXvpM_uH4rILCoVjgufX2J_oPoHQEfBNg
CitedBy_id crossref_primary_10_3390_socsci13090465
crossref_primary_10_1016_j_eswa_2024_123211
crossref_primary_10_3390_ijerph192013149
crossref_primary_10_1007_s10796_023_10390_w
crossref_primary_10_1093_pnasnexus_pgad041
crossref_primary_10_1109_ACCESS_2023_3324555
crossref_primary_10_1038_s41586_024_07229_y
crossref_primary_10_1177_20563051221138758
crossref_primary_10_3390_ai6080194
crossref_primary_10_1080_10714421_2023_2208513
crossref_primary_10_1109_TNSE_2024_3398219
crossref_primary_10_1093_pnasnexus_pgad346
crossref_primary_10_1016_j_chbr_2024_100573
crossref_primary_10_1177_14687968251364359
crossref_primary_10_3390_computers14060239
crossref_primary_10_1007_s10767_024_09478_1
crossref_primary_10_3390_soc13100226
crossref_primary_10_1177_19401612241257873
crossref_primary_10_1038_s41598_025_07086_3
crossref_primary_10_3390_bdcc9090227
crossref_primary_10_1016_j_osnem_2024_100289
crossref_primary_10_1016_j_ipm_2022_103219
crossref_primary_10_1177_20563051241303362
crossref_primary_10_1038_s41562_022_01353_3
crossref_primary_10_1007_s42001_025_00381_z
crossref_primary_10_1177_13548565251324508
crossref_primary_10_1177_20563051221129151
crossref_primary_10_1007_s11280_024_01269_0
crossref_primary_10_1038_s41467_024_53868_0
crossref_primary_10_1057_s41599_025_04647_9
crossref_primary_10_1017_XPS_2024_2
crossref_primary_10_1177_00936502241278944
crossref_primary_10_3390_journalmedia4040067
crossref_primary_10_1093_pnasnexus_pgae004
crossref_primary_10_3390_bdcc6040130
crossref_primary_10_1088_2632_072X_ac60b1
crossref_primary_10_1371_journal_pone_0316258
crossref_primary_10_1007_s41109_021_00439_7
crossref_primary_10_3390_e27050542
crossref_primary_10_1177_01655515241238405
crossref_primary_10_1108_OIR_05_2025_0342
crossref_primary_10_1016_j_ins_2023_119152
crossref_primary_10_3389_frai_2023_1350306
Cites_doi 10.1371/journal.pone.0155036
10.1145/1134271.1134277
10.1017/9781108890960.005
10.1007/978-3-030-27947-9_9
10.1073/pnas.2023301118
10.1111/j.1460-2466.1997.tb02690.x
10.2139/ssrn.2831369
10.1371/journal.pone.0265602
10.1145/3316809
10.1609/icwsm.v11i1.14955
10.18653/v1/2020.semeval-1.188
10.4000/books.aaccademia.4503
10.18653/v1/2020.emnlp-demos.6
10.1126/sciadv.aau4586
10.1038/s41598-020-73510-5
10.1073/pnas.1517441113
10.1371/journal.pone.0138740
10.18653/v1/S19-2010
10.18653/v1/S19-2007
10.1093/poq/nfw006
10.31234/osf.io/v45bk
10.25300/MISQ/2016/40.2.05
10.2139/ssrn.3082972
10.1145/3178876.3186141
10.1561/100.00019045
10.1038/s41562-020-01012-5
10.1145/3415163
10.1140/epjds/s13688-016-0072-6
10.4135/9781071878781
10.1145/3041021.3054223
10.1111/jcom.12104
10.1145/3232676
10.1145/3025453.3026018
10.1609/icwsm.v12i1.15057
10.18653/v1/N19-1144
10.1038/s41586-019-1494-7
10.1371/journal.pone.0181821
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-01487-w
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_ed8256497a1b4f2ca0646267f13994e7
PMC8585974
34764344
10_1038_s41598_021_01487_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Slovenian Research Agency
  grantid: P2-103
– fundername: Rights, Equality and Citizenship Programme
  grantid: 875263
  funderid: http://dx.doi.org/10.13039/100013270
– fundername: Rights, Equality and Citizenship Programme
  grantid: 875263
– fundername: ;
  grantid: P2-103
– fundername: ;
  grantid: 875263
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c606t-dd093e8c9d854f90359d2d37b3b1b2384d1670352ea8993ee997cf2b62caea8c3
IEDL.DBID BENPR
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717747400115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:15 EDT 2025
Tue Nov 04 01:42:32 EST 2025
Sun Nov 09 08:59:51 EST 2025
Tue Oct 07 08:02:13 EDT 2025
Thu Jan 02 22:45:15 EST 2025
Tue Nov 18 21:57:10 EST 2025
Sat Nov 29 02:50:45 EST 2025
Fri Feb 21 02:39:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-dd093e8c9d854f90359d2d37b3b1b2384d1670352ea8993ee997cf2b62caea8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2596178318?pq-origsite=%requestingapplication%
PMID 34764344
PQID 2596178318
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_ed8256497a1b4f2ca0646267f13994e7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585974
proquest_miscellaneous_2597486025
proquest_journals_2596178318
pubmed_primary_34764344
crossref_citationtrail_10_1038_s41598_021_01487_w
crossref_primary_10_1038_s41598_021_01487_w
springer_journals_10_1038_s41598_021_01487_w
PublicationCentury 2000
PublicationDate 2021-11-11
PublicationDateYYYYMMDD 2021-11-11
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References CalvertCHate speech and its harms: A communication theory perspectiveJ. Commun.199747141910.1111/j.1460-2466.1997.tb02690.x
DruckmanJNKlarSKrupnikovYLevenduskyMRyanJBAffective polarization, local contexts and public opinion in AmericaNat. Hum. Behav.202151283810.1038/s41562-020-01012-5
Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P., Karadzhov, G., Mubarak, H., Derczynski, L., Pitenis, Z. & Çöltekin, Ç. Semeval-2020 task 12: Multilingual offensive language identification in social media (offenseval 2020). arXiv:2006.07235 (2020).
ChanJGhoseASeamansRThe internet and racial hate crime: Offline spillovers from online accessMIS Q.201640238140310.25300/MISQ/2016/40.2.05
Bosco, C., Dell’Orletta, F., Poletto, F., Sanguinetti, M. & Maurizio, T. Overview of the evalita 2018 hate speech detection task. In EVALITA 2018-Sixth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, vol. 2263, pp. 1–9 (CEUR, 2018).
Müller, K. & Schwarz, C. Fanning the flames of hate: Social media and hate crime. J. Eur. Econ. Assoc. (2018).
Council of Europe. Recommendation no. r (97) 20 of the committee of ministers to member states on “hate speech”. https://go.coe.int/URzjs (Accessed: 27.09.2021).
Basile, V., Bosco, C., Fersini, E., Debora, N., Patti, V., Pardo, F. M. R., Rosso, P. & Sanguinetti, M. et al. Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In 13th International Workshop on Semantic Evaluation, pp. 54–63 (Association for Computational Linguistics, 2019).
Osmundsen, M., Bor, A., Vahlstrup, P. B., Bechmann, A. & Petersen, M. B. Partisan polarization is the primary psychological motivation behind political fake news sharing on twitter. Am. Polit. Sci. Rev., 1–17 (2020).
Siegel, A. A. Online hate speech. Social Media and Democracy, p. 56 (2019).
European Commission. Code of conduct on countering illegal hate speech online. https://ec.europa.eu/newsroom/just/document.cfm?doc_id=42985 (Accessed: 27.09.2021).
Polignano, M., Basile, P., De Gemmis, M. & Semeraro, G. Hate speech detection through AlBERTo Italian language understanding model. In NL4AI@ AI* IA (2019).
MathewBIllendulaASahaPSarkarSGoyalPMukherjeeAHate begets hate: A temporal study of hate speechProc. ACM Hum. Comput. Interact.20204CSCW212410.1145/3415163
ZolloFNovakPKVicarioMDBessiAMozetičIScalaACaldarelliGQuattrociocchiWEmotional dynamics in the age of misinformationPLoS One2015100912210.1371/journal.pone.0138740
Twitter. Violent organizations policy. https://help.twitter.com/en/rules-and-policies/violent-groups (Accessed: 27.09.2021).
FlaxmanSGoelSRaoJMFilter bubbles, echo chambers, and online news consumptionPublic Opin. Q.201680S129832010.1093/poq/nfw006
Adamic, L. A., Glance, N. The political blogosphere and the 2004 us election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43 (2005).
SiegelAANikitinEBarberáPSterlingJPullenBBonneauRNaglerJTuckerJATrumping hate on twitter? Online hate speech in the 2016 us election campaign and its aftermathQ. J. Polit. Sci.20211617110410.1561/100.00019045
Schild, L., Ling, C., Blackburn, J., Stringhini, G., Zhang, Y. & Zannettou, S. “Go eat a bat, chang!”: An early look on the emergence of sinophobic behavior on web communities in the face of covid-19. arXiv:2004.04046 (2020).
Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. Predicting the type and target of offensive posts in social media. In Proceedings of NAACL (2019).
JohnsonNFLeahyRRestrepoNJVelasquezNZhengMManriquePDevkotaPWuchtySHidden resilience and adaptive dynamics of the global online hate ecologyNature201957377732612652019Natur.573..261J1:CAS:528:DC%2BC1MXhs1agtbjN10.1038/s41586-019-1494-7
Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. SemEval-2019 task 6: Identifying and categorizing offensive language in social media (OffensEval). In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 75–86 (Association for Computational Linguistics, 2019).
Awan, I. & Zempi, I. We fear for our lives: Offline and online experiences of anti-muslim hostility. Technical report, Birmingham City University (2015).
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q. & Rush, A. M. Hugging face’s transformers: State-of-the-art natural language processing. arXiv:abs/1910.03771 (2019).
Kumar, S., Hamilton, W. L., Leskovec, J. & Jurafsky, D. Community interaction and conflict on the web. In Proceedings of the 2018 World Wide Web Conference, pp. 933–943 (2018).
Krippendorff, K. Content Analysis. An Introduction to its Methodology, 4th edn. (Sage Publications, 2018).
FortunaPNunesSA survey on automatic detection of hate speech in textACM Comput. Surv. (CSUR)201851413010.1145/3232676
Badjatiya, P., Gupta, S., Gupta, M. & Varma, V. Deep learning for hate speech detection in tweets. In Proceedings of the 26th International Conference on World Wide Web Companion, pp. 759–760 (2017).
Gagliardone, I., Pohjonen, M., Beyene, Z., Zerai, A., Aynekulu, G., Bekalu, M., Bright, J., Moges, M., Seifu, M. & Stremlau, N. et al. Mechachal: Online debates and elections in Ethiopia—from hate speech to engagement in social media. Available at SSRN 2831369 (2016).
ZolloFBessiADel VicarioMScalaACaldarelliGShekhtmanLHavlinSQuattrociocchiWDebunking in a world of tribesPLoS One2017127e018182110.1371/journal.pone.0181821
Del Vigna, F., Cimino, A., Dell’Orletta, F., Petrocchi, M. & Tesconi, M. Hate me, hate me not: Hate speech detection on facebook. In Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), pp. 86–95 (2017).
Facebook. Community standards. https://www.facebook.com/communitystandards/introduction (Accessed: 27.09.2021).
Chandrasekharan, E., Samory, M., Srinivasan, A. & Gilbert, E. The bag of communities: Identifying abusive behavior online with preexisting internet data. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3175–3187 (2017).
CoeKKenskiKRainsSAOnline and uncivil? Patterns and determinants of incivility in newspaper website commentsJ. Commun.201464465867910.1111/jcom.12104
Polignano, M., Basile, P., De Gemmis, M., Semeraro, G. & Basile, V. AlBERTo: Italian BERT language understanding model for NLP challenging tasks based on tweets. In 6th Italian Conference on Computational Linguistics, CLiC-it 2019, vol. 2481, pp. 1–6 (CEUR, 2019).
Ribeiro, M., Calais, P., Santos, Y., Almeida, V. & Meira Jr., W. Characterizing and detecting hateful users on twitter. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 12 (2018).
MozetičIGrčarMSmailovićJMultilingual Twitter sentiment classification: The role of human annotatorsPLoS One2016115e015503610.1371/journal.pone.0155036
Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci.118(9) (2021).
Statista Research Department. Leading social media networks in Italy as of January 2019, ranked by number of active users. https://www.statista.com/statistics/639777/social-media-active-users-italy/ (Accessed: 27.09.2021).
Gagliardone, I., Gal, D., Alves, T. & Martinez, G. Countering Online Hate Speech (Unesco Publishing, 2015).
Davidson, T., Warmsley, D., Macy, M. & Weber, I. Automated hate speech detection and the problem of offensive language. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017).
Evkoski, B., Pelicon, A., Mozetič, I., Ljubešić, N. & Novak, P. K. Retweet communities reveal the main sources of hate speech. arXiv:2105.14898 (2021).
CinelliMQuattrociocchiWGaleazziAValensiseCMBrugnoliESchmidtALZolaPZolloFScalaAThe covid-19 social media infodemicSci. Rep.202010111010.1038/s41598-020-73510-5
Del VicarioMQuattrociocchiWScalaAZolloFPolarization and fake news: Early warning of potential misinformation targetsACM Trans. Web (TWEB)201913212210.1145/3316809
Sanguinetti, M., Poletto, F., Bosco, C., Patti, V. & Stranisci, M. An Italian Twitter corpus of hate speech against immigrants. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018).
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018).
Ljubešić, N., Fišer, D. & Erjavec, T. The FRENK datasets of socially unacceptable discourse in Slovene and English (2019).
YouTube. Hate speech policy. https://support.google.com/youtube/answer/2801939?hl=en&ref_topic=9282436 (Accessed: 27.09.2021).
Guess, A., Nagler, J., & Tucker, J. Less than you think: Prevalence and predictors of fake news dissemination on facebook. Sc. Adv.5(1), eaau4586 (2019).
Del VicarioMBessiAZolloFPetroniFScalaACaldarelliGStanleyHEQuattrociocchiWThe spreading of misinformation onlineProc. Natl. Acad. Sci.201611335545592016PNAS..113..554D10.1073/pnas.1517441113
BurnapPWilliamsMLUs and them: Identifying cyber hate on twitter across multiple protected characteristics.EPJ Data Sci.2016511510.1140/epjds/s13688-016-0072-6
1487_CR40
S Flaxman (1487_CR2) 2016; 80
1487_CR41
NF Johnson (1487_CR17) 2019; 573
1487_CR43
1487_CR44
J Chan (1487_CR8) 2016; 40
1487_CR45
F Zollo (1487_CR32) 2017; 12
B Mathew (1487_CR18) 2020; 4
AA Siegel (1487_CR20) 2021; 16
1487_CR48
JN Druckman (1487_CR51) 2021; 5
1487_CR49
1487_CR33
1487_CR34
1487_CR35
1487_CR36
P Fortuna (1487_CR15) 2018; 51
F Zollo (1487_CR31) 2015; 10
1487_CR37
1487_CR38
1487_CR39
M Cinelli (1487_CR30) 2020; 10
1487_CR21
1487_CR22
1487_CR23
P Burnap (1487_CR24) 2016; 5
1487_CR25
C Calvert (1487_CR7) 1997; 47
M Del Vicario (1487_CR47) 2019; 13
1487_CR26
K Coe (1487_CR3) 2014; 64
1487_CR27
1487_CR28
1487_CR29
I Mozetič (1487_CR42) 2016; 11
M Del Vicario (1487_CR46) 2016; 113
1487_CR10
1487_CR11
1487_CR1
1487_CR12
1487_CR13
1487_CR14
1487_CR4
1487_CR5
1487_CR6
1487_CR9
1487_CR50
1487_CR16
1487_CR19
References_xml – reference: SiegelAANikitinEBarberáPSterlingJPullenBBonneauRNaglerJTuckerJATrumping hate on twitter? Online hate speech in the 2016 us election campaign and its aftermathQ. J. Polit. Sci.20211617110410.1561/100.00019045
– reference: Gagliardone, I., Gal, D., Alves, T. & Martinez, G. Countering Online Hate Speech (Unesco Publishing, 2015).
– reference: Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci.118(9) (2021).
– reference: Chandrasekharan, E., Samory, M., Srinivasan, A. & Gilbert, E. The bag of communities: Identifying abusive behavior online with preexisting internet data. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3175–3187 (2017).
– reference: Guess, A., Nagler, J., & Tucker, J. Less than you think: Prevalence and predictors of fake news dissemination on facebook. Sc. Adv.5(1), eaau4586 (2019).
– reference: Facebook. Community standards. https://www.facebook.com/communitystandards/introduction (Accessed: 27.09.2021).
– reference: JohnsonNFLeahyRRestrepoNJVelasquezNZhengMManriquePDevkotaPWuchtySHidden resilience and adaptive dynamics of the global online hate ecologyNature201957377732612652019Natur.573..261J1:CAS:528:DC%2BC1MXhs1agtbjN10.1038/s41586-019-1494-7
– reference: Adamic, L. A., Glance, N. The political blogosphere and the 2004 us election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43 (2005).
– reference: CoeKKenskiKRainsSAOnline and uncivil? Patterns and determinants of incivility in newspaper website commentsJ. Commun.201464465867910.1111/jcom.12104
– reference: Polignano, M., Basile, P., De Gemmis, M. & Semeraro, G. Hate speech detection through AlBERTo Italian language understanding model. In NL4AI@ AI* IA (2019).
– reference: European Commission. Code of conduct on countering illegal hate speech online. https://ec.europa.eu/newsroom/just/document.cfm?doc_id=42985 (Accessed: 27.09.2021).
– reference: YouTube. Hate speech policy. https://support.google.com/youtube/answer/2801939?hl=en&ref_topic=9282436 (Accessed: 27.09.2021).
– reference: Del VicarioMBessiAZolloFPetroniFScalaACaldarelliGStanleyHEQuattrociocchiWThe spreading of misinformation onlineProc. Natl. Acad. Sci.201611335545592016PNAS..113..554D10.1073/pnas.1517441113
– reference: Bosco, C., Dell’Orletta, F., Poletto, F., Sanguinetti, M. & Maurizio, T. Overview of the evalita 2018 hate speech detection task. In EVALITA 2018-Sixth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, vol. 2263, pp. 1–9 (CEUR, 2018).
– reference: Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P., Karadzhov, G., Mubarak, H., Derczynski, L., Pitenis, Z. & Çöltekin, Ç. Semeval-2020 task 12: Multilingual offensive language identification in social media (offenseval 2020). arXiv:2006.07235 (2020).
– reference: Awan, I. & Zempi, I. We fear for our lives: Offline and online experiences of anti-muslim hostility. Technical report, Birmingham City University (2015).
– reference: Badjatiya, P., Gupta, S., Gupta, M. & Varma, V. Deep learning for hate speech detection in tweets. In Proceedings of the 26th International Conference on World Wide Web Companion, pp. 759–760 (2017).
– reference: Sanguinetti, M., Poletto, F., Bosco, C., Patti, V. & Stranisci, M. An Italian Twitter corpus of hate speech against immigrants. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018).
– reference: CinelliMQuattrociocchiWGaleazziAValensiseCMBrugnoliESchmidtALZolaPZolloFScalaAThe covid-19 social media infodemicSci. Rep.202010111010.1038/s41598-020-73510-5
– reference: Siegel, A. A. Online hate speech. Social Media and Democracy, p. 56 (2019).
– reference: Polignano, M., Basile, P., De Gemmis, M., Semeraro, G. & Basile, V. AlBERTo: Italian BERT language understanding model for NLP challenging tasks based on tweets. In 6th Italian Conference on Computational Linguistics, CLiC-it 2019, vol. 2481, pp. 1–6 (CEUR, 2019).
– reference: Ribeiro, M., Calais, P., Santos, Y., Almeida, V. & Meira Jr., W. Characterizing and detecting hateful users on twitter. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 12 (2018).
– reference: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. Predicting the type and target of offensive posts in social media. In Proceedings of NAACL (2019).
– reference: Evkoski, B., Pelicon, A., Mozetič, I., Ljubešić, N. & Novak, P. K. Retweet communities reveal the main sources of hate speech. arXiv:2105.14898 (2021).
– reference: Del VicarioMQuattrociocchiWScalaAZolloFPolarization and fake news: Early warning of potential misinformation targetsACM Trans. Web (TWEB)201913212210.1145/3316809
– reference: Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q. & Rush, A. M. Hugging face’s transformers: State-of-the-art natural language processing. arXiv:abs/1910.03771 (2019).
– reference: Del Vigna, F., Cimino, A., Dell’Orletta, F., Petrocchi, M. & Tesconi, M. Hate me, hate me not: Hate speech detection on facebook. In Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), pp. 86–95 (2017).
– reference: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. SemEval-2019 task 6: Identifying and categorizing offensive language in social media (OffensEval). In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 75–86 (Association for Computational Linguistics, 2019).
– reference: ZolloFNovakPKVicarioMDBessiAMozetičIScalaACaldarelliGQuattrociocchiWEmotional dynamics in the age of misinformationPLoS One2015100912210.1371/journal.pone.0138740
– reference: Krippendorff, K. Content Analysis. An Introduction to its Methodology, 4th edn. (Sage Publications, 2018).
– reference: CalvertCHate speech and its harms: A communication theory perspectiveJ. Commun.199747141910.1111/j.1460-2466.1997.tb02690.x
– reference: BurnapPWilliamsMLUs and them: Identifying cyber hate on twitter across multiple protected characteristics.EPJ Data Sci.2016511510.1140/epjds/s13688-016-0072-6
– reference: Gagliardone, I., Pohjonen, M., Beyene, Z., Zerai, A., Aynekulu, G., Bekalu, M., Bright, J., Moges, M., Seifu, M. & Stremlau, N. et al. Mechachal: Online debates and elections in Ethiopia—from hate speech to engagement in social media. Available at SSRN 2831369 (2016).
– reference: FlaxmanSGoelSRaoJMFilter bubbles, echo chambers, and online news consumptionPublic Opin. Q.201680S129832010.1093/poq/nfw006
– reference: Müller, K. & Schwarz, C. Fanning the flames of hate: Social media and hate crime. J. Eur. Econ. Assoc. (2018).
– reference: Osmundsen, M., Bor, A., Vahlstrup, P. B., Bechmann, A. & Petersen, M. B. Partisan polarization is the primary psychological motivation behind political fake news sharing on twitter. Am. Polit. Sci. Rev., 1–17 (2020).
– reference: Twitter. Violent organizations policy. https://help.twitter.com/en/rules-and-policies/violent-groups (Accessed: 27.09.2021).
– reference: Basile, V., Bosco, C., Fersini, E., Debora, N., Patti, V., Pardo, F. M. R., Rosso, P. & Sanguinetti, M. et al. Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In 13th International Workshop on Semantic Evaluation, pp. 54–63 (Association for Computational Linguistics, 2019).
– reference: ChanJGhoseASeamansRThe internet and racial hate crime: Offline spillovers from online accessMIS Q.201640238140310.25300/MISQ/2016/40.2.05
– reference: FortunaPNunesSA survey on automatic detection of hate speech in textACM Comput. Surv. (CSUR)201851413010.1145/3232676
– reference: Council of Europe. Recommendation no. r (97) 20 of the committee of ministers to member states on “hate speech”. https://go.coe.int/URzjs (Accessed: 27.09.2021).
– reference: Schild, L., Ling, C., Blackburn, J., Stringhini, G., Zhang, Y. & Zannettou, S. “Go eat a bat, chang!”: An early look on the emergence of sinophobic behavior on web communities in the face of covid-19. arXiv:2004.04046 (2020).
– reference: MozetičIGrčarMSmailovićJMultilingual Twitter sentiment classification: The role of human annotatorsPLoS One2016115e015503610.1371/journal.pone.0155036
– reference: MathewBIllendulaASahaPSarkarSGoyalPMukherjeeAHate begets hate: A temporal study of hate speechProc. ACM Hum. Comput. Interact.20204CSCW212410.1145/3415163
– reference: Davidson, T., Warmsley, D., Macy, M. & Weber, I. Automated hate speech detection and the problem of offensive language. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017).
– reference: Statista Research Department. Leading social media networks in Italy as of January 2019, ranked by number of active users. https://www.statista.com/statistics/639777/social-media-active-users-italy/ (Accessed: 27.09.2021).
– reference: Ljubešić, N., Fišer, D. & Erjavec, T. The FRENK datasets of socially unacceptable discourse in Slovene and English (2019).
– reference: Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018).
– reference: DruckmanJNKlarSKrupnikovYLevenduskyMRyanJBAffective polarization, local contexts and public opinion in AmericaNat. Hum. Behav.202151283810.1038/s41562-020-01012-5
– reference: ZolloFBessiADel VicarioMScalaACaldarelliGShekhtmanLHavlinSQuattrociocchiWDebunking in a world of tribesPLoS One2017127e018182110.1371/journal.pone.0181821
– reference: Kumar, S., Hamilton, W. L., Leskovec, J. & Jurafsky, D. Community interaction and conflict on the web. In Proceedings of the 2018 World Wide Web Conference, pp. 933–943 (2018).
– volume: 11
  start-page: e0155036
  issue: 5
  year: 2016
  ident: 1487_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155036
– ident: 1487_CR1
  doi: 10.1145/1134271.1134277
– ident: 1487_CR4
  doi: 10.1017/9781108890960.005
– ident: 1487_CR40
  doi: 10.1007/978-3-030-27947-9_9
– ident: 1487_CR50
  doi: 10.1073/pnas.2023301118
– volume: 47
  start-page: 4
  issue: 1
  year: 1997
  ident: 1487_CR7
  publication-title: J. Commun.
  doi: 10.1111/j.1460-2466.1997.tb02690.x
– ident: 1487_CR33
  doi: 10.2139/ssrn.2831369
– ident: 1487_CR12
– ident: 1487_CR21
  doi: 10.1371/journal.pone.0265602
– ident: 1487_CR6
– volume: 13
  start-page: 1
  issue: 2
  year: 2019
  ident: 1487_CR47
  publication-title: ACM Trans. Web (TWEB)
  doi: 10.1145/3316809
– ident: 1487_CR22
– ident: 1487_CR26
  doi: 10.1609/icwsm.v11i1.14955
– ident: 1487_CR29
  doi: 10.18653/v1/2020.semeval-1.188
– ident: 1487_CR36
  doi: 10.4000/books.aaccademia.4503
– ident: 1487_CR45
  doi: 10.18653/v1/2020.emnlp-demos.6
– ident: 1487_CR49
  doi: 10.1126/sciadv.aau4586
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 1487_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73510-5
– volume: 113
  start-page: 554
  issue: 3
  year: 2016
  ident: 1487_CR46
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517441113
– ident: 1487_CR11
– volume: 10
  start-page: 1
  issue: 09
  year: 2015
  ident: 1487_CR31
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0138740
– ident: 1487_CR25
– ident: 1487_CR35
  doi: 10.18653/v1/S19-2010
– ident: 1487_CR28
  doi: 10.18653/v1/S19-2007
– volume: 80
  start-page: 298
  issue: S1
  year: 2016
  ident: 1487_CR2
  publication-title: Public Opin. Q.
  doi: 10.1093/poq/nfw006
– ident: 1487_CR48
  doi: 10.31234/osf.io/v45bk
– volume: 40
  start-page: 381
  issue: 2
  year: 2016
  ident: 1487_CR8
  publication-title: MIS Q.
  doi: 10.25300/MISQ/2016/40.2.05
– ident: 1487_CR9
  doi: 10.2139/ssrn.3082972
– ident: 1487_CR16
  doi: 10.1145/3178876.3186141
– volume: 16
  start-page: 71
  issue: 1
  year: 2021
  ident: 1487_CR20
  publication-title: Q. J. Polit. Sci.
  doi: 10.1561/100.00019045
– ident: 1487_CR37
– ident: 1487_CR14
– volume: 5
  start-page: 28
  issue: 1
  year: 2021
  ident: 1487_CR51
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-020-01012-5
– volume: 4
  start-page: 1
  issue: CSCW2
  year: 2020
  ident: 1487_CR18
  publication-title: Proc. ACM Hum. Comput. Interact.
  doi: 10.1145/3415163
– volume: 5
  start-page: 1
  year: 2016
  ident: 1487_CR24
  publication-title: EPJ Data Sci.
  doi: 10.1140/epjds/s13688-016-0072-6
– ident: 1487_CR10
– ident: 1487_CR41
  doi: 10.4135/9781071878781
– ident: 1487_CR27
  doi: 10.1145/3041021.3054223
– volume: 64
  start-page: 658
  issue: 4
  year: 2014
  ident: 1487_CR3
  publication-title: J. Commun.
  doi: 10.1111/jcom.12104
– ident: 1487_CR43
– ident: 1487_CR13
– ident: 1487_CR38
– volume: 51
  start-page: 1
  issue: 4
  year: 2018
  ident: 1487_CR15
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3232676
– ident: 1487_CR34
– ident: 1487_CR23
  doi: 10.1145/3025453.3026018
– ident: 1487_CR19
  doi: 10.1609/icwsm.v12i1.15057
– ident: 1487_CR5
– ident: 1487_CR44
– ident: 1487_CR39
  doi: 10.18653/v1/N19-1144
– volume: 573
  start-page: 261
  issue: 7773
  year: 2019
  ident: 1487_CR17
  publication-title: Nature
  doi: 10.1038/s41586-019-1494-7
– volume: 12
  start-page: e0181821
  issue: 7
  year: 2017
  ident: 1487_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181821
SSID ssj0000529419
Score 2.5765388
Snippet Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly...
Abstract Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22083
SubjectTerms 639/705/117
639/705/258
Hate speech
Humanities and Social Sciences
Language
Learning algorithms
Machine learning
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EFLyIb-uLCp7UYpukm-boEw8iHhS8haZJ2AXpyj5c_PdOku7q-rx4bdIyfJN0viGZbwAOCGWGmLyV5EoZl6CwRKVKJ1RRVWKKUaXWS-bf8Nvb4vFR3H1o9eXuhAV54ADcidGYw7SY4GWmmCVViTEUSTi3SF0EM76OHFnPh2QqqHoTwTLRVMmktDjpY6Ry1WTEZc_I0pPRVCTygv3fscyvlyU_nZj6QHS1BIsNg4xPg-XLMGPqFZgPPSVfV-HwIvSY78ddGwcdjLiNhDIuax2jUxulVOePNXi4urw_v06ahghJhXnGINE6FdQUldBFzqxw6nuaaMoR10xh7GU6a3EncGpKTKOoMULwyhLVQtjwUUXXYbbu1mYTYl4gU7GElTnGJ4abkBWk5KktciRE2ooIsjE4smrUwl3TiifpT61pIQOgEgGVHlA5iuBo8s5z0Mr4dfaZw3wy0-lc-wfofdl4X_7l_Qh2xh6TzebrS8zoXOEj_q0i2J8MI8LuLKSsTXfo53DffyuPYCM4eGIJZRx5GmMR8CnXT5k6PVJ32l6a252y4ocjOB4vknezfoZi6z-g2IYF4la3u6KY7cDsoDc0uzBXvQw6_d6e3x5vM_8OiA
  priority: 102
  providerName: Directory of Open Access Journals
Title Dynamics of online hate and misinformation
URI https://link.springer.com/article/10.1038/s41598-021-01487-w
https://www.ncbi.nlm.nih.gov/pubmed/34764344
https://www.proquest.com/docview/2596178318
https://www.proquest.com/docview/2597486025
https://pubmed.ncbi.nlm.nih.gov/PMC8585974
https://doaj.org/article/ed8256497a1b4f2ca0646267f13994e7
Volume 11
WOSCitedRecordID wos000717747400115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXZC48H4EyipInICoie2s4xOi0AokuooQSMvJimOHVkJJ2Wyp-PfMON5Uy6MXLj44TmR7xplvPPY3AM8YF465fJ7kxjhyUERiUmMTbrip0MWo08ZT5n-Qi0WxXKoybLj14Vjl5p_of9S2q2mPfA9hOt1mQxV8dfo9oaxRFF0NKTR2YEpMZWIC0_2DRflx3GWhOJbIVLgtk_Jir0eLRbfKGHnRiNaT8y2L5In7_4Y2_zw0-Vvk1Bukw5v_O5RbcCNA0fj1oDu34Ypr78C1ITnlz7vw_O2QrL6PuyYeCDXiY0SmcdXaGLUjUK6SYO_B58ODT2_eJSGzQlKjw7JOrE0Vd0WtbJGLRhGNn2WWSxRQZtCIC5vNJTGlugr9Me6cUrJumJmzusKqmt-HSdu17iHEOI5CNUxUORo6gatZFKySaVPkiKxsoyLINrOr60A7Ttkvvmkf_uaFHiSiUSLaS0SfR_BifOd0IN24tPU-CW1sSYTZvqJbfdVh_Wln0RWeCyWrzIgGh4FQDH052SACVsLJCHY3stJhFff6QlARPB0f4wxTUKVqXXfm20ifyCuP4MGgIWNPuJAI-ISIQG7pzlZXt5-0J8ee45vCtfjhCF5utOyiW_-eikeXj-IxXGek-HSKMduFyXp15p7A1frH-qRfzWBHLqUvi1lYRzO_RYHlESuplFhOy_dH5ZdfVqwlTQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AgSDBBYi6cZx1fEAIKFWrLisORdqbm_jRrgRJ2WxZ7Z_iNzLjPKrl0VsPXB3HmjifZ77x2DMAz1nCLbPpMEqLwpKDwqNiUJgoKZIiRxdDD5xPmT8S43E2mcjPa_CzuwtDxyo7negVtak07ZFvIU2n22wIwbcn3yOqGkXR1a6ERgOLfbtcoMtWv9nbxv_7grGdjwcfdqO2qkCkkazPI2PQibeZliZLuZOUws4wkwgULi7QgHETDwVlCbU5-iKJtVIK7VgxZDrHJp3guJfgMupxQUfIxET0ezoUNeOxbO_mDJJsq0b7SHfYGPns6BtEixX758sE_I3b_nlE87c4rTd_Ozf-t4m7Cddboh2-a1bGLViz5W242pTeXN6Bl9vLMv821XVYubBJFxIeI-8O89KEiP02oSzB9i58uRBB78F6WZX2AYQ4b5l0jOcpmnGOuopnLBcDl6XIG42TAcTd31S6TapOtT2-Kh_cTzLVIEAhApRHgFoE8Kp_56RJKXJu7_cEkr4npQP3DdXsSLXaRVmDjv6QS5HHBXf4GUg00VMVDvm95FYEsNlhQ7U6qlZnwAjgWf8YZ5hCRnlpq1PfR_gyZWkA9xtE9pIkXCCd5TwAsYLVFVFXn5TTY5_BnILROHAArztUn4n176l4eP5XPIWN3YNPIzXaG-8_gmuMFh2d14w3YX0-O7WP4Yr-MZ_Wsyd-1YZweNFo_wVQM3p6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qZREX9sVQwEhwAazE43HGc0AICBFVS5QDSL0N9iw0EtglTony1_h1vDdeqrD01gNXe2w9j7-3zZv5HsATlnDLbDqK0qKwlKDwqBgWJkqKpMgxxdBD5ynz98V0mh0cyNkW_OzOwtC2ys4mekNtKk1r5AMM0-k0G0Jw4NptEbPx5NXR94g6SFGltWun0UBkz65XmL7VL3fH-K-fMjZ59_Ht-6jtMBBpDNyXkTGY0NtMS5Ol3EmiszPMJAIFjQt0ZtzEI0GMoTbHvCSxVkqhHStGTOd4SSf43nNwXvA0Je36wGb9-g5V0Hgs23M6wyQb1Ogr6Twbo_wd84RoteELfcuAv8W5f27X_K1m613h5Or_PInX4EobgIevG425Dlu2vAEXm5ac65vwbLwu829zXYeVCxsakfAQ4_EwL02IOtESzRKcb8GnMxH0NmyXVWnvQohzmEnHeJ6ie-dow3jGcjF0GQKBGScDiLs_q3RLtk49P74qX_RPMtWgQSEalEeDWgXwvH_mqKEaOXX0GwJMP5Jowv2FavFFtVZHWZNhSMulyOOCO_wMDEAxgxUO437JrQhgp8OJam1XrU5AEsDj_jbOMJWS8tJWx36M8O3L0gDuNOjsJUm4wDCX8wDEBm43RN28U84PPbM5FanxxQG86BB-Ita_p-Le6V_xCC4hyNX-7nTvPlxmpH-0jTPege3l4tg-gAv6x3JeLx56BQ7h81mD_RflwYNH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+online+hate+and+misinformation&rft.jtitle=Scientific+reports&rft.au=Cinelli+Matteo&rft.au=Andra%C5%BE%2C+Pelicon&rft.au=Mozeti%C4%8D+Igor&rft.au=Quattrociocchi%2C+Walter&rft.date=2021-11-11&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-01487-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon