Dynamics of online hate and misinformation
Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of m...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 11; H. 1; S. 22083 - 12 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
11.11.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of “pure haters”, meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents’ community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin’s law, online debates tend to degenerate towards increasingly toxic exchanges of views. |
|---|---|
| AbstractList | Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of “pure haters”, meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents’ community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin’s law, online debates tend to degenerate towards increasingly toxic exchanges of views. Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of "pure haters", meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents' community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin's law, online debates tend to degenerate towards increasingly toxic exchanges of views.Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of "pure haters", meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents' community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin's law, online debates tend to degenerate towards increasingly toxic exchanges of views. Abstract Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly problematic, making necessary the development of appropriate countermeasures. In this work, we perform hate speech detection on a corpus of more than one million comments on YouTube videos through a machine learning model, trained and fine-tuned on a large set of hand-annotated data. Our analysis shows that there is no evidence of the presence of “pure haters”, meant as active users posting exclusively hateful comments. Moreover, coherently with the echo chamber hypothesis, we find that users skewed towards one of the two categories of video channels (questionable, reliable) are more prone to use inappropriate, violent, or hateful language within their opponents’ community. Interestingly, users loyal to reliable sources use on average a more toxic language than their counterpart. Finally, we find that the overall toxicity of the discussion increases with its length, measured both in terms of the number of comments and time. Our results show that, coherently with Godwin’s law, online debates tend to degenerate towards increasingly toxic exchanges of views. |
| ArticleNumber | 22083 |
| Author | Cinelli, Matteo Zollo, Fabiana Mozetič, Igor Pelicon, Andraž Novak, Petra Kralj Quattrociocchi, Walter |
| Author_xml | – sequence: 1 givenname: Matteo surname: Cinelli fullname: Cinelli, Matteo organization: Ca’ Foscari University of Venice – sequence: 2 givenname: Andraž surname: Pelicon fullname: Pelicon, Andraž organization: Jozef Stefan Institute, Jozef Stefan International Postgraduate School – sequence: 3 givenname: Igor surname: Mozetič fullname: Mozetič, Igor organization: Jozef Stefan Institute – sequence: 4 givenname: Walter surname: Quattrociocchi fullname: Quattrociocchi, Walter organization: Sapienza University of Rome – sequence: 5 givenname: Petra Kralj surname: Novak fullname: Novak, Petra Kralj organization: Jozef Stefan Institute – sequence: 6 givenname: Fabiana surname: Zollo fullname: Zollo, Fabiana email: fabiana.zollo@unive.it organization: Ca’ Foscari University of Venice |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34764344$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktLJDEUhcPgMDqOf2AWUuBGBmrM-7ERxHkoCG50HVJJqk1TlWhSrfjvJ92l42NhNgk33zkc7r1fwVZM0QPwHcGfCBJ5VChiSrYQoxYiKkX78AnsYEhZiwnGW6_e22CvlCWsh2FFkfoCtgkVnBJKd8CPX4_RjMGWJvVNikOIvrkxk29MdM0YSoh9yqOZQorfwOfeDMXvPd274PrP76vTs_bi8u_56clFaznkU-scVMRLq5xktFeQMOWwI6IjHeowkdQhLmoVeyNVJb1Swva449iaWrJkF5zPvi6Zpb7NYTT5UScT9KaQ8kKbPAU7eO2dxIxTJQzqaF8NIKccc9EjohT1onodz163q270zvo4ZTO8MX37E8ONXqR7LZlkStBqcPhkkNPdypdJ16ZYPwwm-rQqGq8pySFmFT14hy7TKsfaqjXFkZAEyUrtv070P8rzSCogZ8DmVEr2vbZh2gygBgyDRlCvF0DPC6DrAujNAuiHKsXvpM_uH4rILCoVjgufX2J_oPoHQEfBNg |
| CitedBy_id | crossref_primary_10_3390_socsci13090465 crossref_primary_10_1016_j_eswa_2024_123211 crossref_primary_10_3390_ijerph192013149 crossref_primary_10_1007_s10796_023_10390_w crossref_primary_10_1093_pnasnexus_pgad041 crossref_primary_10_1109_ACCESS_2023_3324555 crossref_primary_10_1038_s41586_024_07229_y crossref_primary_10_1177_20563051221138758 crossref_primary_10_3390_ai6080194 crossref_primary_10_1080_10714421_2023_2208513 crossref_primary_10_1109_TNSE_2024_3398219 crossref_primary_10_1093_pnasnexus_pgad346 crossref_primary_10_1016_j_chbr_2024_100573 crossref_primary_10_1177_14687968251364359 crossref_primary_10_3390_computers14060239 crossref_primary_10_1007_s10767_024_09478_1 crossref_primary_10_3390_soc13100226 crossref_primary_10_1177_19401612241257873 crossref_primary_10_1038_s41598_025_07086_3 crossref_primary_10_3390_bdcc9090227 crossref_primary_10_1016_j_osnem_2024_100289 crossref_primary_10_1016_j_ipm_2022_103219 crossref_primary_10_1177_20563051241303362 crossref_primary_10_1038_s41562_022_01353_3 crossref_primary_10_1007_s42001_025_00381_z crossref_primary_10_1177_13548565251324508 crossref_primary_10_1177_20563051221129151 crossref_primary_10_1007_s11280_024_01269_0 crossref_primary_10_1038_s41467_024_53868_0 crossref_primary_10_1057_s41599_025_04647_9 crossref_primary_10_1017_XPS_2024_2 crossref_primary_10_1177_00936502241278944 crossref_primary_10_3390_journalmedia4040067 crossref_primary_10_1093_pnasnexus_pgae004 crossref_primary_10_3390_bdcc6040130 crossref_primary_10_1088_2632_072X_ac60b1 crossref_primary_10_1371_journal_pone_0316258 crossref_primary_10_1007_s41109_021_00439_7 crossref_primary_10_3390_e27050542 crossref_primary_10_1177_01655515241238405 crossref_primary_10_1108_OIR_05_2025_0342 crossref_primary_10_1016_j_ins_2023_119152 crossref_primary_10_3389_frai_2023_1350306 |
| Cites_doi | 10.1371/journal.pone.0155036 10.1145/1134271.1134277 10.1017/9781108890960.005 10.1007/978-3-030-27947-9_9 10.1073/pnas.2023301118 10.1111/j.1460-2466.1997.tb02690.x 10.2139/ssrn.2831369 10.1371/journal.pone.0265602 10.1145/3316809 10.1609/icwsm.v11i1.14955 10.18653/v1/2020.semeval-1.188 10.4000/books.aaccademia.4503 10.18653/v1/2020.emnlp-demos.6 10.1126/sciadv.aau4586 10.1038/s41598-020-73510-5 10.1073/pnas.1517441113 10.1371/journal.pone.0138740 10.18653/v1/S19-2010 10.18653/v1/S19-2007 10.1093/poq/nfw006 10.31234/osf.io/v45bk 10.25300/MISQ/2016/40.2.05 10.2139/ssrn.3082972 10.1145/3178876.3186141 10.1561/100.00019045 10.1038/s41562-020-01012-5 10.1145/3415163 10.1140/epjds/s13688-016-0072-6 10.4135/9781071878781 10.1145/3041021.3054223 10.1111/jcom.12104 10.1145/3232676 10.1145/3025453.3026018 10.1609/icwsm.v12i1.15057 10.18653/v1/N19-1144 10.1038/s41586-019-1494-7 10.1371/journal.pone.0181821 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-021-01487-w |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_ed8256497a1b4f2ca0646267f13994e7 PMC8585974 34764344 10_1038_s41598_021_01487_w |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Slovenian Research Agency grantid: P2-103 – fundername: Rights, Equality and Citizenship Programme grantid: 875263 funderid: http://dx.doi.org/10.13039/100013270 – fundername: Rights, Equality and Citizenship Programme grantid: 875263 – fundername: ; grantid: P2-103 – fundername: ; grantid: 875263 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c606t-dd093e8c9d854f90359d2d37b3b1b2384d1670352ea8993ee997cf2b62caea8c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717747400115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:15 EDT 2025 Tue Nov 04 01:42:32 EST 2025 Sun Nov 09 08:59:51 EST 2025 Tue Oct 07 08:02:13 EDT 2025 Thu Jan 02 22:45:15 EST 2025 Tue Nov 18 21:57:10 EST 2025 Sat Nov 29 02:50:45 EST 2025 Fri Feb 21 02:39:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-dd093e8c9d854f90359d2d37b3b1b2384d1670352ea8993ee997cf2b62caea8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2596178318?pq-origsite=%requestingapplication% |
| PMID | 34764344 |
| PQID | 2596178318 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ed8256497a1b4f2ca0646267f13994e7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8585974 proquest_miscellaneous_2597486025 proquest_journals_2596178318 pubmed_primary_34764344 crossref_citationtrail_10_1038_s41598_021_01487_w crossref_primary_10_1038_s41598_021_01487_w springer_journals_10_1038_s41598_021_01487_w |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-11 |
| PublicationDateYYYYMMDD | 2021-11-11 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | CalvertCHate speech and its harms: A communication theory perspectiveJ. Commun.199747141910.1111/j.1460-2466.1997.tb02690.x DruckmanJNKlarSKrupnikovYLevenduskyMRyanJBAffective polarization, local contexts and public opinion in AmericaNat. Hum. Behav.202151283810.1038/s41562-020-01012-5 Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P., Karadzhov, G., Mubarak, H., Derczynski, L., Pitenis, Z. & Çöltekin, Ç. Semeval-2020 task 12: Multilingual offensive language identification in social media (offenseval 2020). arXiv:2006.07235 (2020). ChanJGhoseASeamansRThe internet and racial hate crime: Offline spillovers from online accessMIS Q.201640238140310.25300/MISQ/2016/40.2.05 Bosco, C., Dell’Orletta, F., Poletto, F., Sanguinetti, M. & Maurizio, T. Overview of the evalita 2018 hate speech detection task. In EVALITA 2018-Sixth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, vol. 2263, pp. 1–9 (CEUR, 2018). Müller, K. & Schwarz, C. Fanning the flames of hate: Social media and hate crime. J. Eur. Econ. Assoc. (2018). Council of Europe. Recommendation no. r (97) 20 of the committee of ministers to member states on “hate speech”. https://go.coe.int/URzjs (Accessed: 27.09.2021). Basile, V., Bosco, C., Fersini, E., Debora, N., Patti, V., Pardo, F. M. R., Rosso, P. & Sanguinetti, M. et al. Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In 13th International Workshop on Semantic Evaluation, pp. 54–63 (Association for Computational Linguistics, 2019). Osmundsen, M., Bor, A., Vahlstrup, P. B., Bechmann, A. & Petersen, M. B. Partisan polarization is the primary psychological motivation behind political fake news sharing on twitter. Am. Polit. Sci. Rev., 1–17 (2020). Siegel, A. A. Online hate speech. Social Media and Democracy, p. 56 (2019). European Commission. Code of conduct on countering illegal hate speech online. https://ec.europa.eu/newsroom/just/document.cfm?doc_id=42985 (Accessed: 27.09.2021). Polignano, M., Basile, P., De Gemmis, M. & Semeraro, G. Hate speech detection through AlBERTo Italian language understanding model. In NL4AI@ AI* IA (2019). MathewBIllendulaASahaPSarkarSGoyalPMukherjeeAHate begets hate: A temporal study of hate speechProc. ACM Hum. Comput. Interact.20204CSCW212410.1145/3415163 ZolloFNovakPKVicarioMDBessiAMozetičIScalaACaldarelliGQuattrociocchiWEmotional dynamics in the age of misinformationPLoS One2015100912210.1371/journal.pone.0138740 Twitter. Violent organizations policy. https://help.twitter.com/en/rules-and-policies/violent-groups (Accessed: 27.09.2021). FlaxmanSGoelSRaoJMFilter bubbles, echo chambers, and online news consumptionPublic Opin. Q.201680S129832010.1093/poq/nfw006 Adamic, L. A., Glance, N. The political blogosphere and the 2004 us election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43 (2005). SiegelAANikitinEBarberáPSterlingJPullenBBonneauRNaglerJTuckerJATrumping hate on twitter? Online hate speech in the 2016 us election campaign and its aftermathQ. J. Polit. Sci.20211617110410.1561/100.00019045 Schild, L., Ling, C., Blackburn, J., Stringhini, G., Zhang, Y. & Zannettou, S. “Go eat a bat, chang!”: An early look on the emergence of sinophobic behavior on web communities in the face of covid-19. arXiv:2004.04046 (2020). Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. Predicting the type and target of offensive posts in social media. In Proceedings of NAACL (2019). JohnsonNFLeahyRRestrepoNJVelasquezNZhengMManriquePDevkotaPWuchtySHidden resilience and adaptive dynamics of the global online hate ecologyNature201957377732612652019Natur.573..261J1:CAS:528:DC%2BC1MXhs1agtbjN10.1038/s41586-019-1494-7 Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. SemEval-2019 task 6: Identifying and categorizing offensive language in social media (OffensEval). In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 75–86 (Association for Computational Linguistics, 2019). Awan, I. & Zempi, I. We fear for our lives: Offline and online experiences of anti-muslim hostility. Technical report, Birmingham City University (2015). Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q. & Rush, A. M. Hugging face’s transformers: State-of-the-art natural language processing. arXiv:abs/1910.03771 (2019). Kumar, S., Hamilton, W. L., Leskovec, J. & Jurafsky, D. Community interaction and conflict on the web. In Proceedings of the 2018 World Wide Web Conference, pp. 933–943 (2018). Krippendorff, K. Content Analysis. An Introduction to its Methodology, 4th edn. (Sage Publications, 2018). FortunaPNunesSA survey on automatic detection of hate speech in textACM Comput. Surv. (CSUR)201851413010.1145/3232676 Badjatiya, P., Gupta, S., Gupta, M. & Varma, V. Deep learning for hate speech detection in tweets. In Proceedings of the 26th International Conference on World Wide Web Companion, pp. 759–760 (2017). Gagliardone, I., Pohjonen, M., Beyene, Z., Zerai, A., Aynekulu, G., Bekalu, M., Bright, J., Moges, M., Seifu, M. & Stremlau, N. et al. Mechachal: Online debates and elections in Ethiopia—from hate speech to engagement in social media. Available at SSRN 2831369 (2016). ZolloFBessiADel VicarioMScalaACaldarelliGShekhtmanLHavlinSQuattrociocchiWDebunking in a world of tribesPLoS One2017127e018182110.1371/journal.pone.0181821 Del Vigna, F., Cimino, A., Dell’Orletta, F., Petrocchi, M. & Tesconi, M. Hate me, hate me not: Hate speech detection on facebook. In Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), pp. 86–95 (2017). Facebook. Community standards. https://www.facebook.com/communitystandards/introduction (Accessed: 27.09.2021). Chandrasekharan, E., Samory, M., Srinivasan, A. & Gilbert, E. The bag of communities: Identifying abusive behavior online with preexisting internet data. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3175–3187 (2017). CoeKKenskiKRainsSAOnline and uncivil? Patterns and determinants of incivility in newspaper website commentsJ. Commun.201464465867910.1111/jcom.12104 Polignano, M., Basile, P., De Gemmis, M., Semeraro, G. & Basile, V. AlBERTo: Italian BERT language understanding model for NLP challenging tasks based on tweets. In 6th Italian Conference on Computational Linguistics, CLiC-it 2019, vol. 2481, pp. 1–6 (CEUR, 2019). Ribeiro, M., Calais, P., Santos, Y., Almeida, V. & Meira Jr., W. Characterizing and detecting hateful users on twitter. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 12 (2018). MozetičIGrčarMSmailovićJMultilingual Twitter sentiment classification: The role of human annotatorsPLoS One2016115e015503610.1371/journal.pone.0155036 Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci.118(9) (2021). Statista Research Department. Leading social media networks in Italy as of January 2019, ranked by number of active users. https://www.statista.com/statistics/639777/social-media-active-users-italy/ (Accessed: 27.09.2021). Gagliardone, I., Gal, D., Alves, T. & Martinez, G. Countering Online Hate Speech (Unesco Publishing, 2015). Davidson, T., Warmsley, D., Macy, M. & Weber, I. Automated hate speech detection and the problem of offensive language. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017). Evkoski, B., Pelicon, A., Mozetič, I., Ljubešić, N. & Novak, P. K. Retweet communities reveal the main sources of hate speech. arXiv:2105.14898 (2021). CinelliMQuattrociocchiWGaleazziAValensiseCMBrugnoliESchmidtALZolaPZolloFScalaAThe covid-19 social media infodemicSci. Rep.202010111010.1038/s41598-020-73510-5 Del VicarioMQuattrociocchiWScalaAZolloFPolarization and fake news: Early warning of potential misinformation targetsACM Trans. Web (TWEB)201913212210.1145/3316809 Sanguinetti, M., Poletto, F., Bosco, C., Patti, V. & Stranisci, M. An Italian Twitter corpus of hate speech against immigrants. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018). Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018). Ljubešić, N., Fišer, D. & Erjavec, T. The FRENK datasets of socially unacceptable discourse in Slovene and English (2019). YouTube. Hate speech policy. https://support.google.com/youtube/answer/2801939?hl=en&ref_topic=9282436 (Accessed: 27.09.2021). Guess, A., Nagler, J., & Tucker, J. Less than you think: Prevalence and predictors of fake news dissemination on facebook. Sc. Adv.5(1), eaau4586 (2019). Del VicarioMBessiAZolloFPetroniFScalaACaldarelliGStanleyHEQuattrociocchiWThe spreading of misinformation onlineProc. Natl. Acad. Sci.201611335545592016PNAS..113..554D10.1073/pnas.1517441113 BurnapPWilliamsMLUs and them: Identifying cyber hate on twitter across multiple protected characteristics.EPJ Data Sci.2016511510.1140/epjds/s13688-016-0072-6 1487_CR40 S Flaxman (1487_CR2) 2016; 80 1487_CR41 NF Johnson (1487_CR17) 2019; 573 1487_CR43 1487_CR44 J Chan (1487_CR8) 2016; 40 1487_CR45 F Zollo (1487_CR32) 2017; 12 B Mathew (1487_CR18) 2020; 4 AA Siegel (1487_CR20) 2021; 16 1487_CR48 JN Druckman (1487_CR51) 2021; 5 1487_CR49 1487_CR33 1487_CR34 1487_CR35 1487_CR36 P Fortuna (1487_CR15) 2018; 51 F Zollo (1487_CR31) 2015; 10 1487_CR37 1487_CR38 1487_CR39 M Cinelli (1487_CR30) 2020; 10 1487_CR21 1487_CR22 1487_CR23 P Burnap (1487_CR24) 2016; 5 1487_CR25 C Calvert (1487_CR7) 1997; 47 M Del Vicario (1487_CR47) 2019; 13 1487_CR26 K Coe (1487_CR3) 2014; 64 1487_CR27 1487_CR28 1487_CR29 I Mozetič (1487_CR42) 2016; 11 M Del Vicario (1487_CR46) 2016; 113 1487_CR10 1487_CR11 1487_CR1 1487_CR12 1487_CR13 1487_CR14 1487_CR4 1487_CR5 1487_CR6 1487_CR9 1487_CR50 1487_CR16 1487_CR19 |
| References_xml | – reference: SiegelAANikitinEBarberáPSterlingJPullenBBonneauRNaglerJTuckerJATrumping hate on twitter? Online hate speech in the 2016 us election campaign and its aftermathQ. J. Polit. Sci.20211617110410.1561/100.00019045 – reference: Gagliardone, I., Gal, D., Alves, T. & Martinez, G. Countering Online Hate Speech (Unesco Publishing, 2015). – reference: Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci.118(9) (2021). – reference: Chandrasekharan, E., Samory, M., Srinivasan, A. & Gilbert, E. The bag of communities: Identifying abusive behavior online with preexisting internet data. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3175–3187 (2017). – reference: Guess, A., Nagler, J., & Tucker, J. Less than you think: Prevalence and predictors of fake news dissemination on facebook. Sc. Adv.5(1), eaau4586 (2019). – reference: Facebook. Community standards. https://www.facebook.com/communitystandards/introduction (Accessed: 27.09.2021). – reference: JohnsonNFLeahyRRestrepoNJVelasquezNZhengMManriquePDevkotaPWuchtySHidden resilience and adaptive dynamics of the global online hate ecologyNature201957377732612652019Natur.573..261J1:CAS:528:DC%2BC1MXhs1agtbjN10.1038/s41586-019-1494-7 – reference: Adamic, L. A., Glance, N. The political blogosphere and the 2004 us election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43 (2005). – reference: CoeKKenskiKRainsSAOnline and uncivil? Patterns and determinants of incivility in newspaper website commentsJ. Commun.201464465867910.1111/jcom.12104 – reference: Polignano, M., Basile, P., De Gemmis, M. & Semeraro, G. Hate speech detection through AlBERTo Italian language understanding model. In NL4AI@ AI* IA (2019). – reference: European Commission. Code of conduct on countering illegal hate speech online. https://ec.europa.eu/newsroom/just/document.cfm?doc_id=42985 (Accessed: 27.09.2021). – reference: YouTube. Hate speech policy. https://support.google.com/youtube/answer/2801939?hl=en&ref_topic=9282436 (Accessed: 27.09.2021). – reference: Del VicarioMBessiAZolloFPetroniFScalaACaldarelliGStanleyHEQuattrociocchiWThe spreading of misinformation onlineProc. Natl. Acad. Sci.201611335545592016PNAS..113..554D10.1073/pnas.1517441113 – reference: Bosco, C., Dell’Orletta, F., Poletto, F., Sanguinetti, M. & Maurizio, T. Overview of the evalita 2018 hate speech detection task. In EVALITA 2018-Sixth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, vol. 2263, pp. 1–9 (CEUR, 2018). – reference: Zampieri, M., Nakov, P., Rosenthal, S., Atanasova, P., Karadzhov, G., Mubarak, H., Derczynski, L., Pitenis, Z. & Çöltekin, Ç. Semeval-2020 task 12: Multilingual offensive language identification in social media (offenseval 2020). arXiv:2006.07235 (2020). – reference: Awan, I. & Zempi, I. We fear for our lives: Offline and online experiences of anti-muslim hostility. Technical report, Birmingham City University (2015). – reference: Badjatiya, P., Gupta, S., Gupta, M. & Varma, V. Deep learning for hate speech detection in tweets. In Proceedings of the 26th International Conference on World Wide Web Companion, pp. 759–760 (2017). – reference: Sanguinetti, M., Poletto, F., Bosco, C., Patti, V. & Stranisci, M. An Italian Twitter corpus of hate speech against immigrants. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) (2018). – reference: CinelliMQuattrociocchiWGaleazziAValensiseCMBrugnoliESchmidtALZolaPZolloFScalaAThe covid-19 social media infodemicSci. Rep.202010111010.1038/s41598-020-73510-5 – reference: Siegel, A. A. Online hate speech. Social Media and Democracy, p. 56 (2019). – reference: Polignano, M., Basile, P., De Gemmis, M., Semeraro, G. & Basile, V. AlBERTo: Italian BERT language understanding model for NLP challenging tasks based on tweets. In 6th Italian Conference on Computational Linguistics, CLiC-it 2019, vol. 2481, pp. 1–6 (CEUR, 2019). – reference: Ribeiro, M., Calais, P., Santos, Y., Almeida, V. & Meira Jr., W. Characterizing and detecting hateful users on twitter. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 12 (2018). – reference: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. Predicting the type and target of offensive posts in social media. In Proceedings of NAACL (2019). – reference: Evkoski, B., Pelicon, A., Mozetič, I., Ljubešić, N. & Novak, P. K. Retweet communities reveal the main sources of hate speech. arXiv:2105.14898 (2021). – reference: Del VicarioMQuattrociocchiWScalaAZolloFPolarization and fake news: Early warning of potential misinformation targetsACM Trans. Web (TWEB)201913212210.1145/3316809 – reference: Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q. & Rush, A. M. Hugging face’s transformers: State-of-the-art natural language processing. arXiv:abs/1910.03771 (2019). – reference: Del Vigna, F., Cimino, A., Dell’Orletta, F., Petrocchi, M. & Tesconi, M. Hate me, hate me not: Hate speech detection on facebook. In Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), pp. 86–95 (2017). – reference: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. SemEval-2019 task 6: Identifying and categorizing offensive language in social media (OffensEval). In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 75–86 (Association for Computational Linguistics, 2019). – reference: ZolloFNovakPKVicarioMDBessiAMozetičIScalaACaldarelliGQuattrociocchiWEmotional dynamics in the age of misinformationPLoS One2015100912210.1371/journal.pone.0138740 – reference: Krippendorff, K. Content Analysis. An Introduction to its Methodology, 4th edn. (Sage Publications, 2018). – reference: CalvertCHate speech and its harms: A communication theory perspectiveJ. Commun.199747141910.1111/j.1460-2466.1997.tb02690.x – reference: BurnapPWilliamsMLUs and them: Identifying cyber hate on twitter across multiple protected characteristics.EPJ Data Sci.2016511510.1140/epjds/s13688-016-0072-6 – reference: Gagliardone, I., Pohjonen, M., Beyene, Z., Zerai, A., Aynekulu, G., Bekalu, M., Bright, J., Moges, M., Seifu, M. & Stremlau, N. et al. Mechachal: Online debates and elections in Ethiopia—from hate speech to engagement in social media. Available at SSRN 2831369 (2016). – reference: FlaxmanSGoelSRaoJMFilter bubbles, echo chambers, and online news consumptionPublic Opin. Q.201680S129832010.1093/poq/nfw006 – reference: Müller, K. & Schwarz, C. Fanning the flames of hate: Social media and hate crime. J. Eur. Econ. Assoc. (2018). – reference: Osmundsen, M., Bor, A., Vahlstrup, P. B., Bechmann, A. & Petersen, M. B. Partisan polarization is the primary psychological motivation behind political fake news sharing on twitter. Am. Polit. Sci. Rev., 1–17 (2020). – reference: Twitter. Violent organizations policy. https://help.twitter.com/en/rules-and-policies/violent-groups (Accessed: 27.09.2021). – reference: Basile, V., Bosco, C., Fersini, E., Debora, N., Patti, V., Pardo, F. M. R., Rosso, P. & Sanguinetti, M. et al. Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In 13th International Workshop on Semantic Evaluation, pp. 54–63 (Association for Computational Linguistics, 2019). – reference: ChanJGhoseASeamansRThe internet and racial hate crime: Offline spillovers from online accessMIS Q.201640238140310.25300/MISQ/2016/40.2.05 – reference: FortunaPNunesSA survey on automatic detection of hate speech in textACM Comput. Surv. (CSUR)201851413010.1145/3232676 – reference: Council of Europe. Recommendation no. r (97) 20 of the committee of ministers to member states on “hate speech”. https://go.coe.int/URzjs (Accessed: 27.09.2021). – reference: Schild, L., Ling, C., Blackburn, J., Stringhini, G., Zhang, Y. & Zannettou, S. “Go eat a bat, chang!”: An early look on the emergence of sinophobic behavior on web communities in the face of covid-19. arXiv:2004.04046 (2020). – reference: MozetičIGrčarMSmailovićJMultilingual Twitter sentiment classification: The role of human annotatorsPLoS One2016115e015503610.1371/journal.pone.0155036 – reference: MathewBIllendulaASahaPSarkarSGoyalPMukherjeeAHate begets hate: A temporal study of hate speechProc. ACM Hum. Comput. Interact.20204CSCW212410.1145/3415163 – reference: Davidson, T., Warmsley, D., Macy, M. & Weber, I. Automated hate speech detection and the problem of offensive language. In Proceedings of the International AAAI Conference on Web and Social Media, vol. 11 (2017). – reference: Statista Research Department. Leading social media networks in Italy as of January 2019, ranked by number of active users. https://www.statista.com/statistics/639777/social-media-active-users-italy/ (Accessed: 27.09.2021). – reference: Ljubešić, N., Fišer, D. & Erjavec, T. The FRENK datasets of socially unacceptable discourse in Slovene and English (2019). – reference: Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018). – reference: DruckmanJNKlarSKrupnikovYLevenduskyMRyanJBAffective polarization, local contexts and public opinion in AmericaNat. Hum. Behav.202151283810.1038/s41562-020-01012-5 – reference: ZolloFBessiADel VicarioMScalaACaldarelliGShekhtmanLHavlinSQuattrociocchiWDebunking in a world of tribesPLoS One2017127e018182110.1371/journal.pone.0181821 – reference: Kumar, S., Hamilton, W. L., Leskovec, J. & Jurafsky, D. Community interaction and conflict on the web. In Proceedings of the 2018 World Wide Web Conference, pp. 933–943 (2018). – volume: 11 start-page: e0155036 issue: 5 year: 2016 ident: 1487_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0155036 – ident: 1487_CR1 doi: 10.1145/1134271.1134277 – ident: 1487_CR4 doi: 10.1017/9781108890960.005 – ident: 1487_CR40 doi: 10.1007/978-3-030-27947-9_9 – ident: 1487_CR50 doi: 10.1073/pnas.2023301118 – volume: 47 start-page: 4 issue: 1 year: 1997 ident: 1487_CR7 publication-title: J. Commun. doi: 10.1111/j.1460-2466.1997.tb02690.x – ident: 1487_CR33 doi: 10.2139/ssrn.2831369 – ident: 1487_CR12 – ident: 1487_CR21 doi: 10.1371/journal.pone.0265602 – ident: 1487_CR6 – volume: 13 start-page: 1 issue: 2 year: 2019 ident: 1487_CR47 publication-title: ACM Trans. Web (TWEB) doi: 10.1145/3316809 – ident: 1487_CR22 – ident: 1487_CR26 doi: 10.1609/icwsm.v11i1.14955 – ident: 1487_CR29 doi: 10.18653/v1/2020.semeval-1.188 – ident: 1487_CR36 doi: 10.4000/books.aaccademia.4503 – ident: 1487_CR45 doi: 10.18653/v1/2020.emnlp-demos.6 – ident: 1487_CR49 doi: 10.1126/sciadv.aau4586 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 1487_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-020-73510-5 – volume: 113 start-page: 554 issue: 3 year: 2016 ident: 1487_CR46 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517441113 – ident: 1487_CR11 – volume: 10 start-page: 1 issue: 09 year: 2015 ident: 1487_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0138740 – ident: 1487_CR25 – ident: 1487_CR35 doi: 10.18653/v1/S19-2010 – ident: 1487_CR28 doi: 10.18653/v1/S19-2007 – volume: 80 start-page: 298 issue: S1 year: 2016 ident: 1487_CR2 publication-title: Public Opin. Q. doi: 10.1093/poq/nfw006 – ident: 1487_CR48 doi: 10.31234/osf.io/v45bk – volume: 40 start-page: 381 issue: 2 year: 2016 ident: 1487_CR8 publication-title: MIS Q. doi: 10.25300/MISQ/2016/40.2.05 – ident: 1487_CR9 doi: 10.2139/ssrn.3082972 – ident: 1487_CR16 doi: 10.1145/3178876.3186141 – volume: 16 start-page: 71 issue: 1 year: 2021 ident: 1487_CR20 publication-title: Q. J. Polit. Sci. doi: 10.1561/100.00019045 – ident: 1487_CR37 – ident: 1487_CR14 – volume: 5 start-page: 28 issue: 1 year: 2021 ident: 1487_CR51 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-020-01012-5 – volume: 4 start-page: 1 issue: CSCW2 year: 2020 ident: 1487_CR18 publication-title: Proc. ACM Hum. Comput. Interact. doi: 10.1145/3415163 – volume: 5 start-page: 1 year: 2016 ident: 1487_CR24 publication-title: EPJ Data Sci. doi: 10.1140/epjds/s13688-016-0072-6 – ident: 1487_CR10 – ident: 1487_CR41 doi: 10.4135/9781071878781 – ident: 1487_CR27 doi: 10.1145/3041021.3054223 – volume: 64 start-page: 658 issue: 4 year: 2014 ident: 1487_CR3 publication-title: J. Commun. doi: 10.1111/jcom.12104 – ident: 1487_CR43 – ident: 1487_CR13 – ident: 1487_CR38 – volume: 51 start-page: 1 issue: 4 year: 2018 ident: 1487_CR15 publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3232676 – ident: 1487_CR34 – ident: 1487_CR23 doi: 10.1145/3025453.3026018 – ident: 1487_CR19 doi: 10.1609/icwsm.v12i1.15057 – ident: 1487_CR5 – ident: 1487_CR44 – ident: 1487_CR39 doi: 10.18653/v1/N19-1144 – volume: 573 start-page: 261 issue: 7773 year: 2019 ident: 1487_CR17 publication-title: Nature doi: 10.1038/s41586-019-1494-7 – volume: 12 start-page: e0181821 issue: 7 year: 2017 ident: 1487_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0181821 |
| SSID | ssj0000529419 |
| Score | 2.5765388 |
| Snippet | Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming increasingly... Abstract Online debates are often characterised by extreme polarisation and heated discussions among users. The presence of hate speech online is becoming... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22083 |
| SubjectTerms | 639/705/117 639/705/258 Hate speech Humanities and Social Sciences Language Learning algorithms Machine learning multidisciplinary Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EFLyIb-uLCp7UYpukm-boEw8iHhS8haZJ2AXpyj5c_PdOku7q-rx4bdIyfJN0viGZbwAOCGWGmLyV5EoZl6CwRKVKJ1RRVWKKUaXWS-bf8Nvb4vFR3H1o9eXuhAV54ADcidGYw7SY4GWmmCVViTEUSTi3SF0EM76OHFnPh2QqqHoTwTLRVMmktDjpY6Ry1WTEZc_I0pPRVCTygv3fscyvlyU_nZj6QHS1BIsNg4xPg-XLMGPqFZgPPSVfV-HwIvSY78ddGwcdjLiNhDIuax2jUxulVOePNXi4urw_v06ahghJhXnGINE6FdQUldBFzqxw6nuaaMoR10xh7GU6a3EncGpKTKOoMULwyhLVQtjwUUXXYbbu1mYTYl4gU7GElTnGJ4abkBWk5KktciRE2ooIsjE4smrUwl3TiifpT61pIQOgEgGVHlA5iuBo8s5z0Mr4dfaZw3wy0-lc-wfofdl4X_7l_Qh2xh6TzebrS8zoXOEj_q0i2J8MI8LuLKSsTXfo53DffyuPYCM4eGIJZRx5GmMR8CnXT5k6PVJ32l6a252y4ocjOB4vknezfoZi6z-g2IYF4la3u6KY7cDsoDc0uzBXvQw6_d6e3x5vM_8OiA priority: 102 providerName: Directory of Open Access Journals |
| Title | Dynamics of online hate and misinformation |
| URI | https://link.springer.com/article/10.1038/s41598-021-01487-w https://www.ncbi.nlm.nih.gov/pubmed/34764344 https://www.proquest.com/docview/2596178318 https://www.proquest.com/docview/2597486025 https://pubmed.ncbi.nlm.nih.gov/PMC8585974 https://doaj.org/article/ed8256497a1b4f2ca0646267f13994e7 |
| Volume | 11 |
| WOSCitedRecordID | wos000717747400115&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXZC48H4EyipInICoie2s4xOi0AokuooQSMvJimOHVkJJ2Wyp-PfMON5Uy6MXLj44TmR7xplvPPY3AM8YF465fJ7kxjhyUERiUmMTbrip0MWo08ZT5n-Qi0WxXKoybLj14Vjl5p_of9S2q2mPfA9hOt1mQxV8dfo9oaxRFF0NKTR2YEpMZWIC0_2DRflx3GWhOJbIVLgtk_Jir0eLRbfKGHnRiNaT8y2L5In7_4Y2_zw0-Vvk1Bukw5v_O5RbcCNA0fj1oDu34Ypr78C1ITnlz7vw_O2QrL6PuyYeCDXiY0SmcdXaGLUjUK6SYO_B58ODT2_eJSGzQlKjw7JOrE0Vd0WtbJGLRhGNn2WWSxRQZtCIC5vNJTGlugr9Me6cUrJumJmzusKqmt-HSdu17iHEOI5CNUxUORo6gatZFKySaVPkiKxsoyLINrOr60A7Ttkvvmkf_uaFHiSiUSLaS0SfR_BifOd0IN24tPU-CW1sSYTZvqJbfdVh_Wln0RWeCyWrzIgGh4FQDH052SACVsLJCHY3stJhFff6QlARPB0f4wxTUKVqXXfm20ifyCuP4MGgIWNPuJAI-ISIQG7pzlZXt5-0J8ee45vCtfjhCF5utOyiW_-eikeXj-IxXGek-HSKMduFyXp15p7A1frH-qRfzWBHLqUvi1lYRzO_RYHlESuplFhOy_dH5ZdfVqwlTQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AgSDBBYi6cZx1fEAIKFWrLisORdqbm_jRrgRJ2WxZ7Z_iNzLjPKrl0VsPXB3HmjifZ77x2DMAz1nCLbPpMEqLwpKDwqNiUJgoKZIiRxdDD5xPmT8S43E2mcjPa_CzuwtDxyo7negVtak07ZFvIU2n22wIwbcn3yOqGkXR1a6ERgOLfbtcoMtWv9nbxv_7grGdjwcfdqO2qkCkkazPI2PQibeZliZLuZOUws4wkwgULi7QgHETDwVlCbU5-iKJtVIK7VgxZDrHJp3guJfgMupxQUfIxET0ezoUNeOxbO_mDJJsq0b7SHfYGPns6BtEixX758sE_I3b_nlE87c4rTd_Ozf-t4m7Cddboh2-a1bGLViz5W242pTeXN6Bl9vLMv821XVYubBJFxIeI-8O89KEiP02oSzB9i58uRBB78F6WZX2AYQ4b5l0jOcpmnGOuopnLBcDl6XIG42TAcTd31S6TapOtT2-Kh_cTzLVIEAhApRHgFoE8Kp_56RJKXJu7_cEkr4npQP3DdXsSLXaRVmDjv6QS5HHBXf4GUg00VMVDvm95FYEsNlhQ7U6qlZnwAjgWf8YZ5hCRnlpq1PfR_gyZWkA9xtE9pIkXCCd5TwAsYLVFVFXn5TTY5_BnILROHAArztUn4n176l4eP5XPIWN3YNPIzXaG-8_gmuMFh2d14w3YX0-O7WP4Yr-MZ_Wsyd-1YZweNFo_wVQM3p6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qZREX9sVQwEhwAazE43HGc0AICBFVS5QDSL0N9iw0EtglTony1_h1vDdeqrD01gNXe2w9j7-3zZv5HsATlnDLbDqK0qKwlKDwqBgWJkqKpMgxxdBD5ynz98V0mh0cyNkW_OzOwtC2ys4mekNtKk1r5AMM0-k0G0Jw4NptEbPx5NXR94g6SFGltWun0UBkz65XmL7VL3fH-K-fMjZ59_Ht-6jtMBBpDNyXkTGY0NtMS5Ol3EmiszPMJAIFjQt0ZtzEI0GMoTbHvCSxVkqhHStGTOd4SSf43nNwXvA0Je36wGb9-g5V0Hgs23M6wyQb1Ogr6Twbo_wd84RoteELfcuAv8W5f27X_K1m613h5Or_PInX4EobgIevG425Dlu2vAEXm5ac65vwbLwu829zXYeVCxsakfAQ4_EwL02IOtESzRKcb8GnMxH0NmyXVWnvQohzmEnHeJ6ie-dow3jGcjF0GQKBGScDiLs_q3RLtk49P74qX_RPMtWgQSEalEeDWgXwvH_mqKEaOXX0GwJMP5Jowv2FavFFtVZHWZNhSMulyOOCO_wMDEAxgxUO437JrQhgp8OJam1XrU5AEsDj_jbOMJWS8tJWx36M8O3L0gDuNOjsJUm4wDCX8wDEBm43RN28U84PPbM5FanxxQG86BB-Ita_p-Le6V_xCC4hyNX-7nTvPlxmpH-0jTPege3l4tg-gAv6x3JeLx56BQ7h81mD_RflwYNH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+online+hate+and+misinformation&rft.jtitle=Scientific+reports&rft.au=Cinelli+Matteo&rft.au=Andra%C5%BE%2C+Pelicon&rft.au=Mozeti%C4%8D+Igor&rft.au=Quattrociocchi%2C+Walter&rft.date=2021-11-11&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-01487-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |