Skeletal muscle transcriptome in healthy aging
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 12; H. 1; S. 2014 - 16 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.04.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals. |
|---|---|
| AbstractList | Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age. As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals. Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age. As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals. Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals. Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age. Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age. As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals. |
| ArticleNumber | 2014 |
| Author | Harish, Abhinav Ding, Jun Yang, Jen-Hao Gorospe, Myriam Kaileh, Mary Zukley, Linda M. De, Supriyo Tumasian, Robert A. Wood, William H. Kundu, Gautam Coletta, Christopher Piao, Yulan Sen, Ranjan Chia, Chee W. Gonzalez-Freire, Marta Lyashkov, Alexey Ubaida-Mohien, Ceereena Ferrucci, Luigi |
| Author_xml | – sequence: 1 givenname: Robert A. orcidid: 0000-0001-7389-1607 surname: Tumasian fullname: Tumasian, Robert A. organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 2 givenname: Abhinav surname: Harish fullname: Harish, Abhinav organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 3 givenname: Gautam surname: Kundu fullname: Kundu, Gautam organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 4 givenname: Jen-Hao surname: Yang fullname: Yang, Jen-Hao organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 5 givenname: Ceereena surname: Ubaida-Mohien fullname: Ubaida-Mohien, Ceereena organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 6 givenname: Marta surname: Gonzalez-Freire fullname: Gonzalez-Freire, Marta organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 7 givenname: Mary surname: Kaileh fullname: Kaileh, Mary organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 8 givenname: Linda M. surname: Zukley fullname: Zukley, Linda M. organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 9 givenname: Chee W. surname: Chia fullname: Chia, Chee W. organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 10 givenname: Alexey surname: Lyashkov fullname: Lyashkov, Alexey organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 11 givenname: William H. surname: Wood fullname: Wood, William H. organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 12 givenname: Yulan surname: Piao fullname: Piao, Yulan organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 13 givenname: Christopher surname: Coletta fullname: Coletta, Christopher organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 14 givenname: Jun surname: Ding fullname: Ding, Jun organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 15 givenname: Myriam surname: Gorospe fullname: Gorospe, Myriam organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 16 givenname: Ranjan surname: Sen fullname: Sen, Ranjan organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 17 givenname: Supriyo surname: De fullname: De, Supriyo organization: National Institute on Aging–Intramural Research Program, National Institutes of Health – sequence: 18 givenname: Luigi orcidid: 0000-0002-6273-1613 surname: Ferrucci fullname: Ferrucci, Luigi email: FerrucciLu@grc.nia.nih.gov organization: National Institute on Aging–Intramural Research Program, National Institutes of Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33795677$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1TAUhC1UREvpH2CBIrFhk-JXbGeDhCoelSqxANaW4xzn-pLYFztB6r_HaVpou2g2juxvRuPjeYmOQgyA0GuCzwlm6n3mhAtZY0pqSolQNX2GTijmpCaSsqN7_8foLOc9Lh9rieL8BTpmTLaNkPIEnX__BSPMZqymJdsRqjmZkG3yhzlOUPlQ7cCM8-66MoMPwyv03Jkxw9nteop-fv704-JrffXty-XFx6vaCizm2naYCUk74ghhzorOUcUZx45bAVw2bccb20twygqFuWppT3DTMNXj3hJu2Cm63Hz7aPb6kPxk0rWOxuubjZgGbdLsS2DtgHSEMS5a1vKegqGu7UFZyWXrpBHF68PmdVi6CXoLodxxfGD68CT4nR7iH61wmatcDd7dGqT4e4E868lnC-NoAsQla9pg1UhJW1rQt4_QfVxSKKNaKamwKAMp1Jv7if5FuXuWAqgNsCnmnMBp62cz-7gG9KMmWK8l0FsJdCmBvimBXhPQR9I79ydFbBPlAocB0v_YT6j-ApRlweM |
| CitedBy_id | crossref_primary_10_1096_fj_202301291RR crossref_primary_10_3390_metabo14090480 crossref_primary_10_1007_s11427_024_2877_5 crossref_primary_10_1007_s00441_024_03945_z crossref_primary_10_1016_j_humgen_2024_201283 crossref_primary_10_3389_fnins_2022_978431 crossref_primary_10_1113_JP286681 crossref_primary_10_3389_fphys_2022_1056479 crossref_primary_10_1186_s12891_022_05572_7 crossref_primary_10_3389_fonc_2023_1222168 crossref_primary_10_1016_j_exger_2022_111884 crossref_primary_10_1016_j_archger_2025_105807 crossref_primary_10_1111_ggi_70042 crossref_primary_10_1038_s43587_023_00366_5 crossref_primary_10_1007_s11357_022_00542_2 crossref_primary_10_3389_fmolb_2021_762185 crossref_primary_10_1016_j_archger_2024_105499 crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1093_gerona_glae269 crossref_primary_10_3389_fendo_2023_1073587 crossref_primary_10_1016_j_mam_2024_101319 crossref_primary_10_1016_j_nmd_2022_04_009 crossref_primary_10_1038_s41413_025_00442_z crossref_primary_10_1038_s42003_024_06679_4 crossref_primary_10_1111_acel_13609 crossref_primary_10_1055_a_1761_8481 crossref_primary_10_1210_jendso_bvac151 crossref_primary_10_7554_eLife_84618 crossref_primary_10_1038_s43587_022_00189_w crossref_primary_10_1113_JP283836 crossref_primary_10_1002_jcsm_13603 crossref_primary_10_7554_eLife_61138 crossref_primary_10_1016_j_jia_2023_02_040 crossref_primary_10_3390_insects13100936 crossref_primary_10_1002_advs_202405157 crossref_primary_10_1007_s40520_022_02203_y crossref_primary_10_1038_s41598_022_10018_0 crossref_primary_10_3390_ijms25189962 crossref_primary_10_4103_1673_5374_382226 crossref_primary_10_1016_j_mad_2021_111595 crossref_primary_10_1038_s41746_022_00681_y crossref_primary_10_3390_metabo13050591 crossref_primary_10_1007_s00134_025_07949_3 crossref_primary_10_1152_japplphysiol_00442_2023 crossref_primary_10_1186_s12711_023_00849_4 crossref_primary_10_1038_s41598_024_74913_4 crossref_primary_10_1093_gerona_glaf146 crossref_primary_10_3390_ijms26178286 crossref_primary_10_1002_jcsm_13562 crossref_primary_10_1007_s11357_022_00715_z crossref_primary_10_1186_s12891_025_08528_9 crossref_primary_10_1007_s10522_023_10070_x crossref_primary_10_1016_j_jff_2025_106761 crossref_primary_10_3390_nu14235072 crossref_primary_10_1186_s12864_024_11051_1 crossref_primary_10_7717_peerj_16851 crossref_primary_10_1126_science_abk0297 crossref_primary_10_1038_s12276_025_01521_1 crossref_primary_10_1093_qjmed_hcaf108 crossref_primary_10_1016_j_jmoldx_2023_12_005 crossref_primary_10_1159_000530216 crossref_primary_10_3390_cimb46080522 crossref_primary_10_1038_s42003_024_05877_4 crossref_primary_10_1515_mr_2025_0032 |
| Cites_doi | 10.1038/srep43539 10.1111/acel.12970 10.1016/S0925-4773(99)00248-8 10.1016/S0531-5565(02)00153-5 10.1038/ijo.2016.44 10.18632/aging.100355 10.4331/wjbc.v10.i2.28 10.1038/nature06084 10.1161/01.RES.0000202802.34727.fd 10.1016/j.abb.2016.02.022 10.1111/ggi.13059 10.1016/j.cmet.2006.04.008 10.1161/CIRCULATIONAHA.113.002887 10.1109/BIBE.2013.6701530 10.15252/msb.20188503 10.1038/s41598-017-03475-5 10.14302/issn.2326-0793.jpgr-13-252 10.1152/physiolgenomics.00151.2009 10.1161/ATVBAHA.111.232702 10.1093/bioinformatics/bts635 10.1161/CIRCULATIONAHA.117.032432 10.1038/ng.814 10.1002/cpbi.5 10.1093/gerona/glx134 10.1074/jbc.M002378200 10.18632/aging.100677 10.1172/JCI119872 10.1006/bbrc.2000.2571 10.1126/science.1178331 10.3389/fgene.2018.00242 10.1186/s13059-015-0750-x 10.1038/srep19832 10.14806/ej.17.1.200 10.1007/978-3-319-24277-4 10.1021/jm301302s 10.1128/MCB.00983-10 10.3389/fphys.2019.00312 10.1111/dom.12347 10.4161/epi.23989 10.1002/jcsm.12099 10.1111/j.1365-2052.2007.01695.x 10.1371/journal.pone.0000465 10.1007/s00438-016-1256-2 10.1159/000075740 10.1016/j.cmet.2017.02.009 10.1161/ATVBAHA.112.300399 10.1593/tlo.09112 10.1016/S1474-4422(10)70137-X 10.1186/1750-1172-1-29 10.1080/10495398.2018.1426594 10.1038/36116 10.1530/JOE-13-0584 10.1016/S0378-1119(99)00037-2 10.1016/j.coi.2005.11.008 10.1093/hmg/ddm264 10.1111/j.1474-9726.2011.00726.x 10.1021/bi00311a010 10.1016/j.gene.2012.01.021 10.1074/jbc.M505181200 10.1038/labinvest.2014.54 10.1091/mbc.e11-09-0774 10.1007/s13539-011-0021-y 10.1074/jbc.M116.751917 10.1261/rna.056317.116 10.7150/ijbs.5.679 10.1111/jgs.12740 10.1002/path.4036 10.1128/MCB.00651-14 10.1016/j.celrep.2018.02.001 10.1038/nm.2897 10.1172/JCI67652 10.1074/jbc.M206171200 10.1074/jbc.M104750200 10.1111/acel.12799 10.1038/nri1268 10.1007/s11999-008-0694-5 10.1093/bioinformatics/btp616 10.1016/j.ygyno.2009.12.016 10.1177/154411130301400602 10.1007/s11033-012-2342-0 10.3233/JND-150119 10.1007/s00223-014-9894-z 10.1096/fj.06-7538com 10.1038/s41586-018-0619-8 10.1016/j.cell.2015.01.009 10.1371/journal.pgen.1003389 10.1152/physiolgenomics.00148.2010 10.1002/iub.1293 10.1038/s41598-018-29789-6 10.1016/j.molmet.2015.09.004 10.1084/jem.20160647 10.1038/ng832 10.1016/j.metabol.2016.03.005 10.1016/S0955-0674(00)00253-2 10.1186/gb-2010-11-10-r106 10.1093/bioinformatics/btt656 10.1126/scisignal.aao2341 10.1152/japplphysiol.00634.2010 10.1186/s13395-015-0059-1 10.1093/nar/gkt1248 10.1164/rccm.201503-0418OC 10.1172/JCI87414 10.1073/pnas.0506580102 |
| ContentType | Journal Article |
| Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021 – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-021-22168-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_fe1b133469394d2ea2f9de8c7479f7a6 PMC8016876 33795677 10_1038_s41467_021_22168_2 |
| Genre | Journal Article Research Support, N.I.H., Intramural |
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: Z01-AG000996 funderid: https://doi.org/10.13039/100000002 – fundername: ; grantid: Z01-AG000996 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c606t-cb03672b1f113fc6bf284340f4c6e4759b45cd7ef8c6804892d105538d0dc14a3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:44:46 EDT 2025 Tue Nov 04 01:37:29 EST 2025 Thu Sep 04 19:24:52 EDT 2025 Tue Oct 07 06:40:03 EDT 2025 Wed Feb 19 02:23:54 EST 2025 Tue Nov 18 22:19:42 EST 2025 Sat Nov 29 06:29:14 EST 2025 Fri Feb 21 02:39:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-cb03672b1f113fc6bf284340f4c6e4759b45cd7ef8c6804892d105538d0dc14a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7389-1607 0000-0002-6273-1613 |
| OpenAccessLink | https://www.proquest.com/docview/2507806113?pq-origsite=%requestingapplication% |
| PMID | 33795677 |
| PQID | 2507806113 |
| PQPubID | 546298 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fe1b133469394d2ea2f9de8c7479f7a6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016876 proquest_miscellaneous_2508577292 proquest_journals_2507806113 pubmed_primary_33795677 crossref_citationtrail_10_1038_s41467_021_22168_2 crossref_primary_10_1038_s41467_021_22168_2 springer_journals_10_1038_s41467_021_22168_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Vicente-ManzanaresMSánchez-MadridFRole of the cytoskeleton during leukocyte responsesNat. Rev. Immunol.200441101:CAS:528:DC%2BD2cXhsVKqs7o%3D1504058410.1038/nri1268 DobinASTAR: ultrafast universal RNA-seq alignerBioinformatics20132915211:CAS:528:DC%2BC38XhvV2gsbnF2310488610.1093/bioinformatics/bts635 LeeperNJLoss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formationArterioscler Thromb. Vasc. Biol.201333e1e101:CAS:528:DC%2BC38XhvVeltrbP2316201310.1161/ATVBAHA.112.300399 GrunewaldTGPSaskiaMPButtECell adhesion and transcriptional activity—defining the role of the novel protooncogene LPPTransl. Oncol.2009210711619701494273014110.1593/tlo.09112 Strand, J. et al. Modulation of myosin function by isoform-specific properties of S. cerevisiae and muscle tropomyosins. J. Biol. Chem. 276, 34832–34839 (2001). KerouzNJDifferential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouseJ. Clin. Invest1997100316431721:CAS:528:DyaK2sXotVyrs7k%3D939996450853010.1172/JCI119872 HuJCCYamakoshiYEnamelin and autosomal-dominant amelogenesis imperfectaCrit. Rev. Oral. Biol. Med.2003143873981465689510.1177/154411130301400602 Ripley, B. et al. Package ‘mass’. Cran R (2013). TuplingARAsahiMMacLennanDHSarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile functionJ. Biol. Chem.200227744740447461:CAS:528:DC%2BD38Xosl2nurs%3D1223729810.1074/jbc.M206171200 JiangSSGene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseasesAging (Albany NY)201136726841:CAS:528:DC%2BC3MXhtF2ns7zL10.18632/aging.100355 GontierGTet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brainCell Rep.201822197419811:CAS:528:DC%2BC1cXjtFCktLY%3D29466726587089910.1016/j.celrep.2018.02.001 VajsarJSchachterHWalker-Warburg syndromeOrphanet J. Rare Dis.2006116887026155343110.1186/1750-1172-1-29 BorasMSkap2 is required for beta(2) integrin-mediated neutrophil recruitment and functionsJ. Exp. Med.20172148518741:CAS:528:DC%2BC2sXhtV2ju73F28183734533967010.1084/jem.20160647 BarbieriMGlucose regulation and oxidative stress in healthy centenariansExp. Gerontol.2003381371431:CAS:528:DC%2BD3sXkvFWnuw%3D%3D1254327110.1016/S0531-5565(02)00153-5 McLaughlinPJLack of fibulin-3 causes early aging and herniation, but not macular degeneration in miceHum. Mol. Genet.200716305930701:CAS:528:DC%2BD2sXhtlajsrrO1787290510.1093/hmg/ddm264 KrimpenfortPp15(Ink4b) is a critical tumour suppressor in the absence of p16(Ink4a)Nature2007448943U112007Natur.448..943K1:CAS:528:DC%2BD2sXptlWjsLw%3D1771353610.1038/nature06084 GurnettCASkeletal muscle contractile gene (TNNT3, MYH3, TPM2) mutations not found in vertical talus or clubfootClin. Orthop. Relat. Res.2009467119519142688266442610.1007/s11999-008-0694-5 HuangPDifferences in the frequency of Alzheimer’s disease‐associated genomic variations in populations of different racesGeriatrics Gerontol. Int.2017172184219310.1111/ggi.13059 Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). HangelbroekRWJExpression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weaknessJ. Cachexia Sarcopenia Muscle2016760461427239416486383010.1002/jcsm.12099 Pekkarinen, M. Preprocessing and Analysis of Single-Cell RNA-Sequencing Data (Tampere Univ., 2018). Stelzer, G. et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics54, 1.30.1–1.30.33 (2016). HumeDAThe mononuclear phagocyte systemCurr. Opin. Immunol.20061849531:CAS:528:DC%2BD28XhvFOgsw%3D%3D1633812810.1016/j.coi.2005.11.008 RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO1991030810.1093/bioinformatics/btp616 PhillipsBEMolecular networks of human muscle adaptation to exercise and agePLoS Genet.20139e100338930264321:CAS:528:DC%2BC3sXlvValurk%3D23555298360510110.1371/journal.pgen.1003389 KollerAQuantitative proteomics using 15N SILAC mouseJ. Proteom. Genomics Res.201312710.14302/issn.2326-0793.jpgr-13-252 WangXZMultiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfishMol. Genet. Genomics201729263761:CAS:528:DC%2BC28Xhs1Kls7fF2773415810.1007/s00438-016-1256-2 MelovSResistance exercise reverses aging in human skeletal musclePLoS ONE20072510.1371/journal.pone.0000465 MoyerALWagnerKRMammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolismJ. Neuromuscul. Dis.2015237138526634192466453710.3233/JND-150119 TsumagariKEarly de novo DNA methylation and prolonged demethylation in the muscle lineageEpigenetics201383173321:CAS:528:DC%2BC3sXntVantLw%3D23417056366912310.4161/epi.23989 Willis-Owen, S. A. G. et al. COPD is accompanied by coordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Sci. Rep. 8, 12165 (2018). ChenFEvaluation of early biomarkers of muscle anabolic response to testosteroneJ. Cachexia Sarcopenia Muscle2011245561:CAS:528:DC%2BC38XjtFGksbk%3D21475673306386910.1007/s13539-011-0021-y JusticeJNCellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older womenJ. Gerontol. Ser. A20177393994510.1093/gerona/glx134 MamoshinaPMachine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identificationFront Genet2018924230050560605208910.3389/fgene.2018.00242 SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S1:CAS:528:DC%2BD2MXht1ShtrnO16199517123989610.1073/pnas.0506580102 NamGHIdentification of ORF sequences and exercise-induced expression change in thoroughbred horse OXCT1 geneGene201249645481:CAS:528:DC%2BC38XhvVSgtLw%3D2230126910.1016/j.gene.2012.01.021 Dong, S. S. et al. Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits. Int. J. Obes.40, 1170–1176 (2016). En-linSSheng-guoCHua-qiaoWThe expression of EFEMP1 in cervical carcinoma and its relationship with prognosisGynecol. Oncol.20101174174222037815710.1016/j.ygyno.2009.12.016 HerrerIRNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failureLab. Investig.2014946451:CAS:528:DC%2BC2cXls1Kjuro%3D2470977710.1038/labinvest.2014.54 LobjoisVA muscle transcriptome analysis identifies positional candidate genes for complex trait in pigAnim. Genet.2008391471621:CAS:528:DC%2BD1cXltlWhsL8%3D1836647610.1111/j.1365-2052.2007.01695.x Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 3 (2011). KimJYGenome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with agingAging (Albany NY)201465242014aamd.book.....K415362110.18632/aging.100677 PatelHPLean mass, muscle strength and gene expression in community dwelling older men: findings from the Hertfordshire Sarcopenia Study (HSS)Calcif. Tissue Int2014953083161:CAS:528:DC%2BC2cXht1WksrrK2505574910.1007/s00223-014-9894-z Timmons, J. A. et al. Longevity‐related molecular pathways are subject to midlife “switch” in humans. Aging Cell18, e12970 (2019). HuangWGene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chainArch. Biochem. Biophys.20166011211321:CAS:528:DC%2BC28Xjt1yrsbw%3D26906074537058010.1016/j.abb.2016.02.022 MullerLSMGenome organization and DNA accessibility control antigenic variation in trypanosomesNature20185631211252018Natur.563..121M30333624678489810.1038/s41586-018-0619-8 TsompanidisACiliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscleMetabolism2016659159251:CAS:528:DC%2BC28XmtFClurY%3D2717347010.1016/j.metabol.2016.03.005 Ubaida-Mohien, C. et al. Physical activity associated proteomics of skeletal muscle: being physically active in daily life may protect skeletal muscle from aging. Front. Physiol. 10, 312 (2019). HarriesLWHuman aging is characterized by focused changes in gene expression and deregulation of alternative splicingAging Cell2011108688781:CAS:528:DC%2BC3MXhtlShtLrK2166862310.1111/j.1474-9726.2011.00726.x LiaoYSmythGKShiWfeatureCounts: an efficient general purpose program for assigning sequence reads to genomic featuresBioinformatics2014309239301:CAS:528:DC%2BC2cXltFGqu7c%3D2422767710.1093/bioinformatics/btt656 Jackman, S. Classes and Methods for R Developed in the Political Science Computational Laboratory (version 1.4. 9) (Department of Political Science, Stanford Univ., 2015). LongYCInsulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathwaysMol. Cell. Biol.2011314304411:CAS:528:DC%2BC3MXisVOltrk%3D2113513010.1128/MCB.00983-10 BouzakriKsiRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscleCell Metab.2006489961:CAS:528:DC%2BD28XmvFyhsrw%3D1681473510.1016/j.cmet.2006.04.008 WilkinsonLAssociation between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant miceJ. Pathol.20122274995101:CAS:528:DC%2BC38XpvFequ7w%3D2248864110.1002/path.4036 ZhongXiaTen-eleven translocation-2 (Tet2) is involved in myogenic differentiation of skeletal myoblast cells in vitroSci. Rep.201772017NatSR...743539Z28272491534109910.1038/srep43539 GanZNuclear receptor/microRNA circuitry links muscle fiber type to energy metabolismJ. Clin. Investi 22168_CR1 I Herrer (22168_CR19) 2014; 94 22168_CR8 NC Bal (22168_CR101) 2012; 18 22168_CR32 22168_CR35 DA Hume (22168_CR56) 2006; 18 XZ Wang (22168_CR14) 2017; 292 L Fontanesi (22168_CR96) 2003; 102 CA Gurnett (22168_CR30) 2009; 467 Y Wang (22168_CR29) 2007; 21 C Hoffmann (22168_CR53) 2014; 34 M Boras (22168_CR54) 2017; 214 S Iyer (22168_CR59) 2016; 6 YC Long (22168_CR66) 2011; 31 M Lai (22168_CR84) 2010; 9 22168_CR42 V Lobjois (22168_CR31) 2008; 39 MB Teixeira (22168_CR60) 2019; 10 22168_CR45 Xia Zhong (22168_CR36) 2017; 7 DM Anderson (22168_CR102) 2015; 160 F Stanchi (22168_CR105) 2000; 270 BE Phillips (22168_CR2) 2013; 9 NJ Kerouz (22168_CR10) 1997; 100 J Vajsar (22168_CR43) 2006; 1 C Lerche (22168_CR91) 2000; 275 P Huang (22168_CR98) 2017; 17 TGP Grunewald (22168_CR88) 2009; 2 PJ McLaughlin (22168_CR70) 2007; 16 K Tsumagari (22168_CR90) 2013; 8 Y Shi (22168_CR28) 2005; 280 G Gontier (22168_CR38) 2018; 22 MB Wittwer (22168_CR41) 2013; 56 22168_CR15 S Kalachikov (22168_CR85) 2002; 30 LJ Fulcher (22168_CR51) 2018; 11 22168_CR94 I Gorenne (22168_CR13) 2006; 98 JY Kim (22168_CR40) 2014; 6 AL Moyer (22168_CR108) 2015; 2 LSM Muller (22168_CR80) 2018; 563 AE Thalacker-Mercer (22168_CR5) 2010; 40 P Mamoshina (22168_CR16) 2018; 9 S Melov (22168_CR48) 2007; 2 J Zhang (22168_CR89) 2014; 66 JW Burgner (22168_CR26) 1984; 23 M Vicente-Manzanares (22168_CR57) 2004; 4 JH Li (22168_CR46) 2013; 42 22168_CR23 MD Robinson (22168_CR77) 2010; 26 A Tsompanidis (22168_CR20) 2016; 65 S Guo (22168_CR67) 2014; 220 S Sood (22168_CR3) 2015; 16 22168_CR74 KA Dyar (22168_CR104) 2015; 4 DJ Withers (22168_CR65) 1998; 391 22168_CR79 22168_CR78 P Krimpenfort (22168_CR22) 2007; 448 22168_CR73 HP Patel (22168_CR7) 2014; 95 MM Robinson (22168_CR33) 2017; 25 P Keller (22168_CR50) 2010; 110 H Xu (22168_CR106) 2013; 40 JCC Hu (22168_CR93) 2003; 14 K Bouzakri (22168_CR11) 2006; 4 L Karim (22168_CR39) 2011; 43 22168_CR103 MJ Drummond (22168_CR4) 2011; 43 T Teltathum (22168_CR99) 2009; 5 L Wilkinson (22168_CR17) 2012; 227 Z Gan (22168_CR34) 2013; 123 A Dobin (22168_CR75) 2013; 29 22168_CR82 X Xie (22168_CR87) 2016; 126 22168_CR81 A Koller (22168_CR97) 2013; 1 LI Zheng (22168_CR62) 2019; 30 M Barbieri (22168_CR68) 2003; 38 22168_CR83 HJ Lee (22168_CR12) 2017; 7 A Manzano (22168_CR27) 1999; 229 G Kolle (22168_CR86) 2000; 90 22168_CR49 JA Schrack (22168_CR72) 2014; 62 MF White (22168_CR69) 2014; 16 X Yang (22168_CR95) 2012; 32 LW Harries (22168_CR71) 2011; 10 RA Worthylake (22168_CR58) 2001; 13.5 A Subramanian (22168_CR47) 2005; 102 J Su (22168_CR6) 2015; 5 H Manya (22168_CR44) 2016; 291 F Chen (22168_CR61) 2011; 2 RWJ Hangelbroek (22168_CR18) 2016; 7 NJ Leeper (22168_CR63) 2013; 33 R Liu (22168_CR37) 2013; 128 SS Jiang (22168_CR9) 2011; 3 W Huang (22168_CR21) 2016; 601 AR Tupling (22168_CR100) 2002; 277 GH Nam (22168_CR25) 2012; 496 F Geissmann (22168_CR55) 2010; 327 Y Liao (22168_CR76) 2014; 30 D Wang (22168_CR24) 2019; 15 AK Alkhaja (22168_CR107) 2012; 23 JN Justice (22168_CR64) 2017; 73 H Najafi (22168_CR52) 2017; 23 S En-lin (22168_CR92) 2010; 117 |
| References_xml | – reference: Warnes, M. G. R. et al. Package ‘gplots’. Various R Programming Tools for Plotting Data (2016). – reference: Dong, S. S. et al. Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits. Int. J. Obes.40, 1170–1176 (2016). – reference: Ripley, B. et al. Package ‘mass’. Cran R (2013). – reference: MelovSResistance exercise reverses aging in human skeletal musclePLoS ONE20072510.1371/journal.pone.0000465 – reference: SchrackJA“IDEAL” äging is associated with lower resting metabolic rate: the Baltimore Longitudinal Study of AgingJ. Am. Geriatr. Soc.20146266767224635835398942510.1111/jgs.12740 – reference: IyerSCrim1 has cell-autonomous and paracrine roles during embryonic heart developmentSci. Rep.201662016NatSR...619832I1:CAS:528:DC%2BC28XhslOmt70%3D26821812473176410.1038/srep19832 – reference: VajsarJSchachterHWalker-Warburg syndromeOrphanet J. Rare Dis.2006116887026155343110.1186/1750-1172-1-29 – reference: TeltathumTMekchaySProteome changes in Thai indigenous chicken muscle during growth periodInt. J. Biol. Sci.200956791:CAS:528:DC%2BD1MXhtlyksrvN19893640277341710.7150/ijbs.5.679 – reference: TuplingARAsahiMMacLennanDHSarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile functionJ. Biol. Chem.200227744740447461:CAS:528:DC%2BD38Xosl2nurs%3D1223729810.1074/jbc.M206171200 – reference: PhillipsBEMolecular networks of human muscle adaptation to exercise and agePLoS Genet.20139e100338930264321:CAS:528:DC%2BC3sXlvValurk%3D23555298360510110.1371/journal.pgen.1003389 – reference: BarbieriMGlucose regulation and oxidative stress in healthy centenariansExp. Gerontol.2003381371431:CAS:528:DC%2BD3sXkvFWnuw%3D%3D1254327110.1016/S0531-5565(02)00153-5 – reference: AlkhajaAKMINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organizationMol. Biol. Cell2012232472571:CAS:528:DC%2BC38XhtlWqtLg%3D22114354325817010.1091/mbc.e11-09-0774 – reference: KerouzNJDifferential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouseJ. Clin. Invest1997100316431721:CAS:528:DyaK2sXotVyrs7k%3D939996450853010.1172/JCI119872 – reference: KarimLVariants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine statureNat. Genet.2011434051:CAS:528:DC%2BC3MXltFyqsrY%3D2151608210.1038/ng.814 – reference: Boehm, O. et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am. J. Respir. Crit. Care Med. 192, 727–736 (2015). – reference: Strand, J. et al. Modulation of myosin function by isoform-specific properties of S. cerevisiae and muscle tropomyosins. J. Biol. Chem. 276, 34832–34839 (2001). – reference: Pekkarinen, M. Preprocessing and Analysis of Single-Cell RNA-Sequencing Data (Tampere Univ., 2018). – reference: Ubaida-Mohien, C. et al. Physical activity associated proteomics of skeletal muscle: being physically active in daily life may protect skeletal muscle from aging. Front. Physiol. 10, 312 (2019). – reference: Willis-Owen, S. A. G. et al. COPD is accompanied by coordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Sci. Rep. 8, 12165 (2018). – reference: MamoshinaPMachine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identificationFront Genet2018924230050560605208910.3389/fgene.2018.00242 – reference: NajafiHAlternative splicing of the OCC-1 gene generates three splice variants and a novel exonic microRNA, which regulate the Wnt signaling pathwayRNA20172370851:CAS:528:DC%2BC2sXosVGqsrY%3D27986894515965110.1261/rna.056317.116 – reference: Timmons, J. A. et al. Longevity‐related molecular pathways are subject to midlife “switch” in humans. Aging Cell18, e12970 (2019). – reference: KollerAQuantitative proteomics using 15N SILAC mouseJ. Proteom. Genomics Res.201312710.14302/issn.2326-0793.jpgr-13-252 – reference: DrummondMJAging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysisPhysiol. Genomics2011435956031:CAS:528:DC%2BC3MXot1Oit78%3D2087684310.1152/physiolgenomics.00148.2010 – reference: Stelzer, G. et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics54, 1.30.1–1.30.33 (2016). – reference: XuHMolecular cloning, sequence identification and expression analysis of novel caprine MYLPF geneMol. Biol. Rep.201340256525721:CAS:528:DC%2BC3sXhvFOqsL8%3D2327739110.1007/s11033-012-2342-0 – reference: ZhongXiaTen-eleven translocation-2 (Tet2) is involved in myogenic differentiation of skeletal myoblast cells in vitroSci. Rep.201772017NatSR...743539Z28272491534109910.1038/srep43539 – reference: SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S1:CAS:528:DC%2BD2MXht1ShtrnO16199517123989610.1073/pnas.0506580102 – reference: TsumagariKEarly de novo DNA methylation and prolonged demethylation in the muscle lineageEpigenetics201383173321:CAS:528:DC%2BC3sXntVantLw%3D23417056366912310.4161/epi.23989 – reference: KrimpenfortPp15(Ink4b) is a critical tumour suppressor in the absence of p16(Ink4a)Nature2007448943U112007Natur.448..943K1:CAS:528:DC%2BD2sXptlWjsLw%3D1771353610.1038/nature06084 – reference: ManyaHThe muscular dystrophy gene TMEM5 encodes a ribitol β1, 4-xylosyltransferase required for the functional glycosylation of dystroglycanJ. Biol. Chem.201629124618246271:CAS:528:DC%2BC28XhvV2gu77K27733679511441310.1074/jbc.M116.751917 – reference: Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). – reference: LiJHstarBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq dataNucleic Acids Res.201342D92D9724297251396494110.1093/nar/gkt1248 – reference: GorenneILPP expression during in vitro smooth muscle differentiation and stent-induced vascular injuryCirc. Res.2006983783851:CAS:528:DC%2BD28Xht1Cmuro%3D1639714310.1161/01.RES.0000202802.34727.fd – reference: WangDA deep proteome and transcriptome abundance atlas of 29 healthy human tissuesMol. Syst. Biol.201915210.15252/msb.20188503 – reference: TsompanidisACiliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscleMetabolism2016659159251:CAS:528:DC%2BC28XmtFClurY%3D2717347010.1016/j.metabol.2016.03.005 – reference: ManzanoACloning, expression and chromosomal localization of a human testis 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase geneGene199922983891:CAS:528:DyaK1MXit1KmsrY%3D1009510710.1016/S0378-1119(99)00037-2 – reference: MoyerALWagnerKRMammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolismJ. Neuromuscul. Dis.2015237138526634192466453710.3233/JND-150119 – reference: KimJYGenome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with agingAging (Albany NY)201465242014aamd.book.....K415362110.18632/aging.100677 – reference: ZhengLIGenetic variant of MYLK4 gene and its association with growth traits in Chinese cattleAnim. Biotechnol.20193030351:CAS:528:DC%2BC1cXkslamsrY%3D2954010110.1080/10495398.2018.1426594 – reference: LercheCMolecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversityJ. Biol. Chem.200027522395224001:CAS:528:DC%2BD3cXlt1egsrc%3D1078741610.1074/jbc.M002378200 – reference: McLaughlinPJLack of fibulin-3 causes early aging and herniation, but not macular degeneration in miceHum. Mol. Genet.200716305930701:CAS:528:DC%2BD2sXhtlajsrrO1787290510.1093/hmg/ddm264 – reference: WhiteMFIRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevityDiabetes Obes. Metab.2014164151:CAS:528:DC%2BC2cXhsFarsrzP2520029010.1111/dom.12347 – reference: GeissmannFDevelopment of monocytes, macrophages, and dendritic cellsScience20103276566612010Sci...327..656G1:CAS:528:DC%2BC3cXhtlyhsrw%3D20133564288738910.1126/science.1178331 – reference: KolleGCRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesisMech. Dev.2000901811931:CAS:528:DC%2BD3cXltVGhsw%3D%3D1064243710.1016/S0925-4773(99)00248-8 – reference: LobjoisVA muscle transcriptome analysis identifies positional candidate genes for complex trait in pigAnim. Genet.2008391471621:CAS:528:DC%2BD1cXltlWhsL8%3D1836647610.1111/j.1365-2052.2007.01695.x – reference: AndersonDMA micropeptide encoded by a putative long noncoding RNA regulates muscle performanceCell20151605956061:CAS:528:DC%2BC2MXhvVOqsbw%3D25640239435625410.1016/j.cell.2015.01.009 – reference: HuJCCYamakoshiYEnamelin and autosomal-dominant amelogenesis imperfectaCrit. Rev. Oral. Biol. Med.2003143873981465689510.1177/154411130301400602 – reference: Thalacker-MercerAEDifferential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loadingPhysiol. Genomics2010401411491:CAS:528:DC%2BC3cXhtlakt73N1990376110.1152/physiolgenomics.00151.2009 – reference: WangXZMultiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfishMol. Genet. Genomics201729263761:CAS:528:DC%2BC28Xhs1Kls7fF2773415810.1007/s00438-016-1256-2 – reference: JusticeJNCellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older womenJ. Gerontol. Ser. A20177393994510.1093/gerona/glx134 – reference: BorasMSkap2 is required for beta(2) integrin-mediated neutrophil recruitment and functionsJ. Exp. Med.20172148518741:CAS:528:DC%2BC2sXhtV2ju73F28183734533967010.1084/jem.20160647 – reference: LeeperNJLoss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formationArterioscler Thromb. Vasc. Biol.201333e1e101:CAS:528:DC%2BC38XhvVeltrbP2316201310.1161/ATVBAHA.112.300399 – reference: WittwerMBDiscovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modelingJ. Med. Chem.2013567817951:CAS:528:DC%2BC38XhvVCjurjE23241029406882910.1021/jm301302s – reference: GrunewaldTGPSaskiaMPButtECell adhesion and transcriptional activity—defining the role of the novel protooncogene LPPTransl. Oncol.2009210711619701494273014110.1593/tlo.09112 – reference: DyarKAThe calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscleMol. Metab.201548238331:CAS:528:DC%2BC2MXhsFKht7%2FN26629406463217710.1016/j.molmet.2015.09.004 – reference: YangXUse of functional genomics to identify candidate genes underlying human genetic association studies of vascular diseasesArteriosclerosis Thrombosis Vasc. Biol.20123221622210.1161/ATVBAHA.111.232702 – reference: SoodSA novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health statusGenome Biol.20151626343147456147310.1186/s13059-015-0750-x – reference: Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell17, e12799 (2018). – reference: WorthylakeRABurridge.KLeukocyte transendothelial migration: orchestrating the underlying molecular machineryCurr. Opin. Cell Biol.200113.556957710.1016/S0955-0674(00)00253-2 – reference: Tikkanen, E., Gustafsson, S. & Ingelsson, E. Fitness, physical activity, and cardiovascular disease: longitudinal and genetic analyses in the UK Biobank Study. Circulation 137, 2583–2591 (2018). – reference: HoffmannCHuman muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filamentsMol. Cell. Biol.2014343053306524934443413559710.1128/MCB.00651-14 – reference: Vicente-ManzanaresMSánchez-MadridFRole of the cytoskeleton during leukocyte responsesNat. Rev. Immunol.200441101:CAS:528:DC%2BD2cXhsVKqs7o%3D1504058410.1038/nri1268 – reference: HerrerIRNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failureLab. Investig.2014946451:CAS:528:DC%2BC2cXls1Kjuro%3D2470977710.1038/labinvest.2014.54 – reference: ChenFEvaluation of early biomarkers of muscle anabolic response to testosteroneJ. Cachexia Sarcopenia Muscle2011245561:CAS:528:DC%2BC38XjtFGksbk%3D21475673306386910.1007/s13539-011-0021-y – reference: GurnettCASkeletal muscle contractile gene (TNNT3, MYH3, TPM2) mutations not found in vertical talus or clubfootClin. Orthop. Relat. Res.2009467119519142688266442610.1007/s11999-008-0694-5 – reference: Jackman, S. Classes and Methods for R Developed in the Political Science Computational Laboratory (version 1.4. 9) (Department of Political Science, Stanford Univ., 2015). – reference: LaiMInvestigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case seriesLancet Neurol.201097767851:CAS:528:DC%2BC3cXpsFelsbw%3D20580615308666910.1016/S1474-4422(10)70137-X – reference: BouzakriKsiRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscleCell Metab.2006489961:CAS:528:DC%2BD28XmvFyhsrw%3D1681473510.1016/j.cmet.2006.04.008 – reference: GontierGTet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brainCell Rep.201822197419811:CAS:528:DC%2BC1cXjtFCktLY%3D29466726587089910.1016/j.celrep.2018.02.001 – reference: RobinsonMMEnhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humansCell Metab.2017255815921:CAS:528:DC%2BC2sXjvF2htrw%3D28273480542309510.1016/j.cmet.2017.02.009 – reference: LiuRTen-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticityCirculation20131282047205724077167389979010.1161/CIRCULATIONAHA.113.002887 – reference: Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 3 (2011). – reference: LiaoYSmythGKShiWfeatureCounts: an efficient general purpose program for assigning sequence reads to genomic featuresBioinformatics2014309239301:CAS:528:DC%2BC2cXltFGqu7c%3D2422767710.1093/bioinformatics/btt656 – reference: LongYCInsulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathwaysMol. Cell. Biol.2011314304411:CAS:528:DC%2BC3MXisVOltrk%3D2113513010.1128/MCB.00983-10 – reference: JiangSSGene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseasesAging (Albany NY)201136726841:CAS:528:DC%2BC3MXhtF2ns7zL10.18632/aging.100355 – reference: HangelbroekRWJExpression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weaknessJ. Cachexia Sarcopenia Muscle2016760461427239416486383010.1002/jcsm.12099 – reference: Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). – reference: GuoSInsulin signaling, resistance, and the metabolic syndrome: insights from mouse models to disease mechanismsJ. Endocrinol.2014220T11:CAS:528:DC%2BC2cXjtlSls70%3D24281010408716110.1530/JOE-13-0584 – reference: Sifakis, E. G. et al. Identifying gender independent biomarkers responsible for human muscle aging using microarray data. In: 2013 IEEE 13th Int. Conference on Bioinformatics and Bioengineering (Bibe) (IEEE, 2013). – reference: WangYFast skeletal muscle regulatory light chain is required for fast and slow skeletal muscle developmentFASEB J.200721220522141:CAS:528:DC%2BD2sXnvVagtrs%3D1735600710.1096/fj.06-7538com – reference: PatelHPLean mass, muscle strength and gene expression in community dwelling older men: findings from the Hertfordshire Sarcopenia Study (HSS)Calcif. Tissue Int2014953083161:CAS:528:DC%2BC2cXht1WksrrK2505574910.1007/s00223-014-9894-z – reference: StanchiFTUBA8: a new tissue-specific isoform of α-tubulin that is highly conserved in human and mouseBiochem. Biophys. Res. Commun.2000270111111181:CAS:528:DC%2BD3cXisFeku7c%3D1077295910.1006/bbrc.2000.2571 – reference: GanZNuclear receptor/microRNA circuitry links muscle fiber type to energy metabolismJ. Clin. Investig.2013123256425751:CAS:528:DC%2BC3sXpsFWktrY%3D23676496366884110.1172/JCI67652 – reference: BalNCSarcolipin is a newly identified regulator of muscle-based thermogenesis in mammalsNat. Med.20121815751:CAS:528:DC%2BC38XhtlWgu7fO22961106367635110.1038/nm.2897 – reference: BurgnerJWWilliamJRJrOn the origin of the lactate dehydrogenase induced rate effectBiochemistry198423363636481:CAS:528:DyaL2cXksFSltLY%3D647788910.1021/bi00311a010 – reference: HumeDAThe mononuclear phagocyte systemCurr. Opin. Immunol.20061849531:CAS:528:DC%2BD28XhvFOgsw%3D%3D1633812810.1016/j.coi.2005.11.008 – reference: HuangPDifferences in the frequency of Alzheimer’s disease‐associated genomic variations in populations of different racesGeriatrics Gerontol. Int.2017172184219310.1111/ggi.13059 – reference: HuangWGene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chainArch. Biochem. Biophys.20166011211321:CAS:528:DC%2BC28Xjt1yrsbw%3D26906074537058010.1016/j.abb.2016.02.022 – reference: HarriesLWHuman aging is characterized by focused changes in gene expression and deregulation of alternative splicingAging Cell2011108688781:CAS:528:DC%2BC3MXhtlShtLrK2166862310.1111/j.1474-9726.2011.00726.x – reference: ShiYGenetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesisJ. Biol. Chem.200528041805418101:CAS:528:DC%2BD2MXhtlajsrvK1622168610.1074/jbc.M505181200 – reference: En-linSSheng-guoCHua-qiaoWThe expression of EFEMP1 in cervical carcinoma and its relationship with prognosisGynecol. Oncol.20101174174222037815710.1016/j.ygyno.2009.12.016 – reference: KellerPA transcriptional map of the impact of endurance exercise training on skeletal muscle phenotypeJ. Appl. Physiol.2010110465920930125325301010.1152/japplphysiol.00634.2010 – reference: TeixeiraMBAlborghettiMRKobarg.JFasciculation and elongation zeta proteins 1 and 2: From structural flexibility to functional diversityWorld J. Biol. Chem.2019102830815230638829710.4331/wjbc.v10.i2.28 – reference: DobinASTAR: ultrafast universal RNA-seq alignerBioinformatics20132915211:CAS:528:DC%2BC38XhvV2gsbnF2310488610.1093/bioinformatics/bts635 – reference: XieXTsaiSYTsaiMJCOUP-TFII regulates satellite cell function and muscular dystrophyJ. Clin. Investig.20161263929394127617862509681710.1172/JCI87414 – reference: WithersDJDisruption of IRS-2 causes type 2 diabetes in miceNature19983919001998Natur.391..900W1:CAS:528:DyaK1cXhsFyksr0%3D949534310.1038/36116 – reference: FontanesiLStudy of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigsCytogenet. Genome Res.20031021451511:CAS:528:DC%2BD2cXhtlejt7s%3D1497069410.1159/000075740 – reference: KalachikovSMutations in LGI1 cause autosomal-dominant partial epilepsy with auditory featuresNat. Genet.20023033511810107260605310.1038/ng832 – reference: SuJA novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with agingSkelet. Muscle2015526457177460021410.1186/s13395-015-0059-1 – reference: Reyes, A., Anders, S. & Huber, W. Inferring Differential Exon Usage in RNA-Seq Data with the DEXSeq Package (bioconductor.statistik.tu-dortmund.de, 2013). – reference: NamGHIdentification of ORF sequences and exercise-induced expression change in thoroughbred horse OXCT1 geneGene201249645481:CAS:528:DC%2BC38XhvVSgtLw%3D2230126910.1016/j.gene.2012.01.021 – reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO1991030810.1093/bioinformatics/btp616 – reference: WilkinsonLAssociation between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant miceJ. Pathol.20122274995101:CAS:528:DC%2BC38XpvFequ7w%3D2248864110.1002/path.4036 – reference: LeeHJDysregulation of nuclear receptor COUP-TFII impairs skeletal muscle developmentSci. Rep.201772017NatSR...7.3136L28600496546665010.1038/s41598-017-03475-5 – reference: MullerLSMGenome organization and DNA accessibility control antigenic variation in trypanosomesNature20185631211252018Natur.563..121M30333624678489810.1038/s41586-018-0619-8 – reference: ZhangJLiuFTissue‐specific insulin signaling in the regulation of metabolism and agingIUBMB Life2014664854951:CAS:528:DC%2BC2cXht1KhurbM25087968414097610.1002/iub.1293 – reference: FulcherLJThe DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoformsSci. Signal.201811eaao234129789297602579310.1126/scisignal.aao2341 – volume: 7 year: 2017 ident: 22168_CR36 publication-title: Sci. Rep. doi: 10.1038/srep43539 – ident: 22168_CR49 doi: 10.1111/acel.12970 – volume: 90 start-page: 181 year: 2000 ident: 22168_CR86 publication-title: Mech. Dev. doi: 10.1016/S0925-4773(99)00248-8 – volume: 38 start-page: 137 year: 2003 ident: 22168_CR68 publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(02)00153-5 – ident: 22168_CR35 doi: 10.1038/ijo.2016.44 – volume: 3 start-page: 672 year: 2011 ident: 22168_CR9 publication-title: Aging (Albany NY) doi: 10.18632/aging.100355 – volume: 10 start-page: 28 year: 2019 ident: 22168_CR60 publication-title: World J. Biol. Chem. doi: 10.4331/wjbc.v10.i2.28 – volume: 448 start-page: 943 year: 2007 ident: 22168_CR22 publication-title: Nature doi: 10.1038/nature06084 – volume: 98 start-page: 378 year: 2006 ident: 22168_CR13 publication-title: Circ. Res. doi: 10.1161/01.RES.0000202802.34727.fd – volume: 601 start-page: 121 year: 2016 ident: 22168_CR21 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2016.02.022 – volume: 17 start-page: 2184 year: 2017 ident: 22168_CR98 publication-title: Geriatrics Gerontol. Int. doi: 10.1111/ggi.13059 – volume: 4 start-page: 89 year: 2006 ident: 22168_CR11 publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.04.008 – volume: 128 start-page: 2047 year: 2013 ident: 22168_CR37 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.002887 – ident: 22168_CR23 doi: 10.1109/BIBE.2013.6701530 – volume: 15 start-page: 2 year: 2019 ident: 22168_CR24 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188503 – volume: 7 year: 2017 ident: 22168_CR12 publication-title: Sci. Rep. doi: 10.1038/s41598-017-03475-5 – volume: 1 start-page: 27 year: 2013 ident: 22168_CR97 publication-title: J. Proteom. Genomics Res. doi: 10.14302/issn.2326-0793.jpgr-13-252 – volume: 40 start-page: 141 year: 2010 ident: 22168_CR5 publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00151.2009 – volume: 32 start-page: 216 year: 2012 ident: 22168_CR95 publication-title: Arteriosclerosis Thrombosis Vasc. Biol. doi: 10.1161/ATVBAHA.111.232702 – volume: 29 start-page: 15 year: 2013 ident: 22168_CR75 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – ident: 22168_CR103 doi: 10.1161/CIRCULATIONAHA.117.032432 – ident: 22168_CR81 – volume: 43 start-page: 405 year: 2011 ident: 22168_CR39 publication-title: Nat. Genet. doi: 10.1038/ng.814 – ident: 22168_CR45 doi: 10.1002/cpbi.5 – volume: 73 start-page: 939 year: 2017 ident: 22168_CR64 publication-title: J. Gerontol. Ser. A doi: 10.1093/gerona/glx134 – volume: 275 start-page: 22395 year: 2000 ident: 22168_CR91 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002378200 – volume: 6 start-page: 524 year: 2014 ident: 22168_CR40 publication-title: Aging (Albany NY) doi: 10.18632/aging.100677 – ident: 22168_CR42 – volume: 100 start-page: 3164 year: 1997 ident: 22168_CR10 publication-title: J. Clin. Invest doi: 10.1172/JCI119872 – volume: 270 start-page: 1111 year: 2000 ident: 22168_CR105 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.2571 – volume: 327 start-page: 656 year: 2010 ident: 22168_CR55 publication-title: Science doi: 10.1126/science.1178331 – volume: 9 start-page: 242 year: 2018 ident: 22168_CR16 publication-title: Front Genet doi: 10.3389/fgene.2018.00242 – volume: 16 year: 2015 ident: 22168_CR3 publication-title: Genome Biol. doi: 10.1186/s13059-015-0750-x – volume: 6 year: 2016 ident: 22168_CR59 publication-title: Sci. Rep. doi: 10.1038/srep19832 – ident: 22168_CR78 – ident: 22168_CR73 doi: 10.14806/ej.17.1.200 – ident: 22168_CR83 doi: 10.1007/978-3-319-24277-4 – volume: 56 start-page: 781 year: 2013 ident: 22168_CR41 publication-title: J. Med. Chem. doi: 10.1021/jm301302s – volume: 31 start-page: 430 year: 2011 ident: 22168_CR66 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00983-10 – ident: 22168_CR1 doi: 10.3389/fphys.2019.00312 – volume: 16 start-page: 4 year: 2014 ident: 22168_CR69 publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12347 – volume: 8 start-page: 317 year: 2013 ident: 22168_CR90 publication-title: Epigenetics doi: 10.4161/epi.23989 – volume: 7 start-page: 604 year: 2016 ident: 22168_CR18 publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12099 – volume: 39 start-page: 147 year: 2008 ident: 22168_CR31 publication-title: Anim. Genet. doi: 10.1111/j.1365-2052.2007.01695.x – volume: 2 start-page: 5 year: 2007 ident: 22168_CR48 publication-title: PLoS ONE doi: 10.1371/journal.pone.0000465 – volume: 292 start-page: 63 year: 2017 ident: 22168_CR14 publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-016-1256-2 – volume: 102 start-page: 145 year: 2003 ident: 22168_CR96 publication-title: Cytogenet. Genome Res. doi: 10.1159/000075740 – volume: 25 start-page: 581 year: 2017 ident: 22168_CR33 publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.02.009 – volume: 33 start-page: e1 year: 2013 ident: 22168_CR63 publication-title: Arterioscler Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.112.300399 – volume: 2 start-page: 107 year: 2009 ident: 22168_CR88 publication-title: Transl. Oncol. doi: 10.1593/tlo.09112 – volume: 9 start-page: 776 year: 2010 ident: 22168_CR84 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70137-X – volume: 1 year: 2006 ident: 22168_CR43 publication-title: Orphanet J. Rare Dis. doi: 10.1186/1750-1172-1-29 – volume: 30 start-page: 30 year: 2019 ident: 22168_CR62 publication-title: Anim. Biotechnol. doi: 10.1080/10495398.2018.1426594 – volume: 391 start-page: 900 year: 1998 ident: 22168_CR65 publication-title: Nature doi: 10.1038/36116 – volume: 220 start-page: T1 year: 2014 ident: 22168_CR67 publication-title: J. Endocrinol. doi: 10.1530/JOE-13-0584 – volume: 229 start-page: 83 year: 1999 ident: 22168_CR27 publication-title: Gene doi: 10.1016/S0378-1119(99)00037-2 – volume: 18 start-page: 49 year: 2006 ident: 22168_CR56 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2005.11.008 – ident: 22168_CR82 – volume: 16 start-page: 3059 year: 2007 ident: 22168_CR70 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm264 – volume: 10 start-page: 868 year: 2011 ident: 22168_CR71 publication-title: Aging Cell doi: 10.1111/j.1474-9726.2011.00726.x – volume: 23 start-page: 3636 year: 1984 ident: 22168_CR26 publication-title: Biochemistry doi: 10.1021/bi00311a010 – volume: 496 start-page: 45 year: 2012 ident: 22168_CR25 publication-title: Gene doi: 10.1016/j.gene.2012.01.021 – volume: 280 start-page: 41805 year: 2005 ident: 22168_CR28 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505181200 – volume: 94 start-page: 645 year: 2014 ident: 22168_CR19 publication-title: Lab. Investig. doi: 10.1038/labinvest.2014.54 – volume: 23 start-page: 247 year: 2012 ident: 22168_CR107 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-09-0774 – volume: 2 start-page: 45 year: 2011 ident: 22168_CR61 publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1007/s13539-011-0021-y – volume: 291 start-page: 24618 year: 2016 ident: 22168_CR44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.751917 – volume: 23 start-page: 70 year: 2017 ident: 22168_CR52 publication-title: RNA doi: 10.1261/rna.056317.116 – volume: 5 start-page: 679 year: 2009 ident: 22168_CR99 publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.5.679 – volume: 62 start-page: 667 year: 2014 ident: 22168_CR72 publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.12740 – volume: 227 start-page: 499 year: 2012 ident: 22168_CR17 publication-title: J. Pathol. doi: 10.1002/path.4036 – volume: 34 start-page: 3053 year: 2014 ident: 22168_CR53 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00651-14 – volume: 22 start-page: 1974 year: 2018 ident: 22168_CR38 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.001 – volume: 18 start-page: 1575 year: 2012 ident: 22168_CR101 publication-title: Nat. Med. doi: 10.1038/nm.2897 – volume: 123 start-page: 2564 year: 2013 ident: 22168_CR34 publication-title: J. Clin. Investig. doi: 10.1172/JCI67652 – volume: 277 start-page: 44740 year: 2002 ident: 22168_CR100 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206171200 – ident: 22168_CR32 doi: 10.1074/jbc.M104750200 – ident: 22168_CR8 doi: 10.1111/acel.12799 – volume: 4 start-page: 110 year: 2004 ident: 22168_CR57 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1268 – volume: 467 start-page: 1195 year: 2009 ident: 22168_CR30 publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-008-0694-5 – volume: 26 start-page: 139 year: 2010 ident: 22168_CR77 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 117 start-page: 417 year: 2010 ident: 22168_CR92 publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2009.12.016 – volume: 14 start-page: 387 year: 2003 ident: 22168_CR93 publication-title: Crit. Rev. Oral. Biol. Med. doi: 10.1177/154411130301400602 – volume: 40 start-page: 2565 year: 2013 ident: 22168_CR106 publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-012-2342-0 – volume: 2 start-page: 371 year: 2015 ident: 22168_CR108 publication-title: J. Neuromuscul. Dis. doi: 10.3233/JND-150119 – volume: 95 start-page: 308 year: 2014 ident: 22168_CR7 publication-title: Calcif. Tissue Int doi: 10.1007/s00223-014-9894-z – ident: 22168_CR74 – volume: 21 start-page: 2205 year: 2007 ident: 22168_CR29 publication-title: FASEB J. doi: 10.1096/fj.06-7538com – volume: 563 start-page: 121 year: 2018 ident: 22168_CR80 publication-title: Nature doi: 10.1038/s41586-018-0619-8 – volume: 160 start-page: 595 year: 2015 ident: 22168_CR102 publication-title: Cell doi: 10.1016/j.cell.2015.01.009 – volume: 9 start-page: e1003389 year: 2013 ident: 22168_CR2 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003389 – volume: 43 start-page: 595 year: 2011 ident: 22168_CR4 publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00148.2010 – volume: 66 start-page: 485 year: 2014 ident: 22168_CR89 publication-title: IUBMB Life doi: 10.1002/iub.1293 – ident: 22168_CR15 doi: 10.1038/s41598-018-29789-6 – volume: 4 start-page: 823 year: 2015 ident: 22168_CR104 publication-title: Mol. Metab. doi: 10.1016/j.molmet.2015.09.004 – volume: 214 start-page: 851 year: 2017 ident: 22168_CR54 publication-title: J. Exp. Med. doi: 10.1084/jem.20160647 – volume: 30 start-page: 335 year: 2002 ident: 22168_CR85 publication-title: Nat. Genet. doi: 10.1038/ng832 – volume: 65 start-page: 915 year: 2016 ident: 22168_CR20 publication-title: Metabolism doi: 10.1016/j.metabol.2016.03.005 – volume: 13.5 start-page: 569 year: 2001 ident: 22168_CR58 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(00)00253-2 – ident: 22168_CR79 doi: 10.1186/gb-2010-11-10-r106 – volume: 30 start-page: 923 year: 2014 ident: 22168_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 11 start-page: eaao2341 year: 2018 ident: 22168_CR51 publication-title: Sci. Signal. doi: 10.1126/scisignal.aao2341 – volume: 110 start-page: 46 year: 2010 ident: 22168_CR50 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00634.2010 – volume: 5 year: 2015 ident: 22168_CR6 publication-title: Skelet. Muscle doi: 10.1186/s13395-015-0059-1 – volume: 42 start-page: D92 year: 2013 ident: 22168_CR46 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1248 – ident: 22168_CR94 doi: 10.1164/rccm.201503-0418OC – volume: 126 start-page: 3929 year: 2016 ident: 22168_CR87 publication-title: J. Clin. Investig. doi: 10.1172/JCI87414 – volume: 102 start-page: 15545 year: 2005 ident: 22168_CR47 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 |
| SSID | ssj0000391844 |
| Score | 2.5997086 |
| Snippet | Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve... As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2014 |
| SubjectTerms | 38/39 38/88 38/91 631/337/2019 692/698/1671/1668/1973 82/80 Adaptation Adipogenesis Adult Age Aged Aged, 80 and over Aging Damage accumulation Female Gene expression Gene Expression Profiling Healthy Aging - genetics Homeostasis Homeostasis - genetics Humanities and Social Sciences Humans Insulin Isoforms Male Middle Aged multidisciplinary Muscle, Skeletal - metabolism Muscles Muscular Diseases - genetics Musculoskeletal system Myogenesis Non-coding RNA Oxidative phosphorylation Phosphorylation Proteins Regression analysis Regression models RNA Isoforms - genetics RNA, Messenger - genetics RNA, Untranslated - genetics Science Science (multidisciplinary) Senescence Skeletal muscle Transcriptome Transcriptomes Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH6IKHgRd-tGBW9anSxt0qOK4mkQVPAW2iw4qB2ZRfDf-5J2xhnXi9c2hceXtzYv3wM4MEXmfzX6e1s5S7grWol0jifClDblVAvCyzBsQrTb8v4-v54Y9eV7wmp64Bq4E2dJiXUUVnEs54bagrrcWKkxDc6dKALZNmY9E8VU8MEsx9KFN7dkWkye9HnwCb4jgVKSoXpMRaJA2P9dlvm1WfLTiWkIRJdLsNhkkPFpLfkyzNhqBebrmZJvq3B884iRBFPq-HnYxwXxwEej4Bu6zzbuVHF99fEtDvOJ1uDu8uL2_CpphiIkGmuNQaJLjDmClsQRwpzOSocBhvGW4zqznryv5Kk2wjqpM4nmmVPjZ2AyaVpGE16wdZitupXdhBiLX88VmQp0eDylCKpn29PSZCUxmucRkBFASjeM4X5wxZMKJ9dMqhpUhaCqAKqiERyOv3mp-TJ-XX3mcR-v9FzX4QFqgGo0QP2lARHsjHZNNQbYV5jZCYm5CmER7I9fo-n485Cist1hWCNTX12gHBv1Jo8lYUxg5ShEBGJq-6dEnX5TdR4CPTfG_AxjTARHI0X5EOtnKLb-A4ptWKBew0Nn0Q7MDnpDuwtz-nXQ6ff2gom8A-T4EDw priority: 102 providerName: Directory of Open Access Journals |
| Title | Skeletal muscle transcriptome in healthy aging |
| URI | https://link.springer.com/article/10.1038/s41467-021-22168-2 https://www.ncbi.nlm.nih.gov/pubmed/33795677 https://www.proquest.com/docview/2507806113 https://www.proquest.com/docview/2508577292 https://pubmed.ncbi.nlm.nih.gov/PMC8016876 https://doaj.org/article/fe1b133469394d2ea2f9de8c7479f7a6 |
| Volume | 12 |
| WOSCitedRecordID | wos000636772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Download PDF from ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsgoSNwjd2E7snBBFreDAKuIhLVysxA9YQZOy2UXqv2fGyaZaHr1wySF2pInn5RmPvwF4YqucUo10b6vgifDVNFHei0Ta2mWCGZmKOjSbkLOZms-Lcki4dUNZ5cYmBkNtW0M58gN01VKh80n5i9MfCXWNotPVoYXGDuwRSgIpZpl9HnMshH6uhBjuyky5OuhEsAxUl8BYmqOQbPmjANv_t73mnyWTv52bBnd0fP1_f-QGXBs2ovHLXnJuwiXX3IIrfWvKs9vw_P03dEi4M49P1h1OiFfk1IKJaU9cvGji_gblWRzaHN2Bj8dHH169TobeConBkGWVmBpdl2R16pEQb_Lao5_iYuqFyR1hANYiM1Y6r0yuUMsLZqmVJld2ak0qKn4Xdpu2cfchxhiaICcziXZTZMwpQ6B9Rtm8Tq0RRQTpZoW1GYDHqf_Fdx0OwLnSPVc0ckUHrmgWwdPxm9MeduPC2YfEuHEmQWaHF-3yix40UHuX1hiQi7zghbDMVcwXFonFeKrwssoj2N_wSw963OlzZkXweBxGDaRjlapx7TrMURkFKUjHvV5KRko4lxiAShmB3JKfLVK3R5rF14DyjVuHHF1VBM82knZO1r-X4sHFf_EQrjIS_lB6tA-7q-XaPYLL5udq0S0nsCPnMjzVBPYOj2blu0lIUkyoJLacBO3CkfLN2_LTL3ZAJQ8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgREM3tjd2Dgjxqlq1rJAo0t5M4gesoEnZ7IL2T_EbmXGSrZZHbz1wTZxo4nz-xmOP5wN4ZIuMlhrp3FbOE-GLQaK8F4m0pRsKZmQqyiA2IUcjNR7n79bgZ38WhtIqe04MRG1rQ2vkW-iqpULnk_LnR98SUo2i3dVeQqOFxZ5b_MCQrXm2-xr_72PGtt8cvNpJOlWBxOBkfZaYEklbsjL1-C5vstIjQ3Mx8MJkjqrflWJorHRemUwhvnNmSUSSKzuwJhUFx_eegbPI45JSyORYLtd0qNq6EqI7mzPgaqsRgYkoD4KxNENQrvi_IBPwt7ntnymav-3TBve3ffl_67grcKmbaMcv2pFxFdZcdQ3Ot9Kbi-vw9P0XdLgYecSH8wYbxDNy2oFC60MXT6q4PSG6iIOM0w34cCrG3oT1qq7cbYgVUpyQSG3oF8SQOWWoKKFRNitTa0QeQdr_UW26wuqk7_FVhw1-rnSLAo0o0AEFmkXwZPnMUVtW5MTWLwkoy5ZUEjxcqKefdMcw2ru0TDkXWc5zYZkrmM8tGovxYu5lkUWw0eNDdzzV6GNwRPBweRsZhraNisrV89BGDSkIQztutahcWsK5xABbygjkCl5XTF29U00-hyrmODXK0BVHsNkj-9isf3fFnZO_4gFc2Dl4u6_3d0d7d-Eio4EX0qw2YH02nbt7cM58n02a6f0wcmP4eNqI_wUI0nlZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUXngUCBYIEJwi7sZ3YOSAElBVV0WolQKq4uIkfZQVN2s1u0f41fh1j51Etj9564Jo40cT5_I3HHs8H8ETnqVtqdOe2Mhoxmw8jYS2LuC5MwojiMSu82AQfj8XeXjZZg5_dWRiXVtlxoidqXSm3Rj5AV80FOp-YDmybFjHZHr06Oo6cgpTbae3kNBqI7JrlDwzf6pc72_ivnxIyevfp7fuoVRiIFE7c55EqkMA5KWKL77UqLSyyNWVDy1RqXCW8giVKc2OFSgViPSPaCUpSoYdaxSyn-N4LcJFjjOkCv0nypV_fcZXXBWPtOZ0hFYOaeVZyORGExCkCdMUXesmAv81z_0zX_G3P1rvC0bX_uROvw9V2Ah6-bkbMDVgz5U243EhyLm_Bi4_f0BFjRBIeLmpsEM6dM_fUWh2acFqGzcnRZejlnTbh87kYexvWy6o0dyEUSH2MI-Whv2AJMUK5YoVK6LSItWJZAHH3d6VqC6473Y_v0m_8UyEbREhEhPSIkCSAZ_0zR025kTNbv3Gg6Vu6UuH-QjU7kC3zSGviIqYUIUozponJic00GotxZGZ5ngaw1WFFtvxVy1OgBPC4v43M47aT8tJUC99GJC44QzvuNAjtLaGUY-DNeQB8Bbsrpq7eKadffXVznDKl6KIDeN6h_NSsf3fFvbO_4hFsINDlh53x7n24QtwY9NlXW7A-ny3MA7ikTubTevbQD-IQ9s8b8L8AE6OCTA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+transcriptome+in+healthy+aging&rft.jtitle=Nature+communications&rft.au=Tumasian%2C+Robert+A.&rft.au=Harish%2C+Abhinav&rft.au=Kundu%2C+Gautam&rft.au=Yang%2C+Jen-Hao&rft.date=2021-04-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-22168-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_22168_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |