Skeletal muscle transcriptome in healthy aging

Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 12; H. 1; S. 2014 - 16
Hauptverfasser: Tumasian, Robert A., Harish, Abhinav, Kundu, Gautam, Yang, Jen-Hao, Ubaida-Mohien, Ceereena, Gonzalez-Freire, Marta, Kaileh, Mary, Zukley, Linda M., Chia, Chee W., Lyashkov, Alexey, Wood, William H., Piao, Yulan, Coletta, Christopher, Ding, Jun, Gorospe, Myriam, Sen, Ranjan, De, Supriyo, Ferrucci, Luigi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.04.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age. As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals.
AbstractList Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals.
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age. As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals.
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals.
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age. As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present a detailed framework of the global transcriptome that characterizes skeletal muscle during aging in healthy individuals.
ArticleNumber 2014
Author Harish, Abhinav
Ding, Jun
Yang, Jen-Hao
Gorospe, Myriam
Kaileh, Mary
Zukley, Linda M.
De, Supriyo
Tumasian, Robert A.
Wood, William H.
Kundu, Gautam
Coletta, Christopher
Piao, Yulan
Sen, Ranjan
Chia, Chee W.
Gonzalez-Freire, Marta
Lyashkov, Alexey
Ubaida-Mohien, Ceereena
Ferrucci, Luigi
Author_xml – sequence: 1
  givenname: Robert A.
  orcidid: 0000-0001-7389-1607
  surname: Tumasian
  fullname: Tumasian, Robert A.
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 2
  givenname: Abhinav
  surname: Harish
  fullname: Harish, Abhinav
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 3
  givenname: Gautam
  surname: Kundu
  fullname: Kundu, Gautam
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 4
  givenname: Jen-Hao
  surname: Yang
  fullname: Yang, Jen-Hao
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 5
  givenname: Ceereena
  surname: Ubaida-Mohien
  fullname: Ubaida-Mohien, Ceereena
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 6
  givenname: Marta
  surname: Gonzalez-Freire
  fullname: Gonzalez-Freire, Marta
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 7
  givenname: Mary
  surname: Kaileh
  fullname: Kaileh, Mary
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 8
  givenname: Linda M.
  surname: Zukley
  fullname: Zukley, Linda M.
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 9
  givenname: Chee W.
  surname: Chia
  fullname: Chia, Chee W.
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 10
  givenname: Alexey
  surname: Lyashkov
  fullname: Lyashkov, Alexey
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 11
  givenname: William H.
  surname: Wood
  fullname: Wood, William H.
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 12
  givenname: Yulan
  surname: Piao
  fullname: Piao, Yulan
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 13
  givenname: Christopher
  surname: Coletta
  fullname: Coletta, Christopher
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 14
  givenname: Jun
  surname: Ding
  fullname: Ding, Jun
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 15
  givenname: Myriam
  surname: Gorospe
  fullname: Gorospe, Myriam
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 16
  givenname: Ranjan
  surname: Sen
  fullname: Sen, Ranjan
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 17
  givenname: Supriyo
  surname: De
  fullname: De, Supriyo
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
– sequence: 18
  givenname: Luigi
  orcidid: 0000-0002-6273-1613
  surname: Ferrucci
  fullname: Ferrucci, Luigi
  email: FerrucciLu@grc.nia.nih.gov
  organization: National Institute on Aging–Intramural Research Program, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33795677$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAUhC1UREvpH2CBIrFhk-JXbGeDhCoelSqxANaW4xzn-pLYFztB6r_HaVpou2g2juxvRuPjeYmOQgyA0GuCzwlm6n3mhAtZY0pqSolQNX2GTijmpCaSsqN7_8foLOc9Lh9rieL8BTpmTLaNkPIEnX__BSPMZqymJdsRqjmZkG3yhzlOUPlQ7cCM8-66MoMPwyv03Jkxw9nteop-fv704-JrffXty-XFx6vaCizm2naYCUk74ghhzorOUcUZx45bAVw2bccb20twygqFuWppT3DTMNXj3hJu2Cm63Hz7aPb6kPxk0rWOxuubjZgGbdLsS2DtgHSEMS5a1vKegqGu7UFZyWXrpBHF68PmdVi6CXoLodxxfGD68CT4nR7iH61wmatcDd7dGqT4e4E868lnC-NoAsQla9pg1UhJW1rQt4_QfVxSKKNaKamwKAMp1Jv7if5FuXuWAqgNsCnmnMBp62cz-7gG9KMmWK8l0FsJdCmBvimBXhPQR9I79ydFbBPlAocB0v_YT6j-ApRlweM
CitedBy_id crossref_primary_10_1096_fj_202301291RR
crossref_primary_10_3390_metabo14090480
crossref_primary_10_1007_s11427_024_2877_5
crossref_primary_10_1007_s00441_024_03945_z
crossref_primary_10_1016_j_humgen_2024_201283
crossref_primary_10_3389_fnins_2022_978431
crossref_primary_10_1113_JP286681
crossref_primary_10_3389_fphys_2022_1056479
crossref_primary_10_1186_s12891_022_05572_7
crossref_primary_10_3389_fonc_2023_1222168
crossref_primary_10_1016_j_exger_2022_111884
crossref_primary_10_1016_j_archger_2025_105807
crossref_primary_10_1111_ggi_70042
crossref_primary_10_1038_s43587_023_00366_5
crossref_primary_10_1007_s11357_022_00542_2
crossref_primary_10_3389_fmolb_2021_762185
crossref_primary_10_1016_j_archger_2024_105499
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1093_gerona_glae269
crossref_primary_10_3389_fendo_2023_1073587
crossref_primary_10_1016_j_mam_2024_101319
crossref_primary_10_1016_j_nmd_2022_04_009
crossref_primary_10_1038_s41413_025_00442_z
crossref_primary_10_1038_s42003_024_06679_4
crossref_primary_10_1111_acel_13609
crossref_primary_10_1055_a_1761_8481
crossref_primary_10_1210_jendso_bvac151
crossref_primary_10_7554_eLife_84618
crossref_primary_10_1038_s43587_022_00189_w
crossref_primary_10_1113_JP283836
crossref_primary_10_1002_jcsm_13603
crossref_primary_10_7554_eLife_61138
crossref_primary_10_1016_j_jia_2023_02_040
crossref_primary_10_3390_insects13100936
crossref_primary_10_1002_advs_202405157
crossref_primary_10_1007_s40520_022_02203_y
crossref_primary_10_1038_s41598_022_10018_0
crossref_primary_10_3390_ijms25189962
crossref_primary_10_4103_1673_5374_382226
crossref_primary_10_1016_j_mad_2021_111595
crossref_primary_10_1038_s41746_022_00681_y
crossref_primary_10_3390_metabo13050591
crossref_primary_10_1007_s00134_025_07949_3
crossref_primary_10_1152_japplphysiol_00442_2023
crossref_primary_10_1186_s12711_023_00849_4
crossref_primary_10_1038_s41598_024_74913_4
crossref_primary_10_1093_gerona_glaf146
crossref_primary_10_3390_ijms26178286
crossref_primary_10_1002_jcsm_13562
crossref_primary_10_1007_s11357_022_00715_z
crossref_primary_10_1186_s12891_025_08528_9
crossref_primary_10_1007_s10522_023_10070_x
crossref_primary_10_1016_j_jff_2025_106761
crossref_primary_10_3390_nu14235072
crossref_primary_10_1186_s12864_024_11051_1
crossref_primary_10_7717_peerj_16851
crossref_primary_10_1126_science_abk0297
crossref_primary_10_1038_s12276_025_01521_1
crossref_primary_10_1093_qjmed_hcaf108
crossref_primary_10_1016_j_jmoldx_2023_12_005
crossref_primary_10_1159_000530216
crossref_primary_10_3390_cimb46080522
crossref_primary_10_1038_s42003_024_05877_4
crossref_primary_10_1515_mr_2025_0032
Cites_doi 10.1038/srep43539
10.1111/acel.12970
10.1016/S0925-4773(99)00248-8
10.1016/S0531-5565(02)00153-5
10.1038/ijo.2016.44
10.18632/aging.100355
10.4331/wjbc.v10.i2.28
10.1038/nature06084
10.1161/01.RES.0000202802.34727.fd
10.1016/j.abb.2016.02.022
10.1111/ggi.13059
10.1016/j.cmet.2006.04.008
10.1161/CIRCULATIONAHA.113.002887
10.1109/BIBE.2013.6701530
10.15252/msb.20188503
10.1038/s41598-017-03475-5
10.14302/issn.2326-0793.jpgr-13-252
10.1152/physiolgenomics.00151.2009
10.1161/ATVBAHA.111.232702
10.1093/bioinformatics/bts635
10.1161/CIRCULATIONAHA.117.032432
10.1038/ng.814
10.1002/cpbi.5
10.1093/gerona/glx134
10.1074/jbc.M002378200
10.18632/aging.100677
10.1172/JCI119872
10.1006/bbrc.2000.2571
10.1126/science.1178331
10.3389/fgene.2018.00242
10.1186/s13059-015-0750-x
10.1038/srep19832
10.14806/ej.17.1.200
10.1007/978-3-319-24277-4
10.1021/jm301302s
10.1128/MCB.00983-10
10.3389/fphys.2019.00312
10.1111/dom.12347
10.4161/epi.23989
10.1002/jcsm.12099
10.1111/j.1365-2052.2007.01695.x
10.1371/journal.pone.0000465
10.1007/s00438-016-1256-2
10.1159/000075740
10.1016/j.cmet.2017.02.009
10.1161/ATVBAHA.112.300399
10.1593/tlo.09112
10.1016/S1474-4422(10)70137-X
10.1186/1750-1172-1-29
10.1080/10495398.2018.1426594
10.1038/36116
10.1530/JOE-13-0584
10.1016/S0378-1119(99)00037-2
10.1016/j.coi.2005.11.008
10.1093/hmg/ddm264
10.1111/j.1474-9726.2011.00726.x
10.1021/bi00311a010
10.1016/j.gene.2012.01.021
10.1074/jbc.M505181200
10.1038/labinvest.2014.54
10.1091/mbc.e11-09-0774
10.1007/s13539-011-0021-y
10.1074/jbc.M116.751917
10.1261/rna.056317.116
10.7150/ijbs.5.679
10.1111/jgs.12740
10.1002/path.4036
10.1128/MCB.00651-14
10.1016/j.celrep.2018.02.001
10.1038/nm.2897
10.1172/JCI67652
10.1074/jbc.M206171200
10.1074/jbc.M104750200
10.1111/acel.12799
10.1038/nri1268
10.1007/s11999-008-0694-5
10.1093/bioinformatics/btp616
10.1016/j.ygyno.2009.12.016
10.1177/154411130301400602
10.1007/s11033-012-2342-0
10.3233/JND-150119
10.1007/s00223-014-9894-z
10.1096/fj.06-7538com
10.1038/s41586-018-0619-8
10.1016/j.cell.2015.01.009
10.1371/journal.pgen.1003389
10.1152/physiolgenomics.00148.2010
10.1002/iub.1293
10.1038/s41598-018-29789-6
10.1016/j.molmet.2015.09.004
10.1084/jem.20160647
10.1038/ng832
10.1016/j.metabol.2016.03.005
10.1016/S0955-0674(00)00253-2
10.1186/gb-2010-11-10-r106
10.1093/bioinformatics/btt656
10.1126/scisignal.aao2341
10.1152/japplphysiol.00634.2010
10.1186/s13395-015-0059-1
10.1093/nar/gkt1248
10.1164/rccm.201503-0418OC
10.1172/JCI87414
10.1073/pnas.0506580102
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-22168-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 16
ExternalDocumentID oai_doaj_org_article_fe1b133469394d2ea2f9de8c7479f7a6
PMC8016876
33795677
10_1038_s41467_021_22168_2
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: Z01-AG000996
  funderid: https://doi.org/10.13039/100000002
– fundername: ;
  grantid: Z01-AG000996
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-cb03672b1f113fc6bf284340f4c6e4759b45cd7ef8c6804892d105538d0dc14a3
IEDL.DBID P5Z
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:44:46 EDT 2025
Tue Nov 04 01:37:29 EST 2025
Thu Sep 04 19:24:52 EDT 2025
Tue Oct 07 06:40:03 EDT 2025
Wed Feb 19 02:23:54 EST 2025
Tue Nov 18 22:19:42 EST 2025
Sat Nov 29 06:29:14 EST 2025
Fri Feb 21 02:39:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-cb03672b1f113fc6bf284340f4c6e4759b45cd7ef8c6804892d105538d0dc14a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7389-1607
0000-0002-6273-1613
OpenAccessLink https://www.proquest.com/docview/2507806113?pq-origsite=%requestingapplication%
PMID 33795677
PQID 2507806113
PQPubID 546298
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_fe1b133469394d2ea2f9de8c7479f7a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016876
proquest_miscellaneous_2508577292
proquest_journals_2507806113
pubmed_primary_33795677
crossref_citationtrail_10_1038_s41467_021_22168_2
crossref_primary_10_1038_s41467_021_22168_2
springer_journals_10_1038_s41467_021_22168_2
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Vicente-ManzanaresMSánchez-MadridFRole of the cytoskeleton during leukocyte responsesNat. Rev. Immunol.200441101:CAS:528:DC%2BD2cXhsVKqs7o%3D1504058410.1038/nri1268
DobinASTAR: ultrafast universal RNA-seq alignerBioinformatics20132915211:CAS:528:DC%2BC38XhvV2gsbnF2310488610.1093/bioinformatics/bts635
LeeperNJLoss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formationArterioscler Thromb. Vasc. Biol.201333e1e101:CAS:528:DC%2BC38XhvVeltrbP2316201310.1161/ATVBAHA.112.300399
GrunewaldTGPSaskiaMPButtECell adhesion and transcriptional activity—defining the role of the novel protooncogene LPPTransl. Oncol.2009210711619701494273014110.1593/tlo.09112
Strand, J. et al. Modulation of myosin function by isoform-specific properties of S. cerevisiae and muscle tropomyosins. J. Biol. Chem. 276, 34832–34839 (2001).
KerouzNJDifferential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouseJ. Clin. Invest1997100316431721:CAS:528:DyaK2sXotVyrs7k%3D939996450853010.1172/JCI119872
HuJCCYamakoshiYEnamelin and autosomal-dominant amelogenesis imperfectaCrit. Rev. Oral. Biol. Med.2003143873981465689510.1177/154411130301400602
Ripley, B. et al. Package ‘mass’. Cran R (2013).
TuplingARAsahiMMacLennanDHSarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile functionJ. Biol. Chem.200227744740447461:CAS:528:DC%2BD38Xosl2nurs%3D1223729810.1074/jbc.M206171200
JiangSSGene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseasesAging (Albany NY)201136726841:CAS:528:DC%2BC3MXhtF2ns7zL10.18632/aging.100355
GontierGTet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brainCell Rep.201822197419811:CAS:528:DC%2BC1cXjtFCktLY%3D29466726587089910.1016/j.celrep.2018.02.001
VajsarJSchachterHWalker-Warburg syndromeOrphanet J. Rare Dis.2006116887026155343110.1186/1750-1172-1-29
BorasMSkap2 is required for beta(2) integrin-mediated neutrophil recruitment and functionsJ. Exp. Med.20172148518741:CAS:528:DC%2BC2sXhtV2ju73F28183734533967010.1084/jem.20160647
BarbieriMGlucose regulation and oxidative stress in healthy centenariansExp. Gerontol.2003381371431:CAS:528:DC%2BD3sXkvFWnuw%3D%3D1254327110.1016/S0531-5565(02)00153-5
McLaughlinPJLack of fibulin-3 causes early aging and herniation, but not macular degeneration in miceHum. Mol. Genet.200716305930701:CAS:528:DC%2BD2sXhtlajsrrO1787290510.1093/hmg/ddm264
KrimpenfortPp15(Ink4b) is a critical tumour suppressor in the absence of p16(Ink4a)Nature2007448943U112007Natur.448..943K1:CAS:528:DC%2BD2sXptlWjsLw%3D1771353610.1038/nature06084
GurnettCASkeletal muscle contractile gene (TNNT3, MYH3, TPM2) mutations not found in vertical talus or clubfootClin. Orthop. Relat. Res.2009467119519142688266442610.1007/s11999-008-0694-5
HuangPDifferences in the frequency of Alzheimer’s disease‐associated genomic variations in populations of different racesGeriatrics Gerontol. Int.2017172184219310.1111/ggi.13059
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
HangelbroekRWJExpression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weaknessJ. Cachexia Sarcopenia Muscle2016760461427239416486383010.1002/jcsm.12099
Pekkarinen, M. Preprocessing and Analysis of Single-Cell RNA-Sequencing Data (Tampere Univ., 2018).
Stelzer, G. et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics54, 1.30.1–1.30.33 (2016).
HumeDAThe mononuclear phagocyte systemCurr. Opin. Immunol.20061849531:CAS:528:DC%2BD28XhvFOgsw%3D%3D1633812810.1016/j.coi.2005.11.008
RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO1991030810.1093/bioinformatics/btp616
PhillipsBEMolecular networks of human muscle adaptation to exercise and agePLoS Genet.20139e100338930264321:CAS:528:DC%2BC3sXlvValurk%3D23555298360510110.1371/journal.pgen.1003389
KollerAQuantitative proteomics using 15N SILAC mouseJ. Proteom. Genomics Res.201312710.14302/issn.2326-0793.jpgr-13-252
WangXZMultiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfishMol. Genet. Genomics201729263761:CAS:528:DC%2BC28Xhs1Kls7fF2773415810.1007/s00438-016-1256-2
MelovSResistance exercise reverses aging in human skeletal musclePLoS ONE20072510.1371/journal.pone.0000465
MoyerALWagnerKRMammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolismJ. Neuromuscul. Dis.2015237138526634192466453710.3233/JND-150119
TsumagariKEarly de novo DNA methylation and prolonged demethylation in the muscle lineageEpigenetics201383173321:CAS:528:DC%2BC3sXntVantLw%3D23417056366912310.4161/epi.23989
Willis-Owen, S. A. G. et al. COPD is accompanied by coordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Sci. Rep. 8, 12165 (2018).
ChenFEvaluation of early biomarkers of muscle anabolic response to testosteroneJ. Cachexia Sarcopenia Muscle2011245561:CAS:528:DC%2BC38XjtFGksbk%3D21475673306386910.1007/s13539-011-0021-y
JusticeJNCellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older womenJ. Gerontol. Ser. A20177393994510.1093/gerona/glx134
MamoshinaPMachine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identificationFront Genet2018924230050560605208910.3389/fgene.2018.00242
SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S1:CAS:528:DC%2BD2MXht1ShtrnO16199517123989610.1073/pnas.0506580102
NamGHIdentification of ORF sequences and exercise-induced expression change in thoroughbred horse OXCT1 geneGene201249645481:CAS:528:DC%2BC38XhvVSgtLw%3D2230126910.1016/j.gene.2012.01.021
Dong, S. S. et al. Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits. Int. J. Obes.40, 1170–1176 (2016).
En-linSSheng-guoCHua-qiaoWThe expression of EFEMP1 in cervical carcinoma and its relationship with prognosisGynecol. Oncol.20101174174222037815710.1016/j.ygyno.2009.12.016
HerrerIRNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failureLab. Investig.2014946451:CAS:528:DC%2BC2cXls1Kjuro%3D2470977710.1038/labinvest.2014.54
LobjoisVA muscle transcriptome analysis identifies positional candidate genes for complex trait in pigAnim. Genet.2008391471621:CAS:528:DC%2BD1cXltlWhsL8%3D1836647610.1111/j.1365-2052.2007.01695.x
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 3 (2011).
KimJYGenome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with agingAging (Albany NY)201465242014aamd.book.....K415362110.18632/aging.100677
PatelHPLean mass, muscle strength and gene expression in community dwelling older men: findings from the Hertfordshire Sarcopenia Study (HSS)Calcif. Tissue Int2014953083161:CAS:528:DC%2BC2cXht1WksrrK2505574910.1007/s00223-014-9894-z
Timmons, J. A. et al. Longevity‐related molecular pathways are subject to midlife “switch” in humans. Aging Cell18, e12970 (2019).
HuangWGene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chainArch. Biochem. Biophys.20166011211321:CAS:528:DC%2BC28Xjt1yrsbw%3D26906074537058010.1016/j.abb.2016.02.022
MullerLSMGenome organization and DNA accessibility control antigenic variation in trypanosomesNature20185631211252018Natur.563..121M30333624678489810.1038/s41586-018-0619-8
TsompanidisACiliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscleMetabolism2016659159251:CAS:528:DC%2BC28XmtFClurY%3D2717347010.1016/j.metabol.2016.03.005
Ubaida-Mohien, C. et al. Physical activity associated proteomics of skeletal muscle: being physically active in daily life may protect skeletal muscle from aging. Front. Physiol. 10, 312 (2019).
HarriesLWHuman aging is characterized by focused changes in gene expression and deregulation of alternative splicingAging Cell2011108688781:CAS:528:DC%2BC3MXhtlShtLrK2166862310.1111/j.1474-9726.2011.00726.x
LiaoYSmythGKShiWfeatureCounts: an efficient general purpose program for assigning sequence reads to genomic featuresBioinformatics2014309239301:CAS:528:DC%2BC2cXltFGqu7c%3D2422767710.1093/bioinformatics/btt656
Jackman, S. Classes and Methods for R Developed in the Political Science Computational Laboratory (version 1.4. 9) (Department of Political Science, Stanford Univ., 2015).
LongYCInsulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathwaysMol. Cell. Biol.2011314304411:CAS:528:DC%2BC3MXisVOltrk%3D2113513010.1128/MCB.00983-10
BouzakriKsiRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscleCell Metab.2006489961:CAS:528:DC%2BD28XmvFyhsrw%3D1681473510.1016/j.cmet.2006.04.008
WilkinsonLAssociation between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant miceJ. Pathol.20122274995101:CAS:528:DC%2BC38XpvFequ7w%3D2248864110.1002/path.4036
ZhongXiaTen-eleven translocation-2 (Tet2) is involved in myogenic differentiation of skeletal myoblast cells in vitroSci. Rep.201772017NatSR...743539Z28272491534109910.1038/srep43539
GanZNuclear receptor/microRNA circuitry links muscle fiber type to energy metabolismJ. Clin. Investi
22168_CR1
I Herrer (22168_CR19) 2014; 94
22168_CR8
NC Bal (22168_CR101) 2012; 18
22168_CR32
22168_CR35
DA Hume (22168_CR56) 2006; 18
XZ Wang (22168_CR14) 2017; 292
L Fontanesi (22168_CR96) 2003; 102
CA Gurnett (22168_CR30) 2009; 467
Y Wang (22168_CR29) 2007; 21
C Hoffmann (22168_CR53) 2014; 34
M Boras (22168_CR54) 2017; 214
S Iyer (22168_CR59) 2016; 6
YC Long (22168_CR66) 2011; 31
M Lai (22168_CR84) 2010; 9
22168_CR42
V Lobjois (22168_CR31) 2008; 39
MB Teixeira (22168_CR60) 2019; 10
22168_CR45
Xia Zhong (22168_CR36) 2017; 7
DM Anderson (22168_CR102) 2015; 160
F Stanchi (22168_CR105) 2000; 270
BE Phillips (22168_CR2) 2013; 9
NJ Kerouz (22168_CR10) 1997; 100
J Vajsar (22168_CR43) 2006; 1
C Lerche (22168_CR91) 2000; 275
P Huang (22168_CR98) 2017; 17
TGP Grunewald (22168_CR88) 2009; 2
PJ McLaughlin (22168_CR70) 2007; 16
K Tsumagari (22168_CR90) 2013; 8
Y Shi (22168_CR28) 2005; 280
G Gontier (22168_CR38) 2018; 22
MB Wittwer (22168_CR41) 2013; 56
22168_CR15
S Kalachikov (22168_CR85) 2002; 30
LJ Fulcher (22168_CR51) 2018; 11
22168_CR94
I Gorenne (22168_CR13) 2006; 98
JY Kim (22168_CR40) 2014; 6
AL Moyer (22168_CR108) 2015; 2
LSM Muller (22168_CR80) 2018; 563
AE Thalacker-Mercer (22168_CR5) 2010; 40
P Mamoshina (22168_CR16) 2018; 9
S Melov (22168_CR48) 2007; 2
J Zhang (22168_CR89) 2014; 66
JW Burgner (22168_CR26) 1984; 23
M Vicente-Manzanares (22168_CR57) 2004; 4
JH Li (22168_CR46) 2013; 42
22168_CR23
MD Robinson (22168_CR77) 2010; 26
A Tsompanidis (22168_CR20) 2016; 65
S Guo (22168_CR67) 2014; 220
S Sood (22168_CR3) 2015; 16
22168_CR74
KA Dyar (22168_CR104) 2015; 4
DJ Withers (22168_CR65) 1998; 391
22168_CR79
22168_CR78
P Krimpenfort (22168_CR22) 2007; 448
22168_CR73
HP Patel (22168_CR7) 2014; 95
MM Robinson (22168_CR33) 2017; 25
P Keller (22168_CR50) 2010; 110
H Xu (22168_CR106) 2013; 40
JCC Hu (22168_CR93) 2003; 14
K Bouzakri (22168_CR11) 2006; 4
L Karim (22168_CR39) 2011; 43
22168_CR103
MJ Drummond (22168_CR4) 2011; 43
T Teltathum (22168_CR99) 2009; 5
L Wilkinson (22168_CR17) 2012; 227
Z Gan (22168_CR34) 2013; 123
A Dobin (22168_CR75) 2013; 29
22168_CR82
X Xie (22168_CR87) 2016; 126
22168_CR81
A Koller (22168_CR97) 2013; 1
LI Zheng (22168_CR62) 2019; 30
M Barbieri (22168_CR68) 2003; 38
22168_CR83
HJ Lee (22168_CR12) 2017; 7
A Manzano (22168_CR27) 1999; 229
G Kolle (22168_CR86) 2000; 90
22168_CR49
JA Schrack (22168_CR72) 2014; 62
MF White (22168_CR69) 2014; 16
X Yang (22168_CR95) 2012; 32
LW Harries (22168_CR71) 2011; 10
RA Worthylake (22168_CR58) 2001; 13.5
A Subramanian (22168_CR47) 2005; 102
J Su (22168_CR6) 2015; 5
H Manya (22168_CR44) 2016; 291
F Chen (22168_CR61) 2011; 2
RWJ Hangelbroek (22168_CR18) 2016; 7
NJ Leeper (22168_CR63) 2013; 33
R Liu (22168_CR37) 2013; 128
SS Jiang (22168_CR9) 2011; 3
W Huang (22168_CR21) 2016; 601
AR Tupling (22168_CR100) 2002; 277
GH Nam (22168_CR25) 2012; 496
F Geissmann (22168_CR55) 2010; 327
Y Liao (22168_CR76) 2014; 30
D Wang (22168_CR24) 2019; 15
AK Alkhaja (22168_CR107) 2012; 23
JN Justice (22168_CR64) 2017; 73
H Najafi (22168_CR52) 2017; 23
S En-lin (22168_CR92) 2010; 117
References_xml – reference: Warnes, M. G. R. et al. Package ‘gplots’. Various R Programming Tools for Plotting Data (2016).
– reference: Dong, S. S. et al. Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits. Int. J. Obes.40, 1170–1176 (2016).
– reference: Ripley, B. et al. Package ‘mass’. Cran R (2013).
– reference: MelovSResistance exercise reverses aging in human skeletal musclePLoS ONE20072510.1371/journal.pone.0000465
– reference: SchrackJA“IDEAL” äging is associated with lower resting metabolic rate: the Baltimore Longitudinal Study of AgingJ. Am. Geriatr. Soc.20146266767224635835398942510.1111/jgs.12740
– reference: IyerSCrim1 has cell-autonomous and paracrine roles during embryonic heart developmentSci. Rep.201662016NatSR...619832I1:CAS:528:DC%2BC28XhslOmt70%3D26821812473176410.1038/srep19832
– reference: VajsarJSchachterHWalker-Warburg syndromeOrphanet J. Rare Dis.2006116887026155343110.1186/1750-1172-1-29
– reference: TeltathumTMekchaySProteome changes in Thai indigenous chicken muscle during growth periodInt. J. Biol. Sci.200956791:CAS:528:DC%2BD1MXhtlyksrvN19893640277341710.7150/ijbs.5.679
– reference: TuplingARAsahiMMacLennanDHSarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile functionJ. Biol. Chem.200227744740447461:CAS:528:DC%2BD38Xosl2nurs%3D1223729810.1074/jbc.M206171200
– reference: PhillipsBEMolecular networks of human muscle adaptation to exercise and agePLoS Genet.20139e100338930264321:CAS:528:DC%2BC3sXlvValurk%3D23555298360510110.1371/journal.pgen.1003389
– reference: BarbieriMGlucose regulation and oxidative stress in healthy centenariansExp. Gerontol.2003381371431:CAS:528:DC%2BD3sXkvFWnuw%3D%3D1254327110.1016/S0531-5565(02)00153-5
– reference: AlkhajaAKMINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organizationMol. Biol. Cell2012232472571:CAS:528:DC%2BC38XhtlWqtLg%3D22114354325817010.1091/mbc.e11-09-0774
– reference: KerouzNJDifferential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouseJ. Clin. Invest1997100316431721:CAS:528:DyaK2sXotVyrs7k%3D939996450853010.1172/JCI119872
– reference: KarimLVariants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine statureNat. Genet.2011434051:CAS:528:DC%2BC3MXltFyqsrY%3D2151608210.1038/ng.814
– reference: Boehm, O. et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am. J. Respir. Crit. Care Med. 192, 727–736 (2015).
– reference: Strand, J. et al. Modulation of myosin function by isoform-specific properties of S. cerevisiae and muscle tropomyosins. J. Biol. Chem. 276, 34832–34839 (2001).
– reference: Pekkarinen, M. Preprocessing and Analysis of Single-Cell RNA-Sequencing Data (Tampere Univ., 2018).
– reference: Ubaida-Mohien, C. et al. Physical activity associated proteomics of skeletal muscle: being physically active in daily life may protect skeletal muscle from aging. Front. Physiol. 10, 312 (2019).
– reference: Willis-Owen, S. A. G. et al. COPD is accompanied by coordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Sci. Rep. 8, 12165 (2018).
– reference: MamoshinaPMachine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identificationFront Genet2018924230050560605208910.3389/fgene.2018.00242
– reference: NajafiHAlternative splicing of the OCC-1 gene generates three splice variants and a novel exonic microRNA, which regulate the Wnt signaling pathwayRNA20172370851:CAS:528:DC%2BC2sXosVGqsrY%3D27986894515965110.1261/rna.056317.116
– reference: Timmons, J. A. et al. Longevity‐related molecular pathways are subject to midlife “switch” in humans. Aging Cell18, e12970 (2019).
– reference: KollerAQuantitative proteomics using 15N SILAC mouseJ. Proteom. Genomics Res.201312710.14302/issn.2326-0793.jpgr-13-252
– reference: DrummondMJAging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysisPhysiol. Genomics2011435956031:CAS:528:DC%2BC3MXot1Oit78%3D2087684310.1152/physiolgenomics.00148.2010
– reference: Stelzer, G. et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics54, 1.30.1–1.30.33 (2016).
– reference: XuHMolecular cloning, sequence identification and expression analysis of novel caprine MYLPF geneMol. Biol. Rep.201340256525721:CAS:528:DC%2BC3sXhvFOqsL8%3D2327739110.1007/s11033-012-2342-0
– reference: ZhongXiaTen-eleven translocation-2 (Tet2) is involved in myogenic differentiation of skeletal myoblast cells in vitroSci. Rep.201772017NatSR...743539Z28272491534109910.1038/srep43539
– reference: SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S1:CAS:528:DC%2BD2MXht1ShtrnO16199517123989610.1073/pnas.0506580102
– reference: TsumagariKEarly de novo DNA methylation and prolonged demethylation in the muscle lineageEpigenetics201383173321:CAS:528:DC%2BC3sXntVantLw%3D23417056366912310.4161/epi.23989
– reference: KrimpenfortPp15(Ink4b) is a critical tumour suppressor in the absence of p16(Ink4a)Nature2007448943U112007Natur.448..943K1:CAS:528:DC%2BD2sXptlWjsLw%3D1771353610.1038/nature06084
– reference: ManyaHThe muscular dystrophy gene TMEM5 encodes a ribitol β1, 4-xylosyltransferase required for the functional glycosylation of dystroglycanJ. Biol. Chem.201629124618246271:CAS:528:DC%2BC28XhvV2gu77K27733679511441310.1074/jbc.M116.751917
– reference: Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
– reference: LiJHstarBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq dataNucleic Acids Res.201342D92D9724297251396494110.1093/nar/gkt1248
– reference: GorenneILPP expression during in vitro smooth muscle differentiation and stent-induced vascular injuryCirc. Res.2006983783851:CAS:528:DC%2BD28Xht1Cmuro%3D1639714310.1161/01.RES.0000202802.34727.fd
– reference: WangDA deep proteome and transcriptome abundance atlas of 29 healthy human tissuesMol. Syst. Biol.201915210.15252/msb.20188503
– reference: TsompanidisACiliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscleMetabolism2016659159251:CAS:528:DC%2BC28XmtFClurY%3D2717347010.1016/j.metabol.2016.03.005
– reference: ManzanoACloning, expression and chromosomal localization of a human testis 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase geneGene199922983891:CAS:528:DyaK1MXit1KmsrY%3D1009510710.1016/S0378-1119(99)00037-2
– reference: MoyerALWagnerKRMammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolismJ. Neuromuscul. Dis.2015237138526634192466453710.3233/JND-150119
– reference: KimJYGenome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with agingAging (Albany NY)201465242014aamd.book.....K415362110.18632/aging.100677
– reference: ZhengLIGenetic variant of MYLK4 gene and its association with growth traits in Chinese cattleAnim. Biotechnol.20193030351:CAS:528:DC%2BC1cXkslamsrY%3D2954010110.1080/10495398.2018.1426594
– reference: LercheCMolecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversityJ. Biol. Chem.200027522395224001:CAS:528:DC%2BD3cXlt1egsrc%3D1078741610.1074/jbc.M002378200
– reference: McLaughlinPJLack of fibulin-3 causes early aging and herniation, but not macular degeneration in miceHum. Mol. Genet.200716305930701:CAS:528:DC%2BD2sXhtlajsrrO1787290510.1093/hmg/ddm264
– reference: WhiteMFIRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevityDiabetes Obes. Metab.2014164151:CAS:528:DC%2BC2cXhsFarsrzP2520029010.1111/dom.12347
– reference: GeissmannFDevelopment of monocytes, macrophages, and dendritic cellsScience20103276566612010Sci...327..656G1:CAS:528:DC%2BC3cXhtlyhsrw%3D20133564288738910.1126/science.1178331
– reference: KolleGCRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesisMech. Dev.2000901811931:CAS:528:DC%2BD3cXltVGhsw%3D%3D1064243710.1016/S0925-4773(99)00248-8
– reference: LobjoisVA muscle transcriptome analysis identifies positional candidate genes for complex trait in pigAnim. Genet.2008391471621:CAS:528:DC%2BD1cXltlWhsL8%3D1836647610.1111/j.1365-2052.2007.01695.x
– reference: AndersonDMA micropeptide encoded by a putative long noncoding RNA regulates muscle performanceCell20151605956061:CAS:528:DC%2BC2MXhvVOqsbw%3D25640239435625410.1016/j.cell.2015.01.009
– reference: HuJCCYamakoshiYEnamelin and autosomal-dominant amelogenesis imperfectaCrit. Rev. Oral. Biol. Med.2003143873981465689510.1177/154411130301400602
– reference: Thalacker-MercerAEDifferential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loadingPhysiol. Genomics2010401411491:CAS:528:DC%2BC3cXhtlakt73N1990376110.1152/physiolgenomics.00151.2009
– reference: WangXZMultiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfishMol. Genet. Genomics201729263761:CAS:528:DC%2BC28Xhs1Kls7fF2773415810.1007/s00438-016-1256-2
– reference: JusticeJNCellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older womenJ. Gerontol. Ser. A20177393994510.1093/gerona/glx134
– reference: BorasMSkap2 is required for beta(2) integrin-mediated neutrophil recruitment and functionsJ. Exp. Med.20172148518741:CAS:528:DC%2BC2sXhtV2ju73F28183734533967010.1084/jem.20160647
– reference: LeeperNJLoss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formationArterioscler Thromb. Vasc. Biol.201333e1e101:CAS:528:DC%2BC38XhvVeltrbP2316201310.1161/ATVBAHA.112.300399
– reference: WittwerMBDiscovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modelingJ. Med. Chem.2013567817951:CAS:528:DC%2BC38XhvVCjurjE23241029406882910.1021/jm301302s
– reference: GrunewaldTGPSaskiaMPButtECell adhesion and transcriptional activity—defining the role of the novel protooncogene LPPTransl. Oncol.2009210711619701494273014110.1593/tlo.09112
– reference: DyarKAThe calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscleMol. Metab.201548238331:CAS:528:DC%2BC2MXhsFKht7%2FN26629406463217710.1016/j.molmet.2015.09.004
– reference: YangXUse of functional genomics to identify candidate genes underlying human genetic association studies of vascular diseasesArteriosclerosis Thrombosis Vasc. Biol.20123221622210.1161/ATVBAHA.111.232702
– reference: SoodSA novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health statusGenome Biol.20151626343147456147310.1186/s13059-015-0750-x
– reference: Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell17, e12799 (2018).
– reference: WorthylakeRABurridge.KLeukocyte transendothelial migration: orchestrating the underlying molecular machineryCurr. Opin. Cell Biol.200113.556957710.1016/S0955-0674(00)00253-2
– reference: Tikkanen, E., Gustafsson, S. & Ingelsson, E. Fitness, physical activity, and cardiovascular disease: longitudinal and genetic analyses in the UK Biobank Study. Circulation 137, 2583–2591 (2018).
– reference: HoffmannCHuman muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filamentsMol. Cell. Biol.2014343053306524934443413559710.1128/MCB.00651-14
– reference: Vicente-ManzanaresMSánchez-MadridFRole of the cytoskeleton during leukocyte responsesNat. Rev. Immunol.200441101:CAS:528:DC%2BD2cXhsVKqs7o%3D1504058410.1038/nri1268
– reference: HerrerIRNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failureLab. Investig.2014946451:CAS:528:DC%2BC2cXls1Kjuro%3D2470977710.1038/labinvest.2014.54
– reference: ChenFEvaluation of early biomarkers of muscle anabolic response to testosteroneJ. Cachexia Sarcopenia Muscle2011245561:CAS:528:DC%2BC38XjtFGksbk%3D21475673306386910.1007/s13539-011-0021-y
– reference: GurnettCASkeletal muscle contractile gene (TNNT3, MYH3, TPM2) mutations not found in vertical talus or clubfootClin. Orthop. Relat. Res.2009467119519142688266442610.1007/s11999-008-0694-5
– reference: Jackman, S. Classes and Methods for R Developed in the Political Science Computational Laboratory (version 1.4. 9) (Department of Political Science, Stanford Univ., 2015).
– reference: LaiMInvestigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case seriesLancet Neurol.201097767851:CAS:528:DC%2BC3cXpsFelsbw%3D20580615308666910.1016/S1474-4422(10)70137-X
– reference: BouzakriKsiRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscleCell Metab.2006489961:CAS:528:DC%2BD28XmvFyhsrw%3D1681473510.1016/j.cmet.2006.04.008
– reference: GontierGTet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brainCell Rep.201822197419811:CAS:528:DC%2BC1cXjtFCktLY%3D29466726587089910.1016/j.celrep.2018.02.001
– reference: RobinsonMMEnhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humansCell Metab.2017255815921:CAS:528:DC%2BC2sXjvF2htrw%3D28273480542309510.1016/j.cmet.2017.02.009
– reference: LiuRTen-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticityCirculation20131282047205724077167389979010.1161/CIRCULATIONAHA.113.002887
– reference: Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 3 (2011).
– reference: LiaoYSmythGKShiWfeatureCounts: an efficient general purpose program for assigning sequence reads to genomic featuresBioinformatics2014309239301:CAS:528:DC%2BC2cXltFGqu7c%3D2422767710.1093/bioinformatics/btt656
– reference: LongYCInsulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathwaysMol. Cell. Biol.2011314304411:CAS:528:DC%2BC3MXisVOltrk%3D2113513010.1128/MCB.00983-10
– reference: JiangSSGene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseasesAging (Albany NY)201136726841:CAS:528:DC%2BC3MXhtF2ns7zL10.18632/aging.100355
– reference: HangelbroekRWJExpression of protocadherin gamma in skeletal muscle tissue is associated with age and muscle weaknessJ. Cachexia Sarcopenia Muscle2016760461427239416486383010.1002/jcsm.12099
– reference: Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
– reference: GuoSInsulin signaling, resistance, and the metabolic syndrome: insights from mouse models to disease mechanismsJ. Endocrinol.2014220T11:CAS:528:DC%2BC2cXjtlSls70%3D24281010408716110.1530/JOE-13-0584
– reference: Sifakis, E. G. et al. Identifying gender independent biomarkers responsible for human muscle aging using microarray data. In: 2013 IEEE 13th Int. Conference on Bioinformatics and Bioengineering (Bibe) (IEEE, 2013).
– reference: WangYFast skeletal muscle regulatory light chain is required for fast and slow skeletal muscle developmentFASEB J.200721220522141:CAS:528:DC%2BD2sXnvVagtrs%3D1735600710.1096/fj.06-7538com
– reference: PatelHPLean mass, muscle strength and gene expression in community dwelling older men: findings from the Hertfordshire Sarcopenia Study (HSS)Calcif. Tissue Int2014953083161:CAS:528:DC%2BC2cXht1WksrrK2505574910.1007/s00223-014-9894-z
– reference: StanchiFTUBA8: a new tissue-specific isoform of α-tubulin that is highly conserved in human and mouseBiochem. Biophys. Res. Commun.2000270111111181:CAS:528:DC%2BD3cXisFeku7c%3D1077295910.1006/bbrc.2000.2571
– reference: GanZNuclear receptor/microRNA circuitry links muscle fiber type to energy metabolismJ. Clin. Investig.2013123256425751:CAS:528:DC%2BC3sXpsFWktrY%3D23676496366884110.1172/JCI67652
– reference: BalNCSarcolipin is a newly identified regulator of muscle-based thermogenesis in mammalsNat. Med.20121815751:CAS:528:DC%2BC38XhtlWgu7fO22961106367635110.1038/nm.2897
– reference: BurgnerJWWilliamJRJrOn the origin of the lactate dehydrogenase induced rate effectBiochemistry198423363636481:CAS:528:DyaL2cXksFSltLY%3D647788910.1021/bi00311a010
– reference: HumeDAThe mononuclear phagocyte systemCurr. Opin. Immunol.20061849531:CAS:528:DC%2BD28XhvFOgsw%3D%3D1633812810.1016/j.coi.2005.11.008
– reference: HuangPDifferences in the frequency of Alzheimer’s disease‐associated genomic variations in populations of different racesGeriatrics Gerontol. Int.2017172184219310.1111/ggi.13059
– reference: HuangWGene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chainArch. Biochem. Biophys.20166011211321:CAS:528:DC%2BC28Xjt1yrsbw%3D26906074537058010.1016/j.abb.2016.02.022
– reference: HarriesLWHuman aging is characterized by focused changes in gene expression and deregulation of alternative splicingAging Cell2011108688781:CAS:528:DC%2BC3MXhtlShtLrK2166862310.1111/j.1474-9726.2011.00726.x
– reference: ShiYGenetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesisJ. Biol. Chem.200528041805418101:CAS:528:DC%2BD2MXhtlajsrvK1622168610.1074/jbc.M505181200
– reference: En-linSSheng-guoCHua-qiaoWThe expression of EFEMP1 in cervical carcinoma and its relationship with prognosisGynecol. Oncol.20101174174222037815710.1016/j.ygyno.2009.12.016
– reference: KellerPA transcriptional map of the impact of endurance exercise training on skeletal muscle phenotypeJ. Appl. Physiol.2010110465920930125325301010.1152/japplphysiol.00634.2010
– reference: TeixeiraMBAlborghettiMRKobarg.JFasciculation and elongation zeta proteins 1 and 2: From structural flexibility to functional diversityWorld J. Biol. Chem.2019102830815230638829710.4331/wjbc.v10.i2.28
– reference: DobinASTAR: ultrafast universal RNA-seq alignerBioinformatics20132915211:CAS:528:DC%2BC38XhvV2gsbnF2310488610.1093/bioinformatics/bts635
– reference: XieXTsaiSYTsaiMJCOUP-TFII regulates satellite cell function and muscular dystrophyJ. Clin. Investig.20161263929394127617862509681710.1172/JCI87414
– reference: WithersDJDisruption of IRS-2 causes type 2 diabetes in miceNature19983919001998Natur.391..900W1:CAS:528:DyaK1cXhsFyksr0%3D949534310.1038/36116
– reference: FontanesiLStudy of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigsCytogenet. Genome Res.20031021451511:CAS:528:DC%2BD2cXhtlejt7s%3D1497069410.1159/000075740
– reference: KalachikovSMutations in LGI1 cause autosomal-dominant partial epilepsy with auditory featuresNat. Genet.20023033511810107260605310.1038/ng832
– reference: SuJA novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with agingSkelet. Muscle2015526457177460021410.1186/s13395-015-0059-1
– reference: Reyes, A., Anders, S. & Huber, W. Inferring Differential Exon Usage in RNA-Seq Data with the DEXSeq Package (bioconductor.statistik.tu-dortmund.de, 2013).
– reference: NamGHIdentification of ORF sequences and exercise-induced expression change in thoroughbred horse OXCT1 geneGene201249645481:CAS:528:DC%2BC38XhvVSgtLw%3D2230126910.1016/j.gene.2012.01.021
– reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO1991030810.1093/bioinformatics/btp616
– reference: WilkinsonLAssociation between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant miceJ. Pathol.20122274995101:CAS:528:DC%2BC38XpvFequ7w%3D2248864110.1002/path.4036
– reference: LeeHJDysregulation of nuclear receptor COUP-TFII impairs skeletal muscle developmentSci. Rep.201772017NatSR...7.3136L28600496546665010.1038/s41598-017-03475-5
– reference: MullerLSMGenome organization and DNA accessibility control antigenic variation in trypanosomesNature20185631211252018Natur.563..121M30333624678489810.1038/s41586-018-0619-8
– reference: ZhangJLiuFTissue‐specific insulin signaling in the regulation of metabolism and agingIUBMB Life2014664854951:CAS:528:DC%2BC2cXht1KhurbM25087968414097610.1002/iub.1293
– reference: FulcherLJThe DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoformsSci. Signal.201811eaao234129789297602579310.1126/scisignal.aao2341
– volume: 7
  year: 2017
  ident: 22168_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/srep43539
– ident: 22168_CR49
  doi: 10.1111/acel.12970
– volume: 90
  start-page: 181
  year: 2000
  ident: 22168_CR86
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(99)00248-8
– volume: 38
  start-page: 137
  year: 2003
  ident: 22168_CR68
  publication-title: Exp. Gerontol.
  doi: 10.1016/S0531-5565(02)00153-5
– ident: 22168_CR35
  doi: 10.1038/ijo.2016.44
– volume: 3
  start-page: 672
  year: 2011
  ident: 22168_CR9
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100355
– volume: 10
  start-page: 28
  year: 2019
  ident: 22168_CR60
  publication-title: World J. Biol. Chem.
  doi: 10.4331/wjbc.v10.i2.28
– volume: 448
  start-page: 943
  year: 2007
  ident: 22168_CR22
  publication-title: Nature
  doi: 10.1038/nature06084
– volume: 98
  start-page: 378
  year: 2006
  ident: 22168_CR13
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000202802.34727.fd
– volume: 601
  start-page: 121
  year: 2016
  ident: 22168_CR21
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2016.02.022
– volume: 17
  start-page: 2184
  year: 2017
  ident: 22168_CR98
  publication-title: Geriatrics Gerontol. Int.
  doi: 10.1111/ggi.13059
– volume: 4
  start-page: 89
  year: 2006
  ident: 22168_CR11
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.04.008
– volume: 128
  start-page: 2047
  year: 2013
  ident: 22168_CR37
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.002887
– ident: 22168_CR23
  doi: 10.1109/BIBE.2013.6701530
– volume: 15
  start-page: 2
  year: 2019
  ident: 22168_CR24
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188503
– volume: 7
  year: 2017
  ident: 22168_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03475-5
– volume: 1
  start-page: 27
  year: 2013
  ident: 22168_CR97
  publication-title: J. Proteom. Genomics Res.
  doi: 10.14302/issn.2326-0793.jpgr-13-252
– volume: 40
  start-page: 141
  year: 2010
  ident: 22168_CR5
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00151.2009
– volume: 32
  start-page: 216
  year: 2012
  ident: 22168_CR95
  publication-title: Arteriosclerosis Thrombosis Vasc. Biol.
  doi: 10.1161/ATVBAHA.111.232702
– volume: 29
  start-page: 15
  year: 2013
  ident: 22168_CR75
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– ident: 22168_CR103
  doi: 10.1161/CIRCULATIONAHA.117.032432
– ident: 22168_CR81
– volume: 43
  start-page: 405
  year: 2011
  ident: 22168_CR39
  publication-title: Nat. Genet.
  doi: 10.1038/ng.814
– ident: 22168_CR45
  doi: 10.1002/cpbi.5
– volume: 73
  start-page: 939
  year: 2017
  ident: 22168_CR64
  publication-title: J. Gerontol. Ser. A
  doi: 10.1093/gerona/glx134
– volume: 275
  start-page: 22395
  year: 2000
  ident: 22168_CR91
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002378200
– volume: 6
  start-page: 524
  year: 2014
  ident: 22168_CR40
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100677
– ident: 22168_CR42
– volume: 100
  start-page: 3164
  year: 1997
  ident: 22168_CR10
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI119872
– volume: 270
  start-page: 1111
  year: 2000
  ident: 22168_CR105
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.2571
– volume: 327
  start-page: 656
  year: 2010
  ident: 22168_CR55
  publication-title: Science
  doi: 10.1126/science.1178331
– volume: 9
  start-page: 242
  year: 2018
  ident: 22168_CR16
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00242
– volume: 16
  year: 2015
  ident: 22168_CR3
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0750-x
– volume: 6
  year: 2016
  ident: 22168_CR59
  publication-title: Sci. Rep.
  doi: 10.1038/srep19832
– ident: 22168_CR78
– ident: 22168_CR73
  doi: 10.14806/ej.17.1.200
– ident: 22168_CR83
  doi: 10.1007/978-3-319-24277-4
– volume: 56
  start-page: 781
  year: 2013
  ident: 22168_CR41
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301302s
– volume: 31
  start-page: 430
  year: 2011
  ident: 22168_CR66
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00983-10
– ident: 22168_CR1
  doi: 10.3389/fphys.2019.00312
– volume: 16
  start-page: 4
  year: 2014
  ident: 22168_CR69
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12347
– volume: 8
  start-page: 317
  year: 2013
  ident: 22168_CR90
  publication-title: Epigenetics
  doi: 10.4161/epi.23989
– volume: 7
  start-page: 604
  year: 2016
  ident: 22168_CR18
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12099
– volume: 39
  start-page: 147
  year: 2008
  ident: 22168_CR31
  publication-title: Anim. Genet.
  doi: 10.1111/j.1365-2052.2007.01695.x
– volume: 2
  start-page: 5
  year: 2007
  ident: 22168_CR48
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000465
– volume: 292
  start-page: 63
  year: 2017
  ident: 22168_CR14
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-016-1256-2
– volume: 102
  start-page: 145
  year: 2003
  ident: 22168_CR96
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000075740
– volume: 25
  start-page: 581
  year: 2017
  ident: 22168_CR33
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.02.009
– volume: 33
  start-page: e1
  year: 2013
  ident: 22168_CR63
  publication-title: Arterioscler Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.112.300399
– volume: 2
  start-page: 107
  year: 2009
  ident: 22168_CR88
  publication-title: Transl. Oncol.
  doi: 10.1593/tlo.09112
– volume: 9
  start-page: 776
  year: 2010
  ident: 22168_CR84
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(10)70137-X
– volume: 1
  year: 2006
  ident: 22168_CR43
  publication-title: Orphanet J. Rare Dis.
  doi: 10.1186/1750-1172-1-29
– volume: 30
  start-page: 30
  year: 2019
  ident: 22168_CR62
  publication-title: Anim. Biotechnol.
  doi: 10.1080/10495398.2018.1426594
– volume: 391
  start-page: 900
  year: 1998
  ident: 22168_CR65
  publication-title: Nature
  doi: 10.1038/36116
– volume: 220
  start-page: T1
  year: 2014
  ident: 22168_CR67
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-13-0584
– volume: 229
  start-page: 83
  year: 1999
  ident: 22168_CR27
  publication-title: Gene
  doi: 10.1016/S0378-1119(99)00037-2
– volume: 18
  start-page: 49
  year: 2006
  ident: 22168_CR56
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2005.11.008
– ident: 22168_CR82
– volume: 16
  start-page: 3059
  year: 2007
  ident: 22168_CR70
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm264
– volume: 10
  start-page: 868
  year: 2011
  ident: 22168_CR71
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2011.00726.x
– volume: 23
  start-page: 3636
  year: 1984
  ident: 22168_CR26
  publication-title: Biochemistry
  doi: 10.1021/bi00311a010
– volume: 496
  start-page: 45
  year: 2012
  ident: 22168_CR25
  publication-title: Gene
  doi: 10.1016/j.gene.2012.01.021
– volume: 280
  start-page: 41805
  year: 2005
  ident: 22168_CR28
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505181200
– volume: 94
  start-page: 645
  year: 2014
  ident: 22168_CR19
  publication-title: Lab. Investig.
  doi: 10.1038/labinvest.2014.54
– volume: 23
  start-page: 247
  year: 2012
  ident: 22168_CR107
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-09-0774
– volume: 2
  start-page: 45
  year: 2011
  ident: 22168_CR61
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1007/s13539-011-0021-y
– volume: 291
  start-page: 24618
  year: 2016
  ident: 22168_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.751917
– volume: 23
  start-page: 70
  year: 2017
  ident: 22168_CR52
  publication-title: RNA
  doi: 10.1261/rna.056317.116
– volume: 5
  start-page: 679
  year: 2009
  ident: 22168_CR99
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.5.679
– volume: 62
  start-page: 667
  year: 2014
  ident: 22168_CR72
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.12740
– volume: 227
  start-page: 499
  year: 2012
  ident: 22168_CR17
  publication-title: J. Pathol.
  doi: 10.1002/path.4036
– volume: 34
  start-page: 3053
  year: 2014
  ident: 22168_CR53
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00651-14
– volume: 22
  start-page: 1974
  year: 2018
  ident: 22168_CR38
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.001
– volume: 18
  start-page: 1575
  year: 2012
  ident: 22168_CR101
  publication-title: Nat. Med.
  doi: 10.1038/nm.2897
– volume: 123
  start-page: 2564
  year: 2013
  ident: 22168_CR34
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI67652
– volume: 277
  start-page: 44740
  year: 2002
  ident: 22168_CR100
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206171200
– ident: 22168_CR32
  doi: 10.1074/jbc.M104750200
– ident: 22168_CR8
  doi: 10.1111/acel.12799
– volume: 4
  start-page: 110
  year: 2004
  ident: 22168_CR57
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1268
– volume: 467
  start-page: 1195
  year: 2009
  ident: 22168_CR30
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-008-0694-5
– volume: 26
  start-page: 139
  year: 2010
  ident: 22168_CR77
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 117
  start-page: 417
  year: 2010
  ident: 22168_CR92
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2009.12.016
– volume: 14
  start-page: 387
  year: 2003
  ident: 22168_CR93
  publication-title: Crit. Rev. Oral. Biol. Med.
  doi: 10.1177/154411130301400602
– volume: 40
  start-page: 2565
  year: 2013
  ident: 22168_CR106
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-012-2342-0
– volume: 2
  start-page: 371
  year: 2015
  ident: 22168_CR108
  publication-title: J. Neuromuscul. Dis.
  doi: 10.3233/JND-150119
– volume: 95
  start-page: 308
  year: 2014
  ident: 22168_CR7
  publication-title: Calcif. Tissue Int
  doi: 10.1007/s00223-014-9894-z
– ident: 22168_CR74
– volume: 21
  start-page: 2205
  year: 2007
  ident: 22168_CR29
  publication-title: FASEB J.
  doi: 10.1096/fj.06-7538com
– volume: 563
  start-page: 121
  year: 2018
  ident: 22168_CR80
  publication-title: Nature
  doi: 10.1038/s41586-018-0619-8
– volume: 160
  start-page: 595
  year: 2015
  ident: 22168_CR102
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.009
– volume: 9
  start-page: e1003389
  year: 2013
  ident: 22168_CR2
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003389
– volume: 43
  start-page: 595
  year: 2011
  ident: 22168_CR4
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00148.2010
– volume: 66
  start-page: 485
  year: 2014
  ident: 22168_CR89
  publication-title: IUBMB Life
  doi: 10.1002/iub.1293
– ident: 22168_CR15
  doi: 10.1038/s41598-018-29789-6
– volume: 4
  start-page: 823
  year: 2015
  ident: 22168_CR104
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2015.09.004
– volume: 214
  start-page: 851
  year: 2017
  ident: 22168_CR54
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160647
– volume: 30
  start-page: 335
  year: 2002
  ident: 22168_CR85
  publication-title: Nat. Genet.
  doi: 10.1038/ng832
– volume: 65
  start-page: 915
  year: 2016
  ident: 22168_CR20
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.03.005
– volume: 13.5
  start-page: 569
  year: 2001
  ident: 22168_CR58
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(00)00253-2
– ident: 22168_CR79
  doi: 10.1186/gb-2010-11-10-r106
– volume: 30
  start-page: 923
  year: 2014
  ident: 22168_CR76
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 11
  start-page: eaao2341
  year: 2018
  ident: 22168_CR51
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aao2341
– volume: 110
  start-page: 46
  year: 2010
  ident: 22168_CR50
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00634.2010
– volume: 5
  year: 2015
  ident: 22168_CR6
  publication-title: Skelet. Muscle
  doi: 10.1186/s13395-015-0059-1
– volume: 42
  start-page: D92
  year: 2013
  ident: 22168_CR46
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1248
– ident: 22168_CR94
  doi: 10.1164/rccm.201503-0418OC
– volume: 126
  start-page: 3929
  year: 2016
  ident: 22168_CR87
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI87414
– volume: 102
  start-page: 15545
  year: 2005
  ident: 22168_CR47
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
SSID ssj0000391844
Score 2.5997086
Snippet Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve...
As human skeletal muscle ages, gene expression programs change and reflect damage accumulation and homeostatic resilience mechanisms. Here, the authors present...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2014
SubjectTerms 38/39
38/88
38/91
631/337/2019
692/698/1671/1668/1973
82/80
Adaptation
Adipogenesis
Adult
Age
Aged
Aged, 80 and over
Aging
Damage accumulation
Female
Gene expression
Gene Expression Profiling
Healthy Aging - genetics
Homeostasis
Homeostasis - genetics
Humanities and Social Sciences
Humans
Insulin
Isoforms
Male
Middle Aged
multidisciplinary
Muscle, Skeletal - metabolism
Muscles
Muscular Diseases - genetics
Musculoskeletal system
Myogenesis
Non-coding RNA
Oxidative phosphorylation
Phosphorylation
Proteins
Regression analysis
Regression models
RNA Isoforms - genetics
RNA, Messenger - genetics
RNA, Untranslated - genetics
Science
Science (multidisciplinary)
Senescence
Skeletal muscle
Transcriptome
Transcriptomes
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH6IKHgRd-tGBW9anSxt0qOK4mkQVPAW2iw4qB2ZRfDf-5J2xhnXi9c2hceXtzYv3wM4MEXmfzX6e1s5S7grWol0jifClDblVAvCyzBsQrTb8v4-v54Y9eV7wmp64Bq4E2dJiXUUVnEs54bagrrcWKkxDc6dKALZNmY9E8VU8MEsx9KFN7dkWkye9HnwCb4jgVKSoXpMRaJA2P9dlvm1WfLTiWkIRJdLsNhkkPFpLfkyzNhqBebrmZJvq3B884iRBFPq-HnYxwXxwEej4Bu6zzbuVHF99fEtDvOJ1uDu8uL2_CpphiIkGmuNQaJLjDmClsQRwpzOSocBhvGW4zqznryv5Kk2wjqpM4nmmVPjZ2AyaVpGE16wdZitupXdhBiLX88VmQp0eDylCKpn29PSZCUxmucRkBFASjeM4X5wxZMKJ9dMqhpUhaCqAKqiERyOv3mp-TJ-XX3mcR-v9FzX4QFqgGo0QP2lARHsjHZNNQbYV5jZCYm5CmER7I9fo-n485Cist1hWCNTX12gHBv1Jo8lYUxg5ShEBGJq-6dEnX5TdR4CPTfG_AxjTARHI0X5EOtnKLb-A4ptWKBew0Nn0Q7MDnpDuwtz-nXQ6ff2gom8A-T4EDw
  priority: 102
  providerName: Directory of Open Access Journals
Title Skeletal muscle transcriptome in healthy aging
URI https://link.springer.com/article/10.1038/s41467-021-22168-2
https://www.ncbi.nlm.nih.gov/pubmed/33795677
https://www.proquest.com/docview/2507806113
https://www.proquest.com/docview/2508577292
https://pubmed.ncbi.nlm.nih.gov/PMC8016876
https://doaj.org/article/fe1b133469394d2ea2f9de8c7479f7a6
Volume 12
WOSCitedRecordID wos000636772600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Download PDF from ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsgoSNwjd2E7snBBFreDAKuIhLVysxA9YQZOy2UXqv2fGyaZaHr1wySF2pInn5RmPvwF4YqucUo10b6vgifDVNFHei0Ta2mWCGZmKOjSbkLOZms-Lcki4dUNZ5cYmBkNtW0M58gN01VKh80n5i9MfCXWNotPVoYXGDuwRSgIpZpl9HnMshH6uhBjuyky5OuhEsAxUl8BYmqOQbPmjANv_t73mnyWTv52bBnd0fP1_f-QGXBs2ovHLXnJuwiXX3IIrfWvKs9vw_P03dEi4M49P1h1OiFfk1IKJaU9cvGji_gblWRzaHN2Bj8dHH169TobeConBkGWVmBpdl2R16pEQb_Lao5_iYuqFyR1hANYiM1Y6r0yuUMsLZqmVJld2ak0qKn4Xdpu2cfchxhiaICcziXZTZMwpQ6B9Rtm8Tq0RRQTpZoW1GYDHqf_Fdx0OwLnSPVc0ckUHrmgWwdPxm9MeduPC2YfEuHEmQWaHF-3yix40UHuX1hiQi7zghbDMVcwXFonFeKrwssoj2N_wSw963OlzZkXweBxGDaRjlapx7TrMURkFKUjHvV5KRko4lxiAShmB3JKfLVK3R5rF14DyjVuHHF1VBM82knZO1r-X4sHFf_EQrjIS_lB6tA-7q-XaPYLL5udq0S0nsCPnMjzVBPYOj2blu0lIUkyoJLacBO3CkfLN2_LTL3ZAJQ8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgREM3tjd2Dgjxqlq1rJAo0t5M4gesoEnZ7IL2T_EbmXGSrZZHbz1wTZxo4nz-xmOP5wN4ZIuMlhrp3FbOE-GLQaK8F4m0pRsKZmQqyiA2IUcjNR7n79bgZ38WhtIqe04MRG1rQ2vkW-iqpULnk_LnR98SUo2i3dVeQqOFxZ5b_MCQrXm2-xr_72PGtt8cvNpJOlWBxOBkfZaYEklbsjL1-C5vstIjQ3Mx8MJkjqrflWJorHRemUwhvnNmSUSSKzuwJhUFx_eegbPI45JSyORYLtd0qNq6EqI7mzPgaqsRgYkoD4KxNENQrvi_IBPwt7ntnymav-3TBve3ffl_67grcKmbaMcv2pFxFdZcdQ3Ot9Kbi-vw9P0XdLgYecSH8wYbxDNy2oFC60MXT6q4PSG6iIOM0w34cCrG3oT1qq7cbYgVUpyQSG3oF8SQOWWoKKFRNitTa0QeQdr_UW26wuqk7_FVhw1-rnSLAo0o0AEFmkXwZPnMUVtW5MTWLwkoy5ZUEjxcqKefdMcw2ru0TDkXWc5zYZkrmM8tGovxYu5lkUWw0eNDdzzV6GNwRPBweRsZhraNisrV89BGDSkIQztutahcWsK5xABbygjkCl5XTF29U00-hyrmODXK0BVHsNkj-9isf3fFnZO_4gFc2Dl4u6_3d0d7d-Eio4EX0qw2YH02nbt7cM58n02a6f0wcmP4eNqI_wUI0nlZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUXngUCBYIEJwi7sZ3YOSAElBVV0WolQKq4uIkfZQVN2s1u0f41fh1j51Etj9564Jo40cT5_I3HHs8H8ETnqVtqdOe2Mhoxmw8jYS2LuC5MwojiMSu82AQfj8XeXjZZg5_dWRiXVtlxoidqXSm3Rj5AV80FOp-YDmybFjHZHr06Oo6cgpTbae3kNBqI7JrlDwzf6pc72_ivnxIyevfp7fuoVRiIFE7c55EqkMA5KWKL77UqLSyyNWVDy1RqXCW8giVKc2OFSgViPSPaCUpSoYdaxSyn-N4LcJFjjOkCv0nypV_fcZXXBWPtOZ0hFYOaeVZyORGExCkCdMUXesmAv81z_0zX_G3P1rvC0bX_uROvw9V2Ah6-bkbMDVgz5U243EhyLm_Bi4_f0BFjRBIeLmpsEM6dM_fUWh2acFqGzcnRZejlnTbh87kYexvWy6o0dyEUSH2MI-Whv2AJMUK5YoVK6LSItWJZAHH3d6VqC6473Y_v0m_8UyEbREhEhPSIkCSAZ_0zR025kTNbv3Gg6Vu6UuH-QjU7kC3zSGviIqYUIUozponJic00GotxZGZ5ngaw1WFFtvxVy1OgBPC4v43M47aT8tJUC99GJC44QzvuNAjtLaGUY-DNeQB8Bbsrpq7eKadffXVznDKl6KIDeN6h_NSsf3fFvbO_4hFsINDlh53x7n24QtwY9NlXW7A-ny3MA7ikTubTevbQD-IQ9s8b8L8AE6OCTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+transcriptome+in+healthy+aging&rft.jtitle=Nature+communications&rft.au=Tumasian%2C+Robert+A.&rft.au=Harish%2C+Abhinav&rft.au=Kundu%2C+Gautam&rft.au=Yang%2C+Jen-Hao&rft.date=2021-04-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-22168-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_22168_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon