On the computational complexity of curing non-stoquastic Hamiltonians

Quantum many-body systems whose Hamiltonians are non-stoquastic, i.e., have positive off-diagonal matrix elements in a given basis, are known to pose severe limitations on the efficiency of Quantum Monte Carlo algorithms designed to simulate them, due to the infamous sign problem. We study the compu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 10; číslo 1; s. 1571 - 9
Hlavní autoři: Marvian, Milad, Lidar, Daniel A., Hen, Itay
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 05.04.2019
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantum many-body systems whose Hamiltonians are non-stoquastic, i.e., have positive off-diagonal matrix elements in a given basis, are known to pose severe limitations on the efficiency of Quantum Monte Carlo algorithms designed to simulate them, due to the infamous sign problem. We study the computational complexity associated with ‘curing’ non-stoquastic Hamiltonians, i.e., transforming them into sign-problem-free ones. We prove that if such transformations are limited to single-qubit Clifford group elements or general single-qubit orthogonal matrices, finding the curing transformation is NP-complete. We discuss the implications of this result. Non-stoquastic Hamiltonians are known to be hard to simulate due to the infamous sign problem. Here, the authors study the computational complexity of transforming such Hamiltonians into stoquastic ones and prove that the task is NP-complete even for the simplest class of transformations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09501-6