Gender-specific pathway differences in the human serum metabolome
The susceptibility for various diseases as well as the response to treatments differ considerably between men and women. As a basis for a gender-specific personalized healthcare, an extensive characterization of the molecular differences between the two genders is required. In the present study, we...
Saved in:
| Published in: | Metabolomics Vol. 11; no. 6; pp. 1815 - 1833 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2015
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1573-3882, 1573-3890 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The susceptibility for various diseases as well as the response to treatments differ considerably between men and women. As a basis for a gender-specific personalized healthcare, an extensive characterization of the molecular differences between the two genders is required. In the present study, we conducted a large-scale metabolomics analysis of 507 metabolic markers measured in serum of 1756 participants from the German KORA F4 study (903 females and 853 males). One-third of the metabolites show significant differences between males and females. A pathway analysis revealed strong differences in steroid metabolism, fatty acids and further lipids, a large fraction of amino acids, oxidative phosphorylation, purine metabolism and gamma-glutamyl dipeptides. We then extended this analysis by a network-based clustering approach. Metabolite interactions were estimated using Gaussian graphical models to get an unbiased, fully data-driven metabolic network representation. This approach is not limited to possibly arbitrary pathway boundaries and can even include poorly or uncharacterized metabolites. The network analysis revealed several strongly gender-regulated submodules across different pathways. Finally, a gender-stratified genome-wide association study was performed to determine whether the observed gender differences are caused by dimorphisms in the effects of genetic polymorphisms on the metabolome. With only a single genome-wide significant hit, our results suggest that this scenario is not the case. In summary, we report an extensive characterization and interpretation of gender-specific differences of the human serum metabolome, providing a broad basis for future analyses. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1573-3882 1573-3890 |
| DOI: | 10.1007/s11306-015-0829-0 |