Multimodal deep learning models for early detection of Alzheimer’s disease stage
Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (m...
Saved in:
| Published in: | Scientific reports Vol. 11; no. 1; pp. 3254 - 13 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
05.02.2021
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature. |
|---|---|
| AbstractList | Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature. Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature. Abstract Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature. Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer's disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer's disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature. |
| ArticleNumber | 3254 |
| Author | Wang, May D. Hassanzadeh, Hamid Reza Venugopalan, Janani Tong, Li |
| Author_xml | – sequence: 1 givenname: Janani orcidid: 0000-0002-9049-6024 surname: Venugopalan fullname: Venugopalan, Janani organization: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University – sequence: 2 givenname: Li surname: Tong fullname: Tong, Li organization: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University – sequence: 3 givenname: Hamid Reza surname: Hassanzadeh fullname: Hassanzadeh, Hamid Reza organization: School of Computational Science and Engineering, Georgia Institute of Technology – sequence: 4 givenname: May D. surname: Wang fullname: Wang, May D. email: maywang@gatech.edu organization: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Electrical and Computer Engineering, Georgia Institute of Technology, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Biosciences, Institute of People and Technology, Georgia Institute of Technology and Emory University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33547343$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAUtFARLaU_wAJFYsMm4HfsDVJV8ahUhIRgbTnOSeorJ77YCVVZ8Rv8Hl-Cb9NC20W9sTVnZjTymadob4oTIPSc4NcEM_UmcyK0qjHFdcOZ1vXFI3RAMRc1ZZTu3Xrvo6OcN7gcQTUn-gnaZ0zwhnF2gL58WsLsx9jZUHUA2yqATZOfhqpgEHLVx1QVKFyW8Qxu9nGqYl8dh5_n4EdIf379zlXnM9gMVZ7tAM_Q496GDEfX9yH69v7d15OP9dnnD6cnx2e1k1jOtWVKNa1shOaNBNwzB7gAqnO8db3otGx1S5l0TLhGNIRQQizBlmLaWyGAHaLT1beLdmO2yY82XZpovbkCYhqMTbN3AQy2uJUtpl2ngPeSqJ7pvsNQnKUiTBevt6vXdmlH6BxMc7LhjundyeTPzRB_mEZJrjktBq-uDVL8vkCezeizgxDsBHHJhnLVEFFWxgv15T3qJi5pKl-1Y0lJcSNEYb24nehflJvVFYJaCS7FnBP0xvnZ7vZTAvpgCDa7opi1KKYUxVwVxVwUKb0nvXF_UMRWUS7kaYD0P_YDqr9bPtFO |
| CitedBy_id | crossref_primary_10_3389_fnins_2023_1177424 crossref_primary_10_1016_j_compbiomed_2024_109199 crossref_primary_10_1038_s41598_023_41543_1 crossref_primary_10_1371_journal_pone_0320360 crossref_primary_10_1177_20552076241272585 crossref_primary_10_3389_fnins_2025_1554015 crossref_primary_10_1016_j_jbi_2025_104873 crossref_primary_10_1155_2021_8439655 crossref_primary_10_3390_biomedicines12061232 crossref_primary_10_1016_j_brainresbull_2023_110846 crossref_primary_10_1088_2057_1976_ad9eb7 crossref_primary_10_1177_22143602241296276 crossref_primary_10_22399_ijcesen_3672 crossref_primary_10_1002_widm_1492 crossref_primary_10_1016_j_arr_2024_102497 crossref_primary_10_1007_s00500_023_08108_w crossref_primary_10_1109_ACCESS_2022_3168311 crossref_primary_10_1109_JBHI_2024_3418341 crossref_primary_10_1016_j_compmedimag_2025_102638 crossref_primary_10_1109_ACCESS_2025_3540567 crossref_primary_10_32604_cmc_2023_032752 crossref_primary_10_1016_j_ccr_2025_216527 crossref_primary_10_1093_bib_bbac454 crossref_primary_10_1016_j_dsp_2024_104399 crossref_primary_10_1007_s42979_023_02461_1 crossref_primary_10_1016_j_eswa_2023_121849 crossref_primary_10_3390_bioengineering10060701 crossref_primary_10_1007_s10661_025_13708_0 crossref_primary_10_1088_1361_6560_ad3cb2 crossref_primary_10_1109_ACCESS_2023_3342917 crossref_primary_10_1111_coin_12682 crossref_primary_10_1016_j_compmedimag_2025_102529 crossref_primary_10_1109_ACCESS_2021_3127394 crossref_primary_10_1186_s13195_024_01540_6 crossref_primary_10_7717_peerj_cs_2590 crossref_primary_10_1016_j_compbiomed_2023_107050 crossref_primary_10_1002_hbm_26783 crossref_primary_10_3390_electronics11050721 crossref_primary_10_1016_j_irbm_2024_100840 crossref_primary_10_3389_fneur_2024_1515981 crossref_primary_10_1007_s12559_024_10390_1 crossref_primary_10_1007_s11042_024_19875_5 crossref_primary_10_1007_s13198_023_02180_z crossref_primary_10_1016_j_drudis_2025_104332 crossref_primary_10_2147_RMHP_S519049 crossref_primary_10_2478_amns_2023_1_00205 crossref_primary_10_1145_3543848 crossref_primary_10_1186_s12967_025_06907_3 crossref_primary_10_47164_ijngc_v15i2_1475 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_3390_ai3030038 crossref_primary_10_1016_j_heliyon_2024_e36728 crossref_primary_10_3390_bioengineering10060714 crossref_primary_10_1007_s11517_022_02706_w crossref_primary_10_1038_s41598_024_82838_1 crossref_primary_10_1109_ACCESS_2022_3149214 crossref_primary_10_1016_j_cogsys_2022_12_005 crossref_primary_10_3390_tomography11090096 crossref_primary_10_1016_j_jneumeth_2022_109745 crossref_primary_10_1038_s41598_022_17203_1 crossref_primary_10_3390_brainsci14040335 crossref_primary_10_1016_j_asoc_2022_109631 crossref_primary_10_1080_10543406_2025_2511194 crossref_primary_10_1016_j_artmed_2022_102260 crossref_primary_10_3390_diagnostics11061071 crossref_primary_10_1016_j_neurobiolaging_2022_10_005 crossref_primary_10_1111_exsy_13569 crossref_primary_10_1007_s42044_025_00321_0 crossref_primary_10_3348_kjr_2023_0393 crossref_primary_10_1088_2057_1976_ada8af crossref_primary_10_1007_s10462_023_10644_8 crossref_primary_10_1016_j_imed_2023_04_003 crossref_primary_10_3389_fnins_2023_1202382 crossref_primary_10_1016_j_bspc_2025_107831 crossref_primary_10_3390_informatics10040077 crossref_primary_10_1038_s41598_024_74043_x crossref_primary_10_1186_s41983_022_00571_w crossref_primary_10_32604_cmc_2022_022686 crossref_primary_10_3390_agronomy15061279 crossref_primary_10_1007_s11063_024_11600_5 crossref_primary_10_1371_journal_pone_0321239 crossref_primary_10_32604_cmc_2023_038640 crossref_primary_10_3390_make5020031 crossref_primary_10_1007_s12561_024_09459_0 crossref_primary_10_1007_s40620_021_01200_0 crossref_primary_10_3389_fncom_2022_1000435 crossref_primary_10_1186_s40001_025_02680_7 crossref_primary_10_3390_bioengineering12010082 crossref_primary_10_3390_ijerph191710928 crossref_primary_10_1109_ACCESS_2023_3240420 crossref_primary_10_3390_jpm13071070 crossref_primary_10_1109_JBHI_2023_3268729 crossref_primary_10_1016_j_eswa_2023_119790 crossref_primary_10_1038_s41398_025_03493_2 crossref_primary_10_3389_frai_2025_1481338 crossref_primary_10_1371_journal_pone_0315809 crossref_primary_10_1007_s10072_025_08167_x crossref_primary_10_1016_j_engappai_2022_105637 crossref_primary_10_3389_fpsyt_2022_993289 crossref_primary_10_1007_s11042_022_11925_0 crossref_primary_10_1093_bib_bbab569 crossref_primary_10_1016_j_compeleceng_2024_109796 crossref_primary_10_3389_fnagi_2022_1040001 crossref_primary_10_1186_s12920_023_01675_9 crossref_primary_10_1016_j_knosys_2024_111676 crossref_primary_10_1371_journal_pone_0324081 crossref_primary_10_1007_s13735_023_00271_y crossref_primary_10_1007_s10072_025_08023_y crossref_primary_10_1007_s10462_024_10712_7 crossref_primary_10_1038_s41598_023_37569_0 crossref_primary_10_1038_s41598_023_37500_7 crossref_primary_10_1088_2057_1976_add73d crossref_primary_10_1016_j_compbiomed_2021_104828 crossref_primary_10_1109_JBHI_2023_3337661 crossref_primary_10_1016_j_bbadis_2025_167925 crossref_primary_10_1002_trc2_12351 crossref_primary_10_1016_j_bspc_2023_105669 crossref_primary_10_1051_bioconf_20249700102 crossref_primary_10_1007_s43657_023_00155_5 crossref_primary_10_1109_JBHI_2023_3242354 crossref_primary_10_1371_journal_pone_0330085 crossref_primary_10_1109_JBHI_2021_3074893 crossref_primary_10_1016_j_jacr_2022_03_015 crossref_primary_10_1016_j_ins_2022_12_014 crossref_primary_10_1016_j_compbiomed_2024_108000 crossref_primary_10_1016_j_dcan_2025_04_001 crossref_primary_10_1038_s41746_022_00699_2 crossref_primary_10_1109_TFUZZ_2024_3409412 crossref_primary_10_1080_09540091_2022_2123450 crossref_primary_10_1016_j_abst_2024_08_004 crossref_primary_10_3390_cancers15174389 crossref_primary_10_1016_j_eswa_2023_120761 crossref_primary_10_1016_j_neunet_2024_106672 crossref_primary_10_1038_s43856_023_00333_6 crossref_primary_10_1155_2021_4186666 crossref_primary_10_1089_brain_2020_0905 crossref_primary_10_1109_ACCESS_2025_3564611 crossref_primary_10_3389_fnins_2023_1209378 crossref_primary_10_1007_s10278_024_01339_9 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1038_s41598_022_13072_w crossref_primary_10_3389_fnagi_2025_1532470 crossref_primary_10_1109_JBHI_2024_3442468 crossref_primary_10_1016_j_bspc_2023_105773 crossref_primary_10_1109_TNNLS_2022_3212700 crossref_primary_10_3389_fnagi_2022_916020 crossref_primary_10_1016_j_iot_2024_101296 crossref_primary_10_1016_j_jksuci_2022_07_016 crossref_primary_10_1016_j_ins_2024_120833 crossref_primary_10_3389_fgene_2025_1552063 crossref_primary_10_1016_j_ins_2023_119129 crossref_primary_10_1016_j_tsep_2024_102809 crossref_primary_10_3389_fpls_2024_1324090 crossref_primary_10_4103_1673_5374_367840 crossref_primary_10_3389_fbioe_2023_1326706 crossref_primary_10_1109_ACCESS_2022_3218621 crossref_primary_10_1016_j_ejrad_2023_110934 crossref_primary_10_1007_s42979_024_03284_4 crossref_primary_10_1109_ACCESS_2024_3481238 crossref_primary_10_1007_s11760_024_03630_2 crossref_primary_10_1016_j_compbiomed_2022_105424 crossref_primary_10_1016_j_asoc_2025_113787 crossref_primary_10_1109_TMI_2022_3162870 crossref_primary_10_32604_iasc_2023_039206 crossref_primary_10_1016_j_media_2025_103503 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1016_j_artmed_2024_103053 crossref_primary_10_1186_s40708_023_00217_4 crossref_primary_10_3389_fnagi_2022_1027224 crossref_primary_10_1016_j_radonc_2022_04_016 crossref_primary_10_1051_itmconf_20214003021 crossref_primary_10_1155_2021_9523039 crossref_primary_10_3390_jcm14020550 crossref_primary_10_3390_electronics11233893 crossref_primary_10_3389_fnbot_2023_1289406 crossref_primary_10_1016_j_inffus_2022_09_006 crossref_primary_10_1038_s42256_023_00633_5 crossref_primary_10_1016_j_engappai_2022_105703 crossref_primary_10_1136_bmjopen_2025_101169 crossref_primary_10_1186_s40035_022_00315_z crossref_primary_10_1002_wics_70043 crossref_primary_10_1182_bloodadvances_2021006351 crossref_primary_10_1016_j_nicl_2023_103376 crossref_primary_10_1109_TCDS_2023_3254209 crossref_primary_10_1177_13872877251359874 crossref_primary_10_1016_j_cca_2024_119857 crossref_primary_10_1016_j_jare_2025_07_022 crossref_primary_10_1109_TMI_2024_3450855 crossref_primary_10_1371_journal_pone_0264631 crossref_primary_10_3233_JAD_220021 crossref_primary_10_3233_JAD_230705 crossref_primary_10_1007_s13369_022_07538_2 crossref_primary_10_1109_MMUL_2022_3156471 crossref_primary_10_3389_fninf_2025_1557177 crossref_primary_10_3389_fneur_2024_1413071 crossref_primary_10_3390_s22124609 crossref_primary_10_3389_fmed_2025_1529761 crossref_primary_10_1109_TCDS_2023_3283406 crossref_primary_10_1007_s10044_024_01297_6 crossref_primary_10_3390_app13137833 crossref_primary_10_1007_s12021_022_09595_2 crossref_primary_10_26599_TST_2024_9010080 crossref_primary_10_1038_s41598_024_82544_y crossref_primary_10_3389_fncom_2025_1484540 crossref_primary_10_1016_j_bspc_2023_105215 crossref_primary_10_3390_math12142204 crossref_primary_10_1007_s11831_022_09870_0 crossref_primary_10_1016_j_bspc_2025_108526 crossref_primary_10_1016_j_bspc_2025_107557 crossref_primary_10_3389_frai_2024_1456069 crossref_primary_10_57197_JDR_2024_0103 crossref_primary_10_1016_j_bspc_2022_104223 crossref_primary_10_1177_13872877251343241 crossref_primary_10_1186_s12938_024_01305_0 crossref_primary_10_3390_math11122633 crossref_primary_10_1016_j_cmpbup_2025_100209 crossref_primary_10_1109_RBME_2022_3185953 crossref_primary_10_1093_g3journal_jkad045 crossref_primary_10_3390_diagnostics12102549 crossref_primary_10_3233_JND_230085 crossref_primary_10_3390_biomedicines12122750 crossref_primary_10_1016_j_inffus_2023_102032 crossref_primary_10_1155_2022_5783139 crossref_primary_10_3390_bioengineering11121233 crossref_primary_10_1016_j_compbiomed_2025_111111 crossref_primary_10_1016_j_patcog_2025_112234 crossref_primary_10_1038_s41598_025_05966_2 crossref_primary_10_1016_j_imavis_2025_105628 crossref_primary_10_1038_s44220_024_00237_x crossref_primary_10_3390_aisens1010006 crossref_primary_10_1038_s41598_022_09719_3 crossref_primary_10_1109_ACCESS_2021_3095312 crossref_primary_10_1007_s11042_024_19104_z crossref_primary_10_52711_0974_360X_2024_00118 crossref_primary_10_1016_j_compbiomed_2025_110829 crossref_primary_10_36548_jtcsst_2025_3_006 crossref_primary_10_1016_j_biopsych_2022_09_031 crossref_primary_10_1002_hbm_26799 crossref_primary_10_1016_j_knosys_2025_114264 crossref_primary_10_1080_03772063_2025_2451721 crossref_primary_10_1093_jamia_ocac168 crossref_primary_10_1016_j_jbi_2023_104567 crossref_primary_10_1007_s12021_022_09617_z crossref_primary_10_1186_s12880_024_01329_x crossref_primary_10_1007_s11042_023_16026_0 crossref_primary_10_1016_j_compbiomed_2024_108635 crossref_primary_10_1002_alz_14319 crossref_primary_10_1016_j_jrras_2023_100782 crossref_primary_10_3390_ph15081008 crossref_primary_10_3390_math10152575 crossref_primary_10_3389_fphys_2024_1380459 crossref_primary_10_1186_s13073_023_01248_6 crossref_primary_10_1016_j_procs_2024_04_168 crossref_primary_10_3390_healthcare10101842 crossref_primary_10_3390_bioengineering9080370 crossref_primary_10_46632_jdaai_4_3_4 crossref_primary_10_1080_01969722_2025_2521703 crossref_primary_10_2196_50209 crossref_primary_10_1016_j_brainres_2024_149021 crossref_primary_10_1038_s41598_024_56489_1 crossref_primary_10_3389_fpubh_2022_834032 crossref_primary_10_22399_ijcesen_3571 crossref_primary_10_1016_j_rineng_2025_105200 crossref_primary_10_1097_IIO_0000000000000549 crossref_primary_10_1038_s41598_025_92577_6 crossref_primary_10_7759_cureus_47004 crossref_primary_10_1016_j_csbj_2022_11_008 crossref_primary_10_1093_arclin_acaf062 crossref_primary_10_3389_fdata_2025_1515341 crossref_primary_10_3389_fmolb_2021_768106 crossref_primary_10_1016_j_ipm_2021_102664 crossref_primary_10_1016_j_medntd_2024_100343 crossref_primary_10_3389_fmed_2025_1568312 crossref_primary_10_1089_ten_teb_2024_0216 crossref_primary_10_1007_s11042_023_16256_2 crossref_primary_10_1016_j_inffus_2023_101950 crossref_primary_10_1016_j_bspc_2024_106646 crossref_primary_10_1109_MSP_2021_3128348 crossref_primary_10_3390_electronics12051218 crossref_primary_10_1016_j_eswa_2021_116076 crossref_primary_10_1038_s41598_025_96052_0 crossref_primary_10_1016_j_patcog_2025_111715 crossref_primary_10_1007_s00439_021_02393_x crossref_primary_10_1007_s12553_025_00967_7 crossref_primary_10_3390_jimaging10060141 crossref_primary_10_1080_17455030_2025_2535959 crossref_primary_10_1016_j_eswa_2023_119709 crossref_primary_10_1016_j_eswa_2024_125321 crossref_primary_10_1145_3649447 crossref_primary_10_1093_brain_awae388 |
| Cites_doi | 10.1117/1.JBO.22.10.106017 10.1016/j.neurobiolaging.2014.04.034 10.1016/j.jalz.2013.02.003 10.1016/S0079-6123(06)58004-5 10.1016/j.ymeth.2020.07.008 10.1038/nrg3868 10.1016/j.neuroimage.2004.12.034 10.1109/TMI.2016.2528162 10.1016/j.neurobiolaging.2011.02.012 10.1016/j.jalz.2005.06.003 10.2967/jnumed.115.163717 10.1038/srep22161 10.1016/j.jalz.2016.03.001 10.1016/j.compmedimag.2019.01.005 10.1016/j.neuroimage.2011.01.008 10.1109/TPAMI.2005.159 10.1038/nature08538 10.1002/hbm.22759 10.1093/bioinformatics/bts228 10.1109/TBME.2014.2372011 10.1111/jon.12214 10.1093/brain/awy093 10.1038/nature21056 10.1148/radiol.12120010 10.1016/j.neurobiolaging.2013.02.003 10.1038/srep26094 10.1186/s12911-020-01225-8 10.1016/S1474-4422(14)70090-0 10.1001/jama.2017.18152 10.1007/s00429-015-1059-y 10.1016/j.jalz.2014.02.004 10.1038/s41598-018-37769-z 10.1001/jama.2016.17216 10.1001/archneurol.2012.1282 10.1109/RBME.2018.2796598 10.1016/j.neuroimage.2011.10.003 10.1016/j.neuroimage.2014.06.077 10.1038/nmeth.3547 10.1038/s41598-018-36745-x 10.1088/1741-2560/10/6/066013 10.1007/s11682-013-9262-z 10.1016/j.neuroimage.2012.09.065 10.1142/S0219720005001004 10.1109/EMBC.2017.8037712 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-020-74399-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_0a0b6b02dd8e4f618f39fd0e5c768139 PMC7864942 33547343 10_1038_s41598_020_74399_w |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Hewlett Packard | HP Labs – fundername: U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS) grantid: UL1TR000454 – fundername: U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health) grantid: UL1TR000454 – fundername: Microsoft Research – fundername: NCATS NIH HHS grantid: UL1 TR000454 – fundername: ; – fundername: ; grantid: UL1TR000454 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c606t-a3887b6759476e0f3ce087b8dc4bcf5d96b9b236c35c75711211a10a202fa55e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 372 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617535800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:34:34 EST 2025 Tue Nov 04 02:01:01 EST 2025 Thu Sep 04 17:51:23 EDT 2025 Tue Oct 07 07:47:53 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Tue Nov 18 21:44:20 EST 2025 Sat Nov 29 02:20:59 EST 2025 Fri Feb 21 02:38:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-a3887b6759476e0f3ce087b8dc4bcf5d96b9b236c35c75711211a10a202fa55e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9049-6024 |
| OpenAccessLink | https://www.proquest.com/docview/2486620755?pq-origsite=%requestingapplication% |
| PMID | 33547343 |
| PQID | 2486620755 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0a0b6b02dd8e4f618f39fd0e5c768139 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864942 proquest_miscellaneous_2487151594 proquest_journals_2486620755 pubmed_primary_33547343 crossref_citationtrail_10_1038_s41598_020_74399_w crossref_primary_10_1038_s41598_020_74399_w springer_journals_10_1038_s41598_020_74399_w |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-05 |
| PublicationDateYYYYMMDD | 2021-02-05 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Shen (CR38) 2014; 8 Grimmer (CR19) 2016; 57 Tong, Wu, Wang (CR43) 2020 Doecke, Laws, Faux (CR22) 2012; 69 Lee, Nho, Kang, Sohn, Kim (CR23) 2019; 9 Barnes (CR21) 2013; 34 Ritchie, Holzinger, Li, Pendergrass, Kim (CR54) 2015; 16 Mueller (CR37) 2005; 1 CR8 CR9 Shaffer (CR28) 2013; 266 Dyrba (CR30) 2015; 25 Phan, Quo, Wang (CR26) 2006; 158 CR44 Eickhoff (CR48) 2005; 25 CR40 Eskildsen (CR18) 2015; 36 Vogel (CR32) 2018; 141 Dai (CR29) 2012; 59 Suk, Lee, Shen (CR7) 2016; 221 Peng, Long, Ding (CR49) 2005; 27 Lorenzi (CR31) 2016; 6 Zhao (CR24) 2019; 9 CR15 Cui, Liu, Initiative (CR20) 2019; 73 Dubois (CR46) 2014; 13 CR12 Suk, Lee, Shen (CR36) 2014; 101 CR10 Zhou, Troyanskaya (CR11) 2015; 12 CR53 (CR14) 2013; 9 Blennow (CR17) 2015; 11 CR51 Tong, Mitchel, Chatlin, Wang (CR42) 2020; 20 (CR13) 2016; 12 Shin (CR41) 2016; 35 Liu (CR6) 2015; 62 Weng, Xu, Li, Wong (CR4) 2017; 22 Suk, Shen (CR5) 2013 CR25 Ting (CR2) 2017; 318 Leandrou, Petroudi, Reyes-Aldasoro, Kyriacou, Pattichis (CR39) 2018; 11 Glodzik (CR45) 2012; 33 Zhang, Wang, Zhou, Yuan, Shen (CR34) 2011; 55 Ding, Peng (CR50) 2005; 3 Perrin, Fagan, Holtzman (CR16) 2009; 461 Gulshan (CR1) 2016; 316 Wang (CR35) 2012; 28 Esteva (CR3) 2017; 542 Dyrba, Grothe, Kirste, Teipel (CR27) 2015; 36 Gray, Aljabar, Heckemann, Hammers, Rueckert (CR33) 2013; 65 Hampson (CR47) 2013; 10 Miotto, Li, Kidd, Dudley (CR52) 2016; 6 L Tong (74399_CR43) 2020 S Leandrou (74399_CR39) 2018; 11 HI Suk (74399_CR7) 2016; 221 J Barnes (74399_CR21) 2013; 34 74399_CR25 SF Eskildsen (74399_CR18) 2015; 36 SG Mueller (74399_CR37) 2005; 1 DSW Ting (74399_CR2) 2017; 318 M Dyrba (74399_CR27) 2015; 36 A Esteva (74399_CR3) 2017; 542 SB Eickhoff (74399_CR48) 2005; 25 T Grimmer (74399_CR19) 2016; 57 B Dubois (74399_CR46) 2014; 13 H-I Suk (74399_CR36) 2014; 101 74399_CR12 JH Phan (74399_CR26) 2006; 158 H Wang (74399_CR35) 2012; 28 74399_CR15 H Peng (74399_CR49) 2005; 27 RE Hampson (74399_CR47) 2013; 10 74399_CR10 Alzheimer’s Association (74399_CR13) 2016; 12 74399_CR53 RJ Perrin (74399_CR16) 2009; 461 74399_CR51 JW Vogel (74399_CR32) 2018; 141 JL Shaffer (74399_CR28) 2013; 266 JD Doecke (74399_CR22) 2012; 69 MD Ritchie (74399_CR54) 2015; 16 Z Dai (74399_CR29) 2012; 59 J Zhao (74399_CR24) 2019; 9 J Zhou (74399_CR11) 2015; 12 M Lorenzi (74399_CR31) 2016; 6 H-C Shin (74399_CR41) 2016; 35 R Miotto (74399_CR52) 2016; 6 74399_CR44 L Tong (74399_CR42) 2020; 20 M Dyrba (74399_CR30) 2015; 25 74399_CR40 K Blennow (74399_CR17) 2015; 11 L Shen (74399_CR38) 2014; 8 C Ding (74399_CR50) 2005; 3 74399_CR8 74399_CR9 R Cui (74399_CR20) 2019; 73 G Lee (74399_CR23) 2019; 9 Alzheimer’s Association (74399_CR14) 2013; 9 L Glodzik (74399_CR45) 2012; 33 S Liu (74399_CR6) 2015; 62 V Gulshan (74399_CR1) 2016; 316 S Weng (74399_CR4) 2017; 22 H-I Suk (74399_CR5) 2013 KR Gray (74399_CR33) 2013; 65 D Zhang (74399_CR34) 2011; 55 |
| References_xml | – volume: 22 start-page: 106017 year: 2017 ident: CR4 article-title: Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.10.106017 – volume: 36 start-page: S23 year: 2015 end-page: S31 ident: CR18 article-title: Structural imaging biomarkers of Alzheimer's disease: Predicting disease progression publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.04.034 – ident: CR51 – ident: CR12 – volume: 9 start-page: 208 issue: 2 year: 2013 end-page: 245 ident: CR14 article-title: 2013 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2013.02.003 – volume: 158 start-page: 83 year: 2006 end-page: 108 ident: CR26 article-title: Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics publication-title: Progress Brain Res doi: 10.1016/S0079-6123(06)58004-5 – year: 2020 ident: CR43 article-title: Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer publication-title: Methods doi: 10.1016/j.ymeth.2020.07.008 – volume: 16 start-page: 85 year: 2015 end-page: 97 ident: CR54 article-title: Methods of integrating data to uncover genotype–phenotype interactions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3868 – volume: 25 start-page: 1325 year: 2005 end-page: 1335 ident: CR48 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.12.034 – volume: 35 start-page: 1285 issue: 5 year: 2016 end-page: 1298 ident: CR41 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – ident: CR8 – ident: CR25 – volume: 33 start-page: 1215 year: 2012 end-page: 1227 ident: CR45 article-title: Alzheimer's disease markers, hypertension, and gray matter damage in normal elderly publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.02.012 – volume: 1 start-page: 55 year: 2005 end-page: 66 ident: CR37 article-title: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) publication-title: Alzheimer's Dement. doi: 10.1016/j.jalz.2005.06.003 – volume: 57 start-page: 204 year: 2016 end-page: 207 ident: CR19 article-title: Visual versus fully automated analyses of 18F-FDG and amyloid PET for prediction of dementia due to Alzheimer disease in mild cognitive impairment publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.163717 – volume: 6 start-page: 22161 year: 2016 ident: CR31 article-title: Multimodal image analysis in Alzheimer’s disease via statistical modelling of non-local intensity correlations publication-title: Sci. Rep. doi: 10.1038/srep22161 – volume: 12 start-page: 459 issue: 4 year: 2016 end-page: 509 ident: CR13 article-title: 2016 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2016.03.001 – start-page: 583 year: 2013 end-page: 590 ident: CR5 publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 – ident: CR15 – volume: 73 start-page: 1 year: 2019 end-page: 10 ident: CR20 article-title: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.01.005 – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: CR34 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.008 – ident: CR9 – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: CR49 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 461 start-page: 916 year: 2009 end-page: 922 ident: CR16 article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease publication-title: Nature doi: 10.1038/nature08538 – volume: 36 start-page: 2118 year: 2015 end-page: 2131 ident: CR27 article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22759 – volume: 28 start-page: i127 year: 2012 end-page: i136 ident: CR35 article-title: Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts228 – volume: 62 start-page: 1132 year: 2015 end-page: 1140 ident: CR6 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2014.2372011 – volume: 25 start-page: 738 year: 2015 end-page: 747 ident: CR30 article-title: Predicting prodromal Alzheimer's disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data publication-title: J. Neuroimaging doi: 10.1111/jon.12214 – volume: 141 start-page: 1871 year: 2018 end-page: 1883 ident: CR32 article-title: Brain properties predict proximity to symptom onset in sporadic Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awy093 – volume: 542 start-page: 115 year: 2017 ident: CR3 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 266 start-page: 583 year: 2013 end-page: 591 ident: CR28 article-title: Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers publication-title: Radiology doi: 10.1148/radiol.12120010 – volume: 34 start-page: 1996 year: 2013 end-page: 2002 ident: CR21 article-title: Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.02.003 – volume: 6 start-page: 26094 year: 2016 ident: CR52 article-title: Deep patient: An unsupervised representation to predict the future of patients from the electronic health records publication-title: Sci. Rep. doi: 10.1038/srep26094 – ident: CR53 – volume: 20 start-page: 1 year: 2020 end-page: 12 ident: CR42 article-title: Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-020-01225-8 – ident: CR10 – volume: 13 start-page: 614 year: 2014 end-page: 629 ident: CR46 article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(14)70090-0 – volume: 318 start-page: 2211 year: 2017 end-page: 2223 ident: CR2 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – volume: 221 start-page: 2569 issue: 5 year: 2016 end-page: 2587 ident: CR7 article-title: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1059-y – volume: 11 start-page: 58 year: 2015 end-page: 69 ident: CR17 article-title: Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease publication-title: Alzheimer's Dement. doi: 10.1016/j.jalz.2014.02.004 – ident: CR40 – volume: 9 start-page: 1952 year: 2019 ident: CR23 article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach publication-title: Sci. Rep. doi: 10.1038/s41598-018-37769-z – ident: CR44 – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR1 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 69 start-page: 1318 year: 2012 end-page: 1325 ident: CR22 article-title: BLood-based protein biomarkers for diagnosis of alzheimer disease publication-title: Arch. Neurol. doi: 10.1001/archneurol.2012.1282 – volume: 11 start-page: 97 year: 2018 end-page: 111 ident: CR39 article-title: Quantitative MRI brain studies in mild cognitive impairment and Alzheimer's disease: A methodological review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2018.2796598 – volume: 59 start-page: 2187 year: 2012 end-page: 2195 ident: CR29 article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.003 – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: CR36 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 12 start-page: 931 year: 2015 end-page: 934 ident: CR11 article-title: Predicting effects of noncoding variants with deep learning-based sequence model publication-title: Nat. Methods doi: 10.1038/nmeth.3547 – volume: 9 start-page: 717 year: 2019 ident: CR24 article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction publication-title: Sci. Rep. doi: 10.1038/s41598-018-36745-x – volume: 10 start-page: 066013 year: 2013 ident: CR47 article-title: Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/6/066013 – volume: 8 start-page: 183 year: 2014 end-page: 207 ident: CR38 article-title: Genetic analysis of quantitative phenotypes in AD and MCI: Imaging, cognition and biomarkers publication-title: Brain Imaging Behav. doi: 10.1007/s11682-013-9262-z – volume: 65 start-page: 167 year: 2013 end-page: 175 ident: CR33 article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.065 – volume: 3 start-page: 185 year: 2005 end-page: 205 ident: CR50 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720005001004 – volume: 266 start-page: 583 year: 2013 ident: 74399_CR28 publication-title: Radiology doi: 10.1148/radiol.12120010 – volume: 62 start-page: 1132 year: 2015 ident: 74399_CR6 publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2014.2372011 – volume: 9 start-page: 208 issue: 2 year: 2013 ident: 74399_CR14 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2013.02.003 – volume: 101 start-page: 569 year: 2014 ident: 74399_CR36 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 141 start-page: 1871 year: 2018 ident: 74399_CR32 publication-title: Brain doi: 10.1093/brain/awy093 – volume: 73 start-page: 1 year: 2019 ident: 74399_CR20 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.01.005 – volume: 6 start-page: 22161 year: 2016 ident: 74399_CR31 publication-title: Sci. Rep. doi: 10.1038/srep22161 – volume: 65 start-page: 167 year: 2013 ident: 74399_CR33 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.065 – volume: 8 start-page: 183 year: 2014 ident: 74399_CR38 publication-title: Brain Imaging Behav. doi: 10.1007/s11682-013-9262-z – volume: 158 start-page: 83 year: 2006 ident: 74399_CR26 publication-title: Progress Brain Res doi: 10.1016/S0079-6123(06)58004-5 – volume: 36 start-page: S23 year: 2015 ident: 74399_CR18 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.04.034 – volume: 33 start-page: 1215 year: 2012 ident: 74399_CR45 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.02.012 – volume: 27 start-page: 1226 year: 2005 ident: 74399_CR49 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 542 start-page: 115 year: 2017 ident: 74399_CR3 publication-title: Nature doi: 10.1038/nature21056 – ident: 74399_CR51 – volume: 13 start-page: 614 year: 2014 ident: 74399_CR46 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(14)70090-0 – volume: 316 start-page: 2402 year: 2016 ident: 74399_CR1 publication-title: JAMA doi: 10.1001/jama.2016.17216 – ident: 74399_CR25 doi: 10.1109/EMBC.2017.8037712 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 74399_CR41 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 57 start-page: 204 year: 2016 ident: 74399_CR19 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.163717 – volume: 11 start-page: 58 year: 2015 ident: 74399_CR17 publication-title: Alzheimer's Dement. doi: 10.1016/j.jalz.2014.02.004 – volume: 69 start-page: 1318 year: 2012 ident: 74399_CR22 publication-title: Arch. Neurol. doi: 10.1001/archneurol.2012.1282 – volume: 36 start-page: 2118 year: 2015 ident: 74399_CR27 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22759 – volume: 11 start-page: 97 year: 2018 ident: 74399_CR39 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2018.2796598 – volume: 59 start-page: 2187 year: 2012 ident: 74399_CR29 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.003 – volume: 12 start-page: 459 issue: 4 year: 2016 ident: 74399_CR13 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2016.03.001 – volume: 20 start-page: 1 year: 2020 ident: 74399_CR42 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-020-01225-8 – volume: 22 start-page: 106017 year: 2017 ident: 74399_CR4 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.22.10.106017 – ident: 74399_CR12 – volume: 34 start-page: 1996 year: 2013 ident: 74399_CR21 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.02.003 – year: 2020 ident: 74399_CR43 publication-title: Methods doi: 10.1016/j.ymeth.2020.07.008 – volume: 55 start-page: 856 year: 2011 ident: 74399_CR34 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 16 start-page: 85 year: 2015 ident: 74399_CR54 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3868 – ident: 74399_CR44 – volume: 3 start-page: 185 year: 2005 ident: 74399_CR50 publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720005001004 – ident: 74399_CR40 – volume: 221 start-page: 2569 issue: 5 year: 2016 ident: 74399_CR7 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1059-y – volume: 6 start-page: 26094 year: 2016 ident: 74399_CR52 publication-title: Sci. Rep. doi: 10.1038/srep26094 – ident: 74399_CR9 – volume: 9 start-page: 1952 year: 2019 ident: 74399_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37769-z – volume: 318 start-page: 2211 year: 2017 ident: 74399_CR2 publication-title: JAMA doi: 10.1001/jama.2017.18152 – ident: 74399_CR53 – volume: 28 start-page: i127 year: 2012 ident: 74399_CR35 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts228 – volume: 1 start-page: 55 year: 2005 ident: 74399_CR37 publication-title: Alzheimer's Dement. doi: 10.1016/j.jalz.2005.06.003 – ident: 74399_CR15 – start-page: 583 volume-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 year: 2013 ident: 74399_CR5 – volume: 25 start-page: 1325 year: 2005 ident: 74399_CR48 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.12.034 – volume: 461 start-page: 916 year: 2009 ident: 74399_CR16 publication-title: Nature doi: 10.1038/nature08538 – ident: 74399_CR10 – ident: 74399_CR8 – volume: 9 start-page: 717 year: 2019 ident: 74399_CR24 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36745-x – volume: 12 start-page: 931 year: 2015 ident: 74399_CR11 publication-title: Nat. Methods doi: 10.1038/nmeth.3547 – volume: 25 start-page: 738 year: 2015 ident: 74399_CR30 publication-title: J. Neuroimaging doi: 10.1111/jon.12214 – volume: 10 start-page: 066013 year: 2013 ident: 74399_CR47 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/6/066013 |
| SSID | ssj0000529419 |
| Score | 2.716298 |
| Snippet | Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of... Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of... Abstract Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3254 |
| SubjectTerms | 631/114/2164 631/114/2401 Alzheimer Disease - diagnosis Alzheimer's disease Amygdala Auditory discrimination learning Cognitive ability Data interpretation Data Mining Deep Learning Diagnosis, Computer-Assisted Early Diagnosis Humanities and Social Sciences Humans Magnetic resonance imaging multidisciplinary Neural networks Neurodegenerative diseases Neuroimaging Science Science (multidisciplinary) Single-nucleotide polymorphism |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5VFZW4ICh_gVIZiRtEdWwnto8FUXGqKtRKvVmOf9qV2my12VLRU1-D1-NJGDvZpQsULpwi2ZPIGo89nzPjbwDeVMFX0de8RLhMS6GjL5WLstTOVVYon5xwLjYh9_fV8bE-uFXqK-WEDfTAg-J2qKVt01LmvQoiNpWKHD9IQ-0QKCN8Sbsvop5bh6mB1ZtpUenxlgzlaqdHT5Vuk-FpKWPw8mrFE2XC_j-hzN-TJX-JmGZHtPcQHowIkuwOI38Ea6HbhI2hpuTXx_A5X6k9n3qU8SFckLEuxAnJRW96giiVhERrjN3znIjVkWkku2fXp2FyHmbfb771ZIzbEMSOJ-EJHO19PPzwqRwLJ5QOzyPz0nLcOlo8Cmghm0Ajd4Fig_JOtC7WXjetbhlvHEct1rJKNG-2opZRFm1dB_4U1rtpF54D0REhlrMyiPTrkdNWWpxDLT3HB42ugGqhRONGVvFU3OLM5Og2V2ZQvEHFm6x4c1XA2-U7FwOnxl-l36e5WUomPuzcgFZiRisx_7KSArYWM2vGRdobJlTTMMRMdQGvl924vFLMxHZhepllZMZ8ooBngyEsR8J5KtwseAFyxURWhrra001OM4W3VI3QghXwbmFMP4d1type_A9VvIT7LOXlpMzzegvW57PL8AruuS_zST_bzsvoB-3KIHc priority: 102 providerName: Directory of Open Access Journals |
| Title | Multimodal deep learning models for early detection of Alzheimer’s disease stage |
| URI | https://link.springer.com/article/10.1038/s41598-020-74399-w https://www.ncbi.nlm.nih.gov/pubmed/33547343 https://www.proquest.com/docview/2486620755 https://www.proquest.com/docview/2487151594 https://pubmed.ncbi.nlm.nih.gov/PMC7864942 https://doaj.org/article/0a0b6b02dd8e4f618f39fd0e5c768139 |
| Volume | 11 |
| WOSCitedRecordID | wos000617535800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXZC4lGchUFZB4gZRndiJnRNqUSs4dBVVIC2nKPFju1KbLJttKzjxN_h7_BLGjner5dELF0eKJ5KdGXs-z4xnAF7FWsVGpTRCuEwilhsVCWl4lEsZV0woq4RdsQk-HovJJC-8wa3zYZWrPdFt1KqV1ka-lzCRZQkquPTt_Etkq0ZZ76ovobEFQ5upjA1geHA4Lk7WVhbrx2Jx7m_LECr2OtRY9lYZnpocFo-uNjSSS9z_N7T5Z9Dkb55Tp5CO7v3vVO7Dtoei4X4vOw_glm4ewp2-OOXXR3Di7uaetwpplNbz0BeYmIauek4XItwNtc2PjN1LF9HVhK0J98--nerZuV78_P6jC70DKEQQOtWP4dPR4cd37yNfgSGSeLBZRhXFPajGM0XOeKaJoVITfCGUZLU0qcqzOq8TmkmaSp7y2OaLq2JSJSQxVZpqugODpm30Uwhzg1hNVlwza8OkpOYVCkPOFcUHMTKAeMWFUvr05LZKxlnp3ORUlD3nSuRc6ThXXgXwev3NvE_OcSP1gWXumtIm1nYv2sW09Ou0JBWps5okSgnNTBYLQ1F-icb5ZQLRcgC7K56WfrV35TVDA3i57sZ1ap0vVaPbC0fDHXhkATzpJWk9EkptBWhGA-AbMrYx1M2eZnbqcoFzkbGcJQG8WUnj9bD-_Sue3TyL53A3saE7Njg93YXBcnGhX8BtebmcdYsRbPEJd60Y-fU2cqYMbI-TwrYc22Hx4bj4_AufXDYj |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgBFGd2ImdA0LlUbVqWSFUpL2ZxI_tSm2ybLasyom_wZ_gR_FLGDvJVsujtx44RYqdyE6-mfnsGc8APImNjq1OaYR0mUQstzoSyvIoVyoumNDOCPtiE3wwEMNh_n4FfvRnYVxYZa8TvaLWtXJ75OsJE1mWoIFLX04-R65qlPOu9iU0WljsmOM5LtmaF9tv8P8-TZLNt3uvt6KuqkCkkKzPooKiXJXIk3PGM0MsVYbgDaEVK5VNdZ6VeZnQTNFU8ZTHLgdaEZMiIYkt0tRQfO85OI96nLsQMj7kiz0d5zVjcd6dzSFUrDdoH90ZNlyjeeYfzZfsny8T8Ddu-2eI5m9-Wm_-Nq_-bx_uGlzpiHa40UrGdVgx1Q242JbePL4JH_zJ48NaYx9tzCTsymeMQl8bqAmRzIfGZX_G5pmPV6vC2oYbB1_3zfjQTH9--96EnXsrRIo9Mrfg45lM6DasVnVl7kKYW2SiquCGuR1aSkpeINRzrileiFUBxP1fl6pLvu5qgBxIHwRAhWyRIhEp0iNFzgN4tnhm0qYeObX3KwemRU-XNtzfqKcj2WkhSQpSZiVJtBaG2SwWlqJ0EoPzywSuBQJY6zEkO13WyBMABfB40YxayLmWisrUR74P99SYBXCnRe5iJJS6-taMBsCXML001OWWarzvM51zkbGcJQE879F_Mqx_f4p7p8_iEVza2nu3K3e3Bzv34XLigpRcGH66Bquz6ZF5ABfUl9m4mT700h3Cp7OWil-aZonf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQIEhwgmic2ImdA0KFMqIqjEYIpN7SxMt0pDYZJlNG5cTf4K_wc_glPDtLNSy99cApUuxEdvK9xX7P7wN4EmoVGhXTAN1lErDUqEBIw4NUyjBnQlkj7Mgm-GgkdnfT8Rr86M7C2LTKTic6Ra0qaffIBxETSRKhgYsHpk2LGG8NX84-B5ZBykZaOzqNBiI7-niJy7f6xfYW_uunUTR88_H126BlGAgkOu6LIKcoYwX6zCnjiSaGSk3whlCSFdLEKk2KtIhoImksecxDWw8tD0kekcjkcawpvvccnOcsjq10vY_G_f6OjaCxMG3P6RAqBjXaSnueDddrbhUQLFdsoaMM-Juf-2e65m8xW2cKh1f_5494Da60Dri_2UjMdVjT5Q242FByHt-ED-5E8mGlsI_Seua3tBoT33EG1T46-b62VaGxeeHy2Eq_Mv7mwdd9PT3U85_fvtd-G_by0fWe6Fvw6UwmdBvWy6rUd8FPDXqoMuea2Z1bSgqeowikXFG8ECM9CDsEZLItym65QQ4ylxxARdagJkPUZA412dKDZ_0zs6Ykyam9X1lg9T1tOXF3o5pPslY7ZSQnRVKQSCmhmUlCYShKLdE4v0TgGsGDjQ5PWavj6uwETB487ptRO9mQU17q6sj14c5lZh7caVDcj4RSy3vNqAd8Bd8rQ11tKaf7rgI6FwlLWeTB804STob1709x7_RZPIJLKAzZu-3Rzn24HNncJZudH2_A-mJ-pB_ABfllMa3nD52g-7B31kLxC4dZkqw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+deep+learning+models+for+early+detection+of+Alzheimer%E2%80%99s+disease+stage&rft.jtitle=Scientific+reports&rft.au=Venugopalan+Janani&rft.au=Li%2C+Tong&rft.au=Hassanzadeh%2C+Hamid+Reza&rft.au=Wang%2C+May+D&rft.date=2021-02-05&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-74399-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |