Multimodal deep learning models for early detection of Alzheimer’s disease stage

Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 11; číslo 1; s. 3254 - 13
Hlavní autoři: Venugopalan, Janani, Tong, Li, Hassanzadeh, Hamid Reza, Wang, May D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 05.02.2021
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.
AbstractList Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.
Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.
Abstract Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer’s disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.
Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer's disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of multiple data modalities can provide a holistic view of AD staging analysis. Thus, we use deep learning (DL) to integrally analyze imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms (SNPs)), and clinical test data to classify patients into AD, MCI, and controls (CN). We use stacked denoising auto-encoders to extract features from clinical and genetic data, and use 3D-convolutional neural networks (CNNs) for imaging data. We also develop a novel data interpretation method to identify top-performing features learned by the deep-models with clustering and perturbation analysis. Using Alzheimer's disease neuroimaging initiative (ADNI) dataset, we demonstrate that deep models outperform shallow models, including support vector machines, decision trees, random forests, and k-nearest neighbors. In addition, we demonstrate that integrating multi-modality data outperforms single modality models in terms of accuracy, precision, recall, and meanF1 scores. Our models have identified hippocampus, amygdala brain areas, and the Rey Auditory Verbal Learning Test (RAVLT) as top distinguished features, which are consistent with the known AD literature.
ArticleNumber 3254
Author Wang, May D.
Hassanzadeh, Hamid Reza
Venugopalan, Janani
Tong, Li
Author_xml – sequence: 1
  givenname: Janani
  orcidid: 0000-0002-9049-6024
  surname: Venugopalan
  fullname: Venugopalan, Janani
  organization: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
– sequence: 2
  givenname: Li
  surname: Tong
  fullname: Tong, Li
  organization: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
– sequence: 3
  givenname: Hamid Reza
  surname: Hassanzadeh
  fullname: Hassanzadeh, Hamid Reza
  organization: School of Computational Science and Engineering, Georgia Institute of Technology
– sequence: 4
  givenname: May D.
  surname: Wang
  fullname: Wang, May D.
  email: maywang@gatech.edu
  organization: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Electrical and Computer Engineering, Georgia Institute of Technology, Winship Cancer Institute, Parker H. Petit Institute for Bioengineering and Biosciences, Institute of People and Technology, Georgia Institute of Technology and Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33547343$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUtFARLaU_wAJFYsMm4HfsDVJV8ahUhIRgbTnOSeorJ77YCVVZ8Rv8Hl-Cb9NC20W9sTVnZjTymadob4oTIPSc4NcEM_UmcyK0qjHFdcOZ1vXFI3RAMRc1ZZTu3Xrvo6OcN7gcQTUn-gnaZ0zwhnF2gL58WsLsx9jZUHUA2yqATZOfhqpgEHLVx1QVKFyW8Qxu9nGqYl8dh5_n4EdIf379zlXnM9gMVZ7tAM_Q496GDEfX9yH69v7d15OP9dnnD6cnx2e1k1jOtWVKNa1shOaNBNwzB7gAqnO8db3otGx1S5l0TLhGNIRQQizBlmLaWyGAHaLT1beLdmO2yY82XZpovbkCYhqMTbN3AQy2uJUtpl2ngPeSqJ7pvsNQnKUiTBevt6vXdmlH6BxMc7LhjundyeTPzRB_mEZJrjktBq-uDVL8vkCezeizgxDsBHHJhnLVEFFWxgv15T3qJi5pKl-1Y0lJcSNEYb24nehflJvVFYJaCS7FnBP0xvnZ7vZTAvpgCDa7opi1KKYUxVwVxVwUKb0nvXF_UMRWUS7kaYD0P_YDqr9bPtFO
CitedBy_id crossref_primary_10_3389_fnins_2023_1177424
crossref_primary_10_1016_j_compbiomed_2024_109199
crossref_primary_10_1038_s41598_023_41543_1
crossref_primary_10_1371_journal_pone_0320360
crossref_primary_10_1177_20552076241272585
crossref_primary_10_3389_fnins_2025_1554015
crossref_primary_10_1016_j_jbi_2025_104873
crossref_primary_10_1155_2021_8439655
crossref_primary_10_3390_biomedicines12061232
crossref_primary_10_1016_j_brainresbull_2023_110846
crossref_primary_10_1088_2057_1976_ad9eb7
crossref_primary_10_1177_22143602241296276
crossref_primary_10_22399_ijcesen_3672
crossref_primary_10_1002_widm_1492
crossref_primary_10_1016_j_arr_2024_102497
crossref_primary_10_1007_s00500_023_08108_w
crossref_primary_10_1109_ACCESS_2022_3168311
crossref_primary_10_1109_JBHI_2024_3418341
crossref_primary_10_1016_j_compmedimag_2025_102638
crossref_primary_10_1109_ACCESS_2025_3540567
crossref_primary_10_32604_cmc_2023_032752
crossref_primary_10_1016_j_ccr_2025_216527
crossref_primary_10_1093_bib_bbac454
crossref_primary_10_1016_j_dsp_2024_104399
crossref_primary_10_1007_s42979_023_02461_1
crossref_primary_10_1016_j_eswa_2023_121849
crossref_primary_10_3390_bioengineering10060701
crossref_primary_10_1007_s10661_025_13708_0
crossref_primary_10_1088_1361_6560_ad3cb2
crossref_primary_10_1109_ACCESS_2023_3342917
crossref_primary_10_1111_coin_12682
crossref_primary_10_1016_j_compmedimag_2025_102529
crossref_primary_10_1109_ACCESS_2021_3127394
crossref_primary_10_1186_s13195_024_01540_6
crossref_primary_10_7717_peerj_cs_2590
crossref_primary_10_1016_j_compbiomed_2023_107050
crossref_primary_10_1002_hbm_26783
crossref_primary_10_3390_electronics11050721
crossref_primary_10_1016_j_irbm_2024_100840
crossref_primary_10_3389_fneur_2024_1515981
crossref_primary_10_1007_s12559_024_10390_1
crossref_primary_10_1007_s11042_024_19875_5
crossref_primary_10_1007_s13198_023_02180_z
crossref_primary_10_1016_j_drudis_2025_104332
crossref_primary_10_2147_RMHP_S519049
crossref_primary_10_2478_amns_2023_1_00205
crossref_primary_10_1145_3543848
crossref_primary_10_1186_s12967_025_06907_3
crossref_primary_10_47164_ijngc_v15i2_1475
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_3390_ai3030038
crossref_primary_10_1016_j_heliyon_2024_e36728
crossref_primary_10_3390_bioengineering10060714
crossref_primary_10_1007_s11517_022_02706_w
crossref_primary_10_1038_s41598_024_82838_1
crossref_primary_10_1109_ACCESS_2022_3149214
crossref_primary_10_1016_j_cogsys_2022_12_005
crossref_primary_10_3390_tomography11090096
crossref_primary_10_1016_j_jneumeth_2022_109745
crossref_primary_10_1038_s41598_022_17203_1
crossref_primary_10_3390_brainsci14040335
crossref_primary_10_1016_j_asoc_2022_109631
crossref_primary_10_1080_10543406_2025_2511194
crossref_primary_10_1016_j_artmed_2022_102260
crossref_primary_10_3390_diagnostics11061071
crossref_primary_10_1016_j_neurobiolaging_2022_10_005
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1007_s42044_025_00321_0
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_1088_2057_1976_ada8af
crossref_primary_10_1007_s10462_023_10644_8
crossref_primary_10_1016_j_imed_2023_04_003
crossref_primary_10_3389_fnins_2023_1202382
crossref_primary_10_1016_j_bspc_2025_107831
crossref_primary_10_3390_informatics10040077
crossref_primary_10_1038_s41598_024_74043_x
crossref_primary_10_1186_s41983_022_00571_w
crossref_primary_10_32604_cmc_2022_022686
crossref_primary_10_3390_agronomy15061279
crossref_primary_10_1007_s11063_024_11600_5
crossref_primary_10_1371_journal_pone_0321239
crossref_primary_10_32604_cmc_2023_038640
crossref_primary_10_3390_make5020031
crossref_primary_10_1007_s12561_024_09459_0
crossref_primary_10_1007_s40620_021_01200_0
crossref_primary_10_3389_fncom_2022_1000435
crossref_primary_10_1186_s40001_025_02680_7
crossref_primary_10_3390_bioengineering12010082
crossref_primary_10_3390_ijerph191710928
crossref_primary_10_1109_ACCESS_2023_3240420
crossref_primary_10_3390_jpm13071070
crossref_primary_10_1109_JBHI_2023_3268729
crossref_primary_10_1016_j_eswa_2023_119790
crossref_primary_10_1038_s41398_025_03493_2
crossref_primary_10_3389_frai_2025_1481338
crossref_primary_10_1371_journal_pone_0315809
crossref_primary_10_1007_s10072_025_08167_x
crossref_primary_10_1016_j_engappai_2022_105637
crossref_primary_10_3389_fpsyt_2022_993289
crossref_primary_10_1007_s11042_022_11925_0
crossref_primary_10_1093_bib_bbab569
crossref_primary_10_1016_j_compeleceng_2024_109796
crossref_primary_10_3389_fnagi_2022_1040001
crossref_primary_10_1186_s12920_023_01675_9
crossref_primary_10_1016_j_knosys_2024_111676
crossref_primary_10_1371_journal_pone_0324081
crossref_primary_10_1007_s13735_023_00271_y
crossref_primary_10_1007_s10072_025_08023_y
crossref_primary_10_1007_s10462_024_10712_7
crossref_primary_10_1038_s41598_023_37569_0
crossref_primary_10_1038_s41598_023_37500_7
crossref_primary_10_1088_2057_1976_add73d
crossref_primary_10_1016_j_compbiomed_2021_104828
crossref_primary_10_1109_JBHI_2023_3337661
crossref_primary_10_1016_j_bbadis_2025_167925
crossref_primary_10_1002_trc2_12351
crossref_primary_10_1016_j_bspc_2023_105669
crossref_primary_10_1051_bioconf_20249700102
crossref_primary_10_1007_s43657_023_00155_5
crossref_primary_10_1109_JBHI_2023_3242354
crossref_primary_10_1371_journal_pone_0330085
crossref_primary_10_1109_JBHI_2021_3074893
crossref_primary_10_1016_j_jacr_2022_03_015
crossref_primary_10_1016_j_ins_2022_12_014
crossref_primary_10_1016_j_compbiomed_2024_108000
crossref_primary_10_1016_j_dcan_2025_04_001
crossref_primary_10_1038_s41746_022_00699_2
crossref_primary_10_1109_TFUZZ_2024_3409412
crossref_primary_10_1080_09540091_2022_2123450
crossref_primary_10_1016_j_abst_2024_08_004
crossref_primary_10_3390_cancers15174389
crossref_primary_10_1016_j_eswa_2023_120761
crossref_primary_10_1016_j_neunet_2024_106672
crossref_primary_10_1038_s43856_023_00333_6
crossref_primary_10_1155_2021_4186666
crossref_primary_10_1089_brain_2020_0905
crossref_primary_10_1109_ACCESS_2025_3564611
crossref_primary_10_3389_fnins_2023_1209378
crossref_primary_10_1007_s10278_024_01339_9
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1038_s41598_022_13072_w
crossref_primary_10_3389_fnagi_2025_1532470
crossref_primary_10_1109_JBHI_2024_3442468
crossref_primary_10_1016_j_bspc_2023_105773
crossref_primary_10_1109_TNNLS_2022_3212700
crossref_primary_10_3389_fnagi_2022_916020
crossref_primary_10_1016_j_iot_2024_101296
crossref_primary_10_1016_j_jksuci_2022_07_016
crossref_primary_10_1016_j_ins_2024_120833
crossref_primary_10_3389_fgene_2025_1552063
crossref_primary_10_1016_j_ins_2023_119129
crossref_primary_10_1016_j_tsep_2024_102809
crossref_primary_10_3389_fpls_2024_1324090
crossref_primary_10_4103_1673_5374_367840
crossref_primary_10_3389_fbioe_2023_1326706
crossref_primary_10_1109_ACCESS_2022_3218621
crossref_primary_10_1016_j_ejrad_2023_110934
crossref_primary_10_1007_s42979_024_03284_4
crossref_primary_10_1109_ACCESS_2024_3481238
crossref_primary_10_1007_s11760_024_03630_2
crossref_primary_10_1016_j_compbiomed_2022_105424
crossref_primary_10_1016_j_asoc_2025_113787
crossref_primary_10_1109_TMI_2022_3162870
crossref_primary_10_32604_iasc_2023_039206
crossref_primary_10_1016_j_media_2025_103503
crossref_primary_10_1038_s41746_022_00712_8
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_artmed_2024_103053
crossref_primary_10_1186_s40708_023_00217_4
crossref_primary_10_3389_fnagi_2022_1027224
crossref_primary_10_1016_j_radonc_2022_04_016
crossref_primary_10_1051_itmconf_20214003021
crossref_primary_10_1155_2021_9523039
crossref_primary_10_3390_jcm14020550
crossref_primary_10_3390_electronics11233893
crossref_primary_10_3389_fnbot_2023_1289406
crossref_primary_10_1016_j_inffus_2022_09_006
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1016_j_engappai_2022_105703
crossref_primary_10_1136_bmjopen_2025_101169
crossref_primary_10_1186_s40035_022_00315_z
crossref_primary_10_1002_wics_70043
crossref_primary_10_1182_bloodadvances_2021006351
crossref_primary_10_1016_j_nicl_2023_103376
crossref_primary_10_1109_TCDS_2023_3254209
crossref_primary_10_1177_13872877251359874
crossref_primary_10_1016_j_cca_2024_119857
crossref_primary_10_1016_j_jare_2025_07_022
crossref_primary_10_1109_TMI_2024_3450855
crossref_primary_10_1371_journal_pone_0264631
crossref_primary_10_3233_JAD_220021
crossref_primary_10_3233_JAD_230705
crossref_primary_10_1007_s13369_022_07538_2
crossref_primary_10_1109_MMUL_2022_3156471
crossref_primary_10_3389_fninf_2025_1557177
crossref_primary_10_3389_fneur_2024_1413071
crossref_primary_10_3390_s22124609
crossref_primary_10_3389_fmed_2025_1529761
crossref_primary_10_1109_TCDS_2023_3283406
crossref_primary_10_1007_s10044_024_01297_6
crossref_primary_10_3390_app13137833
crossref_primary_10_1007_s12021_022_09595_2
crossref_primary_10_26599_TST_2024_9010080
crossref_primary_10_1038_s41598_024_82544_y
crossref_primary_10_3389_fncom_2025_1484540
crossref_primary_10_1016_j_bspc_2023_105215
crossref_primary_10_3390_math12142204
crossref_primary_10_1007_s11831_022_09870_0
crossref_primary_10_1016_j_bspc_2025_108526
crossref_primary_10_1016_j_bspc_2025_107557
crossref_primary_10_3389_frai_2024_1456069
crossref_primary_10_57197_JDR_2024_0103
crossref_primary_10_1016_j_bspc_2022_104223
crossref_primary_10_1177_13872877251343241
crossref_primary_10_1186_s12938_024_01305_0
crossref_primary_10_3390_math11122633
crossref_primary_10_1016_j_cmpbup_2025_100209
crossref_primary_10_1109_RBME_2022_3185953
crossref_primary_10_1093_g3journal_jkad045
crossref_primary_10_3390_diagnostics12102549
crossref_primary_10_3233_JND_230085
crossref_primary_10_3390_biomedicines12122750
crossref_primary_10_1016_j_inffus_2023_102032
crossref_primary_10_1155_2022_5783139
crossref_primary_10_3390_bioengineering11121233
crossref_primary_10_1016_j_compbiomed_2025_111111
crossref_primary_10_1016_j_patcog_2025_112234
crossref_primary_10_1038_s41598_025_05966_2
crossref_primary_10_1016_j_imavis_2025_105628
crossref_primary_10_1038_s44220_024_00237_x
crossref_primary_10_3390_aisens1010006
crossref_primary_10_1038_s41598_022_09719_3
crossref_primary_10_1109_ACCESS_2021_3095312
crossref_primary_10_1007_s11042_024_19104_z
crossref_primary_10_52711_0974_360X_2024_00118
crossref_primary_10_1016_j_compbiomed_2025_110829
crossref_primary_10_36548_jtcsst_2025_3_006
crossref_primary_10_1016_j_biopsych_2022_09_031
crossref_primary_10_1002_hbm_26799
crossref_primary_10_1016_j_knosys_2025_114264
crossref_primary_10_1080_03772063_2025_2451721
crossref_primary_10_1093_jamia_ocac168
crossref_primary_10_1016_j_jbi_2023_104567
crossref_primary_10_1007_s12021_022_09617_z
crossref_primary_10_1186_s12880_024_01329_x
crossref_primary_10_1007_s11042_023_16026_0
crossref_primary_10_1016_j_compbiomed_2024_108635
crossref_primary_10_1002_alz_14319
crossref_primary_10_1016_j_jrras_2023_100782
crossref_primary_10_3390_ph15081008
crossref_primary_10_3390_math10152575
crossref_primary_10_3389_fphys_2024_1380459
crossref_primary_10_1186_s13073_023_01248_6
crossref_primary_10_1016_j_procs_2024_04_168
crossref_primary_10_3390_healthcare10101842
crossref_primary_10_3390_bioengineering9080370
crossref_primary_10_46632_jdaai_4_3_4
crossref_primary_10_1080_01969722_2025_2521703
crossref_primary_10_2196_50209
crossref_primary_10_1016_j_brainres_2024_149021
crossref_primary_10_1038_s41598_024_56489_1
crossref_primary_10_3389_fpubh_2022_834032
crossref_primary_10_22399_ijcesen_3571
crossref_primary_10_1016_j_rineng_2025_105200
crossref_primary_10_1097_IIO_0000000000000549
crossref_primary_10_1038_s41598_025_92577_6
crossref_primary_10_7759_cureus_47004
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_1093_arclin_acaf062
crossref_primary_10_3389_fdata_2025_1515341
crossref_primary_10_3389_fmolb_2021_768106
crossref_primary_10_1016_j_ipm_2021_102664
crossref_primary_10_1016_j_medntd_2024_100343
crossref_primary_10_3389_fmed_2025_1568312
crossref_primary_10_1089_ten_teb_2024_0216
crossref_primary_10_1007_s11042_023_16256_2
crossref_primary_10_1016_j_inffus_2023_101950
crossref_primary_10_1016_j_bspc_2024_106646
crossref_primary_10_1109_MSP_2021_3128348
crossref_primary_10_3390_electronics12051218
crossref_primary_10_1016_j_eswa_2021_116076
crossref_primary_10_1038_s41598_025_96052_0
crossref_primary_10_1016_j_patcog_2025_111715
crossref_primary_10_1007_s00439_021_02393_x
crossref_primary_10_1007_s12553_025_00967_7
crossref_primary_10_3390_jimaging10060141
crossref_primary_10_1080_17455030_2025_2535959
crossref_primary_10_1016_j_eswa_2023_119709
crossref_primary_10_1016_j_eswa_2024_125321
crossref_primary_10_1145_3649447
crossref_primary_10_1093_brain_awae388
Cites_doi 10.1117/1.JBO.22.10.106017
10.1016/j.neurobiolaging.2014.04.034
10.1016/j.jalz.2013.02.003
10.1016/S0079-6123(06)58004-5
10.1016/j.ymeth.2020.07.008
10.1038/nrg3868
10.1016/j.neuroimage.2004.12.034
10.1109/TMI.2016.2528162
10.1016/j.neurobiolaging.2011.02.012
10.1016/j.jalz.2005.06.003
10.2967/jnumed.115.163717
10.1038/srep22161
10.1016/j.jalz.2016.03.001
10.1016/j.compmedimag.2019.01.005
10.1016/j.neuroimage.2011.01.008
10.1109/TPAMI.2005.159
10.1038/nature08538
10.1002/hbm.22759
10.1093/bioinformatics/bts228
10.1109/TBME.2014.2372011
10.1111/jon.12214
10.1093/brain/awy093
10.1038/nature21056
10.1148/radiol.12120010
10.1016/j.neurobiolaging.2013.02.003
10.1038/srep26094
10.1186/s12911-020-01225-8
10.1016/S1474-4422(14)70090-0
10.1001/jama.2017.18152
10.1007/s00429-015-1059-y
10.1016/j.jalz.2014.02.004
10.1038/s41598-018-37769-z
10.1001/jama.2016.17216
10.1001/archneurol.2012.1282
10.1109/RBME.2018.2796598
10.1016/j.neuroimage.2011.10.003
10.1016/j.neuroimage.2014.06.077
10.1038/nmeth.3547
10.1038/s41598-018-36745-x
10.1088/1741-2560/10/6/066013
10.1007/s11682-013-9262-z
10.1016/j.neuroimage.2012.09.065
10.1142/S0219720005001004
10.1109/EMBC.2017.8037712
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-020-74399-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_0a0b6b02dd8e4f618f39fd0e5c768139
PMC7864942
33547343
10_1038_s41598_020_74399_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hewlett Packard | HP Labs
– fundername: U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS)
  grantid: UL1TR000454
– fundername: U.S. Department of Health & Human Services | NIH | Center for Information Technology (Center for Information Technology, National Institutes of Health)
  grantid: UL1TR000454
– fundername: Microsoft Research
– fundername: NCATS NIH HHS
  grantid: UL1 TR000454
– fundername: ;
– fundername: ;
  grantid: UL1TR000454
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-a3887b6759476e0f3ce087b8dc4bcf5d96b9b236c35c75711211a10a202fa55e3
IEDL.DBID BENPR
ISICitedReferencesCount 372
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617535800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:34:34 EST 2025
Tue Nov 04 02:01:01 EST 2025
Thu Sep 04 17:51:23 EDT 2025
Tue Oct 07 07:47:53 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Tue Nov 18 21:44:20 EST 2025
Sat Nov 29 02:20:59 EST 2025
Fri Feb 21 02:38:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-a3887b6759476e0f3ce087b8dc4bcf5d96b9b236c35c75711211a10a202fa55e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9049-6024
OpenAccessLink https://www.proquest.com/docview/2486620755?pq-origsite=%requestingapplication%
PMID 33547343
PQID 2486620755
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0a0b6b02dd8e4f618f39fd0e5c768139
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7864942
proquest_miscellaneous_2487151594
proquest_journals_2486620755
pubmed_primary_33547343
crossref_citationtrail_10_1038_s41598_020_74399_w
crossref_primary_10_1038_s41598_020_74399_w
springer_journals_10_1038_s41598_020_74399_w
PublicationCentury 2000
PublicationDate 2021-02-05
PublicationDateYYYYMMDD 2021-02-05
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Shen (CR38) 2014; 8
Grimmer (CR19) 2016; 57
Tong, Wu, Wang (CR43) 2020
Doecke, Laws, Faux (CR22) 2012; 69
Lee, Nho, Kang, Sohn, Kim (CR23) 2019; 9
Barnes (CR21) 2013; 34
Ritchie, Holzinger, Li, Pendergrass, Kim (CR54) 2015; 16
Mueller (CR37) 2005; 1
CR8
CR9
Shaffer (CR28) 2013; 266
Dyrba (CR30) 2015; 25
Phan, Quo, Wang (CR26) 2006; 158
CR44
Eickhoff (CR48) 2005; 25
CR40
Eskildsen (CR18) 2015; 36
Vogel (CR32) 2018; 141
Dai (CR29) 2012; 59
Suk, Lee, Shen (CR7) 2016; 221
Peng, Long, Ding (CR49) 2005; 27
Lorenzi (CR31) 2016; 6
Zhao (CR24) 2019; 9
CR15
Cui, Liu, Initiative (CR20) 2019; 73
Dubois (CR46) 2014; 13
CR12
Suk, Lee, Shen (CR36) 2014; 101
CR10
Zhou, Troyanskaya (CR11) 2015; 12
CR53
(CR14) 2013; 9
Blennow (CR17) 2015; 11
CR51
Tong, Mitchel, Chatlin, Wang (CR42) 2020; 20
(CR13) 2016; 12
Shin (CR41) 2016; 35
Liu (CR6) 2015; 62
Weng, Xu, Li, Wong (CR4) 2017; 22
Suk, Shen (CR5) 2013
CR25
Ting (CR2) 2017; 318
Leandrou, Petroudi, Reyes-Aldasoro, Kyriacou, Pattichis (CR39) 2018; 11
Glodzik (CR45) 2012; 33
Zhang, Wang, Zhou, Yuan, Shen (CR34) 2011; 55
Ding, Peng (CR50) 2005; 3
Perrin, Fagan, Holtzman (CR16) 2009; 461
Gulshan (CR1) 2016; 316
Wang (CR35) 2012; 28
Esteva (CR3) 2017; 542
Dyrba, Grothe, Kirste, Teipel (CR27) 2015; 36
Gray, Aljabar, Heckemann, Hammers, Rueckert (CR33) 2013; 65
Hampson (CR47) 2013; 10
Miotto, Li, Kidd, Dudley (CR52) 2016; 6
L Tong (74399_CR43) 2020
S Leandrou (74399_CR39) 2018; 11
HI Suk (74399_CR7) 2016; 221
J Barnes (74399_CR21) 2013; 34
74399_CR25
SF Eskildsen (74399_CR18) 2015; 36
SG Mueller (74399_CR37) 2005; 1
DSW Ting (74399_CR2) 2017; 318
M Dyrba (74399_CR27) 2015; 36
A Esteva (74399_CR3) 2017; 542
SB Eickhoff (74399_CR48) 2005; 25
T Grimmer (74399_CR19) 2016; 57
B Dubois (74399_CR46) 2014; 13
H-I Suk (74399_CR36) 2014; 101
74399_CR12
JH Phan (74399_CR26) 2006; 158
H Wang (74399_CR35) 2012; 28
74399_CR15
H Peng (74399_CR49) 2005; 27
RE Hampson (74399_CR47) 2013; 10
74399_CR10
Alzheimer’s Association (74399_CR13) 2016; 12
74399_CR53
RJ Perrin (74399_CR16) 2009; 461
74399_CR51
JW Vogel (74399_CR32) 2018; 141
JL Shaffer (74399_CR28) 2013; 266
JD Doecke (74399_CR22) 2012; 69
MD Ritchie (74399_CR54) 2015; 16
Z Dai (74399_CR29) 2012; 59
J Zhao (74399_CR24) 2019; 9
J Zhou (74399_CR11) 2015; 12
M Lorenzi (74399_CR31) 2016; 6
H-C Shin (74399_CR41) 2016; 35
R Miotto (74399_CR52) 2016; 6
74399_CR44
L Tong (74399_CR42) 2020; 20
M Dyrba (74399_CR30) 2015; 25
74399_CR40
K Blennow (74399_CR17) 2015; 11
L Shen (74399_CR38) 2014; 8
C Ding (74399_CR50) 2005; 3
74399_CR8
74399_CR9
R Cui (74399_CR20) 2019; 73
G Lee (74399_CR23) 2019; 9
Alzheimer’s Association (74399_CR14) 2013; 9
L Glodzik (74399_CR45) 2012; 33
S Liu (74399_CR6) 2015; 62
V Gulshan (74399_CR1) 2016; 316
S Weng (74399_CR4) 2017; 22
H-I Suk (74399_CR5) 2013
KR Gray (74399_CR33) 2013; 65
D Zhang (74399_CR34) 2011; 55
References_xml – volume: 22
  start-page: 106017
  year: 2017
  ident: CR4
  article-title: Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.10.106017
– volume: 36
  start-page: S23
  year: 2015
  end-page: S31
  ident: CR18
  article-title: Structural imaging biomarkers of Alzheimer's disease: Predicting disease progression
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.04.034
– ident: CR51
– ident: CR12
– volume: 9
  start-page: 208
  issue: 2
  year: 2013
  end-page: 245
  ident: CR14
  article-title: 2013 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2013.02.003
– volume: 158
  start-page: 83
  year: 2006
  end-page: 108
  ident: CR26
  article-title: Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics
  publication-title: Progress Brain Res
  doi: 10.1016/S0079-6123(06)58004-5
– year: 2020
  ident: CR43
  article-title: Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.07.008
– volume: 16
  start-page: 85
  year: 2015
  end-page: 97
  ident: CR54
  article-title: Methods of integrating data to uncover genotype–phenotype interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3868
– volume: 25
  start-page: 1325
  year: 2005
  end-page: 1335
  ident: CR48
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  end-page: 1298
  ident: CR41
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: CR8
– ident: CR25
– volume: 33
  start-page: 1215
  year: 2012
  end-page: 1227
  ident: CR45
  article-title: Alzheimer's disease markers, hypertension, and gray matter damage in normal elderly
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.02.012
– volume: 1
  start-page: 55
  year: 2005
  end-page: 66
  ident: CR37
  article-title: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
  publication-title: Alzheimer's Dement.
  doi: 10.1016/j.jalz.2005.06.003
– volume: 57
  start-page: 204
  year: 2016
  end-page: 207
  ident: CR19
  article-title: Visual versus fully automated analyses of 18F-FDG and amyloid PET for prediction of dementia due to Alzheimer disease in mild cognitive impairment
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.115.163717
– volume: 6
  start-page: 22161
  year: 2016
  ident: CR31
  article-title: Multimodal image analysis in Alzheimer’s disease via statistical modelling of non-local intensity correlations
  publication-title: Sci. Rep.
  doi: 10.1038/srep22161
– volume: 12
  start-page: 459
  issue: 4
  year: 2016
  end-page: 509
  ident: CR13
  article-title: 2016 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2016.03.001
– start-page: 583
  year: 2013
  end-page: 590
  ident: CR5
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
– ident: CR15
– volume: 73
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR20
  article-title: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.01.005
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: CR34
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: CR9
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: CR49
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 461
  start-page: 916
  year: 2009
  end-page: 922
  ident: CR16
  article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/nature08538
– volume: 36
  start-page: 2118
  year: 2015
  end-page: 2131
  ident: CR27
  article-title: Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22759
– volume: 28
  start-page: i127
  year: 2012
  end-page: i136
  ident: CR35
  article-title: Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts228
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: CR6
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2014.2372011
– volume: 25
  start-page: 738
  year: 2015
  end-page: 747
  ident: CR30
  article-title: Predicting prodromal Alzheimer's disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12214
– volume: 141
  start-page: 1871
  year: 2018
  end-page: 1883
  ident: CR32
  article-title: Brain properties predict proximity to symptom onset in sporadic Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awy093
– volume: 542
  start-page: 115
  year: 2017
  ident: CR3
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 266
  start-page: 583
  year: 2013
  end-page: 591
  ident: CR28
  article-title: Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers
  publication-title: Radiology
  doi: 10.1148/radiol.12120010
– volume: 34
  start-page: 1996
  year: 2013
  end-page: 2002
  ident: CR21
  article-title: Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.02.003
– volume: 6
  start-page: 26094
  year: 2016
  ident: CR52
  article-title: Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
  publication-title: Sci. Rep.
  doi: 10.1038/srep26094
– ident: CR53
– volume: 20
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR42
  article-title: Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-01225-8
– ident: CR10
– volume: 13
  start-page: 614
  year: 2014
  end-page: 629
  ident: CR46
  article-title: Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(14)70090-0
– volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  ident: CR2
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– volume: 221
  start-page: 2569
  issue: 5
  year: 2016
  end-page: 2587
  ident: CR7
  article-title: Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1059-y
– volume: 11
  start-page: 58
  year: 2015
  end-page: 69
  ident: CR17
  article-title: Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease
  publication-title: Alzheimer's Dement.
  doi: 10.1016/j.jalz.2014.02.004
– ident: CR40
– volume: 9
  start-page: 1952
  year: 2019
  ident: CR23
  article-title: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37769-z
– ident: CR44
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR1
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 69
  start-page: 1318
  year: 2012
  end-page: 1325
  ident: CR22
  article-title: BLood-based protein biomarkers for diagnosis of alzheimer disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2012.1282
– volume: 11
  start-page: 97
  year: 2018
  end-page: 111
  ident: CR39
  article-title: Quantitative MRI brain studies in mild cognitive impairment and Alzheimer's disease: A methodological review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2796598
– volume: 59
  start-page: 2187
  year: 2012
  end-page: 2195
  ident: CR29
  article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.003
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: CR36
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 12
  start-page: 931
  year: 2015
  end-page: 934
  ident: CR11
  article-title: Predicting effects of noncoding variants with deep learning-based sequence model
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
– volume: 9
  start-page: 717
  year: 2019
  ident: CR24
  article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36745-x
– volume: 10
  start-page: 066013
  year: 2013
  ident: CR47
  article-title: Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/6/066013
– volume: 8
  start-page: 183
  year: 2014
  end-page: 207
  ident: CR38
  article-title: Genetic analysis of quantitative phenotypes in AD and MCI: Imaging, cognition and biomarkers
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-013-9262-z
– volume: 65
  start-page: 167
  year: 2013
  end-page: 175
  ident: CR33
  article-title: Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.065
– volume: 3
  start-page: 185
  year: 2005
  end-page: 205
  ident: CR50
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720005001004
– volume: 266
  start-page: 583
  year: 2013
  ident: 74399_CR28
  publication-title: Radiology
  doi: 10.1148/radiol.12120010
– volume: 62
  start-page: 1132
  year: 2015
  ident: 74399_CR6
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2014.2372011
– volume: 9
  start-page: 208
  issue: 2
  year: 2013
  ident: 74399_CR14
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2013.02.003
– volume: 101
  start-page: 569
  year: 2014
  ident: 74399_CR36
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 141
  start-page: 1871
  year: 2018
  ident: 74399_CR32
  publication-title: Brain
  doi: 10.1093/brain/awy093
– volume: 73
  start-page: 1
  year: 2019
  ident: 74399_CR20
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.01.005
– volume: 6
  start-page: 22161
  year: 2016
  ident: 74399_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/srep22161
– volume: 65
  start-page: 167
  year: 2013
  ident: 74399_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.065
– volume: 8
  start-page: 183
  year: 2014
  ident: 74399_CR38
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-013-9262-z
– volume: 158
  start-page: 83
  year: 2006
  ident: 74399_CR26
  publication-title: Progress Brain Res
  doi: 10.1016/S0079-6123(06)58004-5
– volume: 36
  start-page: S23
  year: 2015
  ident: 74399_CR18
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.04.034
– volume: 33
  start-page: 1215
  year: 2012
  ident: 74399_CR45
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.02.012
– volume: 27
  start-page: 1226
  year: 2005
  ident: 74399_CR49
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 542
  start-page: 115
  year: 2017
  ident: 74399_CR3
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: 74399_CR51
– volume: 13
  start-page: 614
  year: 2014
  ident: 74399_CR46
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(14)70090-0
– volume: 316
  start-page: 2402
  year: 2016
  ident: 74399_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– ident: 74399_CR25
  doi: 10.1109/EMBC.2017.8037712
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 74399_CR41
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 57
  start-page: 204
  year: 2016
  ident: 74399_CR19
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.115.163717
– volume: 11
  start-page: 58
  year: 2015
  ident: 74399_CR17
  publication-title: Alzheimer's Dement.
  doi: 10.1016/j.jalz.2014.02.004
– volume: 69
  start-page: 1318
  year: 2012
  ident: 74399_CR22
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2012.1282
– volume: 36
  start-page: 2118
  year: 2015
  ident: 74399_CR27
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22759
– volume: 11
  start-page: 97
  year: 2018
  ident: 74399_CR39
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2796598
– volume: 59
  start-page: 2187
  year: 2012
  ident: 74399_CR29
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.003
– volume: 12
  start-page: 459
  issue: 4
  year: 2016
  ident: 74399_CR13
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2016.03.001
– volume: 20
  start-page: 1
  year: 2020
  ident: 74399_CR42
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-01225-8
– volume: 22
  start-page: 106017
  year: 2017
  ident: 74399_CR4
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.22.10.106017
– ident: 74399_CR12
– volume: 34
  start-page: 1996
  year: 2013
  ident: 74399_CR21
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.02.003
– year: 2020
  ident: 74399_CR43
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.07.008
– volume: 55
  start-page: 856
  year: 2011
  ident: 74399_CR34
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 16
  start-page: 85
  year: 2015
  ident: 74399_CR54
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3868
– ident: 74399_CR44
– volume: 3
  start-page: 185
  year: 2005
  ident: 74399_CR50
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720005001004
– ident: 74399_CR40
– volume: 221
  start-page: 2569
  issue: 5
  year: 2016
  ident: 74399_CR7
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1059-y
– volume: 6
  start-page: 26094
  year: 2016
  ident: 74399_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/srep26094
– ident: 74399_CR9
– volume: 9
  start-page: 1952
  year: 2019
  ident: 74399_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37769-z
– volume: 318
  start-page: 2211
  year: 2017
  ident: 74399_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– ident: 74399_CR53
– volume: 28
  start-page: i127
  year: 2012
  ident: 74399_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts228
– volume: 1
  start-page: 55
  year: 2005
  ident: 74399_CR37
  publication-title: Alzheimer's Dement.
  doi: 10.1016/j.jalz.2005.06.003
– ident: 74399_CR15
– start-page: 583
  volume-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
  year: 2013
  ident: 74399_CR5
– volume: 25
  start-page: 1325
  year: 2005
  ident: 74399_CR48
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 461
  start-page: 916
  year: 2009
  ident: 74399_CR16
  publication-title: Nature
  doi: 10.1038/nature08538
– ident: 74399_CR10
– ident: 74399_CR8
– volume: 9
  start-page: 717
  year: 2019
  ident: 74399_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36745-x
– volume: 12
  start-page: 931
  year: 2015
  ident: 74399_CR11
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
– volume: 25
  start-page: 738
  year: 2015
  ident: 74399_CR30
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12214
– volume: 10
  start-page: 066013
  year: 2013
  ident: 74399_CR47
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/6/066013
SSID ssj0000529419
Score 2.716298
Snippet Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of...
Most current Alzheimer's disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The fusion of...
Abstract Most current Alzheimer’s disease (AD) and mild cognitive disorders (MCI) studies use single data modality to make predictions such as AD stages. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3254
SubjectTerms 631/114/2164
631/114/2401
Alzheimer Disease - diagnosis
Alzheimer's disease
Amygdala
Auditory discrimination learning
Cognitive ability
Data interpretation
Data Mining
Deep Learning
Diagnosis, Computer-Assisted
Early Diagnosis
Humanities and Social Sciences
Humans
Magnetic resonance imaging
multidisciplinary
Neural networks
Neurodegenerative diseases
Neuroimaging
Science
Science (multidisciplinary)
Single-nucleotide polymorphism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDeBgozEDaImtmMnx4KoOFUIgdSb5ce4XanNVpstFT31b_D3-CWMnezS5XnhajvSaDJjfyOPvw_gBTaIMkRXCkvlqgwhlq1sOGW8sxEdpZ-LWWxC7--3Bwfd-ytSX6knbKQHHh23U9nKKVfxEFqUUdVtFF0MFTaegDLBl7T7Euq5UkyNrN68k3U3vZKpRLsz0EmVXpNRtZQxeHm-cRJlwv7focxfmyV_ujHNB9Hebbg1IUi2O1p-B65hfxdujJqSX-7Bh_yk9mQeaE1APGWTLsQhy6I3AyOUyjDRGtP0Mjdi9Wwe2e7xxRHOTnDx7fLrwKZ7G0bY8RDvw6e9tx_fvCsn4YTSUz2yLK2grcNRKdBJrbCKwmNFA23w0vnYhE65znGhvCAvNrpONG-2riyveLRNg-IBbPXzHh8Bc9J7HWvai5SWFqn84DppXAmpLAptC6hXTjR-YhVP4hbHJt9ui9aMjjfkeJMdb84LeLn-5nTk1Pjr6tfp36xXJj7sPEBRYqYoMf-KkgK2V3_WTEk6GC5bpThhpqaA5-tpSq90Z2J7nJ_lNTpjPlnAwzEQ1pYIkYSbpShAb4TIhqmbM_3sKFN461bJTvICXq2C6YdZf3bF4__hiidwk6e-nNR53mzD1nJxhk_huv-8nA2LZzmNvgOh0iEO
  priority: 102
  providerName: Directory of Open Access Journals
Title Multimodal deep learning models for early detection of Alzheimer’s disease stage
URI https://link.springer.com/article/10.1038/s41598-020-74399-w
https://www.ncbi.nlm.nih.gov/pubmed/33547343
https://www.proquest.com/docview/2486620755
https://www.proquest.com/docview/2487151594
https://pubmed.ncbi.nlm.nih.gov/PMC7864942
https://doaj.org/article/0a0b6b02dd8e4f618f39fd0e5c768139
Volume 11
WOSCitedRecordID wos000617535800009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RBCQu5VlYKNEicYNVd22v7T2hFrWCQ6OoAimcVn6mkdrdkE1bwYm_wd_jl2A7Tqrw6IWLD7ZXsnc8L894PoBXpjSGaCszLJy7SrS2GSclchwvhTXSsZ-0AWyCDYd8PK5G8cKti2mVK5kYBLVulb8j30OEU4qcgivfzr5kHjXKR1cjhMYW9H2lMtKD_sHhcHSyvmXxcSxSVPG1TI75Xuc0ln9V5rymYItnVxsaKRTu_5u1-WfS5G-R06CQju7971buw3Y0RdP95dl5ALdM8xDuLMEpvz6Ck_A297zVbo42ZpZGgIlJGtBzutSZu6nx9ZHd8CJkdDVpa9P9s2-nZnpu5j-__-jSGABKnRE6MY_h09Hhx3fvs4jAkCnn2CwygZ0Mks6nqAijJrdYmdx1cK2IVLbUFZWVRJgqXCpWssLXixNFLlCOrChLg3eg17SNeQqpJEoxWzihRhkRxvkxiHmwLEyoMJiJBIoVFWoVy5N7lIyzOoTJMa-XlKsd5epAufoqgdfrb2bL4hw3zj7wxF3P9IW1Q0c7n9SRT-tc5JLKHGnNDbG04BZXVufG7Y9yZy0nsLuiaR25vauvCZrAy_Ww41MffBGNaS_CHBaMR5LAk-VJWq8EY48ATXACbOOMbSx1c6SZnoZa4IxTUhGUwJvVabxe1r9_xbObd_Ec7iKfuuOT08td6C3mF-YF3FaXi2k3H8AWG7PQ8kHkt0G4ynDtMRr5lrm2P_pwPPr8C5RyNro
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgBFET24mTA0LlUbVqWSFUpL0ZO7a3K7XJstmyKif-Bn-CH8UvYewkWy2P3nrgajuRHX8znsmM5wN4YlJjmLYqohLdVaa1jXKWEpR4Ja1RKH7KerIJPhjkw2HxfgV-9HdhXFplrxO9otZ16f6RrxOWZxnBAy59OfkcOdYoF13tKTRaWOyY4zm6bM2L7Te4v08J2Xy793or6lgFohKN9VkkKcqVQju5YDwzsaWlibEh1yVTpU11kalCEZqVNC15yhNXA00msSQxsTJNDcX3noPzqMe5SyHjQ774p-OiZiwpurs5Mc3XGzwf3R029NG85R_Nl84_TxPwN9v2zxTN3-K0_vjbvPq_fbhrcKUztMONVjKuw4qpbsDFlnrz-CZ88DePD2uNY7Qxk7CjzxiFnhuoCdGYD42r_ozdM5-vVoW1DTcOvu6b8aGZ_vz2vQm78FaIJvbI3IKPZ7Kg27Ba1ZW5C6FiZcltgio740wa9NIId1RglGXSUC4DSPpdF2VXfN1xgBwInwRAc9EiRSBShEeKmAfwbPHMpC09curoVw5Mi5GubLhvqKcj0WkhEctYZSomWueG2SzJLS2sjg2uL8vRFwhgrceQ6HRZI04AFMDjRTdqIRdakpWpj_wY7k1jFsCdFrmLmVDq-K0ZDYAvYXppqss91XjfVzrnecYKRgJ43qP_ZFr__hT3Tl_FI7i0tfduV-xuD3buw2XikpRcGn66Bquz6ZF5ABfKL7NxM33opTuET2ctFb8Ae6yKdg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AgSDBCaJN_IiTA0KFsqIqrFYIpN5SJ7a3K7XJstmyKif-Bn-Fn8MvYew8quXRWw9cYyeynW_GM57xfABPNNeaKZMHVKK7ypQyQcI4QYnPpdE5il9uHNmEGI2S3d10vAY_urswNq2y04lOUauqsGfkA8KSOCa4wfGBadMixlvDl7PPgWWQspHWjk6jgciOPl6i-1a_2N7Cf_2UkOGbj6_fBi3DQFCg4b4IJEUZy9FmTpmIdWhooUN8kKiC5YXhKo3zNCc0LigvBBeRrYcmo1CSkBjJuab43XNwXjDOrXS9J-P-fMdG0FiUtvd0QpoMatwr7X029NecFxAsV_ZCRxnwNzv3z3TN32K2biscXv2fF_EaXGkNcH-zkZjrsKbLG3CxoeQ8vgkf3I3kw0phH6X1zG9pNSa-4wyqfTTyfW2rQmPzwuWxlX5l_M2Dr_t6eqjnP799r_027OWj6T3Rt-DTmUzoNqyXVanvgp-zohAmQlUeCyY1em9EWIowymKpqZAeRB0CsqItym65QQ4ylxxAk6xBTYaoyRxqsqUHz_p3Zk1JklN7v7LA6nvacuLuQTWfZK12ykIZ5nEeEqUSzUwcJYamRoUa5xcn6CN4sNHhKWt1XJ2dgMmDx30zaicbcpKlro5cH-FMZubBnQbF_UgotbzXjHogVvC9MtTVlnK67yqgiyRmKSMePO8k4WRY_16Ke6fP4hFcQmHI3m2Pdu7DZWJzl2x2Pt-A9cX8SD-AC8WXxbSeP3SC7sPeWQvFL30Ik0M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+deep+learning+models+for+early+detection+of+Alzheimer%E2%80%99s+disease+stage&rft.jtitle=Scientific+reports&rft.au=Venugopalan%2C+Janani&rft.au=Tong%2C+Li&rft.au=Hassanzadeh%2C+Hamid+Reza&rft.au=Wang%2C+May+D.&rft.date=2021-02-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-74399-w&rft.externalDocID=10_1038_s41598_020_74399_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon