On evaluation metrics for medical applications of artificial intelligence

Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 12; číslo 1; s. 5979 - 9
Hlavní autoři: Hicks, Steven A., Strümke, Inga, Thambawita, Vajira, Hammou, Malek, Riegler, Michael A., Halvorsen, Pål, Parasa, Sravanthi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 08.04.2022
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.
AbstractList Abstract Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.
Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model's performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.
Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model's performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model's performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.
ArticleNumber 5979
Author Strümke, Inga
Thambawita, Vajira
Hicks, Steven A.
Hammou, Malek
Riegler, Michael A.
Parasa, Sravanthi
Halvorsen, Pål
Author_xml – sequence: 1
  givenname: Steven A.
  surname: Hicks
  fullname: Hicks, Steven A.
  email: steven@simula.no
  organization: SimulaMet, Oslo Metropolitan University
– sequence: 2
  givenname: Inga
  surname: Strümke
  fullname: Strümke, Inga
  organization: SimulaMet
– sequence: 3
  givenname: Vajira
  surname: Thambawita
  fullname: Thambawita, Vajira
  organization: SimulaMet, Oslo Metropolitan University
– sequence: 4
  givenname: Malek
  surname: Hammou
  fullname: Hammou, Malek
  organization: SimulaMet
– sequence: 5
  givenname: Michael A.
  surname: Riegler
  fullname: Riegler, Michael A.
  organization: SimulaMet
– sequence: 6
  givenname: Pål
  surname: Halvorsen
  fullname: Halvorsen, Pål
  organization: SimulaMet, Oslo Metropolitan University
– sequence: 7
  givenname: Sravanthi
  surname: Parasa
  fullname: Parasa, Sravanthi
  organization: Swedish Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35395867$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQtFAQCSE_wAGNxIXLgN9jX5BQxGOlSLnA2fJ4ehavZu3Fno2Uv6d3J4Ekh_jilruqXG7Xa3KScgJC3jL6kVFhPlXJlDUt5byl1irZmhfkjFOpWi44P3lQn5KLWjcUl-JWMvuKnAolrDK6OyOr69TAjZ_2fo45NVuYSwy1GXPBeojBT43f7SYsDv3a5LHxZY5jDBFbMc0wTXENKcAb8nL0U4WLu_2c_Pr29eflj_bq-vvq8stVGzTVc9uN1A-gBgWjVaKjwHshtRlASKs0k33wEqi2QY9WB8aZp9x0FobQD8L2TJyT1aI7ZL9xuxK3vty67KM7HuSydgeHYQLnkcm08pT1KDwMfd_hhWNnTC-ppAK1Pi9au32Pzw2Q5uKnR6KPOyn-dut844y1wnCNAh_uBEr-s4c6u22sAWfiE-R9dVxLY6yUkiP0_RPoJu9LwlEdUUII2llEvXvo6J-V-x9DgFkAoeRaC4wuxPn4OWgwTo5Rd8iHW_LhMB_umA9nkMqfUO_VnyWJhVQRnNZQ_tt-hvUXyTvM4Q
CitedBy_id crossref_primary_10_1038_s41746_023_00941_5
crossref_primary_10_3390_antibiotics12030523
crossref_primary_10_3389_fonc_2025_1498832
crossref_primary_10_1016_j_rineng_2024_101894
crossref_primary_10_3390_diagnostics15010099
crossref_primary_10_3390_jimaging9100225
crossref_primary_10_1016_j_artmed_2024_102917
crossref_primary_10_1038_s42256_022_00559_4
crossref_primary_10_1016_j_snr_2025_100346
crossref_primary_10_1088_2632_2153_ad23fb
crossref_primary_10_1007_s13369_024_09939_x
crossref_primary_10_1051_bioconf_202414601082
crossref_primary_10_1016_j_radonc_2025_111032
crossref_primary_10_1038_s41598_025_09083_y
crossref_primary_10_1109_ACCESS_2024_3457753
crossref_primary_10_1016_j_esmogo_2025_100132
crossref_primary_10_1371_journal_pone_0301275
crossref_primary_10_1016_j_cmpb_2024_108537
crossref_primary_10_1007_s11042_023_15485_9
crossref_primary_10_1080_00221309_2024_2433278
crossref_primary_10_1109_JSEN_2024_3368749
crossref_primary_10_3389_fdgth_2025_1484231
crossref_primary_10_3390_a18030151
crossref_primary_10_1007_s11042_025_21013_8
crossref_primary_10_1016_j_compmedimag_2024_102373
crossref_primary_10_1007_s00521_024_10926_4
crossref_primary_10_1016_j_ab_2024_115546
crossref_primary_10_1016_j_csbj_2023_10_006
crossref_primary_10_1115_1_4068818
crossref_primary_10_1038_s41430_024_01529_2
crossref_primary_10_1088_1361_6579_acbc09
crossref_primary_10_1007_s11096_025_01906_2
crossref_primary_10_1016_j_heliyon_2024_e36728
crossref_primary_10_1002_jeo2_12039
crossref_primary_10_1016_j_asoc_2024_111468
crossref_primary_10_1016_j_ijmedinf_2024_105550
crossref_primary_10_1089_sur_2024_288
crossref_primary_10_3390_jcm13185573
crossref_primary_10_3390_biom15070991
crossref_primary_10_1007_s11625_024_01516_3
crossref_primary_10_1038_s44303_024_00031_5
crossref_primary_10_3390_bioengineering12060659
crossref_primary_10_3390_diagnostics12102392
crossref_primary_10_62186_001c_131964
crossref_primary_10_3233_THC_240582
crossref_primary_10_1109_ACCESS_2025_3549271
crossref_primary_10_1186_s12891_023_06951_4
crossref_primary_10_3390_ijms24097781
crossref_primary_10_3390_v16071088
crossref_primary_10_3390_foods14020169
crossref_primary_10_3390_electronics12041046
crossref_primary_10_1093_comjnl_bxad107
crossref_primary_10_55708_js0404003
crossref_primary_10_1038_s41746_024_01095_8
crossref_primary_10_1002_ksa_12618
crossref_primary_10_1515_revneuro_2023_0117
crossref_primary_10_3390_bioengineering11111153
crossref_primary_10_3390_jimaging10120322
crossref_primary_10_1177_17531934241295493
crossref_primary_10_1016_j_compmedimag_2024_102434
crossref_primary_10_33769_aupse_1378578
crossref_primary_10_3389_fcimb_2024_1482186
crossref_primary_10_1186_s12879_025_10766_0
crossref_primary_10_1080_01676830_2025_2510587
crossref_primary_10_1021_acs_jcim_5c01037
crossref_primary_10_3390_app15189964
crossref_primary_10_1007_s00521_024_10203_4
crossref_primary_10_1016_j_compbiomed_2025_110094
crossref_primary_10_1016_j_vascn_2025_108393
crossref_primary_10_1007_s10278_025_01570_y
crossref_primary_10_1016_j_cmpb_2025_108957
crossref_primary_10_1016_j_engappai_2025_111363
crossref_primary_10_1007_s40496_025_00399_2
crossref_primary_10_3390_proteomes12030024
crossref_primary_10_1080_00032719_2024_2401634
crossref_primary_10_1007_s11357_025_01626_5
crossref_primary_10_22144_ctujos_2025_093
crossref_primary_10_1007_s00784_024_05989_5
crossref_primary_10_1007_s10278_024_01244_1
crossref_primary_10_1109_ACCESS_2024_3429157
crossref_primary_10_1109_ACCESS_2024_3516880
crossref_primary_10_1038_s41467_025_59378_x
crossref_primary_10_1016_j_ijmedinf_2025_105870
crossref_primary_10_1186_s41747_025_00584_z
crossref_primary_10_1016_j_aca_2023_340868
crossref_primary_10_3389_frai_2024_1325219
crossref_primary_10_3390_diagnostics15050560
crossref_primary_10_7717_peerj_17428
crossref_primary_10_1038_s41598_025_94032_y
crossref_primary_10_1016_j_bspc_2023_105893
crossref_primary_10_1371_journal_pone_0316019
crossref_primary_10_1007_s42979_022_01611_1
crossref_primary_10_1080_19376812_2024_2375376
crossref_primary_10_1002_jbio_70017
crossref_primary_10_1016_j_compag_2025_110248
crossref_primary_10_1007_s00146_024_02012_z
crossref_primary_10_1080_10875301_2024_2426793
crossref_primary_10_3390_diagnostics13132274
crossref_primary_10_1038_s41598_023_44410_1
crossref_primary_10_3389_fdmed_2024_1479380
crossref_primary_10_3390_foods12050955
crossref_primary_10_1002_cyto_a_24956
crossref_primary_10_1001_jamanetworkopen_2024_43925
crossref_primary_10_1186_s12911_024_02473_8
crossref_primary_10_3390_diagnostics12081850
crossref_primary_10_3390_app15073718
crossref_primary_10_1021_acs_chemrestox_4c00466
crossref_primary_10_1002_jbio_202300523
crossref_primary_10_1016_j_bspc_2023_104812
crossref_primary_10_3390_jcm13082283
crossref_primary_10_1038_s41598_025_94826_0
crossref_primary_10_3390_bioengineering9090423
crossref_primary_10_1038_s41585_025_01070_2
crossref_primary_10_1107_S2059798325000865
crossref_primary_10_18267_j_aip_198
crossref_primary_10_1016_j_jad_2024_06_061
crossref_primary_10_1371_journal_pone_0292980
crossref_primary_10_1007_s42979_023_02094_4
crossref_primary_10_4103_jmp_jmp_106_23
crossref_primary_10_3390_jcdd11090291
crossref_primary_10_1192_bjp_2025_113
crossref_primary_10_12968_hmed_2024_0312
crossref_primary_10_1038_s41598_024_81961_3
crossref_primary_10_1093_ajhp_zxaf089
crossref_primary_10_1371_journal_pone_0311036
crossref_primary_10_1016_j_procs_2024_03_033
crossref_primary_10_1002_jeo2_70342
crossref_primary_10_1016_j_bas_2024_103918
crossref_primary_10_1002_cam4_6418
crossref_primary_10_1186_s13071_025_06878_w
crossref_primary_10_3390_ijms25094715
crossref_primary_10_3390_jcm14186421
crossref_primary_10_1016_j_prosdent_2024_11_018
crossref_primary_10_1038_s41598_025_01141_9
crossref_primary_10_1038_s41598_025_87622_3
crossref_primary_10_1007_s10586_025_05372_3
crossref_primary_10_1016_j_jece_2024_114481
crossref_primary_10_3390_computation12030044
crossref_primary_10_1016_j_compbiomed_2024_108185
crossref_primary_10_1016_j_labinv_2025_104186
crossref_primary_10_1038_s41598_024_82222_z
crossref_primary_10_1227_neu_0000000000003639
crossref_primary_10_1038_s41405_025_00319_7
crossref_primary_10_1016_j_echo_2024_03_017
crossref_primary_10_1016_j_asoc_2024_111722
crossref_primary_10_1186_s12911_024_02528_w
crossref_primary_10_1038_s41598_024_57198_5
crossref_primary_10_3390_ph16091259
crossref_primary_10_1109_ACCESS_2024_3374691
crossref_primary_10_1186_s42234_022_00103_0
crossref_primary_10_3389_fpsyg_2024_1447968
crossref_primary_10_1016_j_xops_2025_100847
crossref_primary_10_1016_j_compbiomed_2024_108074
crossref_primary_10_3389_fphar_2024_1437167
crossref_primary_10_1016_j_jbi_2025_104846
crossref_primary_10_1111_jcpe_13774
crossref_primary_10_1007_s13205_025_04282_w
crossref_primary_10_1038_s41598_024_66576_y
crossref_primary_10_1016_j_jocs_2025_102592
crossref_primary_10_1136_bmjpo_2024_002908
crossref_primary_10_3390_diagnostics15182404
crossref_primary_10_1021_acs_jpcb_4c08824
crossref_primary_10_3390_diagnostics15070901
crossref_primary_10_1007_s10278_024_01137_3
crossref_primary_10_1093_sleep_zsaf061
crossref_primary_10_3390_bdcc9040089
crossref_primary_10_1016_j_eswa_2024_126191
crossref_primary_10_1111_petr_14747
crossref_primary_10_1016_j_jclinane_2023_111295
crossref_primary_10_2166_nh_2025_097
crossref_primary_10_1016_j_gie_2022_10_016
crossref_primary_10_1109_TIM_2024_3369155
crossref_primary_10_3390_diagnostics14171866
crossref_primary_10_1016_j_bspc_2023_105940
crossref_primary_10_1097_PR9_0000000000001332
crossref_primary_10_3390_brainsci15010068
crossref_primary_10_1128_jcm_01433_24
crossref_primary_10_3389_fvets_2023_1174700
crossref_primary_10_3390_app15020933
crossref_primary_10_1186_s10194_024_01924_x
crossref_primary_10_1007_s43681_025_00666_z
crossref_primary_10_1007_s12016_025_09076_9
crossref_primary_10_1227_ons_0000000000001009
crossref_primary_10_1016_j_procs_2024_03_231
crossref_primary_10_1016_j_jbi_2025_104825
crossref_primary_10_1177_03331024241262751
crossref_primary_10_1080_01605682_2024_2445760
crossref_primary_10_1186_s12859_023_05443_5
crossref_primary_10_1016_j_advnut_2025_100398
crossref_primary_10_1155_2023_9965226
crossref_primary_10_3390_nu17091492
crossref_primary_10_1016_j_compbiomed_2022_106205
crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1333
crossref_primary_10_3390_rs14236031
crossref_primary_10_7759_cureus_81332
crossref_primary_10_1109_ACCESS_2022_3189018
crossref_primary_10_1097_MPA_0000000000002242
crossref_primary_10_1007_s41060_024_00649_z
crossref_primary_10_1109_TKDE_2025_3580671
crossref_primary_10_3390_electronics14132717
crossref_primary_10_3389_frai_2025_1606250
crossref_primary_10_3389_fnagi_2024_1437707
crossref_primary_10_1136_ejhpharm_2023_003857
crossref_primary_10_1007_s00417_025_06804_x
crossref_primary_10_7717_peerj_cs_2124
crossref_primary_10_1109_TNSRE_2024_3522121
crossref_primary_10_1093_gigascience_giad108
crossref_primary_10_3390_computers14030106
crossref_primary_10_1007_s11916_024_01297_5
crossref_primary_10_3389_froh_2025_1569567
crossref_primary_10_1016_j_csbj_2024_08_002
crossref_primary_10_1111_ene_16235
crossref_primary_10_3390_app132212397
crossref_primary_10_3390_diagnostics15070822
crossref_primary_10_1016_j_jpi_2023_100334
crossref_primary_10_1038_s41390_024_03774_4
crossref_primary_10_3389_fnetp_2023_1256104
crossref_primary_10_1089_thy_2023_0132
crossref_primary_10_1109_ACCESS_2024_3450444
crossref_primary_10_1186_s13195_025_01751_5
crossref_primary_10_1016_j_compbiomed_2025_110320
crossref_primary_10_1007_s44257_025_00037_2
crossref_primary_10_3390_proteomes13030035
crossref_primary_10_2196_55820
crossref_primary_10_2196_54617
crossref_primary_10_1007_s00034_024_02739_6
crossref_primary_10_1016_j_eclinm_2025_103401
crossref_primary_10_3390_jcm13123401
crossref_primary_10_3389_fnbot_2024_1421401
crossref_primary_10_1016_j_bj_2024_100743
crossref_primary_10_1186_s12967_025_06802_x
crossref_primary_10_2196_66831
crossref_primary_10_1002_ese3_70033
crossref_primary_10_1016_j_bioflm_2025_100283
crossref_primary_10_3390_molecules30122653
crossref_primary_10_1099_jmm_0_002008
crossref_primary_10_1007_s11042_024_19694_8
crossref_primary_10_3390_diagnostics14212405
crossref_primary_10_2166_hydro_2024_354
crossref_primary_10_1016_j_bspc_2024_106322
crossref_primary_10_3390_s23125648
crossref_primary_10_1016_j_asoc_2025_113259
crossref_primary_10_1038_s41598_024_54990_1
crossref_primary_10_1007_s00586_025_08672_9
crossref_primary_10_1016_j_bbi_2024_08_013
crossref_primary_10_1016_j_clae_2025_102509
crossref_primary_10_3390_rs17142512
crossref_primary_10_1007_s11227_025_06924_5
crossref_primary_10_1016_j_yamp_2023_01_001
crossref_primary_10_1093_bib_bbaf015
crossref_primary_10_3233_JAD_230525
crossref_primary_10_1007_s11517_024_03077_0
crossref_primary_10_3389_fpsyt_2025_1581297
crossref_primary_10_3390_s23020992
crossref_primary_10_1177_17455057241248121
crossref_primary_10_1016_j_bjps_2025_03_021
crossref_primary_10_3390_info15100599
crossref_primary_10_1007_s11709_025_1177_4
crossref_primary_10_1186_s12911_024_02621_0
crossref_primary_10_3389_fbinf_2025_1628724
crossref_primary_10_1145_3681796
crossref_primary_10_1016_j_compbiomed_2025_109661
crossref_primary_10_19127_bshealthscience_1539717
crossref_primary_10_3390_bdcc7010032
crossref_primary_10_1007_s10570_024_05824_w
crossref_primary_10_3390_s24082383
crossref_primary_10_2196_64225
crossref_primary_10_1007_s11042_024_19638_2
crossref_primary_10_1016_j_engstruct_2024_118431
crossref_primary_10_1007_s13721_025_00522_4
crossref_primary_10_3390_foods14101664
crossref_primary_10_1109_ACCESS_2023_3312616
crossref_primary_10_3389_fmed_2023_1166743
crossref_primary_10_3390_cancers14143442
crossref_primary_10_1371_journal_pone_0315823
crossref_primary_10_1038_s41598_022_25821_y
crossref_primary_10_1016_j_jcmg_2023_09_011
crossref_primary_10_1109_ACCESS_2024_3521319
crossref_primary_10_1038_s41598_024_80792_6
crossref_primary_10_3390_jcm12124095
crossref_primary_10_3390_life14121634
crossref_primary_10_1109_ACCESS_2024_3448236
crossref_primary_10_1007_s11096_025_01900_8
crossref_primary_10_3390_ijms25084214
crossref_primary_10_3390_pediatric16030067
crossref_primary_10_1186_s12880_025_01892_x
crossref_primary_10_1371_journal_pdig_0000692
crossref_primary_10_1016_j_wace_2024_100652
crossref_primary_10_1016_j_jfma_2025_08_008
crossref_primary_10_1109_ACCESS_2024_3437214
crossref_primary_10_1186_s12877_023_04246_w
crossref_primary_10_1016_j_array_2025_100398
crossref_primary_10_3389_fpubh_2025_1659322
crossref_primary_10_1186_s12887_025_05489_9
crossref_primary_10_1016_j_bja_2023_11_026
crossref_primary_10_1186_s40798_024_00751_3
crossref_primary_10_3390_ijerph20032131
crossref_primary_10_3390_jcm13144116
crossref_primary_10_4274_jpr_galenos_2024_08624
crossref_primary_10_1002_zoo_70008
crossref_primary_10_1109_JBHI_2024_3438885
crossref_primary_10_1016_j_eswa_2023_122153
crossref_primary_10_1109_TETC_2022_3178631
crossref_primary_10_1016_j_avsg_2025_05_009
crossref_primary_10_1371_journal_pone_0295598
crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_287
crossref_primary_10_1016_j_chemosphere_2024_144018
crossref_primary_10_3390_electronics13152999
crossref_primary_10_3390_electronics13050963
crossref_primary_10_1016_j_mvr_2024_104732
crossref_primary_10_1016_j_jbo_2025_100682
crossref_primary_10_1109_ACCESS_2025_3548431
crossref_primary_10_1038_s41598_025_97719_4
crossref_primary_10_1016_j_ins_2024_120882
crossref_primary_10_1016_j_neuroscience_2025_05_004
crossref_primary_10_1038_s41390_025_04378_2
crossref_primary_10_1109_JBHI_2024_3367736
crossref_primary_10_3390_jcm13123583
crossref_primary_10_3390_pharmaceutics14112378
crossref_primary_10_1161_JAHA_124_038730
crossref_primary_10_1371_journal_pntd_0012235
crossref_primary_10_3390_electronics14050950
crossref_primary_10_3390_s24248018
crossref_primary_10_1097_AUD_0000000000001670
crossref_primary_10_1212_CPJ_0000000000200293
crossref_primary_10_3389_fneur_2022_959582
crossref_primary_10_1007_s11605_023_05762_1
crossref_primary_10_1007_s00330_025_11416_4
crossref_primary_10_3390_biomedicines12122892
crossref_primary_10_1089_respcare_12540
crossref_primary_10_1186_s12871_024_02840_y
crossref_primary_10_1016_j_ijcha_2025_101783
crossref_primary_10_1109_ACCESS_2025_3550303
crossref_primary_10_1016_j_eplepsyres_2023_107275
crossref_primary_10_3390_diagnostics15131698
crossref_primary_10_3390_diagnostics13111904
crossref_primary_10_1038_s41598_025_10451_x
crossref_primary_10_1371_journal_pdig_0000930
crossref_primary_10_1007_s40264_024_01505_6
crossref_primary_10_3390_s25010205
crossref_primary_10_1080_02699052_2025_2472188
crossref_primary_10_3390_su141911861
crossref_primary_10_1109_ACCESS_2023_3299819
crossref_primary_10_1007_s43681_024_00597_1
crossref_primary_10_1016_j_inhs_2025_100005
crossref_primary_10_2478_mgr_2024_0006
crossref_primary_10_1016_j_bspc_2025_108085
crossref_primary_10_1007_s10930_023_10168_8
crossref_primary_10_1016_j_jceh_2025_102627
crossref_primary_10_1016_j_saa_2024_124480
crossref_primary_10_1016_j_cjca_2024_04_026
crossref_primary_10_1016_j_jocn_2025_111243
crossref_primary_10_1007_s00134_024_07629_8
crossref_primary_10_1177_00220345231200786
crossref_primary_10_3390_s23136134
crossref_primary_10_1016_j_ajpath_2023_11_015
crossref_primary_10_1016_j_oor_2024_100591
crossref_primary_10_1186_s12889_024_18868_1
crossref_primary_10_3389_fonc_2023_1260374
crossref_primary_10_1111_febs_70140
crossref_primary_10_1007_s00422_023_00967_8
crossref_primary_10_1186_s40337_025_01265_3
crossref_primary_10_3390_ai6010007
crossref_primary_10_1109_ACCESS_2024_3487532
crossref_primary_10_1016_j_ijmedinf_2024_105414
crossref_primary_10_1097_TA_0000000000004385
crossref_primary_10_3390_jpm13121660
crossref_primary_10_1016_j_imu_2023_101188
crossref_primary_10_1109_ACCESS_2024_3521497
crossref_primary_10_1177_07067437241295635
crossref_primary_10_3748_wjg_v31_i36_111137
crossref_primary_10_1038_s41598_024_78498_w
crossref_primary_10_1016_j_tige_2024_03_001
crossref_primary_10_1016_j_jamda_2024_105417
crossref_primary_10_1038_s41377_023_01296_y
crossref_primary_10_1097_JS9_0000000000000979
crossref_primary_10_1016_j_atech_2025_101464
crossref_primary_10_1038_s41598_024_78363_w
crossref_primary_10_1109_ACCESS_2024_3380453
crossref_primary_10_1016_j_compbiomed_2025_110812
crossref_primary_10_1016_j_ejrai_2025_100030
crossref_primary_10_1016_j_jtho_2024_05_006
crossref_primary_10_1007_s12094_025_03939_5
crossref_primary_10_1109_ACCESS_2025_3591241
crossref_primary_10_3390_data9010009
crossref_primary_10_1038_s41571_024_00909_8
crossref_primary_10_1038_s44401_025_00020_9
crossref_primary_10_1016_j_imu_2024_101567
crossref_primary_10_3390_jcm13092709
crossref_primary_10_1055_a_2577_2739
crossref_primary_10_1001_jamanetworkopen_2025_21150
crossref_primary_10_29128_geomatik_1589807
crossref_primary_10_1186_s13244_024_01833_2
crossref_primary_10_1016_j_eswa_2025_127928
crossref_primary_10_1109_JBHI_2022_3233535
crossref_primary_10_1016_j_physa_2023_128938
crossref_primary_10_1007_s44196_025_00965_7
crossref_primary_10_1007_s12553_025_00967_7
crossref_primary_10_1007_s10238_024_01336_w
Cites_doi 10.1016/j.compmedimag.2015.02.007
10.1371/journal.pone.0118432
10.1371/journal.pone.0236452
10.1016/j.gie.2020.07.060
10.1136/bmj.m689
10.1055/a-1306-7590
10.1053/j.gastro.2019.08.058
10.1136/gutjnl-2020-323115
10.1016/j.ijnurstu.2011.02.010
10.1371/journal.pone.0177678
10.1038/s41597-020-00622-y
10.1038/s41591-018-0300-7
10.1136/gutjnl-2017-314547
10.1016/0005-2795(75)90109-9
10.1109/JBHI.2021.3049304
10.1016/j.patcog.2018.05.026
10.1016/j.tgie.2019.150634
10.1136/gutjnl-2019-319914
10.1038/s41598-017-02606-2
10.1038/s41551-018-0301-3
10.1155/2021/2485934
10.1109/EMBC.2018.8513274
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-09954-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_a287165a01b14bddbb770ef788b40403
PMC8993826
35395867
10_1038_s41598_022_09954_8
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-7f0ade5d5ef95370e2b3468de3495614bca4e069c6f96c121a02879edcbd39b13
IEDL.DBID DOA
ISICitedReferencesCount 465
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781895600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:00 EDT 2025
Tue Nov 04 01:51:46 EST 2025
Fri Sep 05 11:50:48 EDT 2025
Wed Oct 29 08:42:19 EDT 2025
Thu Jan 02 22:54:23 EST 2025
Tue Nov 18 20:02:33 EST 2025
Sat Nov 29 06:25:47 EST 2025
Fri Feb 21 02:36:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-7f0ade5d5ef95370e2b3468de3495614bca4e069c6f96c121a02879edcbd39b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/a287165a01b14bddbb770ef788b40403
PMID 35395867
PQID 2648333079
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_a287165a01b14bddbb770ef788b40403
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993826
proquest_miscellaneous_2648894442
proquest_journals_2648333079
pubmed_primary_35395867
crossref_citationtrail_10_1038_s41598_022_09954_8
crossref_primary_10_1038_s41598_022_09954_8
springer_journals_10_1038_s41598_022_09954_8
PublicationCentury 2000
PublicationDate 2022-04-08
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Boughorbel, Jarray, El-Anbari (CR13) 2017; 12
Le Berre (CR15) 2020; 158
Patel (CR5) 2020; 15
Schmitz (CR3) 2021
Wang (CR19) 2018; 2
Mossotto (CR17) 2017; 7
Nagendran (CR1) 2020; 368
Topol (CR2) 2019; 25
Misawa (CR23) 2020
Jha (CR8) 2021; 25
Wang, Feng, Song, Liu, Liu (CR6) 2021; 2021
Cramer (CR11) 1946
Saito, Rehmsmeier (CR14) 2015; 10
CR24
Zhang, Zheng, Poon, Shen, Lau (CR7) 2018; 83
Borgli (CR22) 2020; 7
CR21
Byrne (CR18) 2019; 68
Polit (CR10) 2011; 48
Hoogenboom, Bagci, Wallace (CR4) 2019; 22
Matthews (CR12) 1975; 405
Bernal (CR20) 2015; 43
Ahmad (CR9) 2020
Hassan (CR16) 2020; 69
DF Polit (9954_CR10) 2011; 48
M Nagendran (9954_CR1) 2020; 368
Y Wang (9954_CR6) 2021; 2021
C Hassan (9954_CR16) 2020; 69
B Matthews (9954_CR12) 1975; 405
T Saito (9954_CR14) 2015; 10
P Wang (9954_CR19) 2018; 2
9954_CR21
S Boughorbel (9954_CR13) 2017; 12
EJ Topol (9954_CR2) 2019; 25
M Misawa (9954_CR23) 2020
9954_CR24
OF Ahmad (9954_CR9) 2020
K Patel (9954_CR5) 2020; 15
R Schmitz (9954_CR3) 2021
C Le Berre (9954_CR15) 2020; 158
E Mossotto (9954_CR17) 2017; 7
R Zhang (9954_CR7) 2018; 83
D Jha (9954_CR8) 2021; 25
H Cramer (9954_CR11) 1946
MF Byrne (9954_CR18) 2019; 68
H Borgli (9954_CR22) 2020; 7
SA Hoogenboom (9954_CR4) 2019; 22
J Bernal (9954_CR20) 2015; 43
References_xml – volume: 43
  start-page: 99
  year: 2015
  end-page: 111
  ident: CR20
  article-title: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation versus saliency maps from physicians
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2015.02.007
– ident: CR21
– year: 1946
  ident: CR11
  publication-title: Mathematical Methods of Statistics
– volume: 10
  start-page: e0118432
  year: 2015
  ident: CR14
  article-title: The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118432
– volume: 15
  start-page: 1
  year: 2020
  end-page: 16
  ident: CR5
  article-title: A comparative study on polyp classification using convolutional neural networks
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0236452
– year: 2020
  ident: CR23
  article-title: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video)
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2020.07.060
– volume: 368
  start-page: m689
  year: 2020
  ident: CR1
  article-title: Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies
  publication-title: bmj
  doi: 10.1136/bmj.m689
– year: 2020
  ident: CR9
  article-title: Establishing key research questions for the implementation of artificial intelligence in colonoscopy—A modified Delphi method
  publication-title: Endoscopy
  doi: 10.1055/a-1306-7590
– volume: 158
  start-page: 76
  year: 2020
  end-page: 94
  ident: CR15
  article-title: Application of artificial intelligence to gastroenterology and hepatology
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.08.058
– year: 2021
  ident: CR3
  article-title: Artificial intelligence in GI endoscopy: Stumbling blocks, gold standards and the role of endoscopy societies
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-323115
– volume: 48
  start-page: 636
  year: 2011
  end-page: 641
  ident: CR10
  article-title: Blinding during the analysis of research data
  publication-title: Int. J. Nurs. Stud.
  doi: 10.1016/j.ijnurstu.2011.02.010
– volume: 12
  start-page: 1
  year: 2017
  end-page: 17
  ident: CR13
  article-title: Optimal classifier for imbalanced data using Matthews correlation coefficient metric
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0177678
– volume: 7
  start-page: 283
  year: 2020
  ident: CR22
  article-title: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00622-y
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: CR2
  article-title: High-performance medicine: The convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 68
  start-page: 94
  year: 2019
  end-page: 100
  ident: CR18
  article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314547
– volume: 405
  start-page: 442
  year: 1975
  end-page: 451
  ident: CR12
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochim. Biophys. Acta (BBA) Protein Struct.
  doi: 10.1016/0005-2795(75)90109-9
– volume: 25
  start-page: 2029
  year: 2021
  end-page: 2040
  ident: CR8
  article-title: A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3049304
– volume: 83
  start-page: 209
  year: 2018
  end-page: 219
  ident: CR7
  article-title: Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.026
– ident: CR24
– volume: 22
  start-page: 150634
  year: 2019
  ident: CR4
  article-title: AI in gastroenterology. The current state of play and the potential. How will it affect our practice and when?
  publication-title: Techn. Gastrointest. Endosc.
  doi: 10.1016/j.tgie.2019.150634
– volume: 69
  start-page: 799
  year: 2020
  end-page: 800
  ident: CR16
  article-title: New artificial intelligence system: First validation study versus experienced endoscopists for colorectal polyp detection
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319914
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR17
  article-title: Classification of paediatric inflammatory bowel disease using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02606-2
– volume: 2
  start-page: 741
  year: 2018
  end-page: 748
  ident: CR19
  article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0301-3
– volume: 2021
  start-page: 2485934
  year: 2021
  ident: CR6
  article-title: Multiclassification of endoscopic colonoscopy images based on deep transfer learning
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/2485934
– volume-title: Mathematical Methods of Statistics
  year: 1946
  ident: 9954_CR11
– volume: 7
  start-page: 1
  year: 2017
  ident: 9954_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02606-2
– year: 2021
  ident: 9954_CR3
  publication-title: Gut
  doi: 10.1136/gutjnl-2020-323115
– volume: 22
  start-page: 150634
  year: 2019
  ident: 9954_CR4
  publication-title: Techn. Gastrointest. Endosc.
  doi: 10.1016/j.tgie.2019.150634
– year: 2020
  ident: 9954_CR23
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2020.07.060
– volume: 368
  start-page: m689
  year: 2020
  ident: 9954_CR1
  publication-title: bmj
  doi: 10.1136/bmj.m689
– volume: 158
  start-page: 76
  year: 2020
  ident: 9954_CR15
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.08.058
– volume: 43
  start-page: 99
  year: 2015
  ident: 9954_CR20
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2015.02.007
– volume: 10
  start-page: e0118432
  year: 2015
  ident: 9954_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118432
– volume: 48
  start-page: 636
  year: 2011
  ident: 9954_CR10
  publication-title: Int. J. Nurs. Stud.
  doi: 10.1016/j.ijnurstu.2011.02.010
– volume: 25
  start-page: 44
  year: 2019
  ident: 9954_CR2
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 25
  start-page: 2029
  year: 2021
  ident: 9954_CR8
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3049304
– ident: 9954_CR21
  doi: 10.1109/EMBC.2018.8513274
– year: 2020
  ident: 9954_CR9
  publication-title: Endoscopy
  doi: 10.1055/a-1306-7590
– volume: 405
  start-page: 442
  year: 1975
  ident: 9954_CR12
  publication-title: Biochim. Biophys. Acta (BBA) Protein Struct.
  doi: 10.1016/0005-2795(75)90109-9
– volume: 12
  start-page: 1
  year: 2017
  ident: 9954_CR13
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0177678
– volume: 2021
  start-page: 2485934
  year: 2021
  ident: 9954_CR6
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/2485934
– volume: 7
  start-page: 283
  year: 2020
  ident: 9954_CR22
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00622-y
– volume: 83
  start-page: 209
  year: 2018
  ident: 9954_CR7
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.026
– ident: 9954_CR24
– volume: 68
  start-page: 94
  year: 2019
  ident: 9954_CR18
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314547
– volume: 69
  start-page: 799
  year: 2020
  ident: 9954_CR16
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319914
– volume: 15
  start-page: 1
  year: 2020
  ident: 9954_CR5
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0236452
– volume: 2
  start-page: 741
  year: 2018
  ident: 9954_CR19
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0301-3
SSID ssj0000529419
Score 2.72859
Snippet Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the...
Abstract Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5979
SubjectTerms 639/705/1046
692/308
692/4020
Artificial Intelligence
Benchmarking
Gastroenterology
Humanities and Social Sciences
Humans
Machine Learning
multidisciplinary
Science
Science (multidisciplinary)
Software
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxA6tO7MT2CQGiAgmVHkDqzfIrZSWalM0WiX_P2Mlmuzx64Ro7kj0Pz4xn_A3Ac1-1aBWEoB7NGxWcWWpbGalUrvLoADhvc9eSj_LgQB0d6cPpwm2YyirXZ2I-qEPv0x35XqrE4hh8S_3q9DtNXaNSdnVqoXEZriSUBJ5L9w7nO5aUxRKlnt7KMK72BrRX6U0ZRmAsIaFRtWWPMmz_33zNP0smf8ubZnO0f_N_N3ILbkyOKHk9Ss5tuBS7O3BtbE358y58-NSRDRI4OUmNt_xA0MUlJ2Nuh5zPfZO-JUkIRzwKsjgH9HkPvuy_-_z2PZ3aLiC_WLOismU2xDrUsdU1lyxWjotGhchTMFUKZJ-IrNG-aXXjke4WfRSpkTYucO1Kfh92ur6LD4Foq7WVjpVec1GHiOGd54FF0daVj6UsoFwT3_gJkzy1xvhmcm6cKzMyzCDDTGaYUQW8mP85HRE5Lpz9JvF0npnQtPOHfnlsJuU0NoeNtWWlw-2F4JzEbbdSKSfwkOMF7K5ZaSYVH8yGjwU8m4dROVPGxXaxPxvnKC2EqAp4MArQvBJec12rBmkgt0Rra6nbI93iawYAxxiZY1hYwMu1EG6W9W9SPLp4F4_hepX1QtBS78LOankWn8BV_2O1GJZPs2L9ApjMKjY
  priority: 102
  providerName: ProQuest
Title On evaluation metrics for medical applications of artificial intelligence
URI https://link.springer.com/article/10.1038/s41598-022-09954-8
https://www.ncbi.nlm.nih.gov/pubmed/35395867
https://www.proquest.com/docview/2648333079
https://www.proquest.com/docview/2648894442
https://pubmed.ncbi.nlm.nih.gov/PMC8993826
https://doaj.org/article/a287165a01b14bddbb770ef788b40403
Volume 12
WOSCitedRecordID wos000781895600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BC1IviG8C7cpI3CCqEzuxfaSoVSvRJUIgLSfLdhx1JZpF3W0l_j1jO7vdLQUuXOYQO9LkeZyZ0dhvAN64skOvwHnu0L3lnFGTm074XEhbOgwArDOxa8lHMR7LyUQ1a62-wpmwRA-cgNs3MaSvDC1swW3bWisE9R1mbpajAUaeT4x61pKpxOpdKl6o4ZYMZXJ_jp4q3CbD3IsGDrRcbniiSNh_W5T5-2HJGxXT6IiOHsKDIYIk75Pmj-CO7x_D_dRT8ucTOPnUk2sKb3IeOma5OcHYlJynogxZL1qTWUcCCIlIgkzXGDqfwtejwy8fjvOhXwICTetFLjpqWl-1le9UxRCl0jJey9azkAUhes5wT2vl6k7VrigLg8GFUPhptmXKFuwZbPWz3r8AooxSRlhaOMV41XrMyxxrqeddVTpfiAyKJXbaDWTioafFdx2L2kzqhLdGvHXEW8sM3q7e-ZGoNP46-yAsyWpmoMGOD9A49GAc-l_GkcHuckH1sDfnOpzpYwz_bSqD16th3FWhVGJ6P7tMc6TinJcZPE_rv9KEVUxVskYMxIZlbKi6OdJPzyJzNya3DPO5DN4tbeharT9D8fJ_QPEKdspo_Dynche2FheXfg_uuavFdH4xgrtiIqKUI9g-OBw3n0dxR6E8LZsgBcrt5uS0-fYLli0iqg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0R1Yie2DwjxqrrqdtlDkdqTSWwHVqJJ2d2C-qf4jYzz2i6P3nrgmjjRjP3Ny2PPADw1cYFWgfPQoHkLOaNZmBXChULmsUEHIDdZ3bVkJMZjub-vJmvws7sL449VdjqxVtS2Mn6PfNOfxGIYfAv16uhb6LtG-exq10KjgcWOO_mBIdv85fAdru-zON56v_d2O2y7CiA5NF2EoqCZdYlNXKESJqiLc8ZTaR3zsULEkTruaKpMWqjURHGUoQkWylmTW6byiOF_L8A6R7DLAaxPhruTg35Xx-fNeKTa2zmUyc05Wkh_iw1jPuprr4VyxQLWjQL-5t3-eUjzt0xtbQC3rv1vU3cdrrauNnndyMYNWHPlTbjUNN88uQXDDyVZ1jonh761mJkTdOLJYZO9Iqez-6QqiBezpuIGmZ4qZXobPp4LH3dgUFaluwdEZUplIqeRUYwn1mEAa5iljhdJbFwkAoi6xdamrbrum3981XX2n0ndAEQjQHQNEC0DeN5_c9TUHDlz9BuPoX6krxdeP6hmn3WrfnRWB8ZJRqMc2bM2zwWyXQgpc45qnAWw0UFHt0psrpe4CeBJ_xrVj88pZaWrjpsxUnGUhgDuNoDtKWEJU4lMcQ7ECpRXSF19U06_1CXOJbrNGPgG8KID_ZKsf0_F_bO5eAyXt_d2R3o0HO88gCtxLZM8pHIDBovZsXsIF833xXQ-e9SKNYFP5y0OvwBnjoj9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJ1Yie2DwgBZcWq1bIHkHoziePQldqkbLag_jV-HWPnsV0evfXANXGisT1Pz_gbgGcmLtEqcB4aNG8hZzQLs1LYUMg8NugA5CbzXUt2xXQq9_bUbAN-9ndhXFllrxO9oi5q487IR64Si2HwLdSo7MoiZtvj10ffQtdBymVa-3YaLYvs2JMfGL41rybbuNfP43j8_tO7D2HXYQBJo-kyFCXNCpsUiS1VwgS1cc54KgvLXNwQcaSUW5oqk5YqNVEcZWiOhbKFyQum8ojhfy_AReFAy33Z4Gw433EZNB6p7p4OZXLUoK1099kw-qMOhS2Ua7bQtwz4m5_7Z7nmbzlbbwrH1__nRbwB1zoHnLxpJeYmbNjqFlxuW3Ke3IbJx4qsENDJoWs4ZhqCrj05bHNa5HTOn9QlccLX4nCQ-SmA0zvw-VzmcRc2q7qy94GoTKlM5DQyivGksBjWGlZQy8skNjYSAUT9xmvTYbG7liAH2tcEMKlbZtHILNozi5YBvBi-OWqRSM4c_dbx0zDSoYj7B_Xiq-6Uks58uJxkNMpxekWR5wKnXQopc47KnQWw1bOR7lRbo1c8FMDT4TUqJZdpyipbH7djpOKcxwHca5l3oIQlTCUyxTUQa2y9Rur6m2q-74HPJTrTGA4H8LIXgBVZ_16KB2fP4glcQRnQu5PpzkO4Gnvx5CGVW7C5XBzbR3DJfF_Om8VjL98Evpy3LPwCBcWQPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+evaluation+metrics+for+medical+applications+of+artificial+intelligence&rft.jtitle=Scientific+reports&rft.au=Steven+A.+Hicks&rft.au=Inga+Str%C3%BCmke&rft.au=Vajira+Thambawita&rft.au=Malek+Hammou&rft.date=2022-04-08&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41598-022-09954-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a287165a01b14bddbb770ef788b40403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon