On evaluation metrics for medical applications of artificial intelligence
Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 12; číslo 1; s. 5979 - 9 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
08.04.2022
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research. |
|---|---|
| AbstractList | Abstract Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model’s performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research. Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model's performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research. Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model's performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the desirable properties of a model, which is why several metrics are typically reported to summarize a model's performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of binary classification in the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research. |
| ArticleNumber | 5979 |
| Author | Strümke, Inga Thambawita, Vajira Hicks, Steven A. Hammou, Malek Riegler, Michael A. Parasa, Sravanthi Halvorsen, Pål |
| Author_xml | – sequence: 1 givenname: Steven A. surname: Hicks fullname: Hicks, Steven A. email: steven@simula.no organization: SimulaMet, Oslo Metropolitan University – sequence: 2 givenname: Inga surname: Strümke fullname: Strümke, Inga organization: SimulaMet – sequence: 3 givenname: Vajira surname: Thambawita fullname: Thambawita, Vajira organization: SimulaMet, Oslo Metropolitan University – sequence: 4 givenname: Malek surname: Hammou fullname: Hammou, Malek organization: SimulaMet – sequence: 5 givenname: Michael A. surname: Riegler fullname: Riegler, Michael A. organization: SimulaMet – sequence: 6 givenname: Pål surname: Halvorsen fullname: Halvorsen, Pål organization: SimulaMet, Oslo Metropolitan University – sequence: 7 givenname: Sravanthi surname: Parasa fullname: Parasa, Sravanthi organization: Swedish Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35395867$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UstuFDEQtFAQCSE_wAGNxIXLgN9jX5BQxGOlSLnA2fJ4ehavZu3Fno2Uv6d3J4Ekh_jilruqXG7Xa3KScgJC3jL6kVFhPlXJlDUt5byl1irZmhfkjFOpWi44P3lQn5KLWjcUl-JWMvuKnAolrDK6OyOr69TAjZ_2fo45NVuYSwy1GXPBeojBT43f7SYsDv3a5LHxZY5jDBFbMc0wTXENKcAb8nL0U4WLu_2c_Pr29eflj_bq-vvq8stVGzTVc9uN1A-gBgWjVaKjwHshtRlASKs0k33wEqi2QY9WB8aZp9x0FobQD8L2TJyT1aI7ZL9xuxK3vty67KM7HuSydgeHYQLnkcm08pT1KDwMfd_hhWNnTC-ppAK1Pi9au32Pzw2Q5uKnR6KPOyn-dut844y1wnCNAh_uBEr-s4c6u22sAWfiE-R9dVxLY6yUkiP0_RPoJu9LwlEdUUII2llEvXvo6J-V-x9DgFkAoeRaC4wuxPn4OWgwTo5Rd8iHW_LhMB_umA9nkMqfUO_VnyWJhVQRnNZQ_tt-hvUXyTvM4Q |
| CitedBy_id | crossref_primary_10_1038_s41746_023_00941_5 crossref_primary_10_3390_antibiotics12030523 crossref_primary_10_3389_fonc_2025_1498832 crossref_primary_10_1016_j_rineng_2024_101894 crossref_primary_10_3390_diagnostics15010099 crossref_primary_10_3390_jimaging9100225 crossref_primary_10_1016_j_artmed_2024_102917 crossref_primary_10_1038_s42256_022_00559_4 crossref_primary_10_1016_j_snr_2025_100346 crossref_primary_10_1088_2632_2153_ad23fb crossref_primary_10_1007_s13369_024_09939_x crossref_primary_10_1051_bioconf_202414601082 crossref_primary_10_1016_j_radonc_2025_111032 crossref_primary_10_1038_s41598_025_09083_y crossref_primary_10_1109_ACCESS_2024_3457753 crossref_primary_10_1016_j_esmogo_2025_100132 crossref_primary_10_1371_journal_pone_0301275 crossref_primary_10_1016_j_cmpb_2024_108537 crossref_primary_10_1007_s11042_023_15485_9 crossref_primary_10_1080_00221309_2024_2433278 crossref_primary_10_1109_JSEN_2024_3368749 crossref_primary_10_3389_fdgth_2025_1484231 crossref_primary_10_3390_a18030151 crossref_primary_10_1007_s11042_025_21013_8 crossref_primary_10_1016_j_compmedimag_2024_102373 crossref_primary_10_1007_s00521_024_10926_4 crossref_primary_10_1016_j_ab_2024_115546 crossref_primary_10_1016_j_csbj_2023_10_006 crossref_primary_10_1115_1_4068818 crossref_primary_10_1038_s41430_024_01529_2 crossref_primary_10_1088_1361_6579_acbc09 crossref_primary_10_1007_s11096_025_01906_2 crossref_primary_10_1016_j_heliyon_2024_e36728 crossref_primary_10_1002_jeo2_12039 crossref_primary_10_1016_j_asoc_2024_111468 crossref_primary_10_1016_j_ijmedinf_2024_105550 crossref_primary_10_1089_sur_2024_288 crossref_primary_10_3390_jcm13185573 crossref_primary_10_3390_biom15070991 crossref_primary_10_1007_s11625_024_01516_3 crossref_primary_10_1038_s44303_024_00031_5 crossref_primary_10_3390_bioengineering12060659 crossref_primary_10_3390_diagnostics12102392 crossref_primary_10_62186_001c_131964 crossref_primary_10_3233_THC_240582 crossref_primary_10_1109_ACCESS_2025_3549271 crossref_primary_10_1186_s12891_023_06951_4 crossref_primary_10_3390_ijms24097781 crossref_primary_10_3390_v16071088 crossref_primary_10_3390_foods14020169 crossref_primary_10_3390_electronics12041046 crossref_primary_10_1093_comjnl_bxad107 crossref_primary_10_55708_js0404003 crossref_primary_10_1038_s41746_024_01095_8 crossref_primary_10_1002_ksa_12618 crossref_primary_10_1515_revneuro_2023_0117 crossref_primary_10_3390_bioengineering11111153 crossref_primary_10_3390_jimaging10120322 crossref_primary_10_1177_17531934241295493 crossref_primary_10_1016_j_compmedimag_2024_102434 crossref_primary_10_33769_aupse_1378578 crossref_primary_10_3389_fcimb_2024_1482186 crossref_primary_10_1186_s12879_025_10766_0 crossref_primary_10_1080_01676830_2025_2510587 crossref_primary_10_1021_acs_jcim_5c01037 crossref_primary_10_3390_app15189964 crossref_primary_10_1007_s00521_024_10203_4 crossref_primary_10_1016_j_compbiomed_2025_110094 crossref_primary_10_1016_j_vascn_2025_108393 crossref_primary_10_1007_s10278_025_01570_y crossref_primary_10_1016_j_cmpb_2025_108957 crossref_primary_10_1016_j_engappai_2025_111363 crossref_primary_10_1007_s40496_025_00399_2 crossref_primary_10_3390_proteomes12030024 crossref_primary_10_1080_00032719_2024_2401634 crossref_primary_10_1007_s11357_025_01626_5 crossref_primary_10_22144_ctujos_2025_093 crossref_primary_10_1007_s00784_024_05989_5 crossref_primary_10_1007_s10278_024_01244_1 crossref_primary_10_1109_ACCESS_2024_3429157 crossref_primary_10_1109_ACCESS_2024_3516880 crossref_primary_10_1038_s41467_025_59378_x crossref_primary_10_1016_j_ijmedinf_2025_105870 crossref_primary_10_1186_s41747_025_00584_z crossref_primary_10_1016_j_aca_2023_340868 crossref_primary_10_3389_frai_2024_1325219 crossref_primary_10_3390_diagnostics15050560 crossref_primary_10_7717_peerj_17428 crossref_primary_10_1038_s41598_025_94032_y crossref_primary_10_1016_j_bspc_2023_105893 crossref_primary_10_1371_journal_pone_0316019 crossref_primary_10_1007_s42979_022_01611_1 crossref_primary_10_1080_19376812_2024_2375376 crossref_primary_10_1002_jbio_70017 crossref_primary_10_1016_j_compag_2025_110248 crossref_primary_10_1007_s00146_024_02012_z crossref_primary_10_1080_10875301_2024_2426793 crossref_primary_10_3390_diagnostics13132274 crossref_primary_10_1038_s41598_023_44410_1 crossref_primary_10_3389_fdmed_2024_1479380 crossref_primary_10_3390_foods12050955 crossref_primary_10_1002_cyto_a_24956 crossref_primary_10_1001_jamanetworkopen_2024_43925 crossref_primary_10_1186_s12911_024_02473_8 crossref_primary_10_3390_diagnostics12081850 crossref_primary_10_3390_app15073718 crossref_primary_10_1021_acs_chemrestox_4c00466 crossref_primary_10_1002_jbio_202300523 crossref_primary_10_1016_j_bspc_2023_104812 crossref_primary_10_3390_jcm13082283 crossref_primary_10_1038_s41598_025_94826_0 crossref_primary_10_3390_bioengineering9090423 crossref_primary_10_1038_s41585_025_01070_2 crossref_primary_10_1107_S2059798325000865 crossref_primary_10_18267_j_aip_198 crossref_primary_10_1016_j_jad_2024_06_061 crossref_primary_10_1371_journal_pone_0292980 crossref_primary_10_1007_s42979_023_02094_4 crossref_primary_10_4103_jmp_jmp_106_23 crossref_primary_10_3390_jcdd11090291 crossref_primary_10_1192_bjp_2025_113 crossref_primary_10_12968_hmed_2024_0312 crossref_primary_10_1038_s41598_024_81961_3 crossref_primary_10_1093_ajhp_zxaf089 crossref_primary_10_1371_journal_pone_0311036 crossref_primary_10_1016_j_procs_2024_03_033 crossref_primary_10_1002_jeo2_70342 crossref_primary_10_1016_j_bas_2024_103918 crossref_primary_10_1002_cam4_6418 crossref_primary_10_1186_s13071_025_06878_w crossref_primary_10_3390_ijms25094715 crossref_primary_10_3390_jcm14186421 crossref_primary_10_1016_j_prosdent_2024_11_018 crossref_primary_10_1038_s41598_025_01141_9 crossref_primary_10_1038_s41598_025_87622_3 crossref_primary_10_1007_s10586_025_05372_3 crossref_primary_10_1016_j_jece_2024_114481 crossref_primary_10_3390_computation12030044 crossref_primary_10_1016_j_compbiomed_2024_108185 crossref_primary_10_1016_j_labinv_2025_104186 crossref_primary_10_1038_s41598_024_82222_z crossref_primary_10_1227_neu_0000000000003639 crossref_primary_10_1038_s41405_025_00319_7 crossref_primary_10_1016_j_echo_2024_03_017 crossref_primary_10_1016_j_asoc_2024_111722 crossref_primary_10_1186_s12911_024_02528_w crossref_primary_10_1038_s41598_024_57198_5 crossref_primary_10_3390_ph16091259 crossref_primary_10_1109_ACCESS_2024_3374691 crossref_primary_10_1186_s42234_022_00103_0 crossref_primary_10_3389_fpsyg_2024_1447968 crossref_primary_10_1016_j_xops_2025_100847 crossref_primary_10_1016_j_compbiomed_2024_108074 crossref_primary_10_3389_fphar_2024_1437167 crossref_primary_10_1016_j_jbi_2025_104846 crossref_primary_10_1111_jcpe_13774 crossref_primary_10_1007_s13205_025_04282_w crossref_primary_10_1038_s41598_024_66576_y crossref_primary_10_1016_j_jocs_2025_102592 crossref_primary_10_1136_bmjpo_2024_002908 crossref_primary_10_3390_diagnostics15182404 crossref_primary_10_1021_acs_jpcb_4c08824 crossref_primary_10_3390_diagnostics15070901 crossref_primary_10_1007_s10278_024_01137_3 crossref_primary_10_1093_sleep_zsaf061 crossref_primary_10_3390_bdcc9040089 crossref_primary_10_1016_j_eswa_2024_126191 crossref_primary_10_1111_petr_14747 crossref_primary_10_1016_j_jclinane_2023_111295 crossref_primary_10_2166_nh_2025_097 crossref_primary_10_1016_j_gie_2022_10_016 crossref_primary_10_1109_TIM_2024_3369155 crossref_primary_10_3390_diagnostics14171866 crossref_primary_10_1016_j_bspc_2023_105940 crossref_primary_10_1097_PR9_0000000000001332 crossref_primary_10_3390_brainsci15010068 crossref_primary_10_1128_jcm_01433_24 crossref_primary_10_3389_fvets_2023_1174700 crossref_primary_10_3390_app15020933 crossref_primary_10_1186_s10194_024_01924_x crossref_primary_10_1007_s43681_025_00666_z crossref_primary_10_1007_s12016_025_09076_9 crossref_primary_10_1227_ons_0000000000001009 crossref_primary_10_1016_j_procs_2024_03_231 crossref_primary_10_1016_j_jbi_2025_104825 crossref_primary_10_1177_03331024241262751 crossref_primary_10_1080_01605682_2024_2445760 crossref_primary_10_1186_s12859_023_05443_5 crossref_primary_10_1016_j_advnut_2025_100398 crossref_primary_10_1155_2023_9965226 crossref_primary_10_3390_nu17091492 crossref_primary_10_1016_j_compbiomed_2022_106205 crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1333 crossref_primary_10_3390_rs14236031 crossref_primary_10_7759_cureus_81332 crossref_primary_10_1109_ACCESS_2022_3189018 crossref_primary_10_1097_MPA_0000000000002242 crossref_primary_10_1007_s41060_024_00649_z crossref_primary_10_1109_TKDE_2025_3580671 crossref_primary_10_3390_electronics14132717 crossref_primary_10_3389_frai_2025_1606250 crossref_primary_10_3389_fnagi_2024_1437707 crossref_primary_10_1136_ejhpharm_2023_003857 crossref_primary_10_1007_s00417_025_06804_x crossref_primary_10_7717_peerj_cs_2124 crossref_primary_10_1109_TNSRE_2024_3522121 crossref_primary_10_1093_gigascience_giad108 crossref_primary_10_3390_computers14030106 crossref_primary_10_1007_s11916_024_01297_5 crossref_primary_10_3389_froh_2025_1569567 crossref_primary_10_1016_j_csbj_2024_08_002 crossref_primary_10_1111_ene_16235 crossref_primary_10_3390_app132212397 crossref_primary_10_3390_diagnostics15070822 crossref_primary_10_1016_j_jpi_2023_100334 crossref_primary_10_1038_s41390_024_03774_4 crossref_primary_10_3389_fnetp_2023_1256104 crossref_primary_10_1089_thy_2023_0132 crossref_primary_10_1109_ACCESS_2024_3450444 crossref_primary_10_1186_s13195_025_01751_5 crossref_primary_10_1016_j_compbiomed_2025_110320 crossref_primary_10_1007_s44257_025_00037_2 crossref_primary_10_3390_proteomes13030035 crossref_primary_10_2196_55820 crossref_primary_10_2196_54617 crossref_primary_10_1007_s00034_024_02739_6 crossref_primary_10_1016_j_eclinm_2025_103401 crossref_primary_10_3390_jcm13123401 crossref_primary_10_3389_fnbot_2024_1421401 crossref_primary_10_1016_j_bj_2024_100743 crossref_primary_10_1186_s12967_025_06802_x crossref_primary_10_2196_66831 crossref_primary_10_1002_ese3_70033 crossref_primary_10_1016_j_bioflm_2025_100283 crossref_primary_10_3390_molecules30122653 crossref_primary_10_1099_jmm_0_002008 crossref_primary_10_1007_s11042_024_19694_8 crossref_primary_10_3390_diagnostics14212405 crossref_primary_10_2166_hydro_2024_354 crossref_primary_10_1016_j_bspc_2024_106322 crossref_primary_10_3390_s23125648 crossref_primary_10_1016_j_asoc_2025_113259 crossref_primary_10_1038_s41598_024_54990_1 crossref_primary_10_1007_s00586_025_08672_9 crossref_primary_10_1016_j_bbi_2024_08_013 crossref_primary_10_1016_j_clae_2025_102509 crossref_primary_10_3390_rs17142512 crossref_primary_10_1007_s11227_025_06924_5 crossref_primary_10_1016_j_yamp_2023_01_001 crossref_primary_10_1093_bib_bbaf015 crossref_primary_10_3233_JAD_230525 crossref_primary_10_1007_s11517_024_03077_0 crossref_primary_10_3389_fpsyt_2025_1581297 crossref_primary_10_3390_s23020992 crossref_primary_10_1177_17455057241248121 crossref_primary_10_1016_j_bjps_2025_03_021 crossref_primary_10_3390_info15100599 crossref_primary_10_1007_s11709_025_1177_4 crossref_primary_10_1186_s12911_024_02621_0 crossref_primary_10_3389_fbinf_2025_1628724 crossref_primary_10_1145_3681796 crossref_primary_10_1016_j_compbiomed_2025_109661 crossref_primary_10_19127_bshealthscience_1539717 crossref_primary_10_3390_bdcc7010032 crossref_primary_10_1007_s10570_024_05824_w crossref_primary_10_3390_s24082383 crossref_primary_10_2196_64225 crossref_primary_10_1007_s11042_024_19638_2 crossref_primary_10_1016_j_engstruct_2024_118431 crossref_primary_10_1007_s13721_025_00522_4 crossref_primary_10_3390_foods14101664 crossref_primary_10_1109_ACCESS_2023_3312616 crossref_primary_10_3389_fmed_2023_1166743 crossref_primary_10_3390_cancers14143442 crossref_primary_10_1371_journal_pone_0315823 crossref_primary_10_1038_s41598_022_25821_y crossref_primary_10_1016_j_jcmg_2023_09_011 crossref_primary_10_1109_ACCESS_2024_3521319 crossref_primary_10_1038_s41598_024_80792_6 crossref_primary_10_3390_jcm12124095 crossref_primary_10_3390_life14121634 crossref_primary_10_1109_ACCESS_2024_3448236 crossref_primary_10_1007_s11096_025_01900_8 crossref_primary_10_3390_ijms25084214 crossref_primary_10_3390_pediatric16030067 crossref_primary_10_1186_s12880_025_01892_x crossref_primary_10_1371_journal_pdig_0000692 crossref_primary_10_1016_j_wace_2024_100652 crossref_primary_10_1016_j_jfma_2025_08_008 crossref_primary_10_1109_ACCESS_2024_3437214 crossref_primary_10_1186_s12877_023_04246_w crossref_primary_10_1016_j_array_2025_100398 crossref_primary_10_3389_fpubh_2025_1659322 crossref_primary_10_1186_s12887_025_05489_9 crossref_primary_10_1016_j_bja_2023_11_026 crossref_primary_10_1186_s40798_024_00751_3 crossref_primary_10_3390_ijerph20032131 crossref_primary_10_3390_jcm13144116 crossref_primary_10_4274_jpr_galenos_2024_08624 crossref_primary_10_1002_zoo_70008 crossref_primary_10_1109_JBHI_2024_3438885 crossref_primary_10_1016_j_eswa_2023_122153 crossref_primary_10_1109_TETC_2022_3178631 crossref_primary_10_1016_j_avsg_2025_05_009 crossref_primary_10_1371_journal_pone_0295598 crossref_primary_10_17749_2070_4909_farmakoekonomika_2025_287 crossref_primary_10_1016_j_chemosphere_2024_144018 crossref_primary_10_3390_electronics13152999 crossref_primary_10_3390_electronics13050963 crossref_primary_10_1016_j_mvr_2024_104732 crossref_primary_10_1016_j_jbo_2025_100682 crossref_primary_10_1109_ACCESS_2025_3548431 crossref_primary_10_1038_s41598_025_97719_4 crossref_primary_10_1016_j_ins_2024_120882 crossref_primary_10_1016_j_neuroscience_2025_05_004 crossref_primary_10_1038_s41390_025_04378_2 crossref_primary_10_1109_JBHI_2024_3367736 crossref_primary_10_3390_jcm13123583 crossref_primary_10_3390_pharmaceutics14112378 crossref_primary_10_1161_JAHA_124_038730 crossref_primary_10_1371_journal_pntd_0012235 crossref_primary_10_3390_electronics14050950 crossref_primary_10_3390_s24248018 crossref_primary_10_1097_AUD_0000000000001670 crossref_primary_10_1212_CPJ_0000000000200293 crossref_primary_10_3389_fneur_2022_959582 crossref_primary_10_1007_s11605_023_05762_1 crossref_primary_10_1007_s00330_025_11416_4 crossref_primary_10_3390_biomedicines12122892 crossref_primary_10_1089_respcare_12540 crossref_primary_10_1186_s12871_024_02840_y crossref_primary_10_1016_j_ijcha_2025_101783 crossref_primary_10_1109_ACCESS_2025_3550303 crossref_primary_10_1016_j_eplepsyres_2023_107275 crossref_primary_10_3390_diagnostics15131698 crossref_primary_10_3390_diagnostics13111904 crossref_primary_10_1038_s41598_025_10451_x crossref_primary_10_1371_journal_pdig_0000930 crossref_primary_10_1007_s40264_024_01505_6 crossref_primary_10_3390_s25010205 crossref_primary_10_1080_02699052_2025_2472188 crossref_primary_10_3390_su141911861 crossref_primary_10_1109_ACCESS_2023_3299819 crossref_primary_10_1007_s43681_024_00597_1 crossref_primary_10_1016_j_inhs_2025_100005 crossref_primary_10_2478_mgr_2024_0006 crossref_primary_10_1016_j_bspc_2025_108085 crossref_primary_10_1007_s10930_023_10168_8 crossref_primary_10_1016_j_jceh_2025_102627 crossref_primary_10_1016_j_saa_2024_124480 crossref_primary_10_1016_j_cjca_2024_04_026 crossref_primary_10_1016_j_jocn_2025_111243 crossref_primary_10_1007_s00134_024_07629_8 crossref_primary_10_1177_00220345231200786 crossref_primary_10_3390_s23136134 crossref_primary_10_1016_j_ajpath_2023_11_015 crossref_primary_10_1016_j_oor_2024_100591 crossref_primary_10_1186_s12889_024_18868_1 crossref_primary_10_3389_fonc_2023_1260374 crossref_primary_10_1111_febs_70140 crossref_primary_10_1007_s00422_023_00967_8 crossref_primary_10_1186_s40337_025_01265_3 crossref_primary_10_3390_ai6010007 crossref_primary_10_1109_ACCESS_2024_3487532 crossref_primary_10_1016_j_ijmedinf_2024_105414 crossref_primary_10_1097_TA_0000000000004385 crossref_primary_10_3390_jpm13121660 crossref_primary_10_1016_j_imu_2023_101188 crossref_primary_10_1109_ACCESS_2024_3521497 crossref_primary_10_1177_07067437241295635 crossref_primary_10_3748_wjg_v31_i36_111137 crossref_primary_10_1038_s41598_024_78498_w crossref_primary_10_1016_j_tige_2024_03_001 crossref_primary_10_1016_j_jamda_2024_105417 crossref_primary_10_1038_s41377_023_01296_y crossref_primary_10_1097_JS9_0000000000000979 crossref_primary_10_1016_j_atech_2025_101464 crossref_primary_10_1038_s41598_024_78363_w crossref_primary_10_1109_ACCESS_2024_3380453 crossref_primary_10_1016_j_compbiomed_2025_110812 crossref_primary_10_1016_j_ejrai_2025_100030 crossref_primary_10_1016_j_jtho_2024_05_006 crossref_primary_10_1007_s12094_025_03939_5 crossref_primary_10_1109_ACCESS_2025_3591241 crossref_primary_10_3390_data9010009 crossref_primary_10_1038_s41571_024_00909_8 crossref_primary_10_1038_s44401_025_00020_9 crossref_primary_10_1016_j_imu_2024_101567 crossref_primary_10_3390_jcm13092709 crossref_primary_10_1055_a_2577_2739 crossref_primary_10_1001_jamanetworkopen_2025_21150 crossref_primary_10_29128_geomatik_1589807 crossref_primary_10_1186_s13244_024_01833_2 crossref_primary_10_1016_j_eswa_2025_127928 crossref_primary_10_1109_JBHI_2022_3233535 crossref_primary_10_1016_j_physa_2023_128938 crossref_primary_10_1007_s44196_025_00965_7 crossref_primary_10_1007_s12553_025_00967_7 crossref_primary_10_1007_s10238_024_01336_w |
| Cites_doi | 10.1016/j.compmedimag.2015.02.007 10.1371/journal.pone.0118432 10.1371/journal.pone.0236452 10.1016/j.gie.2020.07.060 10.1136/bmj.m689 10.1055/a-1306-7590 10.1053/j.gastro.2019.08.058 10.1136/gutjnl-2020-323115 10.1016/j.ijnurstu.2011.02.010 10.1371/journal.pone.0177678 10.1038/s41597-020-00622-y 10.1038/s41591-018-0300-7 10.1136/gutjnl-2017-314547 10.1016/0005-2795(75)90109-9 10.1109/JBHI.2021.3049304 10.1016/j.patcog.2018.05.026 10.1016/j.tgie.2019.150634 10.1136/gutjnl-2019-319914 10.1038/s41598-017-02606-2 10.1038/s41551-018-0301-3 10.1155/2021/2485934 10.1109/EMBC.2018.8513274 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-09954-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_a287165a01b14bddbb770ef788b40403 PMC8993826 35395867 10_1038_s41598_022_09954_8 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c606t-7f0ade5d5ef95370e2b3468de3495614bca4e069c6f96c121a02879edcbd39b13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 465 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781895600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:00 EDT 2025 Tue Nov 04 01:51:46 EST 2025 Fri Sep 05 11:50:48 EDT 2025 Wed Oct 29 08:42:19 EDT 2025 Thu Jan 02 22:54:23 EST 2025 Tue Nov 18 20:02:33 EST 2025 Sat Nov 29 06:25:47 EST 2025 Fri Feb 21 02:36:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-7f0ade5d5ef95370e2b3468de3495614bca4e069c6f96c121a02879edcbd39b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/a287165a01b14bddbb770ef788b40403 |
| PMID | 35395867 |
| PQID | 2648333079 |
| PQPubID | 2041939 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a287165a01b14bddbb770ef788b40403 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993826 proquest_miscellaneous_2648894442 proquest_journals_2648333079 pubmed_primary_35395867 crossref_citationtrail_10_1038_s41598_022_09954_8 crossref_primary_10_1038_s41598_022_09954_8 springer_journals_10_1038_s41598_022_09954_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-08 |
| PublicationDateYYYYMMDD | 2022-04-08 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Boughorbel, Jarray, El-Anbari (CR13) 2017; 12 Le Berre (CR15) 2020; 158 Patel (CR5) 2020; 15 Schmitz (CR3) 2021 Wang (CR19) 2018; 2 Mossotto (CR17) 2017; 7 Nagendran (CR1) 2020; 368 Topol (CR2) 2019; 25 Misawa (CR23) 2020 Jha (CR8) 2021; 25 Wang, Feng, Song, Liu, Liu (CR6) 2021; 2021 Cramer (CR11) 1946 Saito, Rehmsmeier (CR14) 2015; 10 CR24 Zhang, Zheng, Poon, Shen, Lau (CR7) 2018; 83 Borgli (CR22) 2020; 7 CR21 Byrne (CR18) 2019; 68 Polit (CR10) 2011; 48 Hoogenboom, Bagci, Wallace (CR4) 2019; 22 Matthews (CR12) 1975; 405 Bernal (CR20) 2015; 43 Ahmad (CR9) 2020 Hassan (CR16) 2020; 69 DF Polit (9954_CR10) 2011; 48 M Nagendran (9954_CR1) 2020; 368 Y Wang (9954_CR6) 2021; 2021 C Hassan (9954_CR16) 2020; 69 B Matthews (9954_CR12) 1975; 405 T Saito (9954_CR14) 2015; 10 P Wang (9954_CR19) 2018; 2 9954_CR21 S Boughorbel (9954_CR13) 2017; 12 EJ Topol (9954_CR2) 2019; 25 M Misawa (9954_CR23) 2020 9954_CR24 OF Ahmad (9954_CR9) 2020 K Patel (9954_CR5) 2020; 15 R Schmitz (9954_CR3) 2021 C Le Berre (9954_CR15) 2020; 158 E Mossotto (9954_CR17) 2017; 7 R Zhang (9954_CR7) 2018; 83 D Jha (9954_CR8) 2021; 25 H Cramer (9954_CR11) 1946 MF Byrne (9954_CR18) 2019; 68 H Borgli (9954_CR22) 2020; 7 SA Hoogenboom (9954_CR4) 2019; 22 J Bernal (9954_CR20) 2015; 43 |
| References_xml | – volume: 43 start-page: 99 year: 2015 end-page: 111 ident: CR20 article-title: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation versus saliency maps from physicians publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2015.02.007 – ident: CR21 – year: 1946 ident: CR11 publication-title: Mathematical Methods of Statistics – volume: 10 start-page: e0118432 year: 2015 ident: CR14 article-title: The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS ONE doi: 10.1371/journal.pone.0118432 – volume: 15 start-page: 1 year: 2020 end-page: 16 ident: CR5 article-title: A comparative study on polyp classification using convolutional neural networks publication-title: PLOS ONE doi: 10.1371/journal.pone.0236452 – year: 2020 ident: CR23 article-title: Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video) publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2020.07.060 – volume: 368 start-page: m689 year: 2020 ident: CR1 article-title: Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies publication-title: bmj doi: 10.1136/bmj.m689 – year: 2020 ident: CR9 article-title: Establishing key research questions for the implementation of artificial intelligence in colonoscopy—A modified Delphi method publication-title: Endoscopy doi: 10.1055/a-1306-7590 – volume: 158 start-page: 76 year: 2020 end-page: 94 ident: CR15 article-title: Application of artificial intelligence to gastroenterology and hepatology publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.08.058 – year: 2021 ident: CR3 article-title: Artificial intelligence in GI endoscopy: Stumbling blocks, gold standards and the role of endoscopy societies publication-title: Gut doi: 10.1136/gutjnl-2020-323115 – volume: 48 start-page: 636 year: 2011 end-page: 641 ident: CR10 article-title: Blinding during the analysis of research data publication-title: Int. J. Nurs. Stud. doi: 10.1016/j.ijnurstu.2011.02.010 – volume: 12 start-page: 1 year: 2017 end-page: 17 ident: CR13 article-title: Optimal classifier for imbalanced data using Matthews correlation coefficient metric publication-title: PLOS ONE doi: 10.1371/journal.pone.0177678 – volume: 7 start-page: 283 year: 2020 ident: CR22 article-title: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy publication-title: Sci. Data doi: 10.1038/s41597-020-00622-y – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: CR2 article-title: High-performance medicine: The convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 68 start-page: 94 year: 2019 end-page: 100 ident: CR18 article-title: Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model publication-title: Gut doi: 10.1136/gutjnl-2017-314547 – volume: 405 start-page: 442 year: 1975 end-page: 451 ident: CR12 article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme publication-title: Biochim. Biophys. Acta (BBA) Protein Struct. doi: 10.1016/0005-2795(75)90109-9 – volume: 25 start-page: 2029 year: 2021 end-page: 2040 ident: CR8 article-title: A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3049304 – volume: 83 start-page: 209 year: 2018 end-page: 219 ident: CR7 article-title: Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.05.026 – ident: CR24 – volume: 22 start-page: 150634 year: 2019 ident: CR4 article-title: AI in gastroenterology. The current state of play and the potential. How will it affect our practice and when? publication-title: Techn. Gastrointest. Endosc. doi: 10.1016/j.tgie.2019.150634 – volume: 69 start-page: 799 year: 2020 end-page: 800 ident: CR16 article-title: New artificial intelligence system: First validation study versus experienced endoscopists for colorectal polyp detection publication-title: Gut doi: 10.1136/gutjnl-2019-319914 – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: CR17 article-title: Classification of paediatric inflammatory bowel disease using machine learning publication-title: Sci. Rep. doi: 10.1038/s41598-017-02606-2 – volume: 2 start-page: 741 year: 2018 end-page: 748 ident: CR19 article-title: Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0301-3 – volume: 2021 start-page: 2485934 year: 2021 ident: CR6 article-title: Multiclassification of endoscopic colonoscopy images based on deep transfer learning publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/2485934 – volume-title: Mathematical Methods of Statistics year: 1946 ident: 9954_CR11 – volume: 7 start-page: 1 year: 2017 ident: 9954_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-017-02606-2 – year: 2021 ident: 9954_CR3 publication-title: Gut doi: 10.1136/gutjnl-2020-323115 – volume: 22 start-page: 150634 year: 2019 ident: 9954_CR4 publication-title: Techn. Gastrointest. Endosc. doi: 10.1016/j.tgie.2019.150634 – year: 2020 ident: 9954_CR23 publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2020.07.060 – volume: 368 start-page: m689 year: 2020 ident: 9954_CR1 publication-title: bmj doi: 10.1136/bmj.m689 – volume: 158 start-page: 76 year: 2020 ident: 9954_CR15 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.08.058 – volume: 43 start-page: 99 year: 2015 ident: 9954_CR20 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2015.02.007 – volume: 10 start-page: e0118432 year: 2015 ident: 9954_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0118432 – volume: 48 start-page: 636 year: 2011 ident: 9954_CR10 publication-title: Int. J. Nurs. Stud. doi: 10.1016/j.ijnurstu.2011.02.010 – volume: 25 start-page: 44 year: 2019 ident: 9954_CR2 publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 25 start-page: 2029 year: 2021 ident: 9954_CR8 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3049304 – ident: 9954_CR21 doi: 10.1109/EMBC.2018.8513274 – year: 2020 ident: 9954_CR9 publication-title: Endoscopy doi: 10.1055/a-1306-7590 – volume: 405 start-page: 442 year: 1975 ident: 9954_CR12 publication-title: Biochim. Biophys. Acta (BBA) Protein Struct. doi: 10.1016/0005-2795(75)90109-9 – volume: 12 start-page: 1 year: 2017 ident: 9954_CR13 publication-title: PLOS ONE doi: 10.1371/journal.pone.0177678 – volume: 2021 start-page: 2485934 year: 2021 ident: 9954_CR6 publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/2485934 – volume: 7 start-page: 283 year: 2020 ident: 9954_CR22 publication-title: Sci. Data doi: 10.1038/s41597-020-00622-y – volume: 83 start-page: 209 year: 2018 ident: 9954_CR7 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.05.026 – ident: 9954_CR24 – volume: 68 start-page: 94 year: 2019 ident: 9954_CR18 publication-title: Gut doi: 10.1136/gutjnl-2017-314547 – volume: 69 start-page: 799 year: 2020 ident: 9954_CR16 publication-title: Gut doi: 10.1136/gutjnl-2019-319914 – volume: 15 start-page: 1 year: 2020 ident: 9954_CR5 publication-title: PLOS ONE doi: 10.1371/journal.pone.0236452 – volume: 2 start-page: 741 year: 2018 ident: 9954_CR19 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0301-3 |
| SSID | ssj0000529419 |
| Score | 2.72859 |
| Snippet | Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures all the... Abstract Clinicians and software developers need to understand how proposed machine learning (ML) models could improve patient care. No single metric captures... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5979 |
| SubjectTerms | 639/705/1046 692/308 692/4020 Artificial Intelligence Benchmarking Gastroenterology Humanities and Social Sciences Humans Machine Learning multidisciplinary Science Science (multidisciplinary) Software |
| SummonAdditionalLinks | – databaseName: ProQuest Biological Science dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxA6tO7MT2CQGiAgmVHgD1ZtmOAyvRpGy2SPx7xo432-XRC9fElux5eGY8428AnpaurLxyitqGd1T4UlOnQkeDciyggfY-FWN-fi8PDtTRkT7MF25jLqtcn4npoG4HH-_I92IlFsfgW-oXJ99p7BoVs6u5hcZFuBRREngq3Tuc71hiFkuUOr-VYVztjWiv4psyjMBYREKjasseJdj-v_maf5ZM_pY3TeZo__r_buQGXMuOKHk5Sc5NuBD6W3Blak358za8-9CTDRI4OY6Nt_xI0MUlx1Nuh5zNfZOhI1EIJzwKsjgD9HkHPu2_-fj6Lc1tF6jHaGZFZcdsG-q2Dp2uuWShclw0qg08BlOlcN6KwBrtm043Hulu0UeRGmnjWq5dye_CTj_04T6QprWlq3RgQSghOqtD0LqyGBdXgldMFVCuiW98xiSPrTG-mZQb58pMDDPIMJMYZnDOs3nOyYTIce7oV5Gn88iIpp0-DMsvJiunsSlsrC1DyRWubZ2TuO1OKuUEHnK8gN01K01W8dFs-FjAk_k3KmfMuNg-DKfTGKWFEFUB9yYBmlfCa65r1cgC5JZobS11-0-_-JoAwDFG5hgWFvB8LYSbZf2bFA_O38VDuFolvRCUqV3YWS1PwyO47H-sFuPycVKsX3K2KjE priority: 102 providerName: ProQuest |
| Title | On evaluation metrics for medical applications of artificial intelligence |
| URI | https://link.springer.com/article/10.1038/s41598-022-09954-8 https://www.ncbi.nlm.nih.gov/pubmed/35395867 https://www.proquest.com/docview/2648333079 https://www.proquest.com/docview/2648894442 https://pubmed.ncbi.nlm.nih.gov/PMC8993826 https://doaj.org/article/a287165a01b14bddbb770ef788b40403 |
| Volume | 12 |
| WOSCitedRecordID | wos000781895600033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IvFW9SyspI3CBqYjuxfWxRKyrRJUKAlpNlO45YiWar7haJf9-xnd3u8rxw8SG2o8nncWZGY38D8LK0JXXSytzUrMu5K1Vupe9yL23h0UA7Fw9jfn4nxmM5mahmrdRXOBOW6IETcAcmuvSVKfCt3LattUIUvsPIzXJUwMjziV7PWjCVWL2p4qUabskUTB7M0VKF22QYexWBAy2XG5YoEvb_zsv89bDkTxnTaIhO7sHu4EGSwyT5fbjl-wdwN9WU_PEQTt_35IbCm5yHilluTtA3JecpKUPWk9Zk1pEAQiKSINM1hs5H8Onk-OObt_lQLyF3GIYsctEVpvVVW_lOVQxRopbxWraehSgI0XOG-6JWru5U7UpaGnQuhMJPsy1TtmSPYauf9f4pkLo1paXKF55LzjujvFeKGgxoKWeIdwblEjvtBjLxUNPim45JbSZ1wlsj3jrirXHOq9Wci0Sl8dfRR2FJViMDDXZ8gMqhB-XQ_1KODPaXC6qHvTnX4UwfY_hvUxm8WHXjrgqpEtP72VUaIxXnnGbwJK3_ShJWMVXJWmQgNjRjQ9TNnn76NTJ3Y3DLMJ7L4PVSh27E-jMUe_8DimewQ6Py87yQ-7C1uLzyz-GO-76Yzi9HcFtMRGzlCLaPjsfNh1HcUdie0Sa0Atvt5vSs-XINUssipw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAASPBCaLasZPYB4TYqo46HeZQUDmZ2HFgJJopkymof4rfyHO26bD01gPX2I68fG_ze34P4DEzLLLSyDBLeBEKy1RopCtCJw11KKCtrYMxP4zS8Vju76vJGvzs3sL4sMqOJ9aMOp9Zf0e-6SOxOBrfqXpx-C30VaO8d7UrodHAYscd_0CTrXo-fIPn-ySKtt7uvd4O26oCoUVlfRGmBc1yF-exK1TMU-oiw0Uic8e9rcCEsZlwNFE2KVRiWcQyFMGpcrk1OVeGcfzvOVgXCHY5gPXJcHfysb_V8X4zwVT7OodyuVmhhPSv2NDmoz73WihXJGBdKOBv2u2fQZq_eWprAbh15X_buqtwuVW1ycuGNq7Bmiuvw4Wm-ObxDRi-K8ky1zk58KXFbEVQiScHjfeKnPTuk1lBPJk1GTfI9EQq05vw_kzWcQsG5ax0d4AkecZMpBx1QgpRZMo5paIMLf9I8IjKAFh32Nq2Wdd98Y-vuvb-c6kbgGgEiK4BonHM037MYZNz5NTerzyG-p4-X3j9YTb_rFv2o7PaMI4zirQpTJ4bk-Kyi1RKI5CN8wA2OujololVeombAB71zch-vE8pK93sqOkjlUBqCOB2A9h-JjzmKpZJGkC6AuWVqa62lNMvdYpziWozGr4BPOtAv5zWv7fi7umreAgXt_d2R3o0HO_cg0tRTZMipHIDBov5kbsP5-33xbSaP2jJmsCnsyaHX5tCiPo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmjiJYl9QAgoI0athjkA6s21HQdGokmZTEH9a_w6bGeZDktvPXBNnMhOvrf5PX8P4AnWmBiueawyWsbMYBFrbsvYcp1YZ6CNCcWYn3bz6ZTv7YnZBvzsz8L4sspeJwZFXdTG75GPfCUWdcF3LkZlVxYx2x6_PPwW-w5SPtPat9NoIbJjj3-48K15Mdl2__opIeO3H968i7sOA7FxjvsyzstEFTYtUluKlOaJJZqyjBeW-rgBM20Us0kmTFaKzGCClTPHubCF0QUVGlP33nNwPvek5aFscDbs7_gMGsOiO6eTUD5qnK3059lc9Jd4FraYr9nC0DLgb37un-Wav-VsgykcX_2fP-I1uNI54OhVKzHXYcNWN-Bi25Lz-CZM3ldoxYCODnzDMdMg59qjgzanhU7m_FFdIi98LQ8Hmp8gOL0FH89kHbdhs6orexdQViisibCJZZyxUglrhSAKU-e-UpLwCHD_46XpuNh9S5CvMtQEUC5bsEgHFhnAIt0zz4ZnDlsmklNHv_Z4GkZ6FvFwoV58lp1SkiqEy6lKnMQyXRRa527ZZc65Zk650wi2ehjJTrU1coWhCB4Pt51S8pkmVdn6qB3DBWOMRHCnBe8wE5pSkfIsjyBfg_XaVNfvVPMvgficO2fahcMRPO8FYDWtf3-Ke6ev4hFccjIgdyfTnftwmQTxZHHCt2BzuTiyD-CC-b6cN4uHQb4R7J-1LPwCQlyQOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+evaluation+metrics+for+medical+applications+of+artificial+intelligence&rft.jtitle=Scientific+reports&rft.au=Steven+A.+Hicks&rft.au=Inga+Str%C3%BCmke&rft.au=Vajira+Thambawita&rft.au=Malek+Hammou&rft.date=2022-04-08&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41598-022-09954-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a287165a01b14bddbb770ef788b40403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |