Deep convolutional neural networks to predict cardiovascular risk from computed tomography

Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 12; číslo 1; s. 715 - 9
Hlavní autoři: Zeleznik, Roman, Foldyna, Borek, Eslami, Parastou, Weiss, Jakob, Alexander, Ivanov, Taron, Jana, Parmar, Chintan, Alvi, Raza M., Banerji, Dahlia, Uno, Mio, Kikuchi, Yasuka, Karady, Julia, Zhang, Lili, Scholtz, Jan-Erik, Mayrhofer, Thomas, Lyass, Asya, Mahoney, Taylor F., Massaro, Joseph M., Vasan, Ramachandran S., Douglas, Pamela S., Hoffmann, Udo, Lu, Michael T., Aerts, Hugo J. W. L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 29.01.2021
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health. Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-20966-2