Deep convolutional neural networks to predict cardiovascular risk from computed tomography
Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep le...
Uložené v:
| Vydané v: | Nature communications Ročník 12; číslo 1; s. 715 - 9 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
29.01.2021
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.
Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study. |
|---|---|
| AbstractList | Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health. Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health. Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study. Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study. Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study. Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health. |
| ArticleNumber | 715 |
| Author | Aerts, Hugo J. W. L. Taron, Jana Vasan, Ramachandran S. Mahoney, Taylor F. Kikuchi, Yasuka Douglas, Pamela S. Hoffmann, Udo Alvi, Raza M. Scholtz, Jan-Erik Zeleznik, Roman Zhang, Lili Massaro, Joseph M. Weiss, Jakob Alexander, Ivanov Banerji, Dahlia Lu, Michael T. Karady, Julia Parmar, Chintan Lyass, Asya Foldyna, Borek Uno, Mio Mayrhofer, Thomas Eslami, Parastou |
| Author_xml | – sequence: 1 givenname: Roman orcidid: 0000-0002-2433-9151 surname: Zeleznik fullname: Zeleznik, Roman organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 2 givenname: Borek surname: Foldyna fullname: Foldyna, Borek organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 3 givenname: Parastou surname: Eslami fullname: Eslami, Parastou organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 4 givenname: Jakob surname: Weiss fullname: Weiss, Jakob organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tübingen – sequence: 5 givenname: Ivanov surname: Alexander fullname: Alexander, Ivanov organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 6 givenname: Jana surname: Taron fullname: Taron, Jana organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tübingen – sequence: 7 givenname: Chintan orcidid: 0000-0002-2140-814X surname: Parmar fullname: Parmar, Chintan organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School – sequence: 8 givenname: Raza M. surname: Alvi fullname: Alvi, Raza M. organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 9 givenname: Dahlia surname: Banerji fullname: Banerji, Dahlia organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 10 givenname: Mio surname: Uno fullname: Uno, Mio organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 11 givenname: Yasuka surname: Kikuchi fullname: Kikuchi, Yasuka organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University – sequence: 12 givenname: Julia surname: Karady fullname: Karady, Julia organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University – sequence: 13 givenname: Lili surname: Zhang fullname: Zhang, Lili organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 14 givenname: Jan-Erik surname: Scholtz fullname: Scholtz, Jan-Erik organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 15 givenname: Thomas orcidid: 0000-0001-6287-5185 surname: Mayrhofer fullname: Mayrhofer, Thomas organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, School of Business Studies, Stralsund University of Applied Sciences – sequence: 16 givenname: Asya surname: Lyass fullname: Lyass, Asya organization: Department of Mathematics and Statistics, Boston University – sequence: 17 givenname: Taylor F. orcidid: 0000-0002-5930-5672 surname: Mahoney fullname: Mahoney, Taylor F. organization: Department of Biostatistics, Boston University School of Public Health – sequence: 18 givenname: Joseph M. surname: Massaro fullname: Massaro, Joseph M. organization: Department of Biostatistics, Boston University School of Public Health – sequence: 19 givenname: Ramachandran S. orcidid: 0000-0001-7357-5970 surname: Vasan fullname: Vasan, Ramachandran S. organization: National Heart, Lung, and Blood Institute and Boston University, Framingham Heart Study, Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine – sequence: 20 givenname: Pamela S. surname: Douglas fullname: Douglas, Pamela S. organization: Department of Medicine, Division of Cardiology, Duke University School of Medicine, Duke Clinical Research Institute – sequence: 21 givenname: Udo surname: Hoffmann fullname: Hoffmann, Udo organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 22 givenname: Michael T. orcidid: 0000-0003-4696-9610 surname: Lu fullname: Lu, Michael T. organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School – sequence: 23 givenname: Hugo J. W. L. orcidid: 0000-0002-2122-2003 surname: Aerts fullname: Aerts, Hugo J. W. L. email: haerts@bwh.harvard.edu organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Department of Radiology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33514711$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u3CAUhVGVqEmneYEuKkvddOOGCxjbm0pV-hcpUjfJphuE4XrCxDYu2BPl7cuM0zTJImxA8J3DhXPfkIPBD0jIO6CfgPLqNAoQsswpg5zRWsqcvSLHjArIoWT84NH6iJzEuKFp8BoqIV6TI84LECXAMfn9FXHMjB-2vpsn5wfdZQPOYT9Ntz7cxGzy2RjQOjNlRgfr_FZHM3c6ZMHFm6wNvk8O_ThPaBPc-3XQ4_XdW3LY6i7iyf28Ilffv12e_cwvfv04P_tykRtJ5ZSXrDLMQl3rQmgGLTYAtm5ZzQBLpKY2tkCQ0gjgdVFzaRtLJStKNFXLmOErcr74Wq83agyu1-FOee3UfsOHtdJhcqZDVUFbaCkbydtGMMkbaisqTKEbioVpMHl9XrzGuenRGhym9BVPTJ-eDO5arf1WlVVKIzmuyMd7g-D_zBgn1btosOv0gH6OiomKVyDqokzoh2foxs8hBbBQAopS7qj3jyt6KOVfhAlgC2CCjzFg-4AAVbtWUUurqNQqat8qiiVR9Uxk3KR3-adXue5lKV-kMd0zrDH8L_sF1V9DINPT |
| CitedBy_id | crossref_primary_10_3389_fcvm_2021_736223 crossref_primary_10_1016_j_jacr_2024_02_010 crossref_primary_10_1002_mp_17642 crossref_primary_10_1002_idm2_12130 crossref_primary_10_1016_j_cpcardiol_2023_101750 crossref_primary_10_1186_s40001_023_01065_y crossref_primary_10_1007_s12265_022_10260_x crossref_primary_10_1007_s12350_022_03049_7 crossref_primary_10_1093_bjr_tqaf195 crossref_primary_10_3390_diagnostics14020125 crossref_primary_10_1007_s00330_025_11559_4 crossref_primary_10_1016_j_jacc_2024_01_039 crossref_primary_10_3390_healthcare10112166 crossref_primary_10_1007_s11356_022_24422_6 crossref_primary_10_1109_ACCESS_2021_3079700 crossref_primary_10_1016_j_hfc_2025_01_015 crossref_primary_10_3389_fonc_2023_1305511 crossref_primary_10_1016_j_cpet_2021_06_011 crossref_primary_10_1080_14779072_2024_2380764 crossref_primary_10_1016_j_isci_2023_108107 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_1016_j_jrras_2024_101012 crossref_primary_10_3389_fcvm_2024_1424585 crossref_primary_10_1016_j_engappai_2024_108537 crossref_primary_10_1111_exsy_13542 crossref_primary_10_1056_AIoa2400937 crossref_primary_10_3390_nu16162601 crossref_primary_10_1016_j_semarthrit_2024_152598 crossref_primary_10_3390_jcm13123453 crossref_primary_10_1016_j_jcmg_2022_06_006 crossref_primary_10_1053_j_semnuclmed_2024_02_005 crossref_primary_10_1080_17435889_2024_2364581 crossref_primary_10_3390_s22218454 crossref_primary_10_1007_s11886_022_01837_8 crossref_primary_10_1016_j_ejrad_2021_110034 crossref_primary_10_1038_s44325_024_00029_3 crossref_primary_10_7759_cureus_68472 crossref_primary_10_1016_j_measurement_2022_112282 crossref_primary_10_3389_fcvm_2022_1016032 crossref_primary_10_1007_s12350_022_03018_0 crossref_primary_10_1007_s00330_022_08801_8 crossref_primary_10_1038_s41746_021_00460_1 crossref_primary_10_1016_j_compmedimag_2025_102493 crossref_primary_10_1053_j_ro_2025_06_004 crossref_primary_10_1016_j_medp_2023_100001 crossref_primary_10_3390_jcdd11080245 crossref_primary_10_1016_j_jjcc_2021_10_016 crossref_primary_10_1113_JP284125 crossref_primary_10_1002_advs_202408069 crossref_primary_10_1016_j_eswa_2022_117033 crossref_primary_10_1136_heartjnl_2020_318686 crossref_primary_10_1016_j_cmpb_2023_107882 crossref_primary_10_1148_radiol_240541 crossref_primary_10_1186_s12880_022_00907_1 crossref_primary_10_1007_s00259_021_05341_z crossref_primary_10_1111_joim_20053 crossref_primary_10_1016_j_eswa_2023_122983 crossref_primary_10_1093_ehjci_jeae081 crossref_primary_10_1038_s41598_022_24884_1 crossref_primary_10_1038_s41598_024_79426_8 crossref_primary_10_1007_s11883_024_01210_w crossref_primary_10_1038_s41597_023_02864_y crossref_primary_10_3389_fmed_2025_1567545 crossref_primary_10_1093_eurheartj_ehae415 crossref_primary_10_1002_mp_15870 crossref_primary_10_1007_s10462_024_10899_9 crossref_primary_10_1109_ACCESS_2024_3514093 crossref_primary_10_1080_10255842_2021_1986486 crossref_primary_10_1007_s43657_023_00137_7 crossref_primary_10_4103_jcecho_jcecho_26_25 crossref_primary_10_1371_journal_pcbi_1011198 crossref_primary_10_1016_j_compbiomed_2025_110798 crossref_primary_10_1002_advs_202207661 crossref_primary_10_1371_journal_pdig_0000429 crossref_primary_10_3390_app14031238 crossref_primary_10_1007_s11042_023_16120_3 crossref_primary_10_3390_ijerph181910003 crossref_primary_10_1016_j_ejrad_2023_110855 crossref_primary_10_3389_fcvm_2023_1161914 crossref_primary_10_1002_mp_16750 crossref_primary_10_1038_s41467_023_37758_5 crossref_primary_10_1007_s42044_024_00223_7 crossref_primary_10_1016_j_cosrev_2023_100568 crossref_primary_10_1007_s00330_022_09028_3 crossref_primary_10_1148_radiol_222937 crossref_primary_10_3390_diagnostics13132197 crossref_primary_10_1016_j_compbiomed_2025_110708 crossref_primary_10_1016_j_hrthm_2021_12_036 crossref_primary_10_1080_14779072_2023_2223978 crossref_primary_10_1080_21642583_2024_2420912 crossref_primary_10_1186_s12911_025_03049_w crossref_primary_10_1016_j_ccl_2023_01_004 crossref_primary_10_1016_j_envres_2023_116933 crossref_primary_10_3390_jpm11070598 crossref_primary_10_3233_XST_211109 crossref_primary_10_1063_5_0058346 crossref_primary_10_1186_s12951_024_02529_x crossref_primary_10_1161_CIR_0000000000001202 crossref_primary_10_1038_s41440_023_01469_7 crossref_primary_10_1016_j_jcct_2021_10_002 crossref_primary_10_3233_THC_THC213630 crossref_primary_10_4093_dmj_2023_0033 crossref_primary_10_1142_S0219519425400305 crossref_primary_10_1016_j_compbiomed_2024_109295 crossref_primary_10_1088_1361_6560_ac7bcd crossref_primary_10_1093_eurheartj_ehab874 crossref_primary_10_2196_52073 crossref_primary_10_1007_s12350_022_02977_8 crossref_primary_10_1093_ehjci_jeaf257 crossref_primary_10_3389_fcvm_2022_981901 crossref_primary_10_17816_DD640895 crossref_primary_10_3389_fcvm_2021_765693 crossref_primary_10_1007_s11042_024_18953_y crossref_primary_10_1016_j_jcct_2024_08_003 crossref_primary_10_1016_j_jhydrol_2024_131155 crossref_primary_10_1002_adhm_202503349 crossref_primary_10_3390_s23208419 crossref_primary_10_1016_j_advengsoft_2022_103198 crossref_primary_10_1007_s12410_022_09563_z crossref_primary_10_1093_ehjci_jeaf007 crossref_primary_10_1016_j_arbres_2024_11_001 crossref_primary_10_3389_fcvm_2021_782971 crossref_primary_10_1038_s43856_024_00475_1 crossref_primary_10_1111_eci_70017 crossref_primary_10_3389_frai_2021_757780 crossref_primary_10_1148_radiol_240473 crossref_primary_10_1016_j_phro_2023_01_001 crossref_primary_10_3389_fcvm_2022_829553 crossref_primary_10_1016_j_imed_2024_11_006 crossref_primary_10_1038_s41467_021_23235_4 crossref_primary_10_1007_s10278_025_01643_y crossref_primary_10_1038_s41467_024_46977_3 |
| Cites_doi | 10.1016/j.media.2016.04.004 10.21037/tlcr.2018.05.05 10.1007/s00330-012-2726-5 10.1016/j.jcmg.2017.01.030 10.1016/j.jcmg.2018.10.026 10.1161/CIRCULATIONAHA.107.699579 10.1016/j.ahj.2012.01.028 10.1007/s12350-018-1292-x 10.1109/TMI.2017.2769839 10.1016/j.jacc.2018.11.002 10.1148/radiol.2020191621 10.1161/CIRCGENETICS.111.961342 10.1093/aje/kwm021 10.1177/001316446002000104 10.1016/j.jcct.2014.06.002 10.1016/j.amjcard.2008.06.038 10.1111/j.1746-1561.2007.00249.x 10.1161/CIRCULATIONAHA.115.018524 10.1093/ije/dyv337 10.1001/jamacardio.2016.5922 10.1093/oxfordjournals.aje.a112819 10.1117/12.2512541 10.1016/j.ahj.2014.03.003 10.1161/CIRCIMAGING.117.006776 10.1007/978-981-10-5122-7_94 10.1038/s41568-018-0016-5 10.1093/eurheartj/ehy217 10.1016/j.jcmg.2017.09.003 10.1007/s12410-016-9372-2 10.1093/oxfordjournals.aje.a112813 10.1056/NEJMoa1102873 10.1109/TMI.2019.2899534 10.1038/s41551-018-0195-0 10.1371/journal.pmed.1002711 10.1056/NEJMoa072100 10.1214/aos/1176344202 10.1007/978-3-319-24574-4_28 10.1148/radiol.15142062 10.1201/b16923 10.1016/0735-1097(90)90282-T 10.1161/CIRCULATIONAHA.116.023957 10.1097/RTI.0000000000000287 10.1038/s41591-018-0107-6 10.1016/j.media.2017.07.005 10.1109/ISBI.2018.8363515 10.1117/12.2216978 10.1016/j.jcct.2010.11.002 10.1016/j.jcct.2014.11.006 10.1056/NEJMoa1415516 10.1161/JAHA.115.003144 10.1056/NEJMoa1201161 10.1002/bimj.19740160113 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-021-20966-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_81f5a66b63fb4263b0d804c5ab0e5cbe PMC7846726 33514711 10_1038_s41467_021_20966_2 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: American Heart Association (American Heart Association, Inc.) grantid: 18UNPG34030172 funderid: https://doi.org/10.13039/100000968 – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) – fundername: Fulbright Visiting Researcher Grant (E0583118), Rosztoczy Foundation Grant – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: 5R01-HL109711; 5K24HL113128; 5T32HL076136; 5U01HL123339 funderid: https://doi.org/10.13039/100000050 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 6405/2-1; 1438/1-1 funderid: https://doi.org/10.13039/501100001659 – fundername: NHLBI NIH HHS grantid: U01 HL123339 – fundername: NHLBI NIH HHS grantid: K24 HL113128 – fundername: NHLBI NIH HHS grantid: 75N92019D00031 – fundername: NHLBI NIH HHS grantid: N01 HC025195 – fundername: NHLBI NIH HHS grantid: HHSN268201500001I – fundername: NCI NIH HHS grantid: U01 CA190234 – fundername: NHLBI NIH HHS grantid: T32 HL076136 – fundername: NCI NIH HHS grantid: U01 CA209414 – fundername: NCI NIH HHS grantid: U24 CA194354 – fundername: NHLBI NIH HHS grantid: R01 HL109711 – fundername: ; – fundername: ; grantid: 18UNPG34030172 – fundername: ; grantid: 5R01-HL109711; 5K24HL113128; 5T32HL076136; 5U01HL123339 – fundername: ; grantid: 6405/2-1; 1438/1-1 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
| ID | FETCH-LOGICAL-c606t-728c2d199a54a21feb11d9f2921e7e0c9cd5e166c41395936dbd06257ec8f22c3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684846200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 19:07:57 EDT 2025 Tue Nov 04 02:00:33 EST 2025 Sun Nov 09 12:45:53 EST 2025 Tue Oct 07 07:10:43 EDT 2025 Mon Jul 21 05:35:31 EDT 2025 Tue Nov 18 21:36:31 EST 2025 Sat Nov 29 06:29:08 EST 2025 Fri Feb 21 02:39:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-728c2d199a54a21feb11d9f2921e7e0c9cd5e166c41395936dbd06257ec8f22c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2433-9151 0000-0001-6287-5185 0000-0002-2140-814X 0000-0003-4696-9610 0000-0001-7357-5970 0000-0002-2122-2003 0000-0002-5930-5672 |
| OpenAccessLink | https://www.proquest.com/docview/2483415767?pq-origsite=%requestingapplication% |
| PMID | 33514711 |
| PQID | 2483415767 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_81f5a66b63fb4263b0d804c5ab0e5cbe pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846726 proquest_miscellaneous_2483814957 proquest_journals_2483415767 pubmed_primary_33514711 crossref_primary_10_1038_s41467_021_20966_2 crossref_citationtrail_10_1038_s41467_021_20966_2 springer_journals_10_1038_s41467_021_20966_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-29 |
| PublicationDateYYYYMMDD | 2021-01-29 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | LitjensGA survey on deep learning in medical image analysisMed. Image Anal.20174260882877802610.1016/j.media.2017.07.005 Writing Group Members.Heart disease and stroke statistics-2016 update: a report from the American Heart AssociationCirculation2016133e38e360 MartinSSEvaluation of a deep learning–based automated CT coronary artery calcium scoring algorithmJACC: Cardiovasc. Imaging202013524526 PokharelYAdoption of the 2013 American College of Cardiology/American Heart Association Cholesterol Management Guideline in Cardiology Practices NationwideJAMA Cardiol.2017236136928249067547041310.1001/jamacardio.2016.5922 WolterinkJMAutomatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networksMed. Image Anal.2016341231362713858410.1016/j.media.2016.04.004 HechtHS2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic RadiologyJ. Thorac. Imaging201732W54W662883241710.1097/RTI.0000000000000287 HosnyADeep learning for lung cancer prognostication: a retrospective multi-cohort radiomics studyPLoS Med.201815e100271130500819626908810.1371/journal.pmed.1002711 Hecht, H. S. Coronary artery calcium analysis and reporting on noncontrast chest CT scans: a paradigm shift in prevention. Curr. Cardiovasc. Imaging Reports 9 (2016). ThanassoulisGA genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham Heart StudyCirc. Cardiovasc. Genet.201251131211:CAS:528:DC%2BC38XltFOjtLc%3D22235037329286510.1161/CIRCGENETICS.111.961342 ThomasJDHultquistRAInterval estimation for the unbalanced case of the one-way random effects modelAnn. Stat.197865825874847020386.6205710.1214/aos/1176344202 Huo, Y. et al. Coronary calcium detection using 3D attention identical dual deep network based on weakly supervised learning. Med. Imaging 2019: Image Processinghttps://doi.org/10.1117/12.2512541 (2019). Shadmi, R., Mazo, V., Bregman-Amitai, O. & Elnekave, E. Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (Washington, DC, 2018). TsaoCWVasanRSCohort profile: the Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiologyInt. J. Epidemiol.2015441800181326705418515633810.1093/ije/dyv337 NihiserAJBody mass index measurement in schools.J. School Health2007776516711807641110.1111/j.1746-1561.2007.00249.x GrundySM2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summaryJ. Am. Coll. Cardiol.201973316832093042339110.1016/j.jacc.2018.11.002 D’AgostinoRBGeneral cardiovascular risk profile for use in primary care: the Framingham Heart StudyCirculation20081177437531821228510.1161/CIRCULATIONAHA.107.699579 MitchellJDPaisleyRMoonPNovakEVillinesTCCoronary artery calcium and long-term risk of death, myocardial iInfarction, and stroke: the Walter Reed Cohort StudyJACC Cardiovasc. Imaging201811179918062915357610.1016/j.jcmg.2017.09.003 HoffmannUDesign of the rule out myocardial ischemia/infarction using computer assisted tomography: a multicenter randomized comparative effectiveness trial of cardiac computed tomography versus alternative triage strategies in patients with acute chest pain in the emergency departmentAm. Heart J.2012163330338, 338.e122424002373635810.1016/j.ahj.2012.01.028 VieraAJGarrettJMUnderstanding interobserver agreement: the kappa statisticFam. Med.20053736036315883903 BudoffMJCoronary artery and thoracic calcium on noncontrast thoracic CT scans: comparison of ungated and gated examinations in patients from the COPD Gene cohortJ. Cardiovasc. Comput. Tomogr.201151131182116780610.1016/j.jcct.2010.11.002 CohenJA coefficient of agreement for nominal scalesEduc. Psychological Meas.196020374610.1177/001316446002000104 BudoffMJTen-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA)Eur. Heart J.201839240124081:CAS:528:DC%2BC1MXhtlClsLbJ29688297603097510.1093/eurheartj/ehy217 PatelMRCorrection to: ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart diseaseJ. Nucl. Cardiol.201825219121922974887410.1007/s12350-018-1292-x RonnebergerOFischerPBroxTU-Net: convolutional networks for biomedical image segmentation.Lecture Notes Computer Sci.2015935123424110.1007/978-3-319-24574-4_28 Kokoska, S. & Zwillinger, D. CRC Standard Probability and Statistics Tables and Formulae, Student Edition (CRC Press, 2000). ChilesCAssociation of coronary artery calcification and mortality in the national lung screening trial: a comparison of three scoring methodsRadiology2015276822575997210.1148/radiol.15142062 RavenelJGNanceJWCoronary artery calcification in lung cancer screeningTransl. Lung Cancer Res.2018736136730050773603795910.21037/tlcr.2018.05.05 BlahaMJRole of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA)Circulation20161338498581:CAS:528:DC%2BC28XjslClt7g%3D26801055477539110.1161/CIRCULATIONAHA.115.018524 van VelzenSGMDeep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocolsRadiology202029566793204394710.1148/radiol.2020191621 DouglasPSPROspective multicenter imaging study for evaluation of chest pain: rationale and design of the PROMISE trialAm. Heart J.2014167796803.e124890527404461710.1016/j.ahj.2014.03.003 Santini, G. et al. An automatic deep learning approach for coronary artery calcium segmentation. EMBEC & NBC 2017 374–377 https://doi.org/10.1007/978-981-10-5122-7_94 (2018). HoffmannUMassaroJMFoxCSMandersEO’DonnellCJDefining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study)Am. J. Cardiol.200810211361141, 1141.e11:CAS:528:DC%2BD1cXht1KnsrfE18940279306537810.1016/j.amjcard.2008.06.038 HoffmannUCardiovascular event prediction and risk reclassification by coronary, aortic, and valvular calcification in the Framingham Heart StudyJ. Am. Heart Assoc.20165e00314426903006480245310.1161/JAHA.115.003144 LuMTLung cancer screening eligibility in the community: cardiovascular risk factors, coronary artery calcification, and cardiovascular eventsCirculation201613489789927647299503124610.1161/CIRCULATIONAHA.116.023957 LessmannNAutomatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutionsIEEE Trans. Med. Imaging2018376156252940878910.1109/TMI.2017.2769839 De FauwJClinically applicable deep learning for diagnosis and referral in retinal diseaseNat. Med.201824134213503010476810.1038/s41591-018-0107-61:CAS:528:DC%2BC1cXhsFSqtbzN GuptaAThe identification of calcified coronary plaque is associated with initiation and continuation of pharmacological and lifestyle preventive therapies: a systematic review and meta-analysisJACC Cardiovasc. Imaging20171083384228797402576165110.1016/j.jcmg.2017.01.030 Wilkins, E. et al. European Cardiovascular Disease Statistics 2017. (2017). Lessmann, N. et al. Sex differences in coronary artery and thoracic aorta calcification and their association with cardiovascular mortality in heavy smokers. JACC Cardiovasc. Imaginghttps://doi.org/10.1016/j.jcmg.2018.10.026 (2019). DonnerAThe use of correlation and regression in the analysis of family resemblanceAm. J. Epidemiol.19791103353421:STN:280:DyaE1M3ltlSnsQ%3D%3D47456910.1093/oxfordjournals.aje.a112819 DouglasPSOutcomes of anatomical versus functional testing for coronary artery diseaseN. Engl. J. Med.2015372129113001:CAS:528:DC%2BC2MXns1CltLY%3D25773919447377310.1056/NEJMoa1415516 HuangY-LReliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston scoreEur. Radiol.201323122612332323906010.1007/s00330-012-2726-5 TakxRAPQuantification of coronary artery calcium in nongated CT to predict cardiovascular events in male lung cancer screening participants: results of the NELSON studyJ. Cardiovasc. Comput. Tomogr.2015950572553322310.1016/j.jcct.2014.11.006 HosnyAParmarCQuackenbushJSchwartzLHAertsHJWLArtificial intelligence in radiologyNat. Rev. Cancer2018185005101:CAS:528:DC%2BC1cXpvVKrsLY%3D29777175626817410.1038/s41568-018-0016-5 MukakaMMStatistics corner: A guide to appropriate use of correlation coefficient in medical researchMalawi Med. J.20122469711:STN:280:DC%2BC3sngt12kug%3D%3D236382783576830 National Lung Screening Trial Research Team et al.Reduced lung-cancer mortality with low-dose computed tomographic screeningN. Engl. J. Med201136539540910.1056/NEJMoa1102873 DetranoRCoronary calcium as a predictor of coronary events in four racial or ethnic groupsN. Engl. J. Med.2008358133613451:CAS:528:DC%2BD1cXjvFCgsrk%3D1836773610.1056/NEJMoa072100 AgatstonASQuantification of coronary artery calcium using ultrafast computed tomographyJ. Am. Coll. Cardiol.1990158278321:STN:280:DyaK3c7ntFelug%3D%3D240776210.1016/0735-1097(90)90282-T KannelWBFeinleibMMcNamaraPMGarrisonRJCastelliWPAn investigation of coronary heart disease in families. The Framingham offspring studyAm. J. Epidemiol.19791102812901:STN:280:DyaE1M3ltlSgtQ%3D%3D47456510.1093/oxfordjournals.aje.a112813 Qazi, S. et al. Increased aortic diameters on multidetector computed tomographic scan are independent predictors of incident adverse cardiovascular events: the Framingham Heart Study. Circ. Cardiovasc. Imaging10, e006776 (2017). de Vos, B. D. et al. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans. Med. Imaginghttps://doi.org/10.1109/TMI.2019.2899534 (2019). RaffGLSCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: a report of MM Mukaka (20966_CR22) 2012; 24 MJ Budoff (20966_CR31) 2011; 5 A Gupta (20966_CR12) 2017; 10 J Cohen (20966_CR56) 1960; 20 R Poplin (20966_CR4) 2018; 2 National Lung Screening Trial Research Team et al. (20966_CR18) 2011; 365 MR Patel (20966_CR9) 2018; 25 A Hosny (20966_CR15) 2018; 15 U Hoffmann (20966_CR20) 2012; 163 U Hoffmann (20966_CR21) 2008; 102 N Lessmann (20966_CR37) 2018; 37 G Thanassoulis (20966_CR6) 2012; 5 20966_CR28 A Donner (20966_CR54) 1979; 110 GL Raff (20966_CR10) 2014; 8 U Hoffmann (20966_CR46) 2012; 367 GL Splansky (20966_CR49) 2007; 165 U Hoffmann (20966_CR25) 2016; 5 H Ahrens (20966_CR53) 1974; 16 AJ Nihiser (20966_CR57) 2007; 77 20966_CR51 20966_CR52 R Detrano (20966_CR47) 2008; 358 HS Hecht (20966_CR8) 2017; 32 PS Douglas (20966_CR19) 2014; 167 20966_CR1 Y Pokharel (20966_CR3) 2017; 2 J De Fauw (20966_CR14) 2018; 24 MJ Budoff (20966_CR26) 2018; 39 SM Grundy (20966_CR7) 2019; 73 G Litjens (20966_CR16) 2017; 42 JD Thomas (20966_CR55) 1978; 6 C Chiles (20966_CR33) 2015; 276 RB D’Agostino (20966_CR17) 2008; 117 20966_CR40 Writing Group Members. (20966_CR2) 2016; 133 SS Martin (20966_CR42) 2020; 13 20966_CR43 MJ Blaha (20966_CR24) 2016; 133 JM Wolterink (20966_CR34) 2016; 34 RAP Takx (20966_CR32) 2015; 9 JG Ravenel (20966_CR11) 2018; 7 A Hosny (20966_CR13) 2018; 18 MT Lu (20966_CR29) 2016; 134 AS Agatston (20966_CR5) 1990; 15 JD Mitchell (20966_CR27) 2018; 11 WB Kannel (20966_CR48) 1979; 110 20966_CR35 20966_CR36 CW Tsao (20966_CR44) 2015; 44 SGM van Velzen (20966_CR41) 2020; 295 Y-L Huang (20966_CR30) 2013; 23 20966_CR38 20966_CR39 AJ Viera (20966_CR23) 2005; 37 PS Douglas (20966_CR45) 2015; 372 O Ronneberger (20966_CR50) 2015; 9351 |
| References_xml | – reference: HosnyAParmarCQuackenbushJSchwartzLHAertsHJWLArtificial intelligence in radiologyNat. Rev. Cancer2018185005101:CAS:528:DC%2BC1cXpvVKrsLY%3D29777175626817410.1038/s41568-018-0016-5 – reference: BudoffMJTen-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA)Eur. Heart J.201839240124081:CAS:528:DC%2BC1MXhtlClsLbJ29688297603097510.1093/eurheartj/ehy217 – reference: HosnyADeep learning for lung cancer prognostication: a retrospective multi-cohort radiomics studyPLoS Med.201815e100271130500819626908810.1371/journal.pmed.1002711 – reference: CohenJA coefficient of agreement for nominal scalesEduc. Psychological Meas.196020374610.1177/001316446002000104 – reference: DouglasPSOutcomes of anatomical versus functional testing for coronary artery diseaseN. Engl. J. Med.2015372129113001:CAS:528:DC%2BC2MXns1CltLY%3D25773919447377310.1056/NEJMoa1415516 – reference: ChilesCAssociation of coronary artery calcification and mortality in the national lung screening trial: a comparison of three scoring methodsRadiology2015276822575997210.1148/radiol.15142062 – reference: RaffGLSCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: a report of the Society of Cardiovascular Computed Tomography Guidelines CommitteeJ. Cardiovasc. Comput. Tomogr.201482542712515191810.1016/j.jcct.2014.06.002 – reference: LuMTLung cancer screening eligibility in the community: cardiovascular risk factors, coronary artery calcification, and cardiovascular eventsCirculation201613489789927647299503124610.1161/CIRCULATIONAHA.116.023957 – reference: HoffmannUCardiovascular event prediction and risk reclassification by coronary, aortic, and valvular calcification in the Framingham Heart StudyJ. Am. Heart Assoc.20165e00314426903006480245310.1161/JAHA.115.003144 – reference: Writing Group Members.Heart disease and stroke statistics-2016 update: a report from the American Heart AssociationCirculation2016133e38e360 – reference: van VelzenSGMDeep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocolsRadiology202029566793204394710.1148/radiol.2020191621 – reference: PatelMRCorrection to: ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart diseaseJ. Nucl. Cardiol.201825219121922974887410.1007/s12350-018-1292-x – reference: Lessmann, N. et al. Sex differences in coronary artery and thoracic aorta calcification and their association with cardiovascular mortality in heavy smokers. JACC Cardiovasc. Imaginghttps://doi.org/10.1016/j.jcmg.2018.10.026 (2019). – reference: TsaoCWVasanRSCohort profile: the Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiologyInt. J. Epidemiol.2015441800181326705418515633810.1093/ije/dyv337 – reference: NihiserAJBody mass index measurement in schools.J. School Health2007776516711807641110.1111/j.1746-1561.2007.00249.x – reference: MukakaMMStatistics corner: A guide to appropriate use of correlation coefficient in medical researchMalawi Med. J.20122469711:STN:280:DC%2BC3sngt12kug%3D%3D236382783576830 – reference: ThomasJDHultquistRAInterval estimation for the unbalanced case of the one-way random effects modelAnn. Stat.197865825874847020386.6205710.1214/aos/1176344202 – reference: BudoffMJCoronary artery and thoracic calcium on noncontrast thoracic CT scans: comparison of ungated and gated examinations in patients from the COPD Gene cohortJ. Cardiovasc. Comput. Tomogr.201151131182116780610.1016/j.jcct.2010.11.002 – reference: MartinSSEvaluation of a deep learning–based automated CT coronary artery calcium scoring algorithmJACC: Cardiovasc. Imaging202013524526 – reference: TakxRAPQuantification of coronary artery calcium in nongated CT to predict cardiovascular events in male lung cancer screening participants: results of the NELSON studyJ. Cardiovasc. Comput. Tomogr.2015950572553322310.1016/j.jcct.2014.11.006 – reference: Huo, Y. et al. Coronary calcium detection using 3D attention identical dual deep network based on weakly supervised learning. Med. Imaging 2019: Image Processinghttps://doi.org/10.1117/12.2512541 (2019). – reference: GrundySM2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summaryJ. Am. Coll. Cardiol.201973316832093042339110.1016/j.jacc.2018.11.002 – reference: AgatstonASQuantification of coronary artery calcium using ultrafast computed tomographyJ. Am. Coll. Cardiol.1990158278321:STN:280:DyaK3c7ntFelug%3D%3D240776210.1016/0735-1097(90)90282-T – reference: DetranoRCoronary calcium as a predictor of coronary events in four racial or ethnic groupsN. Engl. J. Med.2008358133613451:CAS:528:DC%2BD1cXjvFCgsrk%3D1836773610.1056/NEJMoa072100 – reference: HoffmannUMassaroJMFoxCSMandersEO’DonnellCJDefining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study)Am. J. Cardiol.200810211361141, 1141.e11:CAS:528:DC%2BD1cXht1KnsrfE18940279306537810.1016/j.amjcard.2008.06.038 – reference: AhrensHSearleSRLinear Models. John Wiley & Sons, Inc., New York-London-Sydney-Toronto 1971. XXI, 532 S. $9.50Biometrische Z.197416787910.1002/bimj.19740160113 – reference: Lessmann, N. et al. Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Med. Imaging 2016: Computer-Aided Diagnosishttps://doi.org/10.1117/12.2216978 (2016). – reference: DonnerAThe use of correlation and regression in the analysis of family resemblanceAm. J. Epidemiol.19791103353421:STN:280:DyaE1M3ltlSnsQ%3D%3D47456910.1093/oxfordjournals.aje.a112819 – reference: ThanassoulisGA genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham Heart StudyCirc. Cardiovasc. Genet.201251131211:CAS:528:DC%2BC38XltFOjtLc%3D22235037329286510.1161/CIRCGENETICS.111.961342 – reference: Qazi, S. et al. Increased aortic diameters on multidetector computed tomographic scan are independent predictors of incident adverse cardiovascular events: the Framingham Heart Study. Circ. Cardiovasc. Imaging10, e006776 (2017). – reference: RavenelJGNanceJWCoronary artery calcification in lung cancer screeningTransl. Lung Cancer Res.2018736136730050773603795910.21037/tlcr.2018.05.05 – reference: Wilkins, E. et al. European Cardiovascular Disease Statistics 2017. (2017). – reference: KannelWBFeinleibMMcNamaraPMGarrisonRJCastelliWPAn investigation of coronary heart disease in families. The Framingham offspring studyAm. J. Epidemiol.19791102812901:STN:280:DyaE1M3ltlSgtQ%3D%3D47456510.1093/oxfordjournals.aje.a112813 – reference: LitjensGA survey on deep learning in medical image analysisMed. Image Anal.20174260882877802610.1016/j.media.2017.07.005 – reference: National Lung Screening Trial Research Team et al.Reduced lung-cancer mortality with low-dose computed tomographic screeningN. Engl. J. Med201136539540910.1056/NEJMoa1102873 – reference: Hecht, H. S. Coronary artery calcium analysis and reporting on noncontrast chest CT scans: a paradigm shift in prevention. Curr. Cardiovasc. Imaging Reports 9 (2016). – reference: DouglasPSPROspective multicenter imaging study for evaluation of chest pain: rationale and design of the PROMISE trialAm. Heart J.2014167796803.e124890527404461710.1016/j.ahj.2014.03.003 – reference: Shadmi, R., Mazo, V., Bregman-Amitai, O. & Elnekave, E. Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (Washington, DC, 2018). – reference: HuangY-LReliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston scoreEur. Radiol.201323122612332323906010.1007/s00330-012-2726-5 – reference: PoplinRPrediction of cardiovascular risk factors from retinal fundus photographs via deep learningNat. Biomed. Eng.201821581643101571310.1038/s41551-018-0195-0 – reference: HoffmannUCoronary CT angiography versus standard evaluation in acute chest painN. Engl. J. Med.20123672993081:CAS:528:DC%2BC38XhtFegsrrF22830462366221710.1056/NEJMoa1201161 – reference: WolterinkJMAutomatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networksMed. Image Anal.2016341231362713858410.1016/j.media.2016.04.004 – reference: Kokoska, S. & Zwillinger, D. CRC Standard Probability and Statistics Tables and Formulae, Student Edition (CRC Press, 2000). – reference: BlahaMJRole of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA)Circulation20161338498581:CAS:528:DC%2BC28XjslClt7g%3D26801055477539110.1161/CIRCULATIONAHA.115.018524 – reference: RonnebergerOFischerPBroxTU-Net: convolutional networks for biomedical image segmentation.Lecture Notes Computer Sci.2015935123424110.1007/978-3-319-24574-4_28 – reference: HoffmannUDesign of the rule out myocardial ischemia/infarction using computer assisted tomography: a multicenter randomized comparative effectiveness trial of cardiac computed tomography versus alternative triage strategies in patients with acute chest pain in the emergency departmentAm. Heart J.2012163330338, 338.e122424002373635810.1016/j.ahj.2012.01.028 – reference: HechtHS2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic RadiologyJ. Thorac. Imaging201732W54W662883241710.1097/RTI.0000000000000287 – reference: MitchellJDPaisleyRMoonPNovakEVillinesTCCoronary artery calcium and long-term risk of death, myocardial iInfarction, and stroke: the Walter Reed Cohort StudyJACC Cardiovasc. Imaging201811179918062915357610.1016/j.jcmg.2017.09.003 – reference: Santini, G. et al. An automatic deep learning approach for coronary artery calcium segmentation. EMBEC & NBC 2017 374–377 https://doi.org/10.1007/978-981-10-5122-7_94 (2018). – reference: SplanskyGLThe third generation cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examinationAm. J. Epidemiol.2007165132813351737218910.1093/aje/kwm021 – reference: LessmannNAutomatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutionsIEEE Trans. Med. Imaging2018376156252940878910.1109/TMI.2017.2769839 – reference: PokharelYAdoption of the 2013 American College of Cardiology/American Heart Association Cholesterol Management Guideline in Cardiology Practices NationwideJAMA Cardiol.2017236136928249067547041310.1001/jamacardio.2016.5922 – reference: De FauwJClinically applicable deep learning for diagnosis and referral in retinal diseaseNat. Med.201824134213503010476810.1038/s41591-018-0107-61:CAS:528:DC%2BC1cXhsFSqtbzN – reference: de Vos, B. D. et al. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans. Med. Imaginghttps://doi.org/10.1109/TMI.2019.2899534 (2019). – reference: GuptaAThe identification of calcified coronary plaque is associated with initiation and continuation of pharmacological and lifestyle preventive therapies: a systematic review and meta-analysisJACC Cardiovasc. Imaging20171083384228797402576165110.1016/j.jcmg.2017.01.030 – reference: VieraAJGarrettJMUnderstanding interobserver agreement: the kappa statisticFam. Med.20053736036315883903 – reference: D’AgostinoRBGeneral cardiovascular risk profile for use in primary care: the Framingham Heart StudyCirculation20081177437531821228510.1161/CIRCULATIONAHA.107.699579 – volume: 34 start-page: 123 year: 2016 ident: 20966_CR34 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.04.004 – volume: 7 start-page: 361 year: 2018 ident: 20966_CR11 publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr.2018.05.05 – volume: 23 start-page: 1226 year: 2013 ident: 20966_CR30 publication-title: Eur. Radiol. doi: 10.1007/s00330-012-2726-5 – volume: 10 start-page: 833 year: 2017 ident: 20966_CR12 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2017.01.030 – ident: 20966_CR35 doi: 10.1016/j.jcmg.2018.10.026 – volume: 117 start-page: 743 year: 2008 ident: 20966_CR17 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.699579 – volume: 163 start-page: 330 year: 2012 ident: 20966_CR20 publication-title: Am. Heart J. doi: 10.1016/j.ahj.2012.01.028 – volume: 25 start-page: 2191 year: 2018 ident: 20966_CR9 publication-title: J. Nucl. Cardiol. doi: 10.1007/s12350-018-1292-x – volume: 37 start-page: 615 year: 2018 ident: 20966_CR37 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2769839 – volume: 73 start-page: 3168 year: 2019 ident: 20966_CR7 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.11.002 – volume: 37 start-page: 360 year: 2005 ident: 20966_CR23 publication-title: Fam. Med. – volume: 295 start-page: 66 year: 2020 ident: 20966_CR41 publication-title: Radiology doi: 10.1148/radiol.2020191621 – volume: 5 start-page: 113 year: 2012 ident: 20966_CR6 publication-title: Circ. Cardiovasc. Genet. doi: 10.1161/CIRCGENETICS.111.961342 – volume: 165 start-page: 1328 year: 2007 ident: 20966_CR49 publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwm021 – volume: 20 start-page: 37 year: 1960 ident: 20966_CR56 publication-title: Educ. Psychological Meas. doi: 10.1177/001316446002000104 – volume: 8 start-page: 254 year: 2014 ident: 20966_CR10 publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2014.06.002 – volume: 102 start-page: 1136 year: 2008 ident: 20966_CR21 publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2008.06.038 – volume: 77 start-page: 651 year: 2007 ident: 20966_CR57 publication-title: J. School Health doi: 10.1111/j.1746-1561.2007.00249.x – volume: 133 start-page: 849 year: 2016 ident: 20966_CR24 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.018524 – volume: 44 start-page: 1800 year: 2015 ident: 20966_CR44 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyv337 – volume: 2 start-page: 361 year: 2017 ident: 20966_CR3 publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2016.5922 – volume: 110 start-page: 335 year: 1979 ident: 20966_CR54 publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a112819 – ident: 20966_CR38 doi: 10.1117/12.2512541 – volume: 13 start-page: 524 year: 2020 ident: 20966_CR42 publication-title: JACC: Cardiovasc. Imaging – volume: 167 start-page: 796 year: 2014 ident: 20966_CR19 publication-title: Am. Heart J. doi: 10.1016/j.ahj.2014.03.003 – volume: 24 start-page: 69 year: 2012 ident: 20966_CR22 publication-title: Malawi Med. J. – ident: 20966_CR51 doi: 10.1161/CIRCIMAGING.117.006776 – ident: 20966_CR39 doi: 10.1007/978-981-10-5122-7_94 – volume: 18 start-page: 500 year: 2018 ident: 20966_CR13 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0016-5 – volume: 39 start-page: 2401 year: 2018 ident: 20966_CR26 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehy217 – volume: 133 start-page: e38 year: 2016 ident: 20966_CR2 publication-title: Circulation – volume: 11 start-page: 1799 year: 2018 ident: 20966_CR27 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2017.09.003 – ident: 20966_CR28 doi: 10.1007/s12410-016-9372-2 – volume: 110 start-page: 281 year: 1979 ident: 20966_CR48 publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a112813 – volume: 365 start-page: 395 year: 2011 ident: 20966_CR18 publication-title: N. Engl. J. Med doi: 10.1056/NEJMoa1102873 – ident: 20966_CR36 doi: 10.1109/TMI.2019.2899534 – volume: 2 start-page: 158 year: 2018 ident: 20966_CR4 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 15 start-page: e1002711 year: 2018 ident: 20966_CR15 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002711 – volume: 358 start-page: 1336 year: 2008 ident: 20966_CR47 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa072100 – volume: 6 start-page: 582 year: 1978 ident: 20966_CR55 publication-title: Ann. Stat. doi: 10.1214/aos/1176344202 – volume: 9351 start-page: 234 year: 2015 ident: 20966_CR50 publication-title: Lecture Notes Computer Sci. doi: 10.1007/978-3-319-24574-4_28 – volume: 276 start-page: 82 year: 2015 ident: 20966_CR33 publication-title: Radiology doi: 10.1148/radiol.15142062 – ident: 20966_CR52 doi: 10.1201/b16923 – ident: 20966_CR1 – volume: 15 start-page: 827 year: 1990 ident: 20966_CR5 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(90)90282-T – volume: 134 start-page: 897 year: 2016 ident: 20966_CR29 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.023957 – volume: 32 start-page: W54 year: 2017 ident: 20966_CR8 publication-title: J. Thorac. Imaging doi: 10.1097/RTI.0000000000000287 – volume: 24 start-page: 1342 year: 2018 ident: 20966_CR14 publication-title: Nat. Med. doi: 10.1038/s41591-018-0107-6 – volume: 42 start-page: 60 year: 2017 ident: 20966_CR16 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – ident: 20966_CR40 doi: 10.1109/ISBI.2018.8363515 – ident: 20966_CR43 doi: 10.1117/12.2216978 – volume: 5 start-page: 113 year: 2011 ident: 20966_CR31 publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2010.11.002 – volume: 9 start-page: 50 year: 2015 ident: 20966_CR32 publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2014.11.006 – volume: 372 start-page: 1291 year: 2015 ident: 20966_CR45 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1415516 – volume: 5 start-page: e003144 year: 2016 ident: 20966_CR25 publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.115.003144 – volume: 367 start-page: 299 year: 2012 ident: 20966_CR46 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1201161 – volume: 16 start-page: 78 year: 1974 ident: 20966_CR53 publication-title: Biometrische Z. doi: 10.1002/bimj.19740160113 |
| SSID | ssj0000391844 |
| Score | 2.6703684 |
| Snippet | Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this... Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 715 |
| SubjectTerms | 631/114/1305 639/705/117 692/308/409 692/4019/2776 692/499 Aged Arteriosclerosis Artificial neural networks Asymptomatic Diseases Automation Biomarkers Calcification (ectopic) Calcium Calcium - analysis Cardiovascular diseases Cardiovascular Diseases - complications Cardiovascular Diseases - diagnosis Cardiovascular Diseases - epidemiology Cardiovascular Diseases - pathology Chest Chest Pain - diagnosis Chest Pain - etiology Computed tomography Coronary artery Coronary vessels Coronary Vessels - diagnostic imaging Coronary Vessels - pathology Deep Learning Female Follow-Up Studies Health risks Heart Disease Risk Factors Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Male Middle Aged multidisciplinary Neural networks Reproducibility of Results Retrospective Studies Risk analysis Risk Assessment - methods Risk factors Robustness Science Science (multidisciplinary) Tomography Tomography, X-Ray Computed |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9VAEC5kUPAi7kZHieBNw3R3kl6OboOnwYPC4KVJbzigeY_3MsL8e6u6854T14unQKcCTS1dVanqrwCesdaHNCTfSMVUgx5CNw69DhqeNl4SfgxLediEOjnRp6fm_aVRX9QTVuCBC-OONE_9IKWTbXIELu5Y0Kzz_eBY7L2LdPpi1HMpmcpncGswdenmWzKs1UfbLp8J1JEgMGyXjVh4ogzY_7so89dmyZ8qptkRHd-EG3MEWb8sO78FV-J4G66VmZIXd-DTmxjXNTWTz0qFtARamR-55XtbT6t6vaEKzVT7RT9qTZ3mNV05qX0Z9xCQ-OsMa30XPh6__fD6XTMPUGiQzXJqlNBeBG7M0HeD4AnPZR5MEkbwqCLzxoc-cik9ejICKJbBBYYJkYpeJyF8ew8OxtUYH0DNjPOdDMJFEbs-Ss0HLn2fcGFI2sQK-I6Z1s_o4jTk4ovNVe5W2yIAiwKwWQBWVPB8_826YGv8lfoVyWhPSbjYeQG1xc7aYv-lLRUc7iRsZ2PdWkE_VDkmXqqCp_vXaGZUOxnGuDovNJqySaS5XxRiv5OWbkMozitQC1VZbHX5Zjz7nKG8FYV_QlbwYqdUP7b1Z1Y8_B-seATXBVkDQ4Mwh3Awbc7jY7jqv01n282TbE7fAS1ZI-I priority: 102 providerName: Directory of Open Access Journals |
| Title | Deep convolutional neural networks to predict cardiovascular risk from computed tomography |
| URI | https://link.springer.com/article/10.1038/s41467-021-20966-2 https://www.ncbi.nlm.nih.gov/pubmed/33514711 https://www.proquest.com/docview/2483415767 https://www.proquest.com/docview/2483814957 https://pubmed.ncbi.nlm.nih.gov/PMC7846726 https://doaj.org/article/81f5a66b63fb4263b0d804c5ab0e5cbe |
| Volume | 12 |
| WOSCitedRecordID | wos000684846200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3o9AiYLEDaLaTuLHCVFoBQdWEQJp6cVK_CiVYLNsUiT-PR7Hmyo8euGSSPFEcjIznvHM-BuEnuFCG9c4nTOOee4thMhbb3W84gmpGeDHYBeaTfDFQiyXso4Btz6WVW7XxLBQm05DjPyAQtSLeO-Yv1x_z6FrFGRXYwuNHbQHKAmgmHV1MsVYAP1clGU8K4MLcdCXYWWAugTqnXeW05k9CrD9f_M1_yyZ_C1vGszR8c3__ZBb6EZ0RLNXo-TcRlfs6g66Nram_HkXnbyxdp1BTXqUTU8L2JfhFirH-2zosvUGEj1DpmdlrRkUrGdwciXTY9cI44m_RXTse-jT8dHH12_z2Ich99xiQ86p0NQQKZuqbChxfnknRjoqKbHcYi21qSxhTHuDCDjHzLQG-30Vt1o4SnVxH-2uupV9iDIsW10yQ1tLbVlZJkhDmK6cf9A4IW2CyJYbSkeQcuiV8VWFZHkh1MhB5TmoAgcVTdDz6Z31CNFxKfUhMHmiBHjt8KDbnKqorUoQVzWMtaxwLSDat9gIXOqqabGtdOunub_lrYo636sLxibo6TTstRVSMM3KducjjYBNqad5MErUNJMCDlVwQhLEZ7I2m-p8ZHX2JSCCc_AiKUvQi61UXkzr37_i0eVf8Rhdp6Ao2OuK3Ee7w-bcPkFX9Y_hrN-kaIcvebiKFO0dHi3qD2kIaKRQPlunQRP9SP3uff35FwW4OGc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78dCgSDBCaLaTmI7B4SAUrVqWXEo0oqLmzh2Wwl2l80W1D_Fb2TGeVTh0VsPnCIlk8ROZj6_Pn8D8IwltvKFt7FUTMXYQui4xFYHA0_nVpJ-DPMh2YQaj_Vkkn9cgZ_dXhiiVXaYGIC6mlmaI18XNOvFsXesXs-_xZQ1ilZXuxQajVvsuJMfOGSrX21v4P99LsTm-713W3GbVSDGd8tlrIS2ouJ5XmRpIbhHsOJV7kUuuFOO2dxWmeNSWoR3Uu2VVVkxHCUoZ7UXwib43AtwEXFcEYVMTVQ_p0Nq6zpN2705LNHrdRqQiHgQAgcLMhaD9i-kCfhb3_ZPiuZv67Sh-du8_r99uBtwre1oR2-ayLgJK256Cy43qTdPbsPnDefmEXHu29hDW9L2DIfAjK-j5SyaL2ghaxnZAW03IkJ-RDtzIttkxajQ-Gur_n0HPp1Lxe7C6nQ2dfchYnlpU1mJ0gmXZk5qXnBpM48nCq9zNwLe_X1jWxF2ygXyxQQyQKJN4zEGPcYEjzFiBC_6e-aNBMmZ1m_JqXpLkg8PJ2aLA9OikdHcZ4WUpUx8SYr9Jas0S21WlMxltsRirnW-ZFpMq82pI43gaX8Z0YiWmIqpmx03NpoG3Whzr_HgviQJbRpRnI9ADXx7UNThlenRYVA8V9RLFnIEL7soOC3Wvz_Fg7Nr8QSubO192DW72-Odh3BVUJAyjNN8DVaXi2P3CC7Z78ujevE4RHkE--cdHb8AXWmNYg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC6y48H4EFggSnCCq7SS2c0AIKBWrRVUPIK324k0cm10J2tJmQfvX-HXMOElX5bG3PXCqlEyrSfrN2GN__gbgKUtt7UtvE6mYSnCE0EmFow4Gni6sJP0Y5kOzCTUe6729YrIBP_uzMESr7HNiSNT1zNIa-UDQqhfH2bEa-I4WMRmOXs2_JdRBinZa-3YaLUR23ckPLN-WL3eG-F8_E2L07uPb90nXYSBBP2STKKGtqHlRlHlWCu4xcfG68KIQ3CnHbGHr3HEpLaZ6UvCVdVUzrBiUs9oLYVP83QtwUWGNSYXfJN9fre-Q8rrOsu6cDkv1YJmFrEScCIGFg0zE2lgYWgb8bZ77J13ztz3bMBSOrv3PL_E6XO0m4PHrNmJuwIab3oTLbUvOk1uwP3RuHhMXv4tJtCXNz_ARGPPLuJnF8wVtcDWxXaPzxkTUj-nETmzbbhk1Gn_tVMFvw6dzebA7sDmdTd09iFlR2UzWonLCZbmTmpdc2tzjhdLrwkXAeyQY24mzU4-QLyaQBFJtWvQYRI8J6DEiguer78xbaZIzrd8QwFaWJCseLswWn02XpYzmPi-lrGTqK1Lyr1itWWbzsmIutxW6ud3jynS5bmlOQRXBk9VtzFK09VRO3ey4tdFUjKPN3RbNK09SOkyiOI9AreF8zdX1O9Ojw6CErmj2LGQEL_qIOHXr36_i_tlP8Ri2MCjMh53x7gO4IiheGYZssQ2bzeLYPYRL9ntztFw8CgEfw8F5B8cv536WVQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+networks+to+predict+cardiovascular+risk+from+computed+tomography&rft.jtitle=Nature+communications&rft.au=Zeleznik%2C+Roman&rft.au=Foldyna%2C+Borek&rft.au=Eslami%2C+Parastou&rft.au=Weiss%2C+Jakob&rft.date=2021-01-29&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=715&rft_id=info:doi/10.1038%2Fs41467-021-20966-2&rft_id=info%3Apmid%2F33514711&rft.externalDocID=33514711 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |