Deep convolutional neural networks to predict cardiovascular risk from computed tomography

Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep le...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature communications Ročník 12; číslo 1; s. 715 - 9
Hlavní autori: Zeleznik, Roman, Foldyna, Borek, Eslami, Parastou, Weiss, Jakob, Alexander, Ivanov, Taron, Jana, Parmar, Chintan, Alvi, Raza M., Banerji, Dahlia, Uno, Mio, Kikuchi, Yasuka, Karady, Julia, Zhang, Lili, Scholtz, Jan-Erik, Mayrhofer, Thomas, Lyass, Asya, Mahoney, Taylor F., Massaro, Joseph M., Vasan, Ramachandran S., Douglas, Pamela S., Hoffmann, Udo, Lu, Michael T., Aerts, Hugo J. W. L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 29.01.2021
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2041-1723, 2041-1723
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health. Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study.
AbstractList Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.
Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health. Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study.
Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study.
Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study.
Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.
ArticleNumber 715
Author Aerts, Hugo J. W. L.
Taron, Jana
Vasan, Ramachandran S.
Mahoney, Taylor F.
Kikuchi, Yasuka
Douglas, Pamela S.
Hoffmann, Udo
Alvi, Raza M.
Scholtz, Jan-Erik
Zeleznik, Roman
Zhang, Lili
Massaro, Joseph M.
Weiss, Jakob
Alexander, Ivanov
Banerji, Dahlia
Lu, Michael T.
Karady, Julia
Parmar, Chintan
Lyass, Asya
Foldyna, Borek
Uno, Mio
Mayrhofer, Thomas
Eslami, Parastou
Author_xml – sequence: 1
  givenname: Roman
  orcidid: 0000-0002-2433-9151
  surname: Zeleznik
  fullname: Zeleznik, Roman
  organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School
– sequence: 2
  givenname: Borek
  surname: Foldyna
  fullname: Foldyna, Borek
  organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 3
  givenname: Parastou
  surname: Eslami
  fullname: Eslami, Parastou
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 4
  givenname: Jakob
  surname: Weiss
  fullname: Weiss, Jakob
  organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tübingen
– sequence: 5
  givenname: Ivanov
  surname: Alexander
  fullname: Alexander, Ivanov
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 6
  givenname: Jana
  surname: Taron
  fullname: Taron, Jana
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tübingen
– sequence: 7
  givenname: Chintan
  orcidid: 0000-0002-2140-814X
  surname: Parmar
  fullname: Parmar, Chintan
  organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School
– sequence: 8
  givenname: Raza M.
  surname: Alvi
  fullname: Alvi, Raza M.
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 9
  givenname: Dahlia
  surname: Banerji
  fullname: Banerji, Dahlia
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 10
  givenname: Mio
  surname: Uno
  fullname: Uno, Mio
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 11
  givenname: Yasuka
  surname: Kikuchi
  fullname: Kikuchi, Yasuka
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University
– sequence: 12
  givenname: Julia
  surname: Karady
  fullname: Karady, Julia
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University
– sequence: 13
  givenname: Lili
  surname: Zhang
  fullname: Zhang, Lili
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 14
  givenname: Jan-Erik
  surname: Scholtz
  fullname: Scholtz, Jan-Erik
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 15
  givenname: Thomas
  orcidid: 0000-0001-6287-5185
  surname: Mayrhofer
  fullname: Mayrhofer, Thomas
  organization: Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, School of Business Studies, Stralsund University of Applied Sciences
– sequence: 16
  givenname: Asya
  surname: Lyass
  fullname: Lyass, Asya
  organization: Department of Mathematics and Statistics, Boston University
– sequence: 17
  givenname: Taylor F.
  orcidid: 0000-0002-5930-5672
  surname: Mahoney
  fullname: Mahoney, Taylor F.
  organization: Department of Biostatistics, Boston University School of Public Health
– sequence: 18
  givenname: Joseph M.
  surname: Massaro
  fullname: Massaro, Joseph M.
  organization: Department of Biostatistics, Boston University School of Public Health
– sequence: 19
  givenname: Ramachandran S.
  orcidid: 0000-0001-7357-5970
  surname: Vasan
  fullname: Vasan, Ramachandran S.
  organization: National Heart, Lung, and Blood Institute and Boston University, Framingham Heart Study, Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine
– sequence: 20
  givenname: Pamela S.
  surname: Douglas
  fullname: Douglas, Pamela S.
  organization: Department of Medicine, Division of Cardiology, Duke University School of Medicine, Duke Clinical Research Institute
– sequence: 21
  givenname: Udo
  surname: Hoffmann
  fullname: Hoffmann, Udo
  organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 22
  givenname: Michael T.
  orcidid: 0000-0003-4696-9610
  surname: Lu
  fullname: Lu, Michael T.
  organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School
– sequence: 23
  givenname: Hugo J. W. L.
  orcidid: 0000-0002-2122-2003
  surname: Aerts
  fullname: Aerts, Hugo J. W. L.
  email: haerts@bwh.harvard.edu
  organization: Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Department of Radiology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33514711$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u3CAUhVGVqEmneYEuKkvddOOGCxjbm0pV-hcpUjfJphuE4XrCxDYu2BPl7cuM0zTJImxA8J3DhXPfkIPBD0jIO6CfgPLqNAoQsswpg5zRWsqcvSLHjArIoWT84NH6iJzEuKFp8BoqIV6TI84LECXAMfn9FXHMjB-2vpsn5wfdZQPOYT9Ntz7cxGzy2RjQOjNlRgfr_FZHM3c6ZMHFm6wNvk8O_ThPaBPc-3XQ4_XdW3LY6i7iyf28Ilffv12e_cwvfv04P_tykRtJ5ZSXrDLMQl3rQmgGLTYAtm5ZzQBLpKY2tkCQ0gjgdVFzaRtLJStKNFXLmOErcr74Wq83agyu1-FOee3UfsOHtdJhcqZDVUFbaCkbydtGMMkbaisqTKEbioVpMHl9XrzGuenRGhym9BVPTJ-eDO5arf1WlVVKIzmuyMd7g-D_zBgn1btosOv0gH6OiomKVyDqokzoh2foxs8hBbBQAopS7qj3jyt6KOVfhAlgC2CCjzFg-4AAVbtWUUurqNQqat8qiiVR9Uxk3KR3-adXue5lKV-kMd0zrDH8L_sF1V9DINPT
CitedBy_id crossref_primary_10_3389_fcvm_2021_736223
crossref_primary_10_1016_j_jacr_2024_02_010
crossref_primary_10_1002_mp_17642
crossref_primary_10_1002_idm2_12130
crossref_primary_10_1016_j_cpcardiol_2023_101750
crossref_primary_10_1186_s40001_023_01065_y
crossref_primary_10_1007_s12265_022_10260_x
crossref_primary_10_1007_s12350_022_03049_7
crossref_primary_10_1093_bjr_tqaf195
crossref_primary_10_3390_diagnostics14020125
crossref_primary_10_1007_s00330_025_11559_4
crossref_primary_10_1016_j_jacc_2024_01_039
crossref_primary_10_3390_healthcare10112166
crossref_primary_10_1007_s11356_022_24422_6
crossref_primary_10_1109_ACCESS_2021_3079700
crossref_primary_10_1016_j_hfc_2025_01_015
crossref_primary_10_3389_fonc_2023_1305511
crossref_primary_10_1016_j_cpet_2021_06_011
crossref_primary_10_1080_14779072_2024_2380764
crossref_primary_10_1016_j_isci_2023_108107
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_1016_j_jrras_2024_101012
crossref_primary_10_3389_fcvm_2024_1424585
crossref_primary_10_1016_j_engappai_2024_108537
crossref_primary_10_1111_exsy_13542
crossref_primary_10_1056_AIoa2400937
crossref_primary_10_3390_nu16162601
crossref_primary_10_1016_j_semarthrit_2024_152598
crossref_primary_10_3390_jcm13123453
crossref_primary_10_1016_j_jcmg_2022_06_006
crossref_primary_10_1053_j_semnuclmed_2024_02_005
crossref_primary_10_1080_17435889_2024_2364581
crossref_primary_10_3390_s22218454
crossref_primary_10_1007_s11886_022_01837_8
crossref_primary_10_1016_j_ejrad_2021_110034
crossref_primary_10_1038_s44325_024_00029_3
crossref_primary_10_7759_cureus_68472
crossref_primary_10_1016_j_measurement_2022_112282
crossref_primary_10_3389_fcvm_2022_1016032
crossref_primary_10_1007_s12350_022_03018_0
crossref_primary_10_1007_s00330_022_08801_8
crossref_primary_10_1038_s41746_021_00460_1
crossref_primary_10_1016_j_compmedimag_2025_102493
crossref_primary_10_1053_j_ro_2025_06_004
crossref_primary_10_1016_j_medp_2023_100001
crossref_primary_10_3390_jcdd11080245
crossref_primary_10_1016_j_jjcc_2021_10_016
crossref_primary_10_1113_JP284125
crossref_primary_10_1002_advs_202408069
crossref_primary_10_1016_j_eswa_2022_117033
crossref_primary_10_1136_heartjnl_2020_318686
crossref_primary_10_1016_j_cmpb_2023_107882
crossref_primary_10_1148_radiol_240541
crossref_primary_10_1186_s12880_022_00907_1
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_1111_joim_20053
crossref_primary_10_1016_j_eswa_2023_122983
crossref_primary_10_1093_ehjci_jeae081
crossref_primary_10_1038_s41598_022_24884_1
crossref_primary_10_1038_s41598_024_79426_8
crossref_primary_10_1007_s11883_024_01210_w
crossref_primary_10_1038_s41597_023_02864_y
crossref_primary_10_3389_fmed_2025_1567545
crossref_primary_10_1093_eurheartj_ehae415
crossref_primary_10_1002_mp_15870
crossref_primary_10_1007_s10462_024_10899_9
crossref_primary_10_1109_ACCESS_2024_3514093
crossref_primary_10_1080_10255842_2021_1986486
crossref_primary_10_1007_s43657_023_00137_7
crossref_primary_10_4103_jcecho_jcecho_26_25
crossref_primary_10_1371_journal_pcbi_1011198
crossref_primary_10_1016_j_compbiomed_2025_110798
crossref_primary_10_1002_advs_202207661
crossref_primary_10_1371_journal_pdig_0000429
crossref_primary_10_3390_app14031238
crossref_primary_10_1007_s11042_023_16120_3
crossref_primary_10_3390_ijerph181910003
crossref_primary_10_1016_j_ejrad_2023_110855
crossref_primary_10_3389_fcvm_2023_1161914
crossref_primary_10_1002_mp_16750
crossref_primary_10_1038_s41467_023_37758_5
crossref_primary_10_1007_s42044_024_00223_7
crossref_primary_10_1016_j_cosrev_2023_100568
crossref_primary_10_1007_s00330_022_09028_3
crossref_primary_10_1148_radiol_222937
crossref_primary_10_3390_diagnostics13132197
crossref_primary_10_1016_j_compbiomed_2025_110708
crossref_primary_10_1016_j_hrthm_2021_12_036
crossref_primary_10_1080_14779072_2023_2223978
crossref_primary_10_1080_21642583_2024_2420912
crossref_primary_10_1186_s12911_025_03049_w
crossref_primary_10_1016_j_ccl_2023_01_004
crossref_primary_10_1016_j_envres_2023_116933
crossref_primary_10_3390_jpm11070598
crossref_primary_10_3233_XST_211109
crossref_primary_10_1063_5_0058346
crossref_primary_10_1186_s12951_024_02529_x
crossref_primary_10_1161_CIR_0000000000001202
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_1016_j_jcct_2021_10_002
crossref_primary_10_3233_THC_THC213630
crossref_primary_10_4093_dmj_2023_0033
crossref_primary_10_1142_S0219519425400305
crossref_primary_10_1016_j_compbiomed_2024_109295
crossref_primary_10_1088_1361_6560_ac7bcd
crossref_primary_10_1093_eurheartj_ehab874
crossref_primary_10_2196_52073
crossref_primary_10_1007_s12350_022_02977_8
crossref_primary_10_1093_ehjci_jeaf257
crossref_primary_10_3389_fcvm_2022_981901
crossref_primary_10_17816_DD640895
crossref_primary_10_3389_fcvm_2021_765693
crossref_primary_10_1007_s11042_024_18953_y
crossref_primary_10_1016_j_jcct_2024_08_003
crossref_primary_10_1016_j_jhydrol_2024_131155
crossref_primary_10_1002_adhm_202503349
crossref_primary_10_3390_s23208419
crossref_primary_10_1016_j_advengsoft_2022_103198
crossref_primary_10_1007_s12410_022_09563_z
crossref_primary_10_1093_ehjci_jeaf007
crossref_primary_10_1016_j_arbres_2024_11_001
crossref_primary_10_3389_fcvm_2021_782971
crossref_primary_10_1038_s43856_024_00475_1
crossref_primary_10_1111_eci_70017
crossref_primary_10_3389_frai_2021_757780
crossref_primary_10_1148_radiol_240473
crossref_primary_10_1016_j_phro_2023_01_001
crossref_primary_10_3389_fcvm_2022_829553
crossref_primary_10_1016_j_imed_2024_11_006
crossref_primary_10_1038_s41467_021_23235_4
crossref_primary_10_1007_s10278_025_01643_y
crossref_primary_10_1038_s41467_024_46977_3
Cites_doi 10.1016/j.media.2016.04.004
10.21037/tlcr.2018.05.05
10.1007/s00330-012-2726-5
10.1016/j.jcmg.2017.01.030
10.1016/j.jcmg.2018.10.026
10.1161/CIRCULATIONAHA.107.699579
10.1016/j.ahj.2012.01.028
10.1007/s12350-018-1292-x
10.1109/TMI.2017.2769839
10.1016/j.jacc.2018.11.002
10.1148/radiol.2020191621
10.1161/CIRCGENETICS.111.961342
10.1093/aje/kwm021
10.1177/001316446002000104
10.1016/j.jcct.2014.06.002
10.1016/j.amjcard.2008.06.038
10.1111/j.1746-1561.2007.00249.x
10.1161/CIRCULATIONAHA.115.018524
10.1093/ije/dyv337
10.1001/jamacardio.2016.5922
10.1093/oxfordjournals.aje.a112819
10.1117/12.2512541
10.1016/j.ahj.2014.03.003
10.1161/CIRCIMAGING.117.006776
10.1007/978-981-10-5122-7_94
10.1038/s41568-018-0016-5
10.1093/eurheartj/ehy217
10.1016/j.jcmg.2017.09.003
10.1007/s12410-016-9372-2
10.1093/oxfordjournals.aje.a112813
10.1056/NEJMoa1102873
10.1109/TMI.2019.2899534
10.1038/s41551-018-0195-0
10.1371/journal.pmed.1002711
10.1056/NEJMoa072100
10.1214/aos/1176344202
10.1007/978-3-319-24574-4_28
10.1148/radiol.15142062
10.1201/b16923
10.1016/0735-1097(90)90282-T
10.1161/CIRCULATIONAHA.116.023957
10.1097/RTI.0000000000000287
10.1038/s41591-018-0107-6
10.1016/j.media.2017.07.005
10.1109/ISBI.2018.8363515
10.1117/12.2216978
10.1016/j.jcct.2010.11.002
10.1016/j.jcct.2014.11.006
10.1056/NEJMoa1415516
10.1161/JAHA.115.003144
10.1056/NEJMoa1201161
10.1002/bimj.19740160113
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-20966-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_81f5a66b63fb4263b0d804c5ab0e5cbe
PMC7846726
33514711
10_1038_s41467_021_20966_2
Genre Research Support, U.S. Gov't, Non-P.H.S
Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Heart Association (American Heart Association, Inc.)
  grantid: 18UNPG34030172
  funderid: https://doi.org/10.13039/100000968
– fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
– fundername: Fulbright Visiting Researcher Grant (E0583118), Rosztoczy Foundation Grant
– fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: 5R01-HL109711; 5K24HL113128; 5T32HL076136; 5U01HL123339
  funderid: https://doi.org/10.13039/100000050
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 6405/2-1; 1438/1-1
  funderid: https://doi.org/10.13039/501100001659
– fundername: NHLBI NIH HHS
  grantid: U01 HL123339
– fundername: NHLBI NIH HHS
  grantid: K24 HL113128
– fundername: NHLBI NIH HHS
  grantid: 75N92019D00031
– fundername: NHLBI NIH HHS
  grantid: N01 HC025195
– fundername: NHLBI NIH HHS
  grantid: HHSN268201500001I
– fundername: NCI NIH HHS
  grantid: U01 CA190234
– fundername: NHLBI NIH HHS
  grantid: T32 HL076136
– fundername: NCI NIH HHS
  grantid: U01 CA209414
– fundername: NCI NIH HHS
  grantid: U24 CA194354
– fundername: NHLBI NIH HHS
  grantid: R01 HL109711
– fundername: ;
– fundername: ;
  grantid: 18UNPG34030172
– fundername: ;
  grantid: 5R01-HL109711; 5K24HL113128; 5T32HL076136; 5U01HL123339
– fundername: ;
  grantid: 6405/2-1; 1438/1-1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c606t-728c2d199a54a21feb11d9f2921e7e0c9cd5e166c41395936dbd06257ec8f22c3
IEDL.DBID P5Z
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684846200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 19:07:57 EDT 2025
Tue Nov 04 02:00:33 EST 2025
Sun Nov 09 12:45:53 EST 2025
Tue Oct 07 07:10:43 EDT 2025
Mon Jul 21 05:35:31 EDT 2025
Tue Nov 18 21:36:31 EST 2025
Sat Nov 29 06:29:08 EST 2025
Fri Feb 21 02:39:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-728c2d199a54a21feb11d9f2921e7e0c9cd5e166c41395936dbd06257ec8f22c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2433-9151
0000-0001-6287-5185
0000-0002-2140-814X
0000-0003-4696-9610
0000-0001-7357-5970
0000-0002-2122-2003
0000-0002-5930-5672
OpenAccessLink https://www.proquest.com/docview/2483415767?pq-origsite=%requestingapplication%
PMID 33514711
PQID 2483415767
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_81f5a66b63fb4263b0d804c5ab0e5cbe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7846726
proquest_miscellaneous_2483814957
proquest_journals_2483415767
pubmed_primary_33514711
crossref_primary_10_1038_s41467_021_20966_2
crossref_citationtrail_10_1038_s41467_021_20966_2
springer_journals_10_1038_s41467_021_20966_2
PublicationCentury 2000
PublicationDate 2021-01-29
PublicationDateYYYYMMDD 2021-01-29
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LitjensGA survey on deep learning in medical image analysisMed. Image Anal.20174260882877802610.1016/j.media.2017.07.005
Writing Group Members.Heart disease and stroke statistics-2016 update: a report from the American Heart AssociationCirculation2016133e38e360
MartinSSEvaluation of a deep learning–based automated CT coronary artery calcium scoring algorithmJACC: Cardiovasc. Imaging202013524526
PokharelYAdoption of the 2013 American College of Cardiology/American Heart Association Cholesterol Management Guideline in Cardiology Practices NationwideJAMA Cardiol.2017236136928249067547041310.1001/jamacardio.2016.5922
WolterinkJMAutomatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networksMed. Image Anal.2016341231362713858410.1016/j.media.2016.04.004
HechtHS2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic RadiologyJ. Thorac. Imaging201732W54W662883241710.1097/RTI.0000000000000287
HosnyADeep learning for lung cancer prognostication: a retrospective multi-cohort radiomics studyPLoS Med.201815e100271130500819626908810.1371/journal.pmed.1002711
Hecht, H. S. Coronary artery calcium analysis and reporting on noncontrast chest CT scans: a paradigm shift in prevention. Curr. Cardiovasc. Imaging Reports 9 (2016).
ThanassoulisGA genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham Heart StudyCirc. Cardiovasc. Genet.201251131211:CAS:528:DC%2BC38XltFOjtLc%3D22235037329286510.1161/CIRCGENETICS.111.961342
ThomasJDHultquistRAInterval estimation for the unbalanced case of the one-way random effects modelAnn. Stat.197865825874847020386.6205710.1214/aos/1176344202
Huo, Y. et al. Coronary calcium detection using 3D attention identical dual deep network based on weakly supervised learning. Med. Imaging 2019: Image Processinghttps://doi.org/10.1117/12.2512541 (2019).
Shadmi, R., Mazo, V., Bregman-Amitai, O. & Elnekave, E. Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (Washington, DC, 2018).
TsaoCWVasanRSCohort profile: the Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiologyInt. J. Epidemiol.2015441800181326705418515633810.1093/ije/dyv337
NihiserAJBody mass index measurement in schools.J. School Health2007776516711807641110.1111/j.1746-1561.2007.00249.x
GrundySM2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summaryJ. Am. Coll. Cardiol.201973316832093042339110.1016/j.jacc.2018.11.002
D’AgostinoRBGeneral cardiovascular risk profile for use in primary care: the Framingham Heart StudyCirculation20081177437531821228510.1161/CIRCULATIONAHA.107.699579
MitchellJDPaisleyRMoonPNovakEVillinesTCCoronary artery calcium and long-term risk of death, myocardial iInfarction, and stroke: the Walter Reed Cohort StudyJACC Cardiovasc. Imaging201811179918062915357610.1016/j.jcmg.2017.09.003
HoffmannUDesign of the rule out myocardial ischemia/infarction using computer assisted tomography: a multicenter randomized comparative effectiveness trial of cardiac computed tomography versus alternative triage strategies in patients with acute chest pain in the emergency departmentAm. Heart J.2012163330338, 338.e122424002373635810.1016/j.ahj.2012.01.028
VieraAJGarrettJMUnderstanding interobserver agreement: the kappa statisticFam. Med.20053736036315883903
BudoffMJCoronary artery and thoracic calcium on noncontrast thoracic CT scans: comparison of ungated and gated examinations in patients from the COPD Gene cohortJ. Cardiovasc. Comput. Tomogr.201151131182116780610.1016/j.jcct.2010.11.002
CohenJA coefficient of agreement for nominal scalesEduc. Psychological Meas.196020374610.1177/001316446002000104
BudoffMJTen-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA)Eur. Heart J.201839240124081:CAS:528:DC%2BC1MXhtlClsLbJ29688297603097510.1093/eurheartj/ehy217
PatelMRCorrection to: ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart diseaseJ. Nucl. Cardiol.201825219121922974887410.1007/s12350-018-1292-x
RonnebergerOFischerPBroxTU-Net: convolutional networks for biomedical image segmentation.Lecture Notes Computer Sci.2015935123424110.1007/978-3-319-24574-4_28
Kokoska, S. & Zwillinger, D. CRC Standard Probability and Statistics Tables and Formulae, Student Edition (CRC Press, 2000).
ChilesCAssociation of coronary artery calcification and mortality in the national lung screening trial: a comparison of three scoring methodsRadiology2015276822575997210.1148/radiol.15142062
RavenelJGNanceJWCoronary artery calcification in lung cancer screeningTransl. Lung Cancer Res.2018736136730050773603795910.21037/tlcr.2018.05.05
BlahaMJRole of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA)Circulation20161338498581:CAS:528:DC%2BC28XjslClt7g%3D26801055477539110.1161/CIRCULATIONAHA.115.018524
van VelzenSGMDeep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocolsRadiology202029566793204394710.1148/radiol.2020191621
DouglasPSPROspective multicenter imaging study for evaluation of chest pain: rationale and design of the PROMISE trialAm. Heart J.2014167796803.e124890527404461710.1016/j.ahj.2014.03.003
Santini, G. et al. An automatic deep learning approach for coronary artery calcium segmentation. EMBEC & NBC 2017 374–377 https://doi.org/10.1007/978-981-10-5122-7_94 (2018).
HoffmannUMassaroJMFoxCSMandersEO’DonnellCJDefining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study)Am. J. Cardiol.200810211361141, 1141.e11:CAS:528:DC%2BD1cXht1KnsrfE18940279306537810.1016/j.amjcard.2008.06.038
HoffmannUCardiovascular event prediction and risk reclassification by coronary, aortic, and valvular calcification in the Framingham Heart StudyJ. Am. Heart Assoc.20165e00314426903006480245310.1161/JAHA.115.003144
LuMTLung cancer screening eligibility in the community: cardiovascular risk factors, coronary artery calcification, and cardiovascular eventsCirculation201613489789927647299503124610.1161/CIRCULATIONAHA.116.023957
LessmannNAutomatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutionsIEEE Trans. Med. Imaging2018376156252940878910.1109/TMI.2017.2769839
De FauwJClinically applicable deep learning for diagnosis and referral in retinal diseaseNat. Med.201824134213503010476810.1038/s41591-018-0107-61:CAS:528:DC%2BC1cXhsFSqtbzN
GuptaAThe identification of calcified coronary plaque is associated with initiation and continuation of pharmacological and lifestyle preventive therapies: a systematic review and meta-analysisJACC Cardiovasc. Imaging20171083384228797402576165110.1016/j.jcmg.2017.01.030
Wilkins, E. et al. European Cardiovascular Disease Statistics 2017. (2017).
Lessmann, N. et al. Sex differences in coronary artery and thoracic aorta calcification and their association with cardiovascular mortality in heavy smokers. JACC Cardiovasc. Imaginghttps://doi.org/10.1016/j.jcmg.2018.10.026 (2019).
DonnerAThe use of correlation and regression in the analysis of family resemblanceAm. J. Epidemiol.19791103353421:STN:280:DyaE1M3ltlSnsQ%3D%3D47456910.1093/oxfordjournals.aje.a112819
DouglasPSOutcomes of anatomical versus functional testing for coronary artery diseaseN. Engl. J. Med.2015372129113001:CAS:528:DC%2BC2MXns1CltLY%3D25773919447377310.1056/NEJMoa1415516
HuangY-LReliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston scoreEur. Radiol.201323122612332323906010.1007/s00330-012-2726-5
TakxRAPQuantification of coronary artery calcium in nongated CT to predict cardiovascular events in male lung cancer screening participants: results of the NELSON studyJ. Cardiovasc. Comput. Tomogr.2015950572553322310.1016/j.jcct.2014.11.006
HosnyAParmarCQuackenbushJSchwartzLHAertsHJWLArtificial intelligence in radiologyNat. Rev. Cancer2018185005101:CAS:528:DC%2BC1cXpvVKrsLY%3D29777175626817410.1038/s41568-018-0016-5
MukakaMMStatistics corner: A guide to appropriate use of correlation coefficient in medical researchMalawi Med. J.20122469711:STN:280:DC%2BC3sngt12kug%3D%3D236382783576830
National Lung Screening Trial Research Team et al.Reduced lung-cancer mortality with low-dose computed tomographic screeningN. Engl. J. Med201136539540910.1056/NEJMoa1102873
DetranoRCoronary calcium as a predictor of coronary events in four racial or ethnic groupsN. Engl. J. Med.2008358133613451:CAS:528:DC%2BD1cXjvFCgsrk%3D1836773610.1056/NEJMoa072100
AgatstonASQuantification of coronary artery calcium using ultrafast computed tomographyJ. Am. Coll. Cardiol.1990158278321:STN:280:DyaK3c7ntFelug%3D%3D240776210.1016/0735-1097(90)90282-T
KannelWBFeinleibMMcNamaraPMGarrisonRJCastelliWPAn investigation of coronary heart disease in families. The Framingham offspring studyAm. J. Epidemiol.19791102812901:STN:280:DyaE1M3ltlSgtQ%3D%3D47456510.1093/oxfordjournals.aje.a112813
Qazi, S. et al. Increased aortic diameters on multidetector computed tomographic scan are independent predictors of incident adverse cardiovascular events: the Framingham Heart Study. Circ. Cardiovasc. Imaging10, e006776 (2017).
de Vos, B. D. et al. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans. Med. Imaginghttps://doi.org/10.1109/TMI.2019.2899534 (2019).
RaffGLSCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: a report of
MM Mukaka (20966_CR22) 2012; 24
MJ Budoff (20966_CR31) 2011; 5
A Gupta (20966_CR12) 2017; 10
J Cohen (20966_CR56) 1960; 20
R Poplin (20966_CR4) 2018; 2
National Lung Screening Trial Research Team et al. (20966_CR18) 2011; 365
MR Patel (20966_CR9) 2018; 25
A Hosny (20966_CR15) 2018; 15
U Hoffmann (20966_CR20) 2012; 163
U Hoffmann (20966_CR21) 2008; 102
N Lessmann (20966_CR37) 2018; 37
G Thanassoulis (20966_CR6) 2012; 5
20966_CR28
A Donner (20966_CR54) 1979; 110
GL Raff (20966_CR10) 2014; 8
U Hoffmann (20966_CR46) 2012; 367
GL Splansky (20966_CR49) 2007; 165
U Hoffmann (20966_CR25) 2016; 5
H Ahrens (20966_CR53) 1974; 16
AJ Nihiser (20966_CR57) 2007; 77
20966_CR51
20966_CR52
R Detrano (20966_CR47) 2008; 358
HS Hecht (20966_CR8) 2017; 32
PS Douglas (20966_CR19) 2014; 167
20966_CR1
Y Pokharel (20966_CR3) 2017; 2
J De Fauw (20966_CR14) 2018; 24
MJ Budoff (20966_CR26) 2018; 39
SM Grundy (20966_CR7) 2019; 73
G Litjens (20966_CR16) 2017; 42
JD Thomas (20966_CR55) 1978; 6
C Chiles (20966_CR33) 2015; 276
RB D’Agostino (20966_CR17) 2008; 117
20966_CR40
Writing Group Members. (20966_CR2) 2016; 133
SS Martin (20966_CR42) 2020; 13
20966_CR43
MJ Blaha (20966_CR24) 2016; 133
JM Wolterink (20966_CR34) 2016; 34
RAP Takx (20966_CR32) 2015; 9
JG Ravenel (20966_CR11) 2018; 7
A Hosny (20966_CR13) 2018; 18
MT Lu (20966_CR29) 2016; 134
AS Agatston (20966_CR5) 1990; 15
JD Mitchell (20966_CR27) 2018; 11
WB Kannel (20966_CR48) 1979; 110
20966_CR35
20966_CR36
CW Tsao (20966_CR44) 2015; 44
SGM van Velzen (20966_CR41) 2020; 295
Y-L Huang (20966_CR30) 2013; 23
20966_CR38
20966_CR39
AJ Viera (20966_CR23) 2005; 37
PS Douglas (20966_CR45) 2015; 372
O Ronneberger (20966_CR50) 2015; 9351
References_xml – reference: HosnyAParmarCQuackenbushJSchwartzLHAertsHJWLArtificial intelligence in radiologyNat. Rev. Cancer2018185005101:CAS:528:DC%2BC1cXpvVKrsLY%3D29777175626817410.1038/s41568-018-0016-5
– reference: BudoffMJTen-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA)Eur. Heart J.201839240124081:CAS:528:DC%2BC1MXhtlClsLbJ29688297603097510.1093/eurheartj/ehy217
– reference: HosnyADeep learning for lung cancer prognostication: a retrospective multi-cohort radiomics studyPLoS Med.201815e100271130500819626908810.1371/journal.pmed.1002711
– reference: CohenJA coefficient of agreement for nominal scalesEduc. Psychological Meas.196020374610.1177/001316446002000104
– reference: DouglasPSOutcomes of anatomical versus functional testing for coronary artery diseaseN. Engl. J. Med.2015372129113001:CAS:528:DC%2BC2MXns1CltLY%3D25773919447377310.1056/NEJMoa1415516
– reference: ChilesCAssociation of coronary artery calcification and mortality in the national lung screening trial: a comparison of three scoring methodsRadiology2015276822575997210.1148/radiol.15142062
– reference: RaffGLSCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: a report of the Society of Cardiovascular Computed Tomography Guidelines CommitteeJ. Cardiovasc. Comput. Tomogr.201482542712515191810.1016/j.jcct.2014.06.002
– reference: LuMTLung cancer screening eligibility in the community: cardiovascular risk factors, coronary artery calcification, and cardiovascular eventsCirculation201613489789927647299503124610.1161/CIRCULATIONAHA.116.023957
– reference: HoffmannUCardiovascular event prediction and risk reclassification by coronary, aortic, and valvular calcification in the Framingham Heart StudyJ. Am. Heart Assoc.20165e00314426903006480245310.1161/JAHA.115.003144
– reference: Writing Group Members.Heart disease and stroke statistics-2016 update: a report from the American Heart AssociationCirculation2016133e38e360
– reference: van VelzenSGMDeep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocolsRadiology202029566793204394710.1148/radiol.2020191621
– reference: PatelMRCorrection to: ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart diseaseJ. Nucl. Cardiol.201825219121922974887410.1007/s12350-018-1292-x
– reference: Lessmann, N. et al. Sex differences in coronary artery and thoracic aorta calcification and their association with cardiovascular mortality in heavy smokers. JACC Cardiovasc. Imaginghttps://doi.org/10.1016/j.jcmg.2018.10.026 (2019).
– reference: TsaoCWVasanRSCohort profile: the Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiologyInt. J. Epidemiol.2015441800181326705418515633810.1093/ije/dyv337
– reference: NihiserAJBody mass index measurement in schools.J. School Health2007776516711807641110.1111/j.1746-1561.2007.00249.x
– reference: MukakaMMStatistics corner: A guide to appropriate use of correlation coefficient in medical researchMalawi Med. J.20122469711:STN:280:DC%2BC3sngt12kug%3D%3D236382783576830
– reference: ThomasJDHultquistRAInterval estimation for the unbalanced case of the one-way random effects modelAnn. Stat.197865825874847020386.6205710.1214/aos/1176344202
– reference: BudoffMJCoronary artery and thoracic calcium on noncontrast thoracic CT scans: comparison of ungated and gated examinations in patients from the COPD Gene cohortJ. Cardiovasc. Comput. Tomogr.201151131182116780610.1016/j.jcct.2010.11.002
– reference: MartinSSEvaluation of a deep learning–based automated CT coronary artery calcium scoring algorithmJACC: Cardiovasc. Imaging202013524526
– reference: TakxRAPQuantification of coronary artery calcium in nongated CT to predict cardiovascular events in male lung cancer screening participants: results of the NELSON studyJ. Cardiovasc. Comput. Tomogr.2015950572553322310.1016/j.jcct.2014.11.006
– reference: Huo, Y. et al. Coronary calcium detection using 3D attention identical dual deep network based on weakly supervised learning. Med. Imaging 2019: Image Processinghttps://doi.org/10.1117/12.2512541 (2019).
– reference: GrundySM2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summaryJ. Am. Coll. Cardiol.201973316832093042339110.1016/j.jacc.2018.11.002
– reference: AgatstonASQuantification of coronary artery calcium using ultrafast computed tomographyJ. Am. Coll. Cardiol.1990158278321:STN:280:DyaK3c7ntFelug%3D%3D240776210.1016/0735-1097(90)90282-T
– reference: DetranoRCoronary calcium as a predictor of coronary events in four racial or ethnic groupsN. Engl. J. Med.2008358133613451:CAS:528:DC%2BD1cXjvFCgsrk%3D1836773610.1056/NEJMoa072100
– reference: HoffmannUMassaroJMFoxCSMandersEO’DonnellCJDefining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study)Am. J. Cardiol.200810211361141, 1141.e11:CAS:528:DC%2BD1cXht1KnsrfE18940279306537810.1016/j.amjcard.2008.06.038
– reference: AhrensHSearleSRLinear Models. John Wiley & Sons, Inc., New York-London-Sydney-Toronto 1971. XXI, 532 S. $9.50Biometrische Z.197416787910.1002/bimj.19740160113
– reference: Lessmann, N. et al. Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Med. Imaging 2016: Computer-Aided Diagnosishttps://doi.org/10.1117/12.2216978 (2016).
– reference: DonnerAThe use of correlation and regression in the analysis of family resemblanceAm. J. Epidemiol.19791103353421:STN:280:DyaE1M3ltlSnsQ%3D%3D47456910.1093/oxfordjournals.aje.a112819
– reference: ThanassoulisGA genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham Heart StudyCirc. Cardiovasc. Genet.201251131211:CAS:528:DC%2BC38XltFOjtLc%3D22235037329286510.1161/CIRCGENETICS.111.961342
– reference: Qazi, S. et al. Increased aortic diameters on multidetector computed tomographic scan are independent predictors of incident adverse cardiovascular events: the Framingham Heart Study. Circ. Cardiovasc. Imaging10, e006776 (2017).
– reference: RavenelJGNanceJWCoronary artery calcification in lung cancer screeningTransl. Lung Cancer Res.2018736136730050773603795910.21037/tlcr.2018.05.05
– reference: Wilkins, E. et al. European Cardiovascular Disease Statistics 2017. (2017).
– reference: KannelWBFeinleibMMcNamaraPMGarrisonRJCastelliWPAn investigation of coronary heart disease in families. The Framingham offspring studyAm. J. Epidemiol.19791102812901:STN:280:DyaE1M3ltlSgtQ%3D%3D47456510.1093/oxfordjournals.aje.a112813
– reference: LitjensGA survey on deep learning in medical image analysisMed. Image Anal.20174260882877802610.1016/j.media.2017.07.005
– reference: National Lung Screening Trial Research Team et al.Reduced lung-cancer mortality with low-dose computed tomographic screeningN. Engl. J. Med201136539540910.1056/NEJMoa1102873
– reference: Hecht, H. S. Coronary artery calcium analysis and reporting on noncontrast chest CT scans: a paradigm shift in prevention. Curr. Cardiovasc. Imaging Reports 9 (2016).
– reference: DouglasPSPROspective multicenter imaging study for evaluation of chest pain: rationale and design of the PROMISE trialAm. Heart J.2014167796803.e124890527404461710.1016/j.ahj.2014.03.003
– reference: Shadmi, R., Mazo, V., Bregman-Amitai, O. & Elnekave, E. Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (Washington, DC, 2018).
– reference: HuangY-LReliable categorisation of visual scoring of coronary artery calcification on low-dose CT for lung cancer screening: validation with the standard Agatston scoreEur. Radiol.201323122612332323906010.1007/s00330-012-2726-5
– reference: PoplinRPrediction of cardiovascular risk factors from retinal fundus photographs via deep learningNat. Biomed. Eng.201821581643101571310.1038/s41551-018-0195-0
– reference: HoffmannUCoronary CT angiography versus standard evaluation in acute chest painN. Engl. J. Med.20123672993081:CAS:528:DC%2BC38XhtFegsrrF22830462366221710.1056/NEJMoa1201161
– reference: WolterinkJMAutomatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networksMed. Image Anal.2016341231362713858410.1016/j.media.2016.04.004
– reference: Kokoska, S. & Zwillinger, D. CRC Standard Probability and Statistics Tables and Formulae, Student Edition (CRC Press, 2000).
– reference: BlahaMJRole of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA)Circulation20161338498581:CAS:528:DC%2BC28XjslClt7g%3D26801055477539110.1161/CIRCULATIONAHA.115.018524
– reference: RonnebergerOFischerPBroxTU-Net: convolutional networks for biomedical image segmentation.Lecture Notes Computer Sci.2015935123424110.1007/978-3-319-24574-4_28
– reference: HoffmannUDesign of the rule out myocardial ischemia/infarction using computer assisted tomography: a multicenter randomized comparative effectiveness trial of cardiac computed tomography versus alternative triage strategies in patients with acute chest pain in the emergency departmentAm. Heart J.2012163330338, 338.e122424002373635810.1016/j.ahj.2012.01.028
– reference: HechtHS2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the Society of Cardiovascular Computed Tomography and Society of Thoracic RadiologyJ. Thorac. Imaging201732W54W662883241710.1097/RTI.0000000000000287
– reference: MitchellJDPaisleyRMoonPNovakEVillinesTCCoronary artery calcium and long-term risk of death, myocardial iInfarction, and stroke: the Walter Reed Cohort StudyJACC Cardiovasc. Imaging201811179918062915357610.1016/j.jcmg.2017.09.003
– reference: Santini, G. et al. An automatic deep learning approach for coronary artery calcium segmentation. EMBEC & NBC 2017 374–377 https://doi.org/10.1007/978-981-10-5122-7_94 (2018).
– reference: SplanskyGLThe third generation cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examinationAm. J. Epidemiol.2007165132813351737218910.1093/aje/kwm021
– reference: LessmannNAutomatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutionsIEEE Trans. Med. Imaging2018376156252940878910.1109/TMI.2017.2769839
– reference: PokharelYAdoption of the 2013 American College of Cardiology/American Heart Association Cholesterol Management Guideline in Cardiology Practices NationwideJAMA Cardiol.2017236136928249067547041310.1001/jamacardio.2016.5922
– reference: De FauwJClinically applicable deep learning for diagnosis and referral in retinal diseaseNat. Med.201824134213503010476810.1038/s41591-018-0107-61:CAS:528:DC%2BC1cXhsFSqtbzN
– reference: de Vos, B. D. et al. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans. Med. Imaginghttps://doi.org/10.1109/TMI.2019.2899534 (2019).
– reference: GuptaAThe identification of calcified coronary plaque is associated with initiation and continuation of pharmacological and lifestyle preventive therapies: a systematic review and meta-analysisJACC Cardiovasc. Imaging20171083384228797402576165110.1016/j.jcmg.2017.01.030
– reference: VieraAJGarrettJMUnderstanding interobserver agreement: the kappa statisticFam. Med.20053736036315883903
– reference: D’AgostinoRBGeneral cardiovascular risk profile for use in primary care: the Framingham Heart StudyCirculation20081177437531821228510.1161/CIRCULATIONAHA.107.699579
– volume: 34
  start-page: 123
  year: 2016
  ident: 20966_CR34
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.04.004
– volume: 7
  start-page: 361
  year: 2018
  ident: 20966_CR11
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr.2018.05.05
– volume: 23
  start-page: 1226
  year: 2013
  ident: 20966_CR30
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-012-2726-5
– volume: 10
  start-page: 833
  year: 2017
  ident: 20966_CR12
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2017.01.030
– ident: 20966_CR35
  doi: 10.1016/j.jcmg.2018.10.026
– volume: 117
  start-page: 743
  year: 2008
  ident: 20966_CR17
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.699579
– volume: 163
  start-page: 330
  year: 2012
  ident: 20966_CR20
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2012.01.028
– volume: 25
  start-page: 2191
  year: 2018
  ident: 20966_CR9
  publication-title: J. Nucl. Cardiol.
  doi: 10.1007/s12350-018-1292-x
– volume: 37
  start-page: 615
  year: 2018
  ident: 20966_CR37
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2769839
– volume: 73
  start-page: 3168
  year: 2019
  ident: 20966_CR7
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.11.002
– volume: 37
  start-page: 360
  year: 2005
  ident: 20966_CR23
  publication-title: Fam. Med.
– volume: 295
  start-page: 66
  year: 2020
  ident: 20966_CR41
  publication-title: Radiology
  doi: 10.1148/radiol.2020191621
– volume: 5
  start-page: 113
  year: 2012
  ident: 20966_CR6
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.111.961342
– volume: 165
  start-page: 1328
  year: 2007
  ident: 20966_CR49
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwm021
– volume: 20
  start-page: 37
  year: 1960
  ident: 20966_CR56
  publication-title: Educ. Psychological Meas.
  doi: 10.1177/001316446002000104
– volume: 8
  start-page: 254
  year: 2014
  ident: 20966_CR10
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2014.06.002
– volume: 102
  start-page: 1136
  year: 2008
  ident: 20966_CR21
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2008.06.038
– volume: 77
  start-page: 651
  year: 2007
  ident: 20966_CR57
  publication-title: J. School Health
  doi: 10.1111/j.1746-1561.2007.00249.x
– volume: 133
  start-page: 849
  year: 2016
  ident: 20966_CR24
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.018524
– volume: 44
  start-page: 1800
  year: 2015
  ident: 20966_CR44
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyv337
– volume: 2
  start-page: 361
  year: 2017
  ident: 20966_CR3
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2016.5922
– volume: 110
  start-page: 335
  year: 1979
  ident: 20966_CR54
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a112819
– ident: 20966_CR38
  doi: 10.1117/12.2512541
– volume: 13
  start-page: 524
  year: 2020
  ident: 20966_CR42
  publication-title: JACC: Cardiovasc. Imaging
– volume: 167
  start-page: 796
  year: 2014
  ident: 20966_CR19
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2014.03.003
– volume: 24
  start-page: 69
  year: 2012
  ident: 20966_CR22
  publication-title: Malawi Med. J.
– ident: 20966_CR51
  doi: 10.1161/CIRCIMAGING.117.006776
– ident: 20966_CR39
  doi: 10.1007/978-981-10-5122-7_94
– volume: 18
  start-page: 500
  year: 2018
  ident: 20966_CR13
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0016-5
– volume: 39
  start-page: 2401
  year: 2018
  ident: 20966_CR26
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehy217
– volume: 133
  start-page: e38
  year: 2016
  ident: 20966_CR2
  publication-title: Circulation
– volume: 11
  start-page: 1799
  year: 2018
  ident: 20966_CR27
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2017.09.003
– ident: 20966_CR28
  doi: 10.1007/s12410-016-9372-2
– volume: 110
  start-page: 281
  year: 1979
  ident: 20966_CR48
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a112813
– volume: 365
  start-page: 395
  year: 2011
  ident: 20966_CR18
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa1102873
– ident: 20966_CR36
  doi: 10.1109/TMI.2019.2899534
– volume: 2
  start-page: 158
  year: 2018
  ident: 20966_CR4
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 15
  start-page: e1002711
  year: 2018
  ident: 20966_CR15
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002711
– volume: 358
  start-page: 1336
  year: 2008
  ident: 20966_CR47
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa072100
– volume: 6
  start-page: 582
  year: 1978
  ident: 20966_CR55
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344202
– volume: 9351
  start-page: 234
  year: 2015
  ident: 20966_CR50
  publication-title: Lecture Notes Computer Sci.
  doi: 10.1007/978-3-319-24574-4_28
– volume: 276
  start-page: 82
  year: 2015
  ident: 20966_CR33
  publication-title: Radiology
  doi: 10.1148/radiol.15142062
– ident: 20966_CR52
  doi: 10.1201/b16923
– ident: 20966_CR1
– volume: 15
  start-page: 827
  year: 1990
  ident: 20966_CR5
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(90)90282-T
– volume: 134
  start-page: 897
  year: 2016
  ident: 20966_CR29
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.023957
– volume: 32
  start-page: W54
  year: 2017
  ident: 20966_CR8
  publication-title: J. Thorac. Imaging
  doi: 10.1097/RTI.0000000000000287
– volume: 24
  start-page: 1342
  year: 2018
  ident: 20966_CR14
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0107-6
– volume: 42
  start-page: 60
  year: 2017
  ident: 20966_CR16
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 20966_CR40
  doi: 10.1109/ISBI.2018.8363515
– ident: 20966_CR43
  doi: 10.1117/12.2216978
– volume: 5
  start-page: 113
  year: 2011
  ident: 20966_CR31
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2010.11.002
– volume: 9
  start-page: 50
  year: 2015
  ident: 20966_CR32
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2014.11.006
– volume: 372
  start-page: 1291
  year: 2015
  ident: 20966_CR45
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1415516
– volume: 5
  start-page: e003144
  year: 2016
  ident: 20966_CR25
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.115.003144
– volume: 367
  start-page: 299
  year: 2012
  ident: 20966_CR46
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1201161
– volume: 16
  start-page: 78
  year: 1974
  ident: 20966_CR53
  publication-title: Biometrische Z.
  doi: 10.1002/bimj.19740160113
SSID ssj0000391844
Score 2.6703684
Snippet Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this...
Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 715
SubjectTerms 631/114/1305
639/705/117
692/308/409
692/4019/2776
692/499
Aged
Arteriosclerosis
Artificial neural networks
Asymptomatic Diseases
Automation
Biomarkers
Calcification (ectopic)
Calcium
Calcium - analysis
Cardiovascular diseases
Cardiovascular Diseases - complications
Cardiovascular Diseases - diagnosis
Cardiovascular Diseases - epidemiology
Cardiovascular Diseases - pathology
Chest
Chest Pain - diagnosis
Chest Pain - etiology
Computed tomography
Coronary artery
Coronary vessels
Coronary Vessels - diagnostic imaging
Coronary Vessels - pathology
Deep Learning
Female
Follow-Up Studies
Health risks
Heart Disease Risk Factors
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Male
Middle Aged
multidisciplinary
Neural networks
Reproducibility of Results
Retrospective Studies
Risk analysis
Risk Assessment - methods
Risk factors
Robustness
Science
Science (multidisciplinary)
Tomography
Tomography, X-Ray Computed
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9VAEC5kUPAi7kZHieBNw3R3kl6OboOnwYPC4KVJbzigeY_3MsL8e6u6854T14unQKcCTS1dVanqrwCesdaHNCTfSMVUgx5CNw69DhqeNl4SfgxLediEOjnRp6fm_aVRX9QTVuCBC-OONE_9IKWTbXIELu5Y0Kzz_eBY7L2LdPpi1HMpmcpncGswdenmWzKs1UfbLp8J1JEgMGyXjVh4ogzY_7so89dmyZ8qptkRHd-EG3MEWb8sO78FV-J4G66VmZIXd-DTmxjXNTWTz0qFtARamR-55XtbT6t6vaEKzVT7RT9qTZ3mNV05qX0Z9xCQ-OsMa30XPh6__fD6XTMPUGiQzXJqlNBeBG7M0HeD4AnPZR5MEkbwqCLzxoc-cik9ejICKJbBBYYJkYpeJyF8ew8OxtUYH0DNjPOdDMJFEbs-Ss0HLn2fcGFI2sQK-I6Z1s_o4jTk4ovNVe5W2yIAiwKwWQBWVPB8_826YGv8lfoVyWhPSbjYeQG1xc7aYv-lLRUc7iRsZ2PdWkE_VDkmXqqCp_vXaGZUOxnGuDovNJqySaS5XxRiv5OWbkMozitQC1VZbHX5Zjz7nKG8FYV_QlbwYqdUP7b1Z1Y8_B-seATXBVkDQ4Mwh3Awbc7jY7jqv01n282TbE7fAS1ZI-I
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep convolutional neural networks to predict cardiovascular risk from computed tomography
URI https://link.springer.com/article/10.1038/s41467-021-20966-2
https://www.ncbi.nlm.nih.gov/pubmed/33514711
https://www.proquest.com/docview/2483415767
https://www.proquest.com/docview/2483814957
https://pubmed.ncbi.nlm.nih.gov/PMC7846726
https://doaj.org/article/81f5a66b63fb4263b0d804c5ab0e5cbe
Volume 12
WOSCitedRecordID wos000684846200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxIX3o9AiYLEDaLaTuLHCVFoBQdWEQJp6cVK_CiVYLNsUiT-PR7Hmyo8euGSSPFEcjIznvHM-BuEnuFCG9c4nTOOee4thMhbb3W84gmpGeDHYBeaTfDFQiyXso4Btz6WVW7XxLBQm05DjPyAQtSLeO-Yv1x_z6FrFGRXYwuNHbQHKAmgmHV1MsVYAP1clGU8K4MLcdCXYWWAugTqnXeW05k9CrD9f_M1_yyZ_C1vGszR8c3__ZBb6EZ0RLNXo-TcRlfs6g66Nram_HkXnbyxdp1BTXqUTU8L2JfhFirH-2zosvUGEj1DpmdlrRkUrGdwciXTY9cI44m_RXTse-jT8dHH12_z2Ich99xiQ86p0NQQKZuqbChxfnknRjoqKbHcYi21qSxhTHuDCDjHzLQG-30Vt1o4SnVxH-2uupV9iDIsW10yQ1tLbVlZJkhDmK6cf9A4IW2CyJYbSkeQcuiV8VWFZHkh1MhB5TmoAgcVTdDz6Z31CNFxKfUhMHmiBHjt8KDbnKqorUoQVzWMtaxwLSDat9gIXOqqabGtdOunub_lrYo636sLxibo6TTstRVSMM3KducjjYBNqad5MErUNJMCDlVwQhLEZ7I2m-p8ZHX2JSCCc_AiKUvQi61UXkzr37_i0eVf8Rhdp6Ao2OuK3Ee7w-bcPkFX9Y_hrN-kaIcvebiKFO0dHi3qD2kIaKRQPlunQRP9SP3uff35FwW4OGc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78dCgSDBCaLaTmI7B4SAUrVqWXEo0oqLmzh2Wwl2l80W1D_Fb2TGeVTh0VsPnCIlk8ROZj6_Pn8D8IwltvKFt7FUTMXYQui4xFYHA0_nVpJ-DPMh2YQaj_Vkkn9cgZ_dXhiiVXaYGIC6mlmaI18XNOvFsXesXs-_xZQ1ilZXuxQajVvsuJMfOGSrX21v4P99LsTm-713W3GbVSDGd8tlrIS2ouJ5XmRpIbhHsOJV7kUuuFOO2dxWmeNSWoR3Uu2VVVkxHCUoZ7UXwib43AtwEXFcEYVMTVQ_p0Nq6zpN2705LNHrdRqQiHgQAgcLMhaD9i-kCfhb3_ZPiuZv67Sh-du8_r99uBtwre1oR2-ayLgJK256Cy43qTdPbsPnDefmEXHu29hDW9L2DIfAjK-j5SyaL2ghaxnZAW03IkJ-RDtzIttkxajQ-Gur_n0HPp1Lxe7C6nQ2dfchYnlpU1mJ0gmXZk5qXnBpM48nCq9zNwLe_X1jWxF2ygXyxQQyQKJN4zEGPcYEjzFiBC_6e-aNBMmZ1m_JqXpLkg8PJ2aLA9OikdHcZ4WUpUx8SYr9Jas0S21WlMxltsRirnW-ZFpMq82pI43gaX8Z0YiWmIqpmx03NpoG3Whzr_HgviQJbRpRnI9ADXx7UNThlenRYVA8V9RLFnIEL7soOC3Wvz_Fg7Nr8QSubO192DW72-Odh3BVUJAyjNN8DVaXi2P3CC7Z78ujevE4RHkE--cdHb8AXWmNYg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC6y48H4EFggSnCCq7SS2c0AIKBWrRVUPIK324k0cm10J2tJmQfvX-HXMOElX5bG3PXCqlEyrSfrN2GN__gbgKUtt7UtvE6mYSnCE0EmFow4Gni6sJP0Y5kOzCTUe6729YrIBP_uzMESr7HNiSNT1zNIa-UDQqhfH2bEa-I4WMRmOXs2_JdRBinZa-3YaLUR23ckPLN-WL3eG-F8_E2L07uPb90nXYSBBP2STKKGtqHlRlHlWCu4xcfG68KIQ3CnHbGHr3HEpLaZ6UvCVdVUzrBiUs9oLYVP83QtwUWGNSYXfJN9fre-Q8rrOsu6cDkv1YJmFrEScCIGFg0zE2lgYWgb8bZ77J13ztz3bMBSOrv3PL_E6XO0m4PHrNmJuwIab3oTLbUvOk1uwP3RuHhMXv4tJtCXNz_ARGPPLuJnF8wVtcDWxXaPzxkTUj-nETmzbbhk1Gn_tVMFvw6dzebA7sDmdTd09iFlR2UzWonLCZbmTmpdc2tzjhdLrwkXAeyQY24mzU4-QLyaQBFJtWvQYRI8J6DEiguer78xbaZIzrd8QwFaWJCseLswWn02XpYzmPi-lrGTqK1Lyr1itWWbzsmIutxW6ud3jynS5bmlOQRXBk9VtzFK09VRO3ey4tdFUjKPN3RbNK09SOkyiOI9AreF8zdX1O9Ojw6CErmj2LGQEL_qIOHXr36_i_tlP8Ri2MCjMh53x7gO4IiheGYZssQ2bzeLYPYRL9ntztFw8CgEfw8F5B8cv536WVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+convolutional+neural+networks+to+predict+cardiovascular+risk+from+computed+tomography&rft.jtitle=Nature+communications&rft.au=Zeleznik%2C+Roman&rft.au=Foldyna%2C+Borek&rft.au=Eslami%2C+Parastou&rft.au=Weiss%2C+Jakob&rft.date=2021-01-29&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=715&rft_id=info:doi/10.1038%2Fs41467-021-20966-2&rft_id=info%3Apmid%2F33514711&rft.externalDocID=33514711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon