Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm

In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 12; číslo 1; s. 3523 - 15
Hlavní autori: Moctezuma, Luis Alfredo, Abe, Takashi, Molinas, Marta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 03.03.2022
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.
AbstractList In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.
In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.
Abstract In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.
In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8-10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8-10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.
ArticleNumber 3523
Author Abe, Takashi
Molinas, Marta
Moctezuma, Luis Alfredo
Author_xml – sequence: 1
  givenname: Luis Alfredo
  surname: Moctezuma
  fullname: Moctezuma, Luis Alfredo
  email: luisalfredomoctezuma@gmail.com
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology
– sequence: 2
  givenname: Takashi
  surname: Abe
  fullname: Abe, Takashi
  organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba
– sequence: 3
  givenname: Marta
  surname: Molinas
  fullname: Molinas, Marta
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology, International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35241745$$D View this record in MEDLINE/PubMed
BookMark eNp9UkFvFCEYnZgaW2v_gAdD4sXLKDDAMBcTs1lrk6Ze6pkA880uGwYqzGzTxB8vu1tr20O5QB7vPR753tvqKMQAVfWe4M8EN_JLZoR3ssaU1rjlpK35q-qEYsZr2lB69Oh8XJ3lvMFlcdox0r2pjhtOGWkZP6n-XN_GuncjhOxi0B4trq5qozP0qHd5csFOBUdxQOt51AHBGHdARkOKI1ouz5Fd6xDAZ5TBg52K0NyhcfaTq6PZFMRtAcE2-nkn1OkOab-KyU3r8V31etA-w9n9flr9-r68XvyoL3-eXyy-XdZWYDHVQuuWMNG2QvZSCNZzLCXtiDA9HqAhmIKRQ6-pEaAp2M4Y2w1duSCtwNg0p9XFwbePeqNukhtLDBW1U3sgppXSaXLWg6KNAGqKSLOBCdZJGKzBfdNLOnSc8OL19eB1M5sRegthSto_MX16E9xareJWSdkx1nbF4NO9QYq_Z8iTGl224L0OEOesqGgEYUxwWagfn1E3cU5lSnsWbxjjrC2sD48TPUT5N-RCoAeCTTHnBMMDhWC1K5M6lEmVMql9mdROJJ-JrJv0boTlV86_LG0O0lzeCStI_2O_oPoLQazfXQ
CitedBy_id crossref_primary_10_3390_s23084164
crossref_primary_10_1007_s41870_023_01359_8
crossref_primary_10_3389_fnins_2024_1400444
crossref_primary_10_1016_j_apenergy_2024_123194
crossref_primary_10_1016_j_bspc_2023_104783
crossref_primary_10_1038_s41598_023_40786_2
crossref_primary_10_1038_s41598_024_63180_y
crossref_primary_10_1007_s11277_024_11656_5
crossref_primary_10_1016_j_bspc_2023_105462
crossref_primary_10_1155_bmri_3585125
crossref_primary_10_3390_bs12050137
crossref_primary_10_1109_ACCESS_2023_3264845
crossref_primary_10_1186_s40708_024_00224_z
crossref_primary_10_1016_j_compbiomed_2025_110713
crossref_primary_10_3390_sym15061173
crossref_primary_10_3390_app15052328
crossref_primary_10_1109_TAFFC_2024_3450573
crossref_primary_10_1155_2023_9281230
crossref_primary_10_3390_diagnostics14151619
crossref_primary_10_3390_mi14091677
Cites_doi 10.1109/T-AFFC.2011.25
10.4324/9780203728215
10.1037/10001-000
10.1037/0033-2909.128.2.203
10.3389/fnsys.2020.00043
10.1088/1741-2552/aace8c
10.1016/B978-0-12-417188-6.00002-5
10.5220/0006043400150021
10.1007/s10803-006-0077-2
10.1109/TSMC.2020.2969686
10.7555/JBR.33.20190009
10.1016/B978-0-12-801851-4.00009-4
10.1111/1467-9280.00304
10.1109/T-AFFC.2011.37
10.1109/ENBENG.2017.7889451
10.1109/JSEN.2021.3070373
10.1016/j.neuropsychologia.2020.107506
10.1109/TAFFC.2017.2781732
10.1038/s41598-019-56847-4
10.1016/j.future.2021.01.010
10.3389/fnins.2020.00593
10.1093/mind/os-IX.34.188
10.3390/brainsci9110326
10.1109/INDIN41052.2019.8972231
10.1145/2370216.2370378
10.1016/j.eswa.2018.10.004
10.7551/mitpress/1140.001.0001
10.1109/T-AFFC.2011.15
10.1038/nrn1432
10.1002/cpe.5199
10.1016/j.tics.2015.09.003
10.1016/j.neuron.2012.02.004
10.1016/0005-7916(94)90063-9
10.1162/evco.1994.2.3.221
10.1007/s40815-018-0567-3
10.1109/TPAMI.2008.26
10.1111/j.1469-8986.2007.00497.x
10.1109/NER.2013.6695876
10.1088/1741-2552/ab260c
10.1109/TAMD.2015.2431497
10.1176/ajp.156.10.1618
10.3390/s20185083
10.1088/1741-2552/ab0ab5
10.1037/a0016570
10.1007/978-3-030-12385-7_57
10.1038/s41598-020-79139-8
10.1109/TCYB.2018.2797176
10.1007/BF00992553
10.1109/JBHI.2017.2688239
10.1037/h0077714
10.1109/ACCESS.2019.2904400
10.1109/TITB.2009.2038481
10.1109/TCDS.2019.2924648
10.1109/TCBB.2021.3052811
10.1080/02699930802204677
10.1016/j.medengphy.2020.05.006
10.1109/TAFFC.2017.2712143
10.1037/0003-066X.43.5.349
10.1023/A:1006668120583
10.1109/4235.996017
10.1177/109625060300600403
10.3389/fnbot.2019.00037
10.5220/0001063402530258
10.3389/fnhum.2019.00076
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-07517-5
DatabaseName SpringerOpen
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_236e2b00ba4f46498efcb0d3d82f9515
PMC8894479
35241745
10_1038_s41598_022_07517_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: UiT The Arctic University of Norway (incl University Hospital of North Norway)
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-6aa71467768d8664d50882916bd0fe3102eb8fda2b6ea2ec9bbc9f931017600b3
IEDL.DBID BENPR
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838718500042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:36:12 EST 2025
Tue Nov 04 01:51:22 EST 2025
Thu Sep 04 17:21:00 EDT 2025
Tue Oct 07 08:09:01 EDT 2025
Thu Jan 02 22:54:48 EST 2025
Sat Nov 29 02:51:37 EST 2025
Tue Nov 18 21:30:39 EST 2025
Fri Feb 21 02:38:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-6aa71467768d8664d50882916bd0fe3102eb8fda2b6ea2ec9bbc9f931017600b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2635344547?pq-origsite=%requestingapplication%
PMID 35241745
PQID 2635344547
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_236e2b00ba4f46498efcb0d3d82f9515
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8894479
proquest_miscellaneous_2636144658
proquest_journals_2635344547
pubmed_primary_35241745
crossref_primary_10_1038_s41598_022_07517_5
crossref_citationtrail_10_1038_s41598_022_07517_5
springer_journals_10_1038_s41598_022_07517_5
PublicationCentury 2000
PublicationDate 2022-03-03
PublicationDateYYYYMMDD 2022-03-03
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Apicella, Arpaia, Mastrati, Moccaldi (CR70) 2021; 11
Zeng (CR64) 2019; 9
Elfenbein, Ambady (CR19) 2002; 128
Lawhern (CR62) 2018; 15
Sammler, Grigutsch, Fritz, Koelsch (CR69) 2007; 44
Yan, Lv, Sun, Bi (CR71) 2020; 83
CR37
Moctezuma, Molinas (CR53) 2020; 10
CR34
CR33
CR32
CR31
Zheng, Zhu, Lu (CR39) 2017; 10
CR30
Shalom (CR18) 2006; 36
CR72
Moctezuma, Torres-García, Villaseñor-Pineda, Carrillo (CR56) 2019; 118
Joseph, Strain (CR14) 2003; 6
Izard (CR21) 2001; 12
Picard (CR29) 2000
Koelstra (CR2) 2011; 3
Mauss, Robinson (CR27) 2009; 23
Kleinginna, Kleinginna (CR9) 1981; 5
Hsu, Wang, Chiang, Hung (CR10) 2017; 11
Craik, He, Contreras-Vidal (CR49) 2019; 16
James (CR5) 1884; 9
Frijda (CR6) 1988; 43
CR8
Zheng, Liu, Lu, Lu, Cichocki (CR41) 2018; 49
CR48
CR47
Bradley, Lang (CR42) 1994; 25
CR44
Soleymani, Lichtenauer, Pun, Pantic (CR36) 2012; 3
Torres, Torres, Hernández-Álvarez, Yoo (CR13) 2020; 20
Walker, van Der Helm (CR1) 2009; 135
Paradiso (CR28) 1999; 156
Dalgleish (CR22) 2004; 5
Liu, Fu (CR26) 2021; 119
Liu (CR50) 2020; 14
Russell (CR23) 1980; 39
Zheng, Lu (CR38) 2015; 7
Matsumoto (CR20) 2000; 24
Deb, Pratap, Agarwal, Meyarivan (CR73) 2002; 6
CR15
CR57
CR12
Tuma, Maser (CR16) 2019
CR11
Frantzidis (CR24) 2010; 14
CR55
LeDoux (CR7) 2012; 73
LeDoux (CR17) 1998
CR54
Wang (CR65) 2020; 146
CR51
Reeck, Ames, Ochsner (CR3) 2016; 20
Ullah (CR67) 2019; 7
Kim, André (CR25) 2008; 30
Lotte (CR43) 2018; 15
Moctezuma, Molinas (CR52) 2020; 14
Moctezuma, Molinas (CR59) 2020; 10
Li, Lee, Jung, Youn, Camacho (CR46) 2020; 32
CR63
Guo (CR68) 2019; 21
Srinivas, Deb (CR58) 1994; 2
CR61
CR60
Katsigiannis, Ramzan (CR40) 2017; 22
Xing (CR66) 2019; 13
Soleymani, Pantic, Pun (CR35) 2011; 3
Darwin (CR4) 1872
Roy (CR45) 2019; 16
J LeDoux (7517_CR17) 1998
DB Shalom (7517_CR18) 2006; 36
PR Kleinginna (7517_CR9) 1981; 5
Y Roy (7517_CR45) 2019; 16
AH Tuma (7517_CR16) 2019
NH Frijda (7517_CR6) 1988; 43
Y Liu (7517_CR26) 2021; 119
7517_CR44
S Koelstra (7517_CR2) 2011; 3
J LeDoux (7517_CR7) 2012; 73
7517_CR47
7517_CR48
A Craik (7517_CR49) 2019; 16
S Paradiso (7517_CR28) 1999; 156
D Matsumoto (7517_CR20) 2000; 24
G Li (7517_CR46) 2020; 32
VJ Lawhern (7517_CR62) 2018; 15
K Guo (7517_CR68) 2019; 21
H Ullah (7517_CR67) 2019; 7
LA Moctezuma (7517_CR56) 2019; 118
MM Bradley (7517_CR42) 1994; 25
IB Mauss (7517_CR27) 2009; 23
7517_CR54
7517_CR11
W-L Zheng (7517_CR41) 2018; 49
7517_CR55
7517_CR12
7517_CR57
7517_CR8
Y-L Hsu (7517_CR10) 2017; 11
7517_CR15
RW Picard (7517_CR29) 2000
X Xing (7517_CR66) 2019; 13
N Srinivas (7517_CR58) 1994; 2
C Izard (7517_CR21) 2001; 12
M Soleymani (7517_CR36) 2012; 3
J Kim (7517_CR25) 2008; 30
7517_CR51
F Lotte (7517_CR43) 2018; 15
GE Joseph (7517_CR14) 2003; 6
W James (7517_CR5) 1884; 9
D Sammler (7517_CR69) 2007; 44
JA Russell (7517_CR23) 1980; 39
F Wang (7517_CR65) 2020; 146
J Liu (7517_CR50) 2020; 14
LA Moctezuma (7517_CR53) 2020; 10
MP Walker (7517_CR1) 2009; 135
CA Frantzidis (7517_CR24) 2010; 14
W-L Zheng (7517_CR38) 2015; 7
7517_CR60
7517_CR61
7517_CR63
T Dalgleish (7517_CR22) 2004; 5
LA Moctezuma (7517_CR52) 2020; 14
LA Moctezuma (7517_CR59) 2020; 10
7517_CR31
7517_CR32
M Soleymani (7517_CR35) 2011; 3
7517_CR33
W-L Zheng (7517_CR39) 2017; 10
M Yan (7517_CR71) 2020; 83
HA Elfenbein (7517_CR19) 2002; 128
7517_CR34
C Darwin (7517_CR4) 1872
K Deb (7517_CR73) 2002; 6
EP Torres (7517_CR13) 2020; 20
7517_CR37
H Zeng (7517_CR64) 2019; 9
S Katsigiannis (7517_CR40) 2017; 22
C Reeck (7517_CR3) 2016; 20
A Apicella (7517_CR70) 2021; 11
7517_CR72
7517_CR30
References_xml – volume: 119
  start-page: 1
  year: 2021
  end-page: 6
  ident: CR26
  article-title: Emotion recognition by deeply learned multi-channel textual and EEG features
  publication-title: Future Gener. Comput. Syst.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: CR38
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Autonom. Ment. Dev.
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: CR58
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolut. Comput.
– volume: 128
  start-page: 203
  year: 2002
  ident: CR19
  article-title: On the universality and cultural specificity of emotion recognition: A meta-analysis
  publication-title: Psychol. Bull.
– year: 2019
  ident: CR16
  publication-title: Anxiety and the Anxiety Disorders
– volume: 15
  start-page: 65
  year: 2018
  ident: CR62
  article-title: Eegnet: A compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
– ident: CR51
– ident: CR12
– volume: 146
  start-page: 107506
  year: 2020
  ident: CR65
  article-title: Emotion recognition with convolutional neural network and EEG-based EFDMS
  publication-title: Neuropsychologia
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: CR73
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
– ident: CR54
– ident: CR61
– volume: 5
  start-page: 583
  year: 2004
  end-page: 589
  ident: CR22
  article-title: The emotional brain
  publication-title: Nat. Rev. Neurosci.
– ident: CR8
– volume: 6
  start-page: 18
  year: 2003
  end-page: 26
  ident: CR14
  article-title: Enhancing emotional vocabulary in young children
  publication-title: Young Except. Child.
– volume: 30
  start-page: 2067
  year: 2008
  end-page: 2083
  ident: CR25
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 3
  start-page: 42
  year: 2012
  end-page: 55
  ident: CR36
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– volume: 14
  start-page: 43
  year: 2020
  ident: CR50
  article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder
  publication-title: Front. Syst. Neurosci.
– volume: 13
  start-page: 37
  year: 2019
  ident: CR66
  article-title: Sae+ lstm: A new framework for emotion recognition from multi-channel EEG
  publication-title: Front. Neurorobot.
– volume: 73
  start-page: 653
  year: 2012
  end-page: 676
  ident: CR7
  article-title: Rethinking the emotional brain
  publication-title: Neuron
– volume: 9
  start-page: 188
  year: 1884
  end-page: 205
  ident: CR5
  article-title: What is an emotion?
  publication-title: Mind
– volume: 10
  start-page: 417
  year: 2017
  end-page: 429
  ident: CR39
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
– volume: 135
  start-page: 731
  year: 2009
  ident: CR1
  article-title: Overnight therapy? The role of sleep in emotional brain processing
  publication-title: Psychol. Bull.
– volume: 24
  start-page: 179
  year: 2000
  end-page: 209
  ident: CR20
  article-title: A new test to measure emotion recognition ability: Matsumoto and Ekman’s Japanese and Caucasian brief affect recognition test (JACBART)
  publication-title: J. Nonverbal Behav.
– ident: CR15
– volume: 14
  start-page: 593
  year: 2020
  ident: CR52
  article-title: EEG channel-selection method for epileptic-seizure classification based on multi-objective optimization
  publication-title: Front. Neurosci.
– year: 1872
  ident: CR4
  publication-title: The Expression of the Emotions in Man and Animals by Charles Darwin
– ident: CR11
– ident: CR57
– volume: 23
  start-page: 209
  year: 2009
  end-page: 237
  ident: CR27
  article-title: Measures of emotion: A review
  publication-title: Cognit. Emotion
– ident: CR32
– ident: CR60
– volume: 83
  start-page: 130
  year: 2020
  end-page: 141
  ident: CR71
  article-title: An improved common spatial pattern combined with channel-selection strategy for electroencephalography-based emotion recognition
  publication-title: Med. Eng. Phys.
– volume: 25
  start-page: 49
  year: 1994
  end-page: 59
  ident: CR42
  article-title: Measuring emotion: The self-assessment manikin and the semantic differential
  publication-title: J. Behav. Ther. Exp. Psychiatry
– volume: 44
  start-page: 293
  year: 2007
  end-page: 304
  ident: CR69
  article-title: Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music
  publication-title: Psychophysiology
– volume: 5
  start-page: 345
  year: 1981
  end-page: 379
  ident: CR9
  article-title: A categorized list of emotion definitions, with suggestions for a consensual definition
  publication-title: Motivation Emotion
– ident: CR47
– ident: CR72
– volume: 20
  start-page: 47
  year: 2016
  end-page: 63
  ident: CR3
  article-title: The social regulation of emotion: An integrative, cross-disciplinary model
  publication-title: Trends Cognit. Sci.
– volume: 39
  start-page: 1161
  year: 1980
  ident: CR23
  article-title: A circumplex model of affect
  publication-title: J. Pers. Soc. Psychol.
– volume: 16
  start-page: 031001
  year: 2019
  ident: CR49
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review
  publication-title: J. Neural Eng.
– volume: 156
  start-page: 1618
  year: 1999
  end-page: 1629
  ident: CR28
  article-title: Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a pet study of normal subjects
  publication-title: Am. J. Psychiatry
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR59
  article-title: Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system
  publication-title: Sci. Rep.
– ident: CR37
– year: 2000
  ident: CR29
  publication-title: Affective Computing
– volume: 14
  start-page: 309
  year: 2010
  end-page: 318
  ident: CR24
  article-title: On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– ident: CR30
– volume: 15
  start-page: 101
  year: 2018
  ident: CR43
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update
  publication-title: J. Neural Eng.
– volume: 118
  start-page: 201
  year: 2019
  end-page: 208
  ident: CR56
  article-title: Subjects identification using EEG-recorded imagined speech
  publication-title: Expert Syst. Appl.
– ident: CR33
– volume: 22
  start-page: 98
  year: 2017
  end-page: 107
  ident: CR40
  article-title: Dreamer: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices
  publication-title: IEEE J. Biomed. Health Inform.
– ident: CR63
– volume: 49
  start-page: 1110
  year: 2018
  end-page: 1122
  ident: CR41
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 32
  start-page: e5199
  year: 2020
  ident: CR46
  article-title: Deep learning for EEG data analytics: A survey
  publication-title: Concurr. Comput. Pract. Exp.
– volume: 3
  start-page: 211
  year: 2011
  end-page: 223
  ident: CR35
  article-title: Multimodal emotion recognition in response to videos
  publication-title: IEEE Trans. Affect. Comput.
– volume: 7
  start-page: 40144
  year: 2019
  end-page: 40153
  ident: CR67
  article-title: Internal emotion classification using EEG signal with sparse discriminative ensemble
  publication-title: IEEE Access
– volume: 12
  start-page: 18
  year: 2001
  end-page: 23
  ident: CR21
  article-title: Emotion knowledge as a predictor of social behavior and academic competence in children at risk
  publication-title: Psychol. Sci.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 16
  ident: CR70
  article-title: EEG-based detection of emotional valence towards a reproducible measurement of emotions
  publication-title: Sci. Rep.
– ident: CR44
– ident: CR48
– volume: 20
  start-page: 5083
  year: 2020
  ident: CR13
  article-title: EEG-based BCI emotion recognition: A survey
  publication-title: Sensors
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: CR2
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– volume: 11
  start-page: 85
  year: 2017
  end-page: 99
  ident: CR10
  article-title: Automatic ECG-based emotion recognition in music listening
  publication-title: IEEE Trans. Affect. Comput.
– ident: CR31
– volume: 9
  start-page: 326
  year: 2019
  ident: CR64
  article-title: EEG emotion classification using an improved sincnet-based deep learning model
  publication-title: Brain Sci.
– volume: 36
  start-page: 395
  year: 2006
  end-page: 400
  ident: CR18
  article-title: Normal physiological emotions but differences in expression of conscious feelings in children with high-functioning autism
  publication-title: J. Autism Dev. Disord.
– ident: CR34
– volume: 43
  start-page: 349
  year: 1988
  ident: CR6
  article-title: The laws of emotion
  publication-title: Am. Psychol.
– year: 1998
  ident: CR17
  publication-title: The Emotional Brain: The Mysterious Underpinnings of Emotional Life
– ident: CR55
– volume: 21
  start-page: 263
  year: 2019
  end-page: 273
  ident: CR68
  article-title: A hybrid fuzzy cognitive map/support vector machine approach for EEG-based emotion classification using compressed sensing
  publication-title: Int. J. Fuzzy Syst.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR53
  article-title: Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection
  publication-title: Sci. Rep.
– volume: 16
  start-page: 051001
  year: 2019
  ident: CR45
  article-title: Deep learning-based electroencephalography analysis: A systematic review
  publication-title: J. Neural Eng.
– volume-title: Anxiety and the Anxiety Disorders
  year: 2019
  ident: 7517_CR16
  doi: 10.4324/9780203728215
– volume-title: The Expression of the Emotions in Man and Animals by Charles Darwin
  year: 1872
  ident: 7517_CR4
  doi: 10.1037/10001-000
– volume: 128
  start-page: 203
  year: 2002
  ident: 7517_CR19
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.128.2.203
– volume: 14
  start-page: 43
  year: 2020
  ident: 7517_CR50
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2020.00043
– volume: 15
  start-page: 65
  year: 2018
  ident: 7517_CR62
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– ident: 7517_CR8
  doi: 10.1016/B978-0-12-417188-6.00002-5
– ident: 7517_CR51
  doi: 10.5220/0006043400150021
– volume: 36
  start-page: 395
  year: 2006
  ident: 7517_CR18
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-006-0077-2
– volume: 3
  start-page: 42
  year: 2012
  ident: 7517_CR36
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– ident: 7517_CR11
  doi: 10.1109/TSMC.2020.2969686
– ident: 7517_CR63
  doi: 10.7555/JBR.33.20190009
– ident: 7517_CR61
– volume: 15
  start-page: 101
  year: 2018
  ident: 7517_CR43
  publication-title: J. Neural Eng.
– ident: 7517_CR31
  doi: 10.1016/B978-0-12-801851-4.00009-4
– volume: 12
  start-page: 18
  year: 2001
  ident: 7517_CR21
  publication-title: Psychol. Sci.
  doi: 10.1111/1467-9280.00304
– volume: 3
  start-page: 211
  year: 2011
  ident: 7517_CR35
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.37
– ident: 7517_CR32
  doi: 10.1109/ENBENG.2017.7889451
– ident: 7517_CR12
  doi: 10.1109/JSEN.2021.3070373
– volume: 146
  start-page: 107506
  year: 2020
  ident: 7517_CR65
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107506
– volume: 11
  start-page: 85
  year: 2017
  ident: 7517_CR10
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2781732
– volume: 10
  start-page: 1
  year: 2020
  ident: 7517_CR59
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 119
  start-page: 1
  year: 2021
  ident: 7517_CR26
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.01.010
– volume: 14
  start-page: 593
  year: 2020
  ident: 7517_CR52
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00593
– volume: 9
  start-page: 188
  year: 1884
  ident: 7517_CR5
  publication-title: Mind
  doi: 10.1093/mind/os-IX.34.188
– volume: 9
  start-page: 326
  year: 2019
  ident: 7517_CR64
  publication-title: Brain Sci.
  doi: 10.3390/brainsci9110326
– ident: 7517_CR55
  doi: 10.1109/INDIN41052.2019.8972231
– ident: 7517_CR33
  doi: 10.1145/2370216.2370378
– volume: 118
  start-page: 201
  year: 2019
  ident: 7517_CR56
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.10.004
– ident: 7517_CR48
– ident: 7517_CR60
– volume-title: Affective Computing
  year: 2000
  ident: 7517_CR29
  doi: 10.7551/mitpress/1140.001.0001
– volume: 3
  start-page: 18
  year: 2011
  ident: 7517_CR2
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 5
  start-page: 583
  year: 2004
  ident: 7517_CR22
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1432
– volume: 32
  start-page: e5199
  year: 2020
  ident: 7517_CR46
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5199
– volume: 20
  start-page: 47
  year: 2016
  ident: 7517_CR3
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2015.09.003
– volume: 73
  start-page: 653
  year: 2012
  ident: 7517_CR7
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.02.004
– volume: 25
  start-page: 49
  year: 1994
  ident: 7517_CR42
  publication-title: J. Behav. Ther. Exp. Psychiatry
  doi: 10.1016/0005-7916(94)90063-9
– volume: 2
  start-page: 221
  year: 1994
  ident: 7517_CR58
  publication-title: Evolut. Comput.
  doi: 10.1162/evco.1994.2.3.221
– volume: 21
  start-page: 263
  year: 2019
  ident: 7517_CR68
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-018-0567-3
– volume: 30
  start-page: 2067
  year: 2008
  ident: 7517_CR25
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– volume: 44
  start-page: 293
  year: 2007
  ident: 7517_CR69
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00497.x
– ident: 7517_CR37
  doi: 10.1109/NER.2013.6695876
– volume: 16
  start-page: 051001
  year: 2019
  ident: 7517_CR45
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– volume: 7
  start-page: 162
  year: 2015
  ident: 7517_CR38
  publication-title: IEEE Trans. Autonom. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 156
  start-page: 1618
  year: 1999
  ident: 7517_CR28
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.156.10.1618
– ident: 7517_CR57
– volume: 10
  start-page: 1
  year: 2020
  ident: 7517_CR53
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56847-4
– volume: 20
  start-page: 5083
  year: 2020
  ident: 7517_CR13
  publication-title: Sensors
  doi: 10.3390/s20185083
– volume-title: The Emotional Brain: The Mysterious Underpinnings of Emotional Life
  year: 1998
  ident: 7517_CR17
– volume: 16
  start-page: 031001
  year: 2019
  ident: 7517_CR49
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 135
  start-page: 731
  year: 2009
  ident: 7517_CR1
  publication-title: Psychol. Bull.
  doi: 10.1037/a0016570
– ident: 7517_CR15
– ident: 7517_CR54
  doi: 10.1007/978-3-030-12385-7_57
– volume: 11
  start-page: 1
  year: 2021
  ident: 7517_CR70
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79139-8
– ident: 7517_CR34
– volume: 49
  start-page: 1110
  year: 2018
  ident: 7517_CR41
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– volume: 5
  start-page: 345
  year: 1981
  ident: 7517_CR9
  publication-title: Motivation Emotion
  doi: 10.1007/BF00992553
– volume: 22
  start-page: 98
  year: 2017
  ident: 7517_CR40
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2688239
– volume: 39
  start-page: 1161
  year: 1980
  ident: 7517_CR23
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/h0077714
– volume: 7
  start-page: 40144
  year: 2019
  ident: 7517_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904400
– volume: 14
  start-page: 309
  year: 2010
  ident: 7517_CR24
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2038481
– ident: 7517_CR47
  doi: 10.1109/TCDS.2019.2924648
– ident: 7517_CR72
  doi: 10.1109/TCBB.2021.3052811
– volume: 23
  start-page: 209
  year: 2009
  ident: 7517_CR27
  publication-title: Cognit. Emotion
  doi: 10.1080/02699930802204677
– volume: 83
  start-page: 130
  year: 2020
  ident: 7517_CR71
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.05.006
– volume: 10
  start-page: 417
  year: 2017
  ident: 7517_CR39
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– volume: 43
  start-page: 349
  year: 1988
  ident: 7517_CR6
  publication-title: Am. Psychol.
  doi: 10.1037/0003-066X.43.5.349
– volume: 24
  start-page: 179
  year: 2000
  ident: 7517_CR20
  publication-title: J. Nonverbal Behav.
  doi: 10.1023/A:1006668120583
– volume: 6
  start-page: 182
  year: 2002
  ident: 7517_CR73
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.996017
– volume: 6
  start-page: 18
  year: 2003
  ident: 7517_CR14
  publication-title: Young Except. Child.
  doi: 10.1177/109625060300600403
– volume: 13
  start-page: 37
  year: 2019
  ident: 7517_CR66
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00037
– ident: 7517_CR30
  doi: 10.5220/0001063402530258
– ident: 7517_CR44
  doi: 10.3389/fnhum.2019.00076
SSID ssj0000529419
Score 2.495491
Snippet In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG)...
Abstract In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3523
SubjectTerms 631/114/116
631/114/1305
631/114/1314
631/378/116/2396
631/378/1457
639/705/1042
Accuracy
Algorithms
Arousal
Chromosomes
Classification
EEG
Electroencephalography - methods
Emotions
Genetic algorithms
Humanities and Social Sciences
Humans
multidisciplinary
Neural networks
Neural Networks, Computer
Science
Science (multidisciplinary)
Self-assessment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQBRIXxJuFgozEDaxubO_GPkKVwiniUKTeLD9pUNlF2bQoUn98Z-xNaHhekHLKeleW5xvPN7LnG0JeaZm8AxrBEgCCyYkXTCfNGXCJGtJnHbxNudnEdD5XJyf647VWX3gnrMgDl4U74KKNHLDhrEyylVpF-HgdRFA8ATvI6qXAeq4lU0XVm2s50WOVTC3UwQCRCqvJOF62bGBrbnYiURbs_x3L_PWy5E8npjkQHd0ld0YGSd-Wmd8jN2J3n9wqPSXXD8jl8feeBdTsL3ob9HA-ZxirAg3oz10uZKB9ork9H42lj89AsdCEzmbvKdYCdxAy6ZB75MCLbk3zxUPWuy9lg6TxYsSsXa6pPfvcLxer068Pyaej2fHhBza2WGAeMpcVa62d4l4JSUdQbSsD8jUOlNGFOkWgfjw6lYLlro2WR6-d82BLgY4MVMmJR2Sv67v4hNBGBilimMQonYzRatlgP_WY6sbjQXJFJpvlNn7UH8c2GGcmn4MLZYqJDJjIZBOZpiKvt-98K-obfx39Dq24HYnK2fkPwJMZ8WT-haeK7G8wYEZ3Hgwq9giJ2mcVebl9DI6Ipyu2i_15HpOT60ZV5HGBzHYmwHIlpH7w8ekOmHamuvukW5xmsW-ltJRTXZE3G9j9mNafl-Lp_1iKZ-Q2z_4i4LdP9lbL8_ic3PQXq8WwfJEd7gpk2i5O
  priority: 102
  providerName: Directory of Open Access Journals
Title Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm
URI https://link.springer.com/article/10.1038/s41598-022-07517-5
https://www.ncbi.nlm.nih.gov/pubmed/35241745
https://www.proquest.com/docview/2635344547
https://www.proquest.com/docview/2636144658
https://pubmed.ncbi.nlm.nih.gov/PMC8894479
https://doaj.org/article/236e2b00ba4f46498efcb0d3d82f9515
Volume 12
WOSCitedRecordID wos000838718500042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources(FREE)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboLki98H4EyspI3MBq1nEePiFabYFDowgVaTlF8SNtUUnazbZoJX48M4431fLoBWnlw8aJJpnxPDye-Qh5LUWtFbgRrAaBYGKqIyZryRn4EiGEz9LoqnZgE2meZ_O5LPyGW-ePVa51olPUptW4R76LTVMige2n3p1fMESNwuyqh9DYImPsVCZGZLw3y4vPwy4L5rHEVPpqmTDKdjuwWFhVxvHQZQwqOt6wSK5x_9-8zT8PTf6WOXUG6eDe_77KfXLXu6L0fS87D8gt2zwkd3pwytUj8vPoR8sMNv_vG3fQ_TxnaPQMNagYGlcRQduaOpw_antAoI5ixQqdzT5QLCpuwPbSzoHtwI1qRd0JRtaqb72mpfbKC3-1WNHq7BgIXZ58f0y-HMyO9j8yj9XANIRAS5ZUVYpKF6IXkyWJMOj4cfA9lQlrCz4ktyqrTcVVYitutVRKg1BEqBHA51LREzJq2sY-IzQWRkTWTK0VSlhbSREjMLutw1hjRjog0zW_Su0bmSOexlnpEupRVvY8LoHHpeNxGQfkzXDPed_G48bZeygGw0xswe3-aBfHpV_RJY8Sy0FpqUrUIhESCNQqNJHJeA1uKzxkZ8390uuFrrxmfUBeDZdhRWOapmpse-nmuCg9zgLytJe5gRJwlwXEkPDwdEMaN0jdvNKcnriu4VkmhUhlQN6u5faarH9_iuc3v8ULss3dUorgt0NGy8WlfUlu66vlabeYkK10nroxm_iVOXGbHjAe8gLHFMZx8emw-PoLoxFEAg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78dCASPBCazuOs7DB4SgbGnVsuKwSL258SNtUUnKZttqJX4Tv5EZJ9lqefTWA9KeNk7kOJ9nPtsz8wG8ULKwBmkELxAQXA5sxFWhBEcu0cfls3I2L4LYRDoaZTs76vMS_OxyYSissrOJwVC7ytIe-SoVTYkklZ96e_Sdk2oUna52EhoNLLb87BSXbPWbzQ_4fV8KsT4cr23wVlWAWyTrU57keUrmAXm2y5JEOqIoAlmScf3CI9sR3mSFy4VJfC68VcZY7H5E2EV2YCJ87iW4jHY8pRCydCed7-nQqZkcqDY3px9lqzX6R8phExTiGaNDiBf8X5AJ-Bu3_TNE87dz2uD-1m_-bwN3C260RJu9a2bGbVjy5R242khvzu7Cj_FpxR1JGzRlSdjaaMTJpTvmyOyVId-DVQULKobMN3JHNaN8HDYcfmSUMl0is2B1kBLCG82MhfhMXpmvjR9h_qSd2vlkxvLDPRyY6f63e_DlQl79PiyXVekfAoulk5F3A--lkd7nSsYkO--LfmzpvL0Hgw4f2rZl2kkt5FCHcIEo0w2mNGJKB0zpuAev5vccNUVKzm39nmA3b0kFxsMf1WRPt_ZKiyjxAk2yyWUhE6mwg9b0XeQyUSApx4esdGjTrdWr9RnUevB8fhntFR1C5aWvjkObsAcRZz140GB83hNcDEhcIePD0wX0L3R18Up5sB9qomeZkjJVPXjdzZOzbv17KB6d_xbP4NrG-NO23t4cbT2G6yJM4wh_K7A8nRz7J3DFnkwP6snTYAcY7F70_PkFnx6YVA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKWcSFfQkUMBKcwMrE41l8QAjaBKpClEORenPHW1tUZkombRWJX8av4z3PTKqw9NYDUk4Zj2V7vvfeZ_sthLyQwhsNNIJ5AAQTAxMz6SVnwCUi2D5Lawofik1k43G-syMnK-RnFwuDbpWdTgyK2lYGz8j7mDQlFph-qu9bt4jJxujt0XeGFaTwprUrp9FAZMvNT2H7Vr_Z3IBv_ZLz0XB7_SNrKwwwA8R9xtKiyFBVAOe2eZoKi3SFA2PSNvIOmA93Ove24Dp1BXdGam1gKjHiGJiCjqHfS-RyJpIEpesznyzOd_AGTQxkG6cTxXm_BluJ8Wwc3T0TMA7Jki0MJQP-xnP_dNf87c42mMLRzf95EW-RGy0Bp-8aiblNVlx5h1xtSnLO75If26cVs1jyoElXQtfHY4am3lKL6rAMcSC08jRUN6SuKYNUU4zTocPhB4qh1CUwDlqHEkPwop7T4LfJKv21sS_UnbQiX0zntDjcg4WZ7X-7R75cyNTvk9WyKt1DQhNhRezswDmhhXOFBEzJKHc-Sgzew_fIoMOKMm36dqwicqiCG0GcqwZfCvClAr5U0iOvFu8cNclLzm39HiG4aImJx8Mf1XRPtXpM8Th1HFS1LoQXqZAwQKMjG9uceyDr0MlahzzVasNancGuR54vHoMew8uponTVcWgTziaSvEceNHhfjAQ2CQJ2ztB5tiQJS0NdflIe7Idc6Xkuhchkj7zuZOZsWP9eikfnz-IZuQZioz5tjrcek-s8SHQMvzWyOpseuyfkijmZHdTTp0ElULJ70eLzC_H1oSE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+CNN-based+distinction+of+human+emotions+from+EEG+channels+selected+by+multi-objective+evolutionary+algorithm&rft.jtitle=Scientific+reports&rft.au=Moctezuma%2C+Luis+Alfredo&rft.au=Abe%2C+Takashi&rft.au=Molinas+Marta&rft.date=2022-03-03&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-07517-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon