Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm
In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos...
Uložené v:
| Vydané v: | Scientific reports Ročník 12; číslo 1; s. 3523 - 15 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
03.03.2022
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for
low vs high arousal
using eight EEG channels, and 1.00 for
low vs high valence
using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG. |
|---|---|
| AbstractList | In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for
low vs high arousal
using eight EEG channels, and 1.00 for
low vs high valence
using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG. In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG. Abstract In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8–10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG. In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8-10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG.In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG) signals. We performed the experiments on EEG data of 32 subjects from the DEAP public dataset, where the subjects were stimulated using 60-s videos to elicitate different levels of Arousal/Valence and then self-reported the rating from 1 to 9 using the self-assessment Manikin (SAM). The EEG data was pre-processed and used as input to a convolutional neural network (CNN). First, the 32 EEG channels were used to compute the maximum accuracy level obtainable for each subject as well as for creating a single model using data from all the subjects. The experiment was repeated using one channel at a time, to see if specific channels contain more information to discriminate between low vs high arousal/valence. The results indicate than using one channel the accuracy is lower compared to using all the 32 channels. An optimization process for EEG channel selection is then designed with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the objective to obtain optimal channel combinations with high accuracy recognition. The genetic algorithm evaluates all possible combinations using a chromosome representation for all the 32 channels, and the EEG data from each chromosome in the different populations are tested iteratively solving two unconstrained objectives; to maximize classification accuracy and to reduce the number of required EEG channels for the classification process. Best combinations obtained from a Pareto-front suggests that as few as 8-10 channels can fulfill this condition and provide the basis for a lighter design of EEG systems for emotion recognition. In the best case, the results show accuracies of up to 1.00 for low vs high arousal using eight EEG channels, and 1.00 for low vs high valence using only two EEG channels. These results are encouraging for research and healthcare applications that will require automatic emotion recognition with wearable EEG. |
| ArticleNumber | 3523 |
| Author | Abe, Takashi Molinas, Marta Moctezuma, Luis Alfredo |
| Author_xml | – sequence: 1 givenname: Luis Alfredo surname: Moctezuma fullname: Moctezuma, Luis Alfredo email: luisalfredomoctezuma@gmail.com organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology – sequence: 2 givenname: Takashi surname: Abe fullname: Abe, Takashi organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba – sequence: 3 givenname: Marta surname: Molinas fullname: Molinas, Marta organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology, International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35241745$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UkFvFCEYnZgaW2v_gAdD4sXLKDDAMBcTs1lrk6Ze6pkA880uGwYqzGzTxB8vu1tr20O5QB7vPR753tvqKMQAVfWe4M8EN_JLZoR3ssaU1rjlpK35q-qEYsZr2lB69Oh8XJ3lvMFlcdox0r2pjhtOGWkZP6n-XN_GuncjhOxi0B4trq5qozP0qHd5csFOBUdxQOt51AHBGHdARkOKI1ouz5Fd6xDAZ5TBg52K0NyhcfaTq6PZFMRtAcE2-nkn1OkOab-KyU3r8V31etA-w9n9flr9-r68XvyoL3-eXyy-XdZWYDHVQuuWMNG2QvZSCNZzLCXtiDA9HqAhmIKRQ6-pEaAp2M4Y2w1duSCtwNg0p9XFwbePeqNukhtLDBW1U3sgppXSaXLWg6KNAGqKSLOBCdZJGKzBfdNLOnSc8OL19eB1M5sRegthSto_MX16E9xareJWSdkx1nbF4NO9QYq_Z8iTGl224L0OEOesqGgEYUxwWagfn1E3cU5lSnsWbxjjrC2sD48TPUT5N-RCoAeCTTHnBMMDhWC1K5M6lEmVMql9mdROJJ-JrJv0boTlV86_LG0O0lzeCStI_2O_oPoLQazfXQ |
| CitedBy_id | crossref_primary_10_3390_s23084164 crossref_primary_10_1007_s41870_023_01359_8 crossref_primary_10_3389_fnins_2024_1400444 crossref_primary_10_1016_j_apenergy_2024_123194 crossref_primary_10_1016_j_bspc_2023_104783 crossref_primary_10_1038_s41598_023_40786_2 crossref_primary_10_1038_s41598_024_63180_y crossref_primary_10_1007_s11277_024_11656_5 crossref_primary_10_1016_j_bspc_2023_105462 crossref_primary_10_1155_bmri_3585125 crossref_primary_10_3390_bs12050137 crossref_primary_10_1109_ACCESS_2023_3264845 crossref_primary_10_1186_s40708_024_00224_z crossref_primary_10_1016_j_compbiomed_2025_110713 crossref_primary_10_3390_sym15061173 crossref_primary_10_3390_app15052328 crossref_primary_10_1109_TAFFC_2024_3450573 crossref_primary_10_1155_2023_9281230 crossref_primary_10_3390_diagnostics14151619 crossref_primary_10_3390_mi14091677 |
| Cites_doi | 10.1109/T-AFFC.2011.25 10.4324/9780203728215 10.1037/10001-000 10.1037/0033-2909.128.2.203 10.3389/fnsys.2020.00043 10.1088/1741-2552/aace8c 10.1016/B978-0-12-417188-6.00002-5 10.5220/0006043400150021 10.1007/s10803-006-0077-2 10.1109/TSMC.2020.2969686 10.7555/JBR.33.20190009 10.1016/B978-0-12-801851-4.00009-4 10.1111/1467-9280.00304 10.1109/T-AFFC.2011.37 10.1109/ENBENG.2017.7889451 10.1109/JSEN.2021.3070373 10.1016/j.neuropsychologia.2020.107506 10.1109/TAFFC.2017.2781732 10.1038/s41598-019-56847-4 10.1016/j.future.2021.01.010 10.3389/fnins.2020.00593 10.1093/mind/os-IX.34.188 10.3390/brainsci9110326 10.1109/INDIN41052.2019.8972231 10.1145/2370216.2370378 10.1016/j.eswa.2018.10.004 10.7551/mitpress/1140.001.0001 10.1109/T-AFFC.2011.15 10.1038/nrn1432 10.1002/cpe.5199 10.1016/j.tics.2015.09.003 10.1016/j.neuron.2012.02.004 10.1016/0005-7916(94)90063-9 10.1162/evco.1994.2.3.221 10.1007/s40815-018-0567-3 10.1109/TPAMI.2008.26 10.1111/j.1469-8986.2007.00497.x 10.1109/NER.2013.6695876 10.1088/1741-2552/ab260c 10.1109/TAMD.2015.2431497 10.1176/ajp.156.10.1618 10.3390/s20185083 10.1088/1741-2552/ab0ab5 10.1037/a0016570 10.1007/978-3-030-12385-7_57 10.1038/s41598-020-79139-8 10.1109/TCYB.2018.2797176 10.1007/BF00992553 10.1109/JBHI.2017.2688239 10.1037/h0077714 10.1109/ACCESS.2019.2904400 10.1109/TITB.2009.2038481 10.1109/TCDS.2019.2924648 10.1109/TCBB.2021.3052811 10.1080/02699930802204677 10.1016/j.medengphy.2020.05.006 10.1109/TAFFC.2017.2712143 10.1037/0003-066X.43.5.349 10.1023/A:1006668120583 10.1109/4235.996017 10.1177/109625060300600403 10.3389/fnbot.2019.00037 10.5220/0001063402530258 10.3389/fnhum.2019.00076 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-07517-5 |
| DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_236e2b00ba4f46498efcb0d3d82f9515 PMC8894479 35241745 10_1038_s41598_022_07517_5 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: UiT The Arctic University of Norway (incl University Hospital of North Norway) – fundername: ; |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c606t-6aa71467768d8664d50882916bd0fe3102eb8fda2b6ea2ec9bbc9f931017600b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838718500042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:36:12 EST 2025 Tue Nov 04 01:51:22 EST 2025 Thu Sep 04 17:21:00 EDT 2025 Tue Oct 07 08:09:01 EDT 2025 Thu Jan 02 22:54:48 EST 2025 Sat Nov 29 02:51:37 EST 2025 Tue Nov 18 21:30:39 EST 2025 Fri Feb 21 02:38:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-6aa71467768d8664d50882916bd0fe3102eb8fda2b6ea2ec9bbc9f931017600b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2635344547?pq-origsite=%requestingapplication% |
| PMID | 35241745 |
| PQID | 2635344547 |
| PQPubID | 2041939 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_236e2b00ba4f46498efcb0d3d82f9515 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8894479 proquest_miscellaneous_2636144658 proquest_journals_2635344547 pubmed_primary_35241745 crossref_primary_10_1038_s41598_022_07517_5 crossref_citationtrail_10_1038_s41598_022_07517_5 springer_journals_10_1038_s41598_022_07517_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-03 |
| PublicationDateYYYYMMDD | 2022-03-03 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Apicella, Arpaia, Mastrati, Moccaldi (CR70) 2021; 11 Zeng (CR64) 2019; 9 Elfenbein, Ambady (CR19) 2002; 128 Lawhern (CR62) 2018; 15 Sammler, Grigutsch, Fritz, Koelsch (CR69) 2007; 44 Yan, Lv, Sun, Bi (CR71) 2020; 83 CR37 Moctezuma, Molinas (CR53) 2020; 10 CR34 CR33 CR32 CR31 Zheng, Zhu, Lu (CR39) 2017; 10 CR30 Shalom (CR18) 2006; 36 CR72 Moctezuma, Torres-García, Villaseñor-Pineda, Carrillo (CR56) 2019; 118 Joseph, Strain (CR14) 2003; 6 Izard (CR21) 2001; 12 Picard (CR29) 2000 Koelstra (CR2) 2011; 3 Mauss, Robinson (CR27) 2009; 23 Kleinginna, Kleinginna (CR9) 1981; 5 Hsu, Wang, Chiang, Hung (CR10) 2017; 11 Craik, He, Contreras-Vidal (CR49) 2019; 16 James (CR5) 1884; 9 Frijda (CR6) 1988; 43 CR8 Zheng, Liu, Lu, Lu, Cichocki (CR41) 2018; 49 CR48 CR47 Bradley, Lang (CR42) 1994; 25 CR44 Soleymani, Lichtenauer, Pun, Pantic (CR36) 2012; 3 Torres, Torres, Hernández-Álvarez, Yoo (CR13) 2020; 20 Walker, van Der Helm (CR1) 2009; 135 Paradiso (CR28) 1999; 156 Dalgleish (CR22) 2004; 5 Liu, Fu (CR26) 2021; 119 Liu (CR50) 2020; 14 Russell (CR23) 1980; 39 Zheng, Lu (CR38) 2015; 7 Matsumoto (CR20) 2000; 24 Deb, Pratap, Agarwal, Meyarivan (CR73) 2002; 6 CR15 CR57 CR12 Tuma, Maser (CR16) 2019 CR11 Frantzidis (CR24) 2010; 14 CR55 LeDoux (CR7) 2012; 73 LeDoux (CR17) 1998 CR54 Wang (CR65) 2020; 146 CR51 Reeck, Ames, Ochsner (CR3) 2016; 20 Ullah (CR67) 2019; 7 Kim, André (CR25) 2008; 30 Lotte (CR43) 2018; 15 Moctezuma, Molinas (CR52) 2020; 14 Moctezuma, Molinas (CR59) 2020; 10 Li, Lee, Jung, Youn, Camacho (CR46) 2020; 32 CR63 Guo (CR68) 2019; 21 Srinivas, Deb (CR58) 1994; 2 CR61 CR60 Katsigiannis, Ramzan (CR40) 2017; 22 Xing (CR66) 2019; 13 Soleymani, Pantic, Pun (CR35) 2011; 3 Darwin (CR4) 1872 Roy (CR45) 2019; 16 J LeDoux (7517_CR17) 1998 DB Shalom (7517_CR18) 2006; 36 PR Kleinginna (7517_CR9) 1981; 5 Y Roy (7517_CR45) 2019; 16 AH Tuma (7517_CR16) 2019 NH Frijda (7517_CR6) 1988; 43 Y Liu (7517_CR26) 2021; 119 7517_CR44 S Koelstra (7517_CR2) 2011; 3 J LeDoux (7517_CR7) 2012; 73 7517_CR47 7517_CR48 A Craik (7517_CR49) 2019; 16 S Paradiso (7517_CR28) 1999; 156 D Matsumoto (7517_CR20) 2000; 24 G Li (7517_CR46) 2020; 32 VJ Lawhern (7517_CR62) 2018; 15 K Guo (7517_CR68) 2019; 21 H Ullah (7517_CR67) 2019; 7 LA Moctezuma (7517_CR56) 2019; 118 MM Bradley (7517_CR42) 1994; 25 IB Mauss (7517_CR27) 2009; 23 7517_CR54 7517_CR11 W-L Zheng (7517_CR41) 2018; 49 7517_CR55 7517_CR12 7517_CR57 7517_CR8 Y-L Hsu (7517_CR10) 2017; 11 7517_CR15 RW Picard (7517_CR29) 2000 X Xing (7517_CR66) 2019; 13 N Srinivas (7517_CR58) 1994; 2 C Izard (7517_CR21) 2001; 12 M Soleymani (7517_CR36) 2012; 3 J Kim (7517_CR25) 2008; 30 7517_CR51 F Lotte (7517_CR43) 2018; 15 GE Joseph (7517_CR14) 2003; 6 W James (7517_CR5) 1884; 9 D Sammler (7517_CR69) 2007; 44 JA Russell (7517_CR23) 1980; 39 F Wang (7517_CR65) 2020; 146 J Liu (7517_CR50) 2020; 14 LA Moctezuma (7517_CR53) 2020; 10 MP Walker (7517_CR1) 2009; 135 CA Frantzidis (7517_CR24) 2010; 14 W-L Zheng (7517_CR38) 2015; 7 7517_CR60 7517_CR61 7517_CR63 T Dalgleish (7517_CR22) 2004; 5 LA Moctezuma (7517_CR52) 2020; 14 LA Moctezuma (7517_CR59) 2020; 10 7517_CR31 7517_CR32 M Soleymani (7517_CR35) 2011; 3 7517_CR33 W-L Zheng (7517_CR39) 2017; 10 M Yan (7517_CR71) 2020; 83 HA Elfenbein (7517_CR19) 2002; 128 7517_CR34 C Darwin (7517_CR4) 1872 K Deb (7517_CR73) 2002; 6 EP Torres (7517_CR13) 2020; 20 7517_CR37 H Zeng (7517_CR64) 2019; 9 S Katsigiannis (7517_CR40) 2017; 22 C Reeck (7517_CR3) 2016; 20 A Apicella (7517_CR70) 2021; 11 7517_CR72 7517_CR30 |
| References_xml | – volume: 119 start-page: 1 year: 2021 end-page: 6 ident: CR26 article-title: Emotion recognition by deeply learned multi-channel textual and EEG features publication-title: Future Gener. Comput. Syst. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: CR38 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Autonom. Ment. Dev. – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: CR58 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evolut. Comput. – volume: 128 start-page: 203 year: 2002 ident: CR19 article-title: On the universality and cultural specificity of emotion recognition: A meta-analysis publication-title: Psychol. Bull. – year: 2019 ident: CR16 publication-title: Anxiety and the Anxiety Disorders – volume: 15 start-page: 65 year: 2018 ident: CR62 article-title: Eegnet: A compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. – ident: CR51 – ident: CR12 – volume: 146 start-page: 107506 year: 2020 ident: CR65 article-title: Emotion recognition with convolutional neural network and EEG-based EFDMS publication-title: Neuropsychologia – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: CR73 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. – ident: CR54 – ident: CR61 – volume: 5 start-page: 583 year: 2004 end-page: 589 ident: CR22 article-title: The emotional brain publication-title: Nat. Rev. Neurosci. – ident: CR8 – volume: 6 start-page: 18 year: 2003 end-page: 26 ident: CR14 article-title: Enhancing emotional vocabulary in young children publication-title: Young Except. Child. – volume: 30 start-page: 2067 year: 2008 end-page: 2083 ident: CR25 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 3 start-page: 42 year: 2012 end-page: 55 ident: CR36 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.25 – volume: 14 start-page: 43 year: 2020 ident: CR50 article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder publication-title: Front. Syst. Neurosci. – volume: 13 start-page: 37 year: 2019 ident: CR66 article-title: Sae+ lstm: A new framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorobot. – volume: 73 start-page: 653 year: 2012 end-page: 676 ident: CR7 article-title: Rethinking the emotional brain publication-title: Neuron – volume: 9 start-page: 188 year: 1884 end-page: 205 ident: CR5 article-title: What is an emotion? publication-title: Mind – volume: 10 start-page: 417 year: 2017 end-page: 429 ident: CR39 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. – volume: 135 start-page: 731 year: 2009 ident: CR1 article-title: Overnight therapy? The role of sleep in emotional brain processing publication-title: Psychol. Bull. – volume: 24 start-page: 179 year: 2000 end-page: 209 ident: CR20 article-title: A new test to measure emotion recognition ability: Matsumoto and Ekman’s Japanese and Caucasian brief affect recognition test (JACBART) publication-title: J. Nonverbal Behav. – ident: CR15 – volume: 14 start-page: 593 year: 2020 ident: CR52 article-title: EEG channel-selection method for epileptic-seizure classification based on multi-objective optimization publication-title: Front. Neurosci. – year: 1872 ident: CR4 publication-title: The Expression of the Emotions in Man and Animals by Charles Darwin – ident: CR11 – ident: CR57 – volume: 23 start-page: 209 year: 2009 end-page: 237 ident: CR27 article-title: Measures of emotion: A review publication-title: Cognit. Emotion – ident: CR32 – ident: CR60 – volume: 83 start-page: 130 year: 2020 end-page: 141 ident: CR71 article-title: An improved common spatial pattern combined with channel-selection strategy for electroencephalography-based emotion recognition publication-title: Med. Eng. Phys. – volume: 25 start-page: 49 year: 1994 end-page: 59 ident: CR42 article-title: Measuring emotion: The self-assessment manikin and the semantic differential publication-title: J. Behav. Ther. Exp. Psychiatry – volume: 44 start-page: 293 year: 2007 end-page: 304 ident: CR69 article-title: Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music publication-title: Psychophysiology – volume: 5 start-page: 345 year: 1981 end-page: 379 ident: CR9 article-title: A categorized list of emotion definitions, with suggestions for a consensual definition publication-title: Motivation Emotion – ident: CR47 – ident: CR72 – volume: 20 start-page: 47 year: 2016 end-page: 63 ident: CR3 article-title: The social regulation of emotion: An integrative, cross-disciplinary model publication-title: Trends Cognit. Sci. – volume: 39 start-page: 1161 year: 1980 ident: CR23 article-title: A circumplex model of affect publication-title: J. Pers. Soc. Psychol. – volume: 16 start-page: 031001 year: 2019 ident: CR49 article-title: Deep learning for electroencephalogram (EEG) classification tasks: A review publication-title: J. Neural Eng. – volume: 156 start-page: 1618 year: 1999 end-page: 1629 ident: CR28 article-title: Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a pet study of normal subjects publication-title: Am. J. Psychiatry – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: CR59 article-title: Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system publication-title: Sci. Rep. – ident: CR37 – year: 2000 ident: CR29 publication-title: Affective Computing – volume: 14 start-page: 309 year: 2010 end-page: 318 ident: CR24 article-title: On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications publication-title: IEEE Trans. Inf. Technol. Biomed. – ident: CR30 – volume: 15 start-page: 101 year: 2018 ident: CR43 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update publication-title: J. Neural Eng. – volume: 118 start-page: 201 year: 2019 end-page: 208 ident: CR56 article-title: Subjects identification using EEG-recorded imagined speech publication-title: Expert Syst. Appl. – ident: CR33 – volume: 22 start-page: 98 year: 2017 end-page: 107 ident: CR40 article-title: Dreamer: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices publication-title: IEEE J. Biomed. Health Inform. – ident: CR63 – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: CR41 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – volume: 32 start-page: e5199 year: 2020 ident: CR46 article-title: Deep learning for EEG data analytics: A survey publication-title: Concurr. Comput. Pract. Exp. – volume: 3 start-page: 211 year: 2011 end-page: 223 ident: CR35 article-title: Multimodal emotion recognition in response to videos publication-title: IEEE Trans. Affect. Comput. – volume: 7 start-page: 40144 year: 2019 end-page: 40153 ident: CR67 article-title: Internal emotion classification using EEG signal with sparse discriminative ensemble publication-title: IEEE Access – volume: 12 start-page: 18 year: 2001 end-page: 23 ident: CR21 article-title: Emotion knowledge as a predictor of social behavior and academic competence in children at risk publication-title: Psychol. Sci. – volume: 11 start-page: 1 year: 2021 end-page: 16 ident: CR70 article-title: EEG-based detection of emotional valence towards a reproducible measurement of emotions publication-title: Sci. Rep. – ident: CR44 – ident: CR48 – volume: 20 start-page: 5083 year: 2020 ident: CR13 article-title: EEG-based BCI emotion recognition: A survey publication-title: Sensors – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: CR2 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. – volume: 11 start-page: 85 year: 2017 end-page: 99 ident: CR10 article-title: Automatic ECG-based emotion recognition in music listening publication-title: IEEE Trans. Affect. Comput. – ident: CR31 – volume: 9 start-page: 326 year: 2019 ident: CR64 article-title: EEG emotion classification using an improved sincnet-based deep learning model publication-title: Brain Sci. – volume: 36 start-page: 395 year: 2006 end-page: 400 ident: CR18 article-title: Normal physiological emotions but differences in expression of conscious feelings in children with high-functioning autism publication-title: J. Autism Dev. Disord. – ident: CR34 – volume: 43 start-page: 349 year: 1988 ident: CR6 article-title: The laws of emotion publication-title: Am. Psychol. – year: 1998 ident: CR17 publication-title: The Emotional Brain: The Mysterious Underpinnings of Emotional Life – ident: CR55 – volume: 21 start-page: 263 year: 2019 end-page: 273 ident: CR68 article-title: A hybrid fuzzy cognitive map/support vector machine approach for EEG-based emotion classification using compressed sensing publication-title: Int. J. Fuzzy Syst. – volume: 10 start-page: 1 year: 2020 end-page: 14 ident: CR53 article-title: Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection publication-title: Sci. Rep. – volume: 16 start-page: 051001 year: 2019 ident: CR45 article-title: Deep learning-based electroencephalography analysis: A systematic review publication-title: J. Neural Eng. – volume-title: Anxiety and the Anxiety Disorders year: 2019 ident: 7517_CR16 doi: 10.4324/9780203728215 – volume-title: The Expression of the Emotions in Man and Animals by Charles Darwin year: 1872 ident: 7517_CR4 doi: 10.1037/10001-000 – volume: 128 start-page: 203 year: 2002 ident: 7517_CR19 publication-title: Psychol. Bull. doi: 10.1037/0033-2909.128.2.203 – volume: 14 start-page: 43 year: 2020 ident: 7517_CR50 publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2020.00043 – volume: 15 start-page: 65 year: 2018 ident: 7517_CR62 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – ident: 7517_CR8 doi: 10.1016/B978-0-12-417188-6.00002-5 – ident: 7517_CR51 doi: 10.5220/0006043400150021 – volume: 36 start-page: 395 year: 2006 ident: 7517_CR18 publication-title: J. Autism Dev. Disord. doi: 10.1007/s10803-006-0077-2 – volume: 3 start-page: 42 year: 2012 ident: 7517_CR36 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.25 – ident: 7517_CR11 doi: 10.1109/TSMC.2020.2969686 – ident: 7517_CR63 doi: 10.7555/JBR.33.20190009 – ident: 7517_CR61 – volume: 15 start-page: 101 year: 2018 ident: 7517_CR43 publication-title: J. Neural Eng. – ident: 7517_CR31 doi: 10.1016/B978-0-12-801851-4.00009-4 – volume: 12 start-page: 18 year: 2001 ident: 7517_CR21 publication-title: Psychol. Sci. doi: 10.1111/1467-9280.00304 – volume: 3 start-page: 211 year: 2011 ident: 7517_CR35 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.37 – ident: 7517_CR32 doi: 10.1109/ENBENG.2017.7889451 – ident: 7517_CR12 doi: 10.1109/JSEN.2021.3070373 – volume: 146 start-page: 107506 year: 2020 ident: 7517_CR65 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107506 – volume: 11 start-page: 85 year: 2017 ident: 7517_CR10 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2781732 – volume: 10 start-page: 1 year: 2020 ident: 7517_CR59 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56847-4 – volume: 119 start-page: 1 year: 2021 ident: 7517_CR26 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.01.010 – volume: 14 start-page: 593 year: 2020 ident: 7517_CR52 publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00593 – volume: 9 start-page: 188 year: 1884 ident: 7517_CR5 publication-title: Mind doi: 10.1093/mind/os-IX.34.188 – volume: 9 start-page: 326 year: 2019 ident: 7517_CR64 publication-title: Brain Sci. doi: 10.3390/brainsci9110326 – ident: 7517_CR55 doi: 10.1109/INDIN41052.2019.8972231 – ident: 7517_CR33 doi: 10.1145/2370216.2370378 – volume: 118 start-page: 201 year: 2019 ident: 7517_CR56 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.10.004 – ident: 7517_CR48 – ident: 7517_CR60 – volume-title: Affective Computing year: 2000 ident: 7517_CR29 doi: 10.7551/mitpress/1140.001.0001 – volume: 3 start-page: 18 year: 2011 ident: 7517_CR2 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 5 start-page: 583 year: 2004 ident: 7517_CR22 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1432 – volume: 32 start-page: e5199 year: 2020 ident: 7517_CR46 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5199 – volume: 20 start-page: 47 year: 2016 ident: 7517_CR3 publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2015.09.003 – volume: 73 start-page: 653 year: 2012 ident: 7517_CR7 publication-title: Neuron doi: 10.1016/j.neuron.2012.02.004 – volume: 25 start-page: 49 year: 1994 ident: 7517_CR42 publication-title: J. Behav. Ther. Exp. Psychiatry doi: 10.1016/0005-7916(94)90063-9 – volume: 2 start-page: 221 year: 1994 ident: 7517_CR58 publication-title: Evolut. Comput. doi: 10.1162/evco.1994.2.3.221 – volume: 21 start-page: 263 year: 2019 ident: 7517_CR68 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-018-0567-3 – volume: 30 start-page: 2067 year: 2008 ident: 7517_CR25 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.26 – volume: 44 start-page: 293 year: 2007 ident: 7517_CR69 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00497.x – ident: 7517_CR37 doi: 10.1109/NER.2013.6695876 – volume: 16 start-page: 051001 year: 2019 ident: 7517_CR45 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c – volume: 7 start-page: 162 year: 2015 ident: 7517_CR38 publication-title: IEEE Trans. Autonom. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 156 start-page: 1618 year: 1999 ident: 7517_CR28 publication-title: Am. J. Psychiatry doi: 10.1176/ajp.156.10.1618 – ident: 7517_CR57 – volume: 10 start-page: 1 year: 2020 ident: 7517_CR53 publication-title: Sci. Rep. doi: 10.1038/s41598-019-56847-4 – volume: 20 start-page: 5083 year: 2020 ident: 7517_CR13 publication-title: Sensors doi: 10.3390/s20185083 – volume-title: The Emotional Brain: The Mysterious Underpinnings of Emotional Life year: 1998 ident: 7517_CR17 – volume: 16 start-page: 031001 year: 2019 ident: 7517_CR49 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 135 start-page: 731 year: 2009 ident: 7517_CR1 publication-title: Psychol. Bull. doi: 10.1037/a0016570 – ident: 7517_CR15 – ident: 7517_CR54 doi: 10.1007/978-3-030-12385-7_57 – volume: 11 start-page: 1 year: 2021 ident: 7517_CR70 publication-title: Sci. Rep. doi: 10.1038/s41598-020-79139-8 – ident: 7517_CR34 – volume: 49 start-page: 1110 year: 2018 ident: 7517_CR41 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – volume: 5 start-page: 345 year: 1981 ident: 7517_CR9 publication-title: Motivation Emotion doi: 10.1007/BF00992553 – volume: 22 start-page: 98 year: 2017 ident: 7517_CR40 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2688239 – volume: 39 start-page: 1161 year: 1980 ident: 7517_CR23 publication-title: J. Pers. Soc. Psychol. doi: 10.1037/h0077714 – volume: 7 start-page: 40144 year: 2019 ident: 7517_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904400 – volume: 14 start-page: 309 year: 2010 ident: 7517_CR24 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2038481 – ident: 7517_CR47 doi: 10.1109/TCDS.2019.2924648 – ident: 7517_CR72 doi: 10.1109/TCBB.2021.3052811 – volume: 23 start-page: 209 year: 2009 ident: 7517_CR27 publication-title: Cognit. Emotion doi: 10.1080/02699930802204677 – volume: 83 start-page: 130 year: 2020 ident: 7517_CR71 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.05.006 – volume: 10 start-page: 417 year: 2017 ident: 7517_CR39 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2712143 – volume: 43 start-page: 349 year: 1988 ident: 7517_CR6 publication-title: Am. Psychol. doi: 10.1037/0003-066X.43.5.349 – volume: 24 start-page: 179 year: 2000 ident: 7517_CR20 publication-title: J. Nonverbal Behav. doi: 10.1023/A:1006668120583 – volume: 6 start-page: 182 year: 2002 ident: 7517_CR73 publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.996017 – volume: 6 start-page: 18 year: 2003 ident: 7517_CR14 publication-title: Young Except. Child. doi: 10.1177/109625060300600403 – volume: 13 start-page: 37 year: 2019 ident: 7517_CR66 publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00037 – ident: 7517_CR30 doi: 10.5220/0001063402530258 – ident: 7517_CR44 doi: 10.3389/fnhum.2019.00076 |
| SSID | ssj0000529419 |
| Score | 2.495491 |
| Snippet | In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic (EEG)... Abstract In this study we explore how different levels of emotional intensity (Arousal) and pleasantness (Valence) are reflected in electroencephalographic... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3523 |
| SubjectTerms | 631/114/116 631/114/1305 631/114/1314 631/378/116/2396 631/378/1457 639/705/1042 Accuracy Algorithms Arousal Chromosomes Classification EEG Electroencephalography - methods Emotions Genetic algorithms Humanities and Social Sciences Humans multidisciplinary Neural networks Neural Networks, Computer Science Science (multidisciplinary) Self-assessment |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQBRIXxJuFgozEDaxubO_GPkKVwiniUKTeLD9pUNlF2bQoUn98Z-xNaHhekHLKeleW5xvPN7LnG0JeaZm8AxrBEgCCyYkXTCfNGXCJGtJnHbxNudnEdD5XJyf647VWX3gnrMgDl4U74KKNHLDhrEyylVpF-HgdRFA8ATvI6qXAeq4lU0XVm2s50WOVTC3UwQCRCqvJOF62bGBrbnYiURbs_x3L_PWy5E8npjkQHd0ld0YGSd-Wmd8jN2J3n9wqPSXXD8jl8feeBdTsL3ob9HA-ZxirAg3oz10uZKB9ork9H42lj89AsdCEzmbvKdYCdxAy6ZB75MCLbk3zxUPWuy9lg6TxYsSsXa6pPfvcLxer068Pyaej2fHhBza2WGAeMpcVa62d4l4JSUdQbSsD8jUOlNGFOkWgfjw6lYLlro2WR6-d82BLgY4MVMmJR2Sv67v4hNBGBilimMQonYzRatlgP_WY6sbjQXJFJpvlNn7UH8c2GGcmn4MLZYqJDJjIZBOZpiKvt-98K-obfx39Dq24HYnK2fkPwJMZ8WT-haeK7G8wYEZ3Hgwq9giJ2mcVebl9DI6Ipyu2i_15HpOT60ZV5HGBzHYmwHIlpH7w8ekOmHamuvukW5xmsW-ltJRTXZE3G9j9mNafl-Lp_1iKZ-Q2z_4i4LdP9lbL8_ic3PQXq8WwfJEd7gpk2i5O priority: 102 providerName: Directory of Open Access Journals |
| Title | Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm |
| URI | https://link.springer.com/article/10.1038/s41598-022-07517-5 https://www.ncbi.nlm.nih.gov/pubmed/35241745 https://www.proquest.com/docview/2635344547 https://www.proquest.com/docview/2636144658 https://pubmed.ncbi.nlm.nih.gov/PMC8894479 https://doaj.org/article/236e2b00ba4f46498efcb0d3d82f9515 |
| Volume | 12 |
| WOSCitedRecordID | wos000838718500042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources(FREE) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboLki98H4EyspI3MBq1nEePiFabYFDowgVaTlF8SNtUUnazbZoJX48M4431fLoBWnlw8aJJpnxPDye-Qh5LUWtFbgRrAaBYGKqIyZryRn4EiGEz9LoqnZgE2meZ_O5LPyGW-ePVa51olPUptW4R76LTVMige2n3p1fMESNwuyqh9DYImPsVCZGZLw3y4vPwy4L5rHEVPpqmTDKdjuwWFhVxvHQZQwqOt6wSK5x_9-8zT8PTf6WOXUG6eDe_77KfXLXu6L0fS87D8gt2zwkd3pwytUj8vPoR8sMNv_vG3fQ_TxnaPQMNagYGlcRQduaOpw_antAoI5ixQqdzT5QLCpuwPbSzoHtwI1qRd0JRtaqb72mpfbKC3-1WNHq7BgIXZ58f0y-HMyO9j8yj9XANIRAS5ZUVYpKF6IXkyWJMOj4cfA9lQlrCz4ktyqrTcVVYitutVRKg1BEqBHA51LREzJq2sY-IzQWRkTWTK0VSlhbSREjMLutw1hjRjog0zW_Su0bmSOexlnpEupRVvY8LoHHpeNxGQfkzXDPed_G48bZeygGw0xswe3-aBfHpV_RJY8Sy0FpqUrUIhESCNQqNJHJeA1uKzxkZ8390uuFrrxmfUBeDZdhRWOapmpse-nmuCg9zgLytJe5gRJwlwXEkPDwdEMaN0jdvNKcnriu4VkmhUhlQN6u5faarH9_iuc3v8ULss3dUorgt0NGy8WlfUlu66vlabeYkK10nroxm_iVOXGbHjAe8gLHFMZx8emw-PoLoxFEAg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78dCASPBCazuOs7DB4SgbGnVsuKwSL258SNtUUnKZttqJX4Tv5EZJ9lqefTWA9KeNk7kOJ9nPtsz8wG8ULKwBmkELxAQXA5sxFWhBEcu0cfls3I2L4LYRDoaZTs76vMS_OxyYSissrOJwVC7ytIe-SoVTYkklZ96e_Sdk2oUna52EhoNLLb87BSXbPWbzQ_4fV8KsT4cr23wVlWAWyTrU57keUrmAXm2y5JEOqIoAlmScf3CI9sR3mSFy4VJfC68VcZY7H5E2EV2YCJ87iW4jHY8pRCydCed7-nQqZkcqDY3px9lqzX6R8phExTiGaNDiBf8X5AJ-Bu3_TNE87dz2uD-1m_-bwN3C260RJu9a2bGbVjy5R242khvzu7Cj_FpxR1JGzRlSdjaaMTJpTvmyOyVId-DVQULKobMN3JHNaN8HDYcfmSUMl0is2B1kBLCG82MhfhMXpmvjR9h_qSd2vlkxvLDPRyY6f63e_DlQl79PiyXVekfAoulk5F3A--lkd7nSsYkO--LfmzpvL0Hgw4f2rZl2kkt5FCHcIEo0w2mNGJKB0zpuAev5vccNUVKzm39nmA3b0kFxsMf1WRPt_ZKiyjxAk2yyWUhE6mwg9b0XeQyUSApx4esdGjTrdWr9RnUevB8fhntFR1C5aWvjkObsAcRZz140GB83hNcDEhcIePD0wX0L3R18Up5sB9qomeZkjJVPXjdzZOzbv17KB6d_xbP4NrG-NO23t4cbT2G6yJM4wh_K7A8nRz7J3DFnkwP6snTYAcY7F70_PkFnx6YVA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKWcSFfQkUMBKcwMrE41l8QAjaBKpClEORenPHW1tUZkombRWJX8av4z3PTKqw9NYDUk4Zj2V7vvfeZ_sthLyQwhsNNIJ5AAQTAxMz6SVnwCUi2D5Lawofik1k43G-syMnK-RnFwuDbpWdTgyK2lYGz8j7mDQlFph-qu9bt4jJxujt0XeGFaTwprUrp9FAZMvNT2H7Vr_Z3IBv_ZLz0XB7_SNrKwwwA8R9xtKiyFBVAOe2eZoKi3SFA2PSNvIOmA93Ove24Dp1BXdGam1gKjHiGJiCjqHfS-RyJpIEpesznyzOd_AGTQxkG6cTxXm_BluJ8Wwc3T0TMA7Jki0MJQP-xnP_dNf87c42mMLRzf95EW-RGy0Bp-8aiblNVlx5h1xtSnLO75If26cVs1jyoElXQtfHY4am3lKL6rAMcSC08jRUN6SuKYNUU4zTocPhB4qh1CUwDlqHEkPwop7T4LfJKv21sS_UnbQiX0zntDjcg4WZ7X-7R75cyNTvk9WyKt1DQhNhRezswDmhhXOFBEzJKHc-Sgzew_fIoMOKMm36dqwicqiCG0GcqwZfCvClAr5U0iOvFu8cNclLzm39HiG4aImJx8Mf1XRPtXpM8Th1HFS1LoQXqZAwQKMjG9uceyDr0MlahzzVasNancGuR54vHoMew8uponTVcWgTziaSvEceNHhfjAQ2CQJ2ztB5tiQJS0NdflIe7Idc6Xkuhchkj7zuZOZsWP9eikfnz-IZuQZioz5tjrcek-s8SHQMvzWyOpseuyfkijmZHdTTp0ElULJ70eLzC_H1oSE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+CNN-based+distinction+of+human+emotions+from+EEG+channels+selected+by+multi-objective+evolutionary+algorithm&rft.jtitle=Scientific+reports&rft.au=Moctezuma%2C+Luis+Alfredo&rft.au=Abe%2C+Takashi&rft.au=Molinas+Marta&rft.date=2022-03-03&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-07517-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |