Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures
Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed en...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 8; p. 4142 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
25.02.2020
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (
) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å. |
|---|---|
| AbstractList | Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (
) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å. Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å. |
| Author | Rosenthal, Martin Coquelle, Nicolas Holton, James M de la Mora, Eugenio Burghammer, Manfred Garman, Elspeth F Bury, Charles S Carmichael, Ian Colletier, Jacques-Philippe Weik, Martin |
| Author_xml | – sequence: 1 givenname: Eugenio orcidid: 0000-0001-6945-7357 surname: de la Mora fullname: de la Mora, Eugenio organization: Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France – sequence: 2 givenname: Nicolas surname: Coquelle fullname: Coquelle, Nicolas organization: Large-Scale Structures Group, Institut Laue Langevin, 38042 Grenoble Cedex 9, France – sequence: 3 givenname: Charles S surname: Bury fullname: Bury, Charles S organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom – sequence: 4 givenname: Martin surname: Rosenthal fullname: Rosenthal, Martin organization: European Synchrotron Radiation Facility, 38043 Grenoble, France – sequence: 5 givenname: James M orcidid: 0000-0002-0596-0137 surname: Holton fullname: Holton, James M organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 – sequence: 6 givenname: Ian surname: Carmichael fullname: Carmichael, Ian organization: Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556 – sequence: 7 givenname: Elspeth F surname: Garman fullname: Garman, Elspeth F organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom – sequence: 8 givenname: Manfred surname: Burghammer fullname: Burghammer, Manfred organization: European Synchrotron Radiation Facility, 38043 Grenoble, France – sequence: 9 givenname: Jacques-Philippe surname: Colletier fullname: Colletier, Jacques-Philippe email: colletier@ibs.fr, martin.weik@ibs.fr organization: Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; colletier@ibs.fr martin.weik@ibs.fr – sequence: 10 givenname: Martin orcidid: 0000-0001-9297-642X surname: Weik fullname: Weik, Martin email: colletier@ibs.fr, martin.weik@ibs.fr organization: Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; colletier@ibs.fr martin.weik@ibs.fr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32047034$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLxDAYxIMo7kPP3iRHL13zapIeZfEFC4LouaTpt7uRNqlJeuh_76oreJph-M0cZoFOffCA0BUlK0oUvx28SSuqGS0Zo1SdoDklFS2kqMjpPz9Di5Q-CCFVqck5mnFGhCJczBG8mtaZ7ILHrenNDrDxLW5DAty53uWEnccJojMdTpO3-xhyPMA2Timbrgu7aIb9hE3-jkLxU48h9DhDP0A0eYyQLtDZ1nQJLo-6RO8P92_rp2Lz8vi8vtsUVhKZC8k5U1qVWnCuGssYNJpu9VaUVtMKKmErXjXc8IMtYausVlZUrZGESADesCW6-d0dYvgcIeW6d8lC1xkPYUw146WgknHJDuj1ER2bHtp6iK43car_rmFfupVo6Q |
| CitedBy_id | crossref_primary_10_1107_S2052252525001484 crossref_primary_10_1107_S205979832300089X crossref_primary_10_3390_catal15060535 crossref_primary_10_1107_S1600577521013242 crossref_primary_10_1002_chem_202501711 crossref_primary_10_3390_cryst10070588 crossref_primary_10_3390_toxins13070441 crossref_primary_10_1038_s41467_022_28934_0 crossref_primary_10_1007_s12551_023_01153_7 crossref_primary_10_1042_BST20200066 crossref_primary_10_1038_s41598_023_38059_z crossref_primary_10_1016_j_micron_2025_103819 crossref_primary_10_1073_pnas_2426320122 crossref_primary_10_1107_S1600576723001036 crossref_primary_10_1107_S2059798323011002 crossref_primary_10_1107_S1600576720013503 crossref_primary_10_3390_cryst12111637 crossref_primary_10_1017_S0033583520000128 crossref_primary_10_3390_cryst11010049 crossref_primary_10_1038_s41467_022_33154_7 crossref_primary_10_1107_S2052252521007053 crossref_primary_10_1038_s41598_021_04714_6 crossref_primary_10_1016_j_sbi_2020_08_011 crossref_primary_10_1107_S1600577525005934 crossref_primary_10_1107_S2052252524007784 crossref_primary_10_1038_s42004_025_01440_2 crossref_primary_10_1107_S1600577525005016 crossref_primary_10_1107_S205979832300880X crossref_primary_10_1107_S1600576725003541 crossref_primary_10_3390_app13031876 crossref_primary_10_1107_S2059798321012134 crossref_primary_10_1039_D5CP00089K crossref_primary_10_3390_cryst13081225 crossref_primary_10_1038_s41598_022_24066_z crossref_primary_10_1038_s41598_021_92687_x crossref_primary_10_1107_S2059798324000482 crossref_primary_10_1107_S1600577521004045 crossref_primary_10_1107_S1600577521008845 crossref_primary_10_1002_anie_202103010 crossref_primary_10_1107_S2059798322004661 crossref_primary_10_1002_ange_202008622 crossref_primary_10_1038_s41467_025_61631_2 crossref_primary_10_1002_xrs_3289 crossref_primary_10_1107_S205979832200612X crossref_primary_10_1038_s42003_024_05950_y crossref_primary_10_1107_S1600577520008735 crossref_primary_10_1107_S2052252524007838 crossref_primary_10_1021_jacs_3c12883 crossref_primary_10_1002_sstr_202400680 crossref_primary_10_1107_S2053230X22011645 crossref_primary_10_1107_S2052252522007175 crossref_primary_10_3390_cryst11050521 crossref_primary_10_1002_pro_5005 crossref_primary_10_1016_j_sbi_2022_102421 crossref_primary_10_1002_ange_202103010 crossref_primary_10_1016_j_sbi_2023_102662 crossref_primary_10_1107_S2052252521008046 crossref_primary_10_3390_bioengineering11020162 crossref_primary_10_1002_adma_202418797 crossref_primary_10_1107_S2059798322011652 crossref_primary_10_1107_S1600577521004355 crossref_primary_10_1038_s41467_025_59645_x crossref_primary_10_1038_s41598_022_05691_0 crossref_primary_10_12688_f1000research_25097_1 crossref_primary_10_1002_prot_26165 crossref_primary_10_1002_anie_202008622 crossref_primary_10_1038_s41467_022_32434_6 crossref_primary_10_1016_j_carbpol_2025_123485 crossref_primary_10_1107_S2059798324001955 crossref_primary_10_1063_4_0000087 crossref_primary_10_1107_S1600577522002508 crossref_primary_10_1016_j_bpc_2023_107027 crossref_primary_10_1371_journal_pone_0239702 crossref_primary_10_1107_S2059798321011621 crossref_primary_10_1107_S2059798322005939 crossref_primary_10_1016_j_sbi_2021_07_007 crossref_primary_10_1107_S2059798324003243 crossref_primary_10_1021_jacs_0c05613 crossref_primary_10_1107_S2059798324005588 crossref_primary_10_1107_S1600577521007657 crossref_primary_10_1107_S1600577521004744 crossref_primary_10_3389_fchem_2022_889203 crossref_primary_10_1107_S2052252522010193 crossref_primary_10_3390_analytica6010007 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 the Author(s). Published by PNAS. |
| Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. |
| DBID | NPM 7X8 |
| DOI | 10.1073/pnas.1821522117 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 32047034 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM124149 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ |
| ID | FETCH-LOGICAL-c606t-6332787584337bc22eb81f8f45c819e94c939b3a3e945ef7c87c49da6006ee3b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516771500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 11:01:17 EDT 2025 Wed Feb 19 02:31:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | room temperature synchrotron data collection serial crystallography X-ray radiation damage |
| Language | English |
| License | Copyright © 2020 the Author(s). Published by PNAS. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-6332787584337bc22eb81f8f45c819e94c939b3a3e945ef7c87c49da6006ee3b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6945-7357 0000-0001-9297-642X 0000-0002-0596-0137 |
| OpenAccessLink | https://www.pnas.org/content/pnas/117/8/4142.full.pdf |
| PMID | 32047034 |
| PQID | 2354162362 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2354162362 pubmed_primary_32047034 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-25 |
| PublicationDateYYYYMMDD | 2020-02-25 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2020 |
| SSID | ssj0009580 |
| Score | 2.6035578 |
| Snippet | Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4142 |
| Title | Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32047034 https://www.proquest.com/docview/2354162362 |
| Volume | 117 |
| WOSCitedRecordID | wos000516771500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDOg9e1Plz_iKCBz3EtUnapicRcXhxDFHYrTRpgoPZzmUK--99aVP0IgheSikESvLy8nkvyfchdBFSFaQFZQRQWxIuAklyxTgBFldSuAWGN8UmkuFQjMfpyCfcrD9W2frE2lEXlXI58j5lEbADBX97M3snrmqU2131JTRWUYcByrgjXclY_BDdFY0aQRqSmKdBK-2TsP6szO01sDUsXxACJb_zZb3ODLb--4fbaNMTJr5tTKKLVnS5g7p-Dlt86YWmr3aRfnLCBG5kcJG_gWPBeVngorIaT929J4snJW5MFNtlqV7nlUucYzVfAlNOW7VrnC_cp4rUzR2JYyd45dWa7R56Gdw_3z0QX3aBKIhmFiRmjMI0BjJhLJGKUg2DZoThkQJ80ClXKUslyxm8RtokSiSKp0UO6BRrzSTdR2tlVepDhCPBCsOLiEtquAmE5CYWMpCam1AHoemh87YrMzBrt1eRl7r6sNl3Z_bQQTMe2azR38gYDTg4Kn70h9bHaIO6CNldQo9OUMfApNanaF19LiZ2flbbCzyHo8cv41fKzw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiation+damage+and+dose+limits+in+serial+synchrotron+crystallography+at+cryo-+and+room+temperatures&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=de+la+Mora%2C+Eugenio&rft.au=Coquelle%2C+Nicolas&rft.au=Bury%2C+Charles+S&rft.au=Rosenthal%2C+Martin&rft.date=2020-02-25&rft.eissn=1091-6490&rft.volume=117&rft.issue=8&rft.spage=4142&rft_id=info:doi/10.1073%2Fpnas.1821522117&rft_id=info%3Apmid%2F32047034&rft_id=info%3Apmid%2F32047034&rft.externalDocID=32047034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |