Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures

Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed en...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 117; číslo 8; s. 4142
Hlavní autoři: de la Mora, Eugenio, Coquelle, Nicolas, Bury, Charles S, Rosenthal, Martin, Holton, James M, Carmichael, Ian, Garman, Elspeth F, Burghammer, Manfred, Colletier, Jacques-Philippe, Weik, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 25.02.2020
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses ( ) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.
AbstractList Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses ( ) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.
Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.
Author Rosenthal, Martin
Coquelle, Nicolas
Holton, James M
de la Mora, Eugenio
Burghammer, Manfred
Garman, Elspeth F
Bury, Charles S
Carmichael, Ian
Colletier, Jacques-Philippe
Weik, Martin
Author_xml – sequence: 1
  givenname: Eugenio
  orcidid: 0000-0001-6945-7357
  surname: de la Mora
  fullname: de la Mora, Eugenio
  organization: Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
– sequence: 2
  givenname: Nicolas
  surname: Coquelle
  fullname: Coquelle, Nicolas
  organization: Large-Scale Structures Group, Institut Laue Langevin, 38042 Grenoble Cedex 9, France
– sequence: 3
  givenname: Charles S
  surname: Bury
  fullname: Bury, Charles S
  organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
– sequence: 4
  givenname: Martin
  surname: Rosenthal
  fullname: Rosenthal, Martin
  organization: European Synchrotron Radiation Facility, 38043 Grenoble, France
– sequence: 5
  givenname: James M
  orcidid: 0000-0002-0596-0137
  surname: Holton
  fullname: Holton, James M
  organization: Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
– sequence: 6
  givenname: Ian
  surname: Carmichael
  fullname: Carmichael, Ian
  organization: Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556
– sequence: 7
  givenname: Elspeth F
  surname: Garman
  fullname: Garman, Elspeth F
  organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
– sequence: 8
  givenname: Manfred
  surname: Burghammer
  fullname: Burghammer, Manfred
  organization: European Synchrotron Radiation Facility, 38043 Grenoble, France
– sequence: 9
  givenname: Jacques-Philippe
  surname: Colletier
  fullname: Colletier, Jacques-Philippe
  email: colletier@ibs.fr, martin.weik@ibs.fr
  organization: Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; colletier@ibs.fr martin.weik@ibs.fr
– sequence: 10
  givenname: Martin
  orcidid: 0000-0001-9297-642X
  surname: Weik
  fullname: Weik, Martin
  email: colletier@ibs.fr, martin.weik@ibs.fr
  organization: Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; colletier@ibs.fr martin.weik@ibs.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32047034$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLxDAYxIMo7kPP3iRHL13zapIeZfEFC4LouaTpt7uRNqlJeuh_76oreJph-M0cZoFOffCA0BUlK0oUvx28SSuqGS0Zo1SdoDklFS2kqMjpPz9Di5Q-CCFVqck5mnFGhCJczBG8mtaZ7ILHrenNDrDxLW5DAty53uWEnccJojMdTpO3-xhyPMA2Timbrgu7aIb9hE3-jkLxU48h9DhDP0A0eYyQLtDZ1nQJLo-6RO8P92_rp2Lz8vi8vtsUVhKZC8k5U1qVWnCuGssYNJpu9VaUVtMKKmErXjXc8IMtYausVlZUrZGESADesCW6-d0dYvgcIeW6d8lC1xkPYUw146WgknHJDuj1ER2bHtp6iK43car_rmFfupVo6Q
CitedBy_id crossref_primary_10_1107_S2052252525001484
crossref_primary_10_1107_S205979832300089X
crossref_primary_10_3390_catal15060535
crossref_primary_10_1107_S1600577521013242
crossref_primary_10_1002_chem_202501711
crossref_primary_10_3390_cryst10070588
crossref_primary_10_3390_toxins13070441
crossref_primary_10_1038_s41467_022_28934_0
crossref_primary_10_1007_s12551_023_01153_7
crossref_primary_10_1042_BST20200066
crossref_primary_10_1038_s41598_023_38059_z
crossref_primary_10_1016_j_micron_2025_103819
crossref_primary_10_1073_pnas_2426320122
crossref_primary_10_1107_S1600576723001036
crossref_primary_10_1107_S2059798323011002
crossref_primary_10_1107_S1600576720013503
crossref_primary_10_3390_cryst12111637
crossref_primary_10_1017_S0033583520000128
crossref_primary_10_3390_cryst11010049
crossref_primary_10_1038_s41467_022_33154_7
crossref_primary_10_1107_S2052252521007053
crossref_primary_10_1038_s41598_021_04714_6
crossref_primary_10_1016_j_sbi_2020_08_011
crossref_primary_10_1107_S1600577525005934
crossref_primary_10_1107_S2052252524007784
crossref_primary_10_1038_s42004_025_01440_2
crossref_primary_10_1107_S1600577525005016
crossref_primary_10_1107_S205979832300880X
crossref_primary_10_1107_S1600576725003541
crossref_primary_10_3390_app13031876
crossref_primary_10_1107_S2059798321012134
crossref_primary_10_1039_D5CP00089K
crossref_primary_10_3390_cryst13081225
crossref_primary_10_1038_s41598_022_24066_z
crossref_primary_10_1038_s41598_021_92687_x
crossref_primary_10_1107_S2059798324000482
crossref_primary_10_1107_S1600577521004045
crossref_primary_10_1107_S1600577521008845
crossref_primary_10_1002_anie_202103010
crossref_primary_10_1107_S2059798322004661
crossref_primary_10_1002_ange_202008622
crossref_primary_10_1038_s41467_025_61631_2
crossref_primary_10_1002_xrs_3289
crossref_primary_10_1107_S205979832200612X
crossref_primary_10_1038_s42003_024_05950_y
crossref_primary_10_1107_S1600577520008735
crossref_primary_10_1107_S2052252524007838
crossref_primary_10_1021_jacs_3c12883
crossref_primary_10_1002_sstr_202400680
crossref_primary_10_1107_S2053230X22011645
crossref_primary_10_1107_S2052252522007175
crossref_primary_10_3390_cryst11050521
crossref_primary_10_1002_pro_5005
crossref_primary_10_1016_j_sbi_2022_102421
crossref_primary_10_1002_ange_202103010
crossref_primary_10_1016_j_sbi_2023_102662
crossref_primary_10_1107_S2052252521008046
crossref_primary_10_3390_bioengineering11020162
crossref_primary_10_1002_adma_202418797
crossref_primary_10_1107_S2059798322011652
crossref_primary_10_1107_S1600577521004355
crossref_primary_10_1038_s41467_025_59645_x
crossref_primary_10_1038_s41598_022_05691_0
crossref_primary_10_12688_f1000research_25097_1
crossref_primary_10_1002_prot_26165
crossref_primary_10_1002_anie_202008622
crossref_primary_10_1038_s41467_022_32434_6
crossref_primary_10_1016_j_carbpol_2025_123485
crossref_primary_10_1107_S2059798324001955
crossref_primary_10_1063_4_0000087
crossref_primary_10_1107_S1600577522002508
crossref_primary_10_1016_j_bpc_2023_107027
crossref_primary_10_1371_journal_pone_0239702
crossref_primary_10_1107_S2059798321011621
crossref_primary_10_1107_S2059798322005939
crossref_primary_10_1016_j_sbi_2021_07_007
crossref_primary_10_1107_S2059798324003243
crossref_primary_10_1021_jacs_0c05613
crossref_primary_10_1107_S2059798324005588
crossref_primary_10_1107_S1600577521007657
crossref_primary_10_1107_S1600577521004744
crossref_primary_10_3389_fchem_2022_889203
crossref_primary_10_1107_S2052252522010193
crossref_primary_10_3390_analytica6010007
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
DBID NPM
7X8
DOI 10.1073/pnas.1821522117
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 32047034
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM124149
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ID FETCH-LOGICAL-c606t-6332787584337bc22eb81f8f45c819e94c939b3a3e945ef7c87c49da6006ee3b2
IEDL.DBID 7X8
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516771500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 11:01:17 EDT 2025
Wed Feb 19 02:31:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords room temperature synchrotron data collection
serial crystallography
X-ray radiation damage
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-6332787584337bc22eb81f8f45c819e94c939b3a3e945ef7c87c49da6006ee3b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6945-7357
0000-0001-9297-642X
0000-0002-0596-0137
OpenAccessLink https://www.pnas.org/content/pnas/117/8/4142.full.pdf
PMID 32047034
PQID 2354162362
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2354162362
pubmed_primary_32047034
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
SSID ssj0009580
Score 2.6035578
Snippet Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4142
Title Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures
URI https://www.ncbi.nlm.nih.gov/pubmed/32047034
https://www.proquest.com/docview/2354162362
Volume 117
WOSCitedRecordID wos000516771500039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA7qPHhR5-f8IoIHPcRtSdomJxFxeNAxRGW3kaQpDmY7lyns3_umTdGLIHgppRAoeT_yPG-S50XoTMRaC5bFJNKZJJzFHSKBWZCMWi5MpA0tRX1e7pN-XwyHchAKbi4cq6xzYpmo08L4GnmbsgiwA4V8ezV9J75rlN9dDS00llGDAZTxR7qSofghuisqNQLZJTGXnVraJ2Htaa7cJWBrWL6AAiW_48tynelt_PcPN9F6QJj4unKJJlqy-RZqhhh2-DwITV9sI_vohQm8ZXCq3iCxYJWnOC2cxRN_78nhcY4rF8VukZvXWeEL59jMFoApJ7XaNVZz_6kg5XCPxLEXvApqzW4HPfdun27uSGi7QAywmTmJGaMQxoBMGEvAWNRq0c1ExiMD8MFKbiSTmikGr5HNEiMSw2WqADrF1jJNd9FKXuR2H2GmtO1GGjifl8UTqZSJ1ooBiQEUksaihU7rqRyBW_u9CpXb4sONviezhfYqe4ymlf7GiNEOh0TFD_4w-hCtUc-Q_SX06Ag1Mghqe4xWzed87GYnpb_Asz94-AKQbMpT
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiation+damage+and+dose+limits+in+serial+synchrotron+crystallography+at+cryo-+and+room+temperatures&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=de+la+Mora%2C+Eugenio&rft.au=Coquelle%2C+Nicolas&rft.au=Bury%2C+Charles+S&rft.au=Rosenthal%2C+Martin&rft.date=2020-02-25&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=117&rft.issue=8&rft.spage=4142&rft_id=info:doi/10.1073%2Fpnas.1821522117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon