Using human brain activity to guide machine learning

Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 8; no. 1; pp. 5397 - 10
Main Authors: Fong, Ruth C., Scheirer, Walter J., Cox, David D.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.03.2018
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of “neurally-weighted” machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.
AbstractList Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.
Abstract Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of “neurally-weighted” machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.
Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.
Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of “neurally-weighted” machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.
ArticleNumber 5397
Author Fong, Ruth C.
Cox, David D.
Scheirer, Walter J.
Author_xml – sequence: 1
  givenname: Ruth C.
  surname: Fong
  fullname: Fong, Ruth C.
  organization: Department of Engineering Science, University of Oxford, Information Engineering Building, Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences and Center for Brain Science, Harvard University
– sequence: 2
  givenname: Walter J.
  surname: Scheirer
  fullname: Scheirer, Walter J.
  organization: Department of Computer Science and Engineering, University of Notre Dame, Fitzpatrick Hall of Engineering, Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences and Center for Brain Science, Harvard University
– sequence: 3
  givenname: David D.
  surname: Cox
  fullname: Cox, David D.
  email: davidcox@fas.harvard.edu
  organization: Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences and Center for Brain Science, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29599461$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1PHSEUhkljU631D3TRTNJNN9MCAwxsmjSmtiYm3dQ1YeAwl5u5YGHGxH8v11GrLmTB5_O-HA7nPTqIKQJCHwn-SnAnvxVGuJItJrKlnai9eIOOKGa8Lik9eDI_RCelbHFtnCpG1Dt0SBVXiglyhNhlCXFsNsvOxGbIJsTG2Dlch_mmmVMzLsFBszN2EyI0E5gcK_4BvfVmKnByPx6jy7Off09_txd_fp2f_rhorcBibinjXHnpTUeMwtwS3HMBPTgKfQ9kEM44g51UHCQ474YB-65nlDpu-aBcd4zOV1-XzFZf5bAz-UYnE_TdRsqjNnkOdgJNgXODhYTeM6Y8N04BVbbznnkih73X99Xrahl24CzEOZvpmenzkxg2ekzXmstedIJWgy_3Bjn9W6DMeheKhWkyEdJSNMU146pjmFf08wt0m5Yca6oqRVSvetGzSn16GtFjKA-fUwG6AjanUjL4R4RgvS8CvRaBrkWg74pAiyqSL0Q2zGYOaf-qML0u7VZpqffEEfL_sF9R3QK6PsWO
CitedBy_id crossref_primary_10_3390_s22176598
crossref_primary_10_1007_s11084_021_09608_1
crossref_primary_10_4000_anglophonia_3424
crossref_primary_10_1016_j_joi_2024_101614
crossref_primary_10_3390_brainsci15090953
crossref_primary_10_1088_2632_072X_ad1c68
crossref_primary_10_1016_j_dsx_2021_102263
crossref_primary_10_1088_1402_4896_ad8fe5
crossref_primary_10_1109_ACCESS_2023_3313632
crossref_primary_10_3390_app14156504
crossref_primary_10_1016_j_compbiomed_2023_106552
crossref_primary_10_1513_AnnalsATS_202011_1372OC
crossref_primary_10_1007_s11280_022_01030_5
crossref_primary_10_1016_j_mtcomm_2025_112571
crossref_primary_10_1186_s12859_020_03690_4
crossref_primary_10_1007_s10462_021_10047_7
crossref_primary_10_1002_qute_201800081
crossref_primary_10_3389_fbioe_2022_903426
crossref_primary_10_1038_s41598_020_59847_x
crossref_primary_10_3389_fncom_2025_1545971
crossref_primary_10_1186_s12911_022_02044_9
crossref_primary_10_1016_j_neuroimage_2023_120253
crossref_primary_10_3389_fncom_2020_00029
crossref_primary_10_1016_j_rineng_2024_101874
crossref_primary_10_1109_TPAMI_2020_3008107
crossref_primary_10_1016_j_istruc_2022_12_108
crossref_primary_10_1007_s11042_024_19665_z
crossref_primary_10_1088_2515_7639_ad467b
crossref_primary_10_1007_s11571_023_09946_y
crossref_primary_10_1016_j_inffus_2025_103021
crossref_primary_10_3389_fncom_2020_580632
crossref_primary_10_1016_j_petrol_2021_109853
crossref_primary_10_1016_j_commatsci_2022_111836
crossref_primary_10_1109_ACCESS_2024_3478805
crossref_primary_10_1016_j_neucom_2024_129213
crossref_primary_10_1162_jocn_a_01544
crossref_primary_10_1016_j_inffus_2024_102447
crossref_primary_10_1007_s11227_022_04661_7
crossref_primary_10_1016_j_knosys_2024_112587
crossref_primary_10_1073_pnas_1905544116
crossref_primary_10_1111_mice_13078
crossref_primary_10_1038_s41597_022_01299_1
crossref_primary_10_1109_TPAMI_2020_2995909
crossref_primary_10_1038_s41598_020_66690_7
crossref_primary_10_1109_TPAMI_2023_3257846
crossref_primary_10_1038_s41598_022_22468_7
crossref_primary_10_1038_s41597_022_01382_7
crossref_primary_10_1142_S0219091524500280
crossref_primary_10_1007_s11276_024_03755_9
crossref_primary_10_1007_s12559_018_9562_0
crossref_primary_10_1016_j_neuron_2019_08_034
Cites_doi 10.1101/pdb.err084830
10.1109/TNN.2010.2060353
10.1109/TIP.2012.2210727
10.1152/jn.1987.57.3.835
10.1016/S1053-8119(03)00049-1
10.1038/nature14236
10.1016/j.tics.2009.06.002
10.1002/hbm.20169
10.1126/science.1152876
10.1016/S0042-6989(97)00464-1
10.1109/TPAMI.2013.2297711
10.1016/j.tics.2006.05.009
10.1016/j.neuron.2009.09.006
10.1016/j.neuroimage.2009.11.084
10.1073/pnas.0700622104
10.1073/pnas.1403112111
10.1016/j.neuron.2013.06.034
10.1098/rspb.1980.0020
10.1109/TPAMI.2009.167
10.1038/nature20101
10.1038/nature06713
10.1038/14819
10.1038/340386a0
10.1097/00001756-199901180-00035
10.1002/hbm.20379
10.1073/pnas.0705654104
10.1109/TPAMI.2015.2439285
10.1145/1553374.1553380
10.1109/CVPR.2017.479
10.1371/journal.pcbi.1000579
10.1109/CVPR.2015.7298932
10.1109/CVPR.2016.177
10.1017/S0140525X16001837
10.1109/CVPR.2009.5206651
10.7551/mitpress/1130.003.0016
10.1109/CVPR.2014.222
10.1038/srep27755
10.1109/CVPR.2015.7298799
10.1109/CVPR.2014.223
10.1145/1961189.1961199
10.1109/CVPR.2015.7298640
10.1109/CVPR.2014.22
10.3389/neuro.06.004.2008
10.1007/978-3-540-74198-5_14
10.1007/978-3-642-33712-3_25
10.1109/ICCV.2007.4408844
10.1613/jair.295
10.21236/ADA612443
10.7551/mitpress/1113.003.0014
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-018-23618-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_2e55a068e7f449f5ad9e29c3ff4f18bd
PMC5876362
29599461
10_1038_s41598_018_23618_6
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-24559f8fa31a905c10756e7ed2e77e1b6dada0d895e8edfdbb0f37422d5c5b9d3
IEDL.DBID M2P
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428618900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:35:35 EST 2025
Tue Nov 04 01:59:55 EST 2025
Wed Oct 01 14:45:48 EDT 2025
Mon Oct 06 17:53:18 EDT 2025
Mon Jul 21 05:53:38 EDT 2025
Tue Nov 18 22:20:27 EST 2025
Sat Nov 29 04:07:44 EST 2025
Fri Feb 21 02:38:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-24559f8fa31a905c10756e7ed2e77e1b6dada0d895e8edfdbb0f37422d5c5b9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2019797674?pq-origsite=%requestingapplication%
PMID 29599461
PQID 2019797674
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_2e55a068e7f449f5ad9e29c3ff4f18bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876362
proquest_miscellaneous_2020493405
proquest_journals_2019797674
pubmed_primary_29599461
crossref_primary_10_1038_s41598_018_23618_6
crossref_citationtrail_10_1038_s41598_018_23618_6
springer_journals_10_1038_s41598_018_23618_6
PublicationCentury 2000
PublicationDate 2018-03-29
PublicationDateYYYYMMDD 2018-03-29
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Mnih (CR31) 2015; 518
CR39
Borji, Sihite, Itti (CR4) 2013; 22
CR38
CR37
CR36
CR34
Spiridon, Fischl, Kanwisher. (CR52) 2006; 27
CR32
Lueck (CR44) 1989; 340
Ohki, Reid (CR60) 2014; 2014
Stansbury, Naselaris, Gallant (CR41) 2013; 79
Deng, Krause, Stark, Fei-Fei (CR59) 2016; 38
Chen, Li, Kourtzi, Wu (CR35) 2010; 21
Tenenbaum, Griffiths, Kemp (CR16) 2006; 10
CR2
CR3
CR6
CR5
CR7
Scheirer (CR8) 2014; 36
CR9
CR49
CR48
CR40
Mitchell (CR19) 2008; 320
Mnih (CR15) 2015; 518
Kriegeskorte (CR51) 2007; 104
Reddy, Tsuchiya, Serre (CR21) 2010; 50
Serre, Oliva, Poggio (CR28) 2007; 104
Russakovsky (CR1) 2014; 115
Jäkel (CR17) 2009; 13
CR14
Xu (CR33) 2015; 2
CR58
CR13
CR12
Riesenhuber, Poggio (CR27) 1999; 2
CR56
CR11
CR55
CR10
CR54
CR53
Graves (CR30) 2016; 538
Lee, Mumford, Romero, Lamme (CR42) 1998; 38
Desimone, Schein (CR45) 1987; 57
Kay, David, Prenger, Hansen, Gallant (CR64) 2008; 29
Kanwisher, Stanley, Harris (CR47) 1999; 10
Kay (CR18) 2008; 452
Naselaris (CR20) 2009; 63
Felzenszwalb (CR66) 2010; 32
Settles (CR57) 2010; 52
CR29
Cox, Savoy (CR50) 2003; 19
CR26
CR25
CR69
CR24
Cortes, Vapnik (CR46) 1995; 20
CR68
CR67
CR22
Yamins (CR23) 2014; 111
CR65
CR63
CR62
CR61
Marr, Hildreth (CR43) 1980; 207
T Serre (23618_CR28) 2007; 104
23618_CR36
A Borji (23618_CR4) 2013; 22
23618_CR37
23618_CR38
23618_CR32
23618_CR34
O Russakovsky (23618_CR1) 2014; 115
23618_CR39
L Reddy (23618_CR21) 2010; 50
D Chen (23618_CR35) 2010; 21
N Kanwisher (23618_CR47) 1999; 10
T Naselaris (23618_CR20) 2009; 63
K Xu (23618_CR33) 2015; 2
KN Kay (23618_CR64) 2008; 29
JB Tenenbaum (23618_CR16) 2006; 10
F Jäkel (23618_CR17) 2009; 13
23618_CR24
23618_CR68
23618_CR25
B Settles (23618_CR57) 2010; 52
23618_CR69
23618_CR26
D Yamins (23618_CR23) 2014; 111
D Stansbury (23618_CR41) 2013; 79
23618_CR65
23618_CR22
23618_CR67
23618_CR29
V Mnih (23618_CR31) 2015; 518
TM Mitchell (23618_CR19) 2008; 320
PF Felzenszwalb (23618_CR66) 2010; 32
C Lueck (23618_CR44) 1989; 340
M Riesenhuber (23618_CR27) 1999; 2
R Desimone (23618_CR45) 1987; 57
23618_CR61
23618_CR62
23618_CR63
23618_CR13
23618_CR14
23618_CR58
C Cortes (23618_CR46) 1995; 20
23618_CR53
23618_CR10
N Kriegeskorte (23618_CR51) 2007; 104
23618_CR54
23618_CR11
23618_CR55
23618_CR12
23618_CR56
23618_CR2
D Marr (23618_CR43) 1980; 207
23618_CR3
23618_CR5
23618_CR6
23618_CR7
J Deng (23618_CR59) 2016; 38
23618_CR9
DD Cox (23618_CR50) 2003; 19
TS Lee (23618_CR42) 1998; 38
23618_CR48
23618_CR49
V Mnih (23618_CR15) 2015; 518
K Kay (23618_CR18) 2008; 452
A Graves (23618_CR30) 2016; 538
WJ Scheirer (23618_CR8) 2014; 36
K Ohki (23618_CR60) 2014; 2014
23618_CR40
M Spiridon (23618_CR52) 2006; 27
References_xml – ident: CR22
– ident: CR49
– volume: 2014
  start-page: pdb
  year: 2014
  end-page: prot081455
  ident: CR60
  article-title: two-photon calcium imaging in the visual system
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.err084830
– ident: CR68
– volume: 21
  start-page: 1680
  year: 2010
  end-page: 1685
  ident: CR35
  article-title: Behavior-constrained support vector machines for fMRI data analysis
  publication-title: IEEE T-NN
  doi: 10.1109/TNN.2010.2060353
– volume: 22
  start-page: 55
  year: 2013
  end-page: 69
  ident: CR4
  article-title: Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study
  publication-title: IEEE T-IP
  doi: 10.1109/TIP.2012.2210727
– ident: CR39
– ident: CR12
– ident: CR29
– volume: 57
  start-page: 835
  year: 1987
  end-page: 868
  ident: CR45
  article-title: Visual properties of neurons in area v4 of the macaque: sensitivity to stimulus form
  publication-title: Journal of neurophysiology
  doi: 10.1152/jn.1987.57.3.835
– ident: CR54
– ident: CR61
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: CR50
  article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00049-1
– ident: CR58
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: CR15
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 13
  start-page: 381
  year: 2009
  end-page: 388
  ident: CR17
  article-title: Does cognitive science need kernels?
  publication-title: Trends in Cog. Sci.
  doi: 10.1016/j.tics.2009.06.002
– ident: CR25
– volume: 27
  start-page: 77
  year: 2006
  end-page: 89
  ident: CR52
  article-title: Location and spatial profile of category-specific regions in human extrastriate cortex
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20169
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR46
  article-title: Support-vector networks
  publication-title: Machine learning
– volume: 320
  start-page: 1191
  year: 2008
  end-page: 1195
  ident: CR19
  article-title: Predicting human brain activity associated with the meanings of nouns
  publication-title: Science
  doi: 10.1126/science.1152876
– volume: 2
  start-page: 5
  year: 2015
  ident: CR33
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: arXiv preprint arXiv:1502.03044
– ident: CR67
– volume: 38
  start-page: 2429
  year: 1998
  end-page: 2454
  ident: CR42
  article-title: The role of the primary visual cortex in higher level vision
  publication-title: Vision research
  doi: 10.1016/S0042-6989(97)00464-1
– ident: CR11
– volume: 36
  start-page: 1679
  year: 2014
  end-page: 1686
  ident: CR8
  article-title: Perceptual annotation: Measuring human vision to improve computer vision
  publication-title: IEEE T-PAMI
  doi: 10.1109/TPAMI.2013.2297711
– ident: CR9
– ident: CR32
– volume: 10
  start-page: 309
  year: 2006
  end-page: 318
  ident: CR16
  article-title: Theory-based bayesian models of inductive learning and reasoning
  publication-title: Trends in Cog. Sci.
  doi: 10.1016/j.tics.2006.05.009
– volume: 63
  start-page: 902
  year: 2009
  end-page: 915
  ident: CR20
  article-title: Bayesian reconstruction of natural images from human brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.006
– ident: CR36
– ident: CR5
– volume: 50
  start-page: 818
  year: 2010
  end-page: 825
  ident: CR21
  article-title: Reading the mind’s eye: decoding category information during mental imagery
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.084
– volume: 104
  start-page: 6424
  year: 2007
  end-page: 6429
  ident: CR28
  article-title: A feedforward architecture accounts for rapid categorization
  publication-title: PNAS
  doi: 10.1073/pnas.0700622104
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: CR23
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: PNAS
  doi: 10.1073/pnas.1403112111
– ident: CR26
– volume: 79
  start-page: 1025
  year: 2013
  end-page: 1034
  ident: CR41
  article-title: Natural scene statistics account for the representation of scene categories in human visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.06.034
– volume: 207
  start-page: 187
  year: 1980
  end-page: 217
  ident: CR43
  article-title: Theory of edge detection
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
  doi: 10.1098/rspb.1980.0020
– volume: 32
  start-page: 1627
  year: 2010
  end-page: 1645
  ident: CR66
  article-title: Object detection with discriminatively trained part-based models
  publication-title: IEEE T-PAMI
  doi: 10.1109/TPAMI.2009.167
– volume: 115
  start-page: 1
  year: 2014
  end-page: 42
  ident: CR1
  article-title: Imagenet large scale visual recognition challenge
  publication-title: IJCV
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR53
– volume: 538
  start-page: 471
  year: 2016
  end-page: 476
  ident: CR30
  article-title: Hybrid computing using a neural network with dynamic external memory
  publication-title: Nature
  doi: 10.1038/nature20101
– ident: CR10
– volume: 452
  start-page: 352
  year: 2008
  end-page: 355
  ident: CR18
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– ident: CR6
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: CR31
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 2
  start-page: 1019
  year: 1999
  end-page: 1025
  ident: CR27
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/14819
– ident: CR56
– volume: 340
  start-page: 386
  year: 1989
  end-page: 389
  ident: CR44
  article-title: The colour centre in the cerebral cortex of man
  publication-title: Nature
  doi: 10.1038/340386a0
– ident: CR40
– ident: CR63
– volume: 10
  start-page: 183
  year: 1999
  end-page: 187
  ident: CR47
  article-title: The fusiform face area is selective for faces not animals
  publication-title: Neuroreport
  doi: 10.1097/00001756-199901180-00035
– ident: CR69
– ident: CR48
– ident: CR65
– ident: CR3
– ident: CR38
– volume: 29
  start-page: 142
  year: 2008
  end-page: 156
  ident: CR64
  article-title: Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fmri
  publication-title: Human brain mapping
  doi: 10.1002/hbm.20379
– volume: 52
  start-page: 11
  year: 2010
  ident: CR57
  article-title: Active learning literature survey
  publication-title: University of Wisconsin, Madison
– ident: CR13
– volume: 104
  start-page: 20600
  year: 2007
  end-page: 20605
  ident: CR51
  article-title: Individual faces elicit distinct response patterns in human anterior temporal cortex
  publication-title: PNAS
  doi: 10.1073/pnas.0705654104
– ident: CR34
– ident: CR55
– ident: CR7
– ident: CR62
– ident: CR24
– volume: 38
  start-page: 666
  year: 2016
  end-page: 676
  ident: CR59
  article-title: Leveraging the wisdom of the crowd for fine-grained recognition
  publication-title: IEEE T-PAMI
  doi: 10.1109/TPAMI.2015.2439285
– ident: 23618_CR37
  doi: 10.1145/1553374.1553380
– volume: 52
  start-page: 11
  year: 2010
  ident: 23618_CR57
  publication-title: University of Wisconsin, Madison
– volume: 21
  start-page: 1680
  year: 2010
  ident: 23618_CR35
  publication-title: IEEE T-NN
  doi: 10.1109/TNN.2010.2060353
– ident: 23618_CR36
  doi: 10.1109/CVPR.2017.479
– ident: 23618_CR29
  doi: 10.1371/journal.pcbi.1000579
– ident: 23618_CR3
  doi: 10.1109/CVPR.2015.7298932
– volume: 518
  start-page: 529
  year: 2015
  ident: 23618_CR15
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 340
  start-page: 386
  year: 1989
  ident: 23618_CR44
  publication-title: Nature
  doi: 10.1038/340386a0
– ident: 23618_CR69
– volume: 36
  start-page: 1679
  year: 2014
  ident: 23618_CR8
  publication-title: IEEE T-PAMI
  doi: 10.1109/TPAMI.2013.2297711
– volume: 2
  start-page: 5
  year: 2015
  ident: 23618_CR33
  publication-title: arXiv preprint arXiv:1502.03044
– ident: 23618_CR9
  doi: 10.1109/CVPR.2016.177
– volume: 10
  start-page: 309
  year: 2006
  ident: 23618_CR16
  publication-title: Trends in Cog. Sci.
  doi: 10.1016/j.tics.2006.05.009
– ident: 23618_CR32
– ident: 23618_CR13
– volume: 27
  start-page: 77
  year: 2006
  ident: 23618_CR52
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20169
– ident: 23618_CR49
– volume: 104
  start-page: 20600
  year: 2007
  ident: 23618_CR51
  publication-title: PNAS
  doi: 10.1073/pnas.0705654104
– volume: 38
  start-page: 666
  year: 2016
  ident: 23618_CR59
  publication-title: IEEE T-PAMI
  doi: 10.1109/TPAMI.2015.2439285
– ident: 23618_CR34
  doi: 10.1017/S0140525X16001837
– ident: 23618_CR56
  doi: 10.1109/CVPR.2009.5206651
– ident: 23618_CR68
  doi: 10.7551/mitpress/1130.003.0016
– volume: 79
  start-page: 1025
  year: 2013
  ident: 23618_CR41
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.06.034
– volume: 518
  start-page: 529
  year: 2015
  ident: 23618_CR31
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: 23618_CR39
  doi: 10.1109/CVPR.2014.222
– ident: 23618_CR62
– volume: 20
  start-page: 273
  year: 1995
  ident: 23618_CR46
  publication-title: Machine learning
– volume: 63
  start-page: 902
  year: 2009
  ident: 23618_CR20
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.09.006
– ident: 23618_CR26
  doi: 10.1038/srep27755
– ident: 23618_CR10
– ident: 23618_CR6
  doi: 10.1109/CVPR.2015.7298799
– volume: 32
  start-page: 1627
  year: 2010
  ident: 23618_CR66
  publication-title: IEEE T-PAMI
  doi: 10.1109/TPAMI.2009.167
– ident: 23618_CR2
  doi: 10.1109/CVPR.2014.223
– ident: 23618_CR14
– volume: 115
  start-page: 1
  year: 2014
  ident: 23618_CR1
  publication-title: IJCV
– ident: 23618_CR65
  doi: 10.1145/1961189.1961199
– volume: 22
  start-page: 55
  year: 2013
  ident: 23618_CR4
  publication-title: IEEE T-IP
  doi: 10.1109/TIP.2012.2210727
– ident: 23618_CR12
  doi: 10.1109/CVPR.2015.7298640
– ident: 23618_CR48
– volume: 207
  start-page: 187
  year: 1980
  ident: 23618_CR43
  publication-title: Proceedings of the Royal Society of London B: Biological Sciences
  doi: 10.1098/rspb.1980.0020
– volume: 452
  start-page: 352
  year: 2008
  ident: 23618_CR18
  publication-title: Nature
  doi: 10.1038/nature06713
– ident: 23618_CR5
  doi: 10.1109/CVPR.2014.22
– volume: 104
  start-page: 6424
  year: 2007
  ident: 23618_CR28
  publication-title: PNAS
  doi: 10.1073/pnas.0700622104
– volume: 38
  start-page: 2429
  year: 1998
  ident: 23618_CR42
  publication-title: Vision research
  doi: 10.1016/S0042-6989(97)00464-1
– ident: 23618_CR24
  doi: 10.3389/neuro.06.004.2008
– ident: 23618_CR25
– ident: 23618_CR40
– ident: 23618_CR38
– ident: 23618_CR63
– volume: 13
  start-page: 381
  year: 2009
  ident: 23618_CR17
  publication-title: Trends in Cog. Sci.
  doi: 10.1016/j.tics.2009.06.002
– ident: 23618_CR61
  doi: 10.1007/978-3-540-74198-5_14
– volume: 57
  start-page: 835
  year: 1987
  ident: 23618_CR45
  publication-title: Journal of neurophysiology
  doi: 10.1152/jn.1987.57.3.835
– ident: 23618_CR7
  doi: 10.1007/978-3-642-33712-3_25
– ident: 23618_CR11
– volume: 111
  start-page: 8619
  year: 2014
  ident: 23618_CR23
  publication-title: PNAS
  doi: 10.1073/pnas.1403112111
– volume: 2
  start-page: 1019
  year: 1999
  ident: 23618_CR27
  publication-title: Nature Neuroscience
  doi: 10.1038/14819
– volume: 10
  start-page: 183
  year: 1999
  ident: 23618_CR47
  publication-title: Neuroreport
  doi: 10.1097/00001756-199901180-00035
– volume: 2014
  start-page: pdb
  year: 2014
  ident: 23618_CR60
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.err084830
– volume: 538
  start-page: 471
  year: 2016
  ident: 23618_CR30
  publication-title: Nature
  doi: 10.1038/nature20101
– ident: 23618_CR55
  doi: 10.1109/ICCV.2007.4408844
– volume: 50
  start-page: 818
  year: 2010
  ident: 23618_CR21
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.084
– ident: 23618_CR22
– ident: 23618_CR54
  doi: 10.1613/jair.295
– volume: 19
  start-page: 261
  year: 2003
  ident: 23618_CR50
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00049-1
– ident: 23618_CR53
  doi: 10.21236/ADA612443
– volume: 29
  start-page: 142
  year: 2008
  ident: 23618_CR64
  publication-title: Human brain mapping
  doi: 10.1002/hbm.20379
– ident: 23618_CR58
– volume: 320
  start-page: 1191
  year: 2008
  ident: 23618_CR19
  publication-title: Science
  doi: 10.1126/science.1152876
– ident: 23618_CR67
  doi: 10.7551/mitpress/1113.003.0014
SSID ssj0000529419
Score 2.5315123
Snippet Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human...
Abstract Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5397
SubjectTerms 59/36
631/378/116/2396
639/705/117
Algorithms
Artificial intelligence
Brain
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Functional magnetic resonance imaging
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
multidisciplinary
Neural networks
Pattern recognition
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VFZW4oEJ5pBTkSr1BVMeOX0dArThVHKjUm-VnWQmyqLuLxL9n7GSXLq9euOSQONFoPM7MJ4-_D-CkpDVM675lJiBAwRTQmihim2PmIbuAGZhWsQl1caGvrsyHW1JfpSdspAceHXfKkhCOSp1U7nuThYsm4Xd5zn3utI_l70uVuQWmRlZvZvrOTKdkKNenC8xU5TRZh4HBJV7lViaqhP1_qjJ_b5b8Zce0JqLzfXgwVZDkzWj5Q9hJwyPYGzUlvx9AX5sASNXeI74IQJBydqFIRJDlnFyvZjGRL7WFMpFJM-L6MVyen318976dpBHagIhj2bIekUDW2fHOGSoCgjghk0qRJaVS52V00dGojUg6xRy9p5kjCmZRBOFN5E9gd5gP6RkQIzXjmceoKe8Vog_f0cw850EnqaJroFu7yYaJN7zIV3y2df-aazu61qJrbXWtlQ282rzzdWTN-Ofot8X7m5GF8brewDiwUxzYu-KggaP13NlpGS4sVjdGmcJX1MDx5jEuoLIr4oY0X5UxDFESx8K1gafjVG8sYUYY08uuAbUVBFumbj8ZZp8qSbcoVH-SNfB6HS4_zfq7Kw7_hyuew31W4pwWlb4j2F3erNILuBe-LWeLm5d1ofwA9C8VQg
  priority: 102
  providerName: Directory of Open Access Journals
Title Using human brain activity to guide machine learning
URI https://link.springer.com/article/10.1038/s41598-018-23618-6
https://www.ncbi.nlm.nih.gov/pubmed/29599461
https://www.proquest.com/docview/2019797674
https://www.proquest.com/docview/2020493405
https://pubmed.ncbi.nlm.nih.gov/PMC5876362
https://doaj.org/article/2e55a068e7f449f5ad9e29c3ff4f18bd
Volume 8
WOSCitedRecordID wos000428618900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database (NC LIVE)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iHZC4sC-BMgoSN4iI7Xg7IYpawaGjCIE0nKzEy3QkSMosSPx7bMeTalh64eJD7Ei233t-fovfB_AiqDWv1tsCS-0NFK8CCmmoKZxxRLtGew1cRrAJPpuJ-VzWyeG2TmmVuzMxHtSm18FH7o10JLkMpWfeXHwvAmpUiK4mCI0DmPibDQopXWe4Hn0sIYpVIZneypREvF57fRXelCHPHoT5lu3po1i2_293zT9TJn-Lm0Z1dHr7fxdyB26li2j-duCcu3DNdvfgxgBN-fM-VDGXII8QfnkbcCTy8AQiIE3kmz5fbJfG5t9iJqbNE_TE4gF8Pj359O59kRAWCu0Nl02BK29QOOEaghpZUu1tQcostwZbzi1qmWlMUxohqRXWONO2pSPemMaGatpKQx7CYdd39jHkkglMHDFGlKTi3ohpUelwS4gWlnHTZIB2-6x0Kj8eUDC-qhgGJ0INtFGeNirSRrEMXo7_XAzFN64cfRzIN44MhbPjh361UEkOFbaUNiUTlruqko42RlrPpsS5yiHRmgyOdlRTSZrX6pJkGTwfu70chuBK09l-G8Zgb2wRf__N4NHAK-NMsKRSVgxlwPe4aG-q-z3d8jzW-qahYiDDGbza8dvltP69FU-uXsVTuImDCJQBxu8IDjerrX0G1_WPzXK9msIBn_PYiilMjk9m9cdpdFVMo3SFlvt2Un84q7_8AjZtKW4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9UwEB6VAoIL-xIoECQ4QURix459QIitatXy1EORejNJbL8-qbyUt4D6p_iNzDhL9Vh664FLDokTOfbnWTzj-QCekVpDtV4lTNfooKAKSLQVNvHW89qXNWrgNJBNFKOROjjQe2vwsz8LQ2mVvUwMgto2Ne2Ro5Oe6UJT6Zk3x98SYo2i6GpPodHCYsed_ECXbf56-wPO73PGNj_uv99KOlaBpEZjfZGwHI1or3zJs1Knokb_R0hXOMtcUbiskra0ZWqVFk45621VpZ6jA8msqEWlLcfvXoCLOVUWo1RBtjfs6VDULM90dzYn5erVHPUjnWHLEI5c4lWu6L9AE_A32_bPFM3f4rRB_W1e_98G7gZc6wzt-G27Mm7Cmpvegsst9ebJbchDrkQcKArjingyYjriQUwa8aKJx8uJdfHXkGnq4o5aY3wHPp9Ll-_C-rSZuvsQa6kY99xalfK8QCetylLPKs5r5WRhywiyfl5N3ZVXJ5aPIxPC_FyZFgsGsWACFoyM4MXwznFbXOTM1u8ILkNLKgwebjSzsenkjGFOiDKVyhU-z7UXpdUOlyH3PveZqmwEGz1KTCet5uYUIhE8HR6jnKHgUTl1zZLaMHQmOdr3EdxrsTn0hGmhdS6zCIoV1K50dfXJdHIYapkLqogoWQQve3yfduvfQ_Hg7L94Ale29j_tmt3t0c5DuMpo-aVEWbgB64vZ0j2CS_X3xWQ-exzWbwxfzhv3vwBjioFh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU0Bc2JdAgSDBCaImduzYB4SAMmJUGM0BpHJyEy_DSJCUWUD9a_w6np1kqmHprQcuOSRO5Nif3-L3_D6Ax16toVqvEiI1OiioAhJpmEmccVS7UqMGTgPZRDEei4MDOdmCn_1ZGJ9W2cvEIKhNo_0eOTrpmSykLz2z67q0iMne8MXRt8QzSPlIa0-n0UJk3x7_QPdt8Xy0h3P9hJDhmw-v3yYdw0Ci0XBfJiRHg9oJV9KslCnT6AsxbgtriC0Km1XclKZMjZDMCmucqarUUXQmiWGaVdJQ_O452EaTPCcD2J6M3k8-rXd4fAwtz2R3UielYneB2tKfaMsQnJTjlW9ow0Aa8DdL98-Ezd-itkEZDq_8z8N4FS53Jnj8sl0z12DL1tfhQkvKeXwD8pBFEQfywrjyDBqxP_zhOTbiZRNPVzNj468hB9XGHenG9CZ8PJMu34JB3dT2DsSSC0IdNUakNC_Qfauy1JGKUi0sL0wZQdbPsdJd4XXP__FFhQQAKlSLC4W4UAEXikfwdP3OUVt25NTWrzx01i19yfBwo5lPVSeBFLGMlSkXtnB5Lh0rjbS4QKlzuctEZSLY6RGjOjm2UCdwieDR-jFKIB9WKmvbrHwbgm4mRcs_gtstTtc9IZJJmfMsgmIDwRtd3XxSzz6HKufM10rkJIJnPdZPuvXvobh7-l88hIsId_VuNN6_B5eIX4mp5zLcgcFyvrL34bz-vpwt5g-6xRzD4VkD_xc8FIuq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+human+brain+activity+to+guide+machine+learning&rft.jtitle=Scientific+reports&rft.au=Fong%2C+Ruth+C.&rft.au=Scheirer%2C+Walter+J.&rft.au=Cox%2C+David+D.&rft.date=2018-03-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=8&rft_id=info:doi/10.1038%2Fs41598-018-23618-6&rft_id=info%3Apmid%2F29599461&rft.externalDocID=PMC5876362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon