Using human brain activity to guide machine learning
Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 8; číslo 1; s. 5397 - 10 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
29.03.2018
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of
inspiration
for machine learning, little effort has been made to directly use data collected from working brains as a
guide
for machine learning algorithms. Here we demonstrate a new paradigm of “neurally-weighted” machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data. |
|---|---|
| AbstractList | Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of “neurally-weighted” machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data. Abstract Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of “neurally-weighted” machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data. Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data. Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of “neurally-weighted” machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data. |
| ArticleNumber | 5397 |
| Author | Fong, Ruth C. Cox, David D. Scheirer, Walter J. |
| Author_xml | – sequence: 1 givenname: Ruth C. surname: Fong fullname: Fong, Ruth C. organization: Department of Engineering Science, University of Oxford, Information Engineering Building, Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences and Center for Brain Science, Harvard University – sequence: 2 givenname: Walter J. surname: Scheirer fullname: Scheirer, Walter J. organization: Department of Computer Science and Engineering, University of Notre Dame, Fitzpatrick Hall of Engineering, Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences and Center for Brain Science, Harvard University – sequence: 3 givenname: David D. surname: Cox fullname: Cox, David D. email: davidcox@fas.harvard.edu organization: Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences and Center for Brain Science, Harvard University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29599461$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1PHSEUhkljU631D3TRTNJNN9MCAwxsmjSmtiYm3dQ1YeAwl5u5YGHGxH8v11GrLmTB5_O-HA7nPTqIKQJCHwn-SnAnvxVGuJItJrKlnai9eIOOKGa8Lik9eDI_RCelbHFtnCpG1Dt0SBVXiglyhNhlCXFsNsvOxGbIJsTG2Dlch_mmmVMzLsFBszN2EyI0E5gcK_4BvfVmKnByPx6jy7Off09_txd_fp2f_rhorcBibinjXHnpTUeMwtwS3HMBPTgKfQ9kEM44g51UHCQ474YB-65nlDpu-aBcd4zOV1-XzFZf5bAz-UYnE_TdRsqjNnkOdgJNgXODhYTeM6Y8N04BVbbznnkih73X99Xrahl24CzEOZvpmenzkxg2ekzXmstedIJWgy_3Bjn9W6DMeheKhWkyEdJSNMU146pjmFf08wt0m5Yca6oqRVSvetGzSn16GtFjKA-fUwG6AjanUjL4R4RgvS8CvRaBrkWg74pAiyqSL0Q2zGYOaf-qML0u7VZpqffEEfL_sF9R3QK6PsWO |
| CitedBy_id | crossref_primary_10_3390_s22176598 crossref_primary_10_1007_s11084_021_09608_1 crossref_primary_10_4000_anglophonia_3424 crossref_primary_10_1016_j_joi_2024_101614 crossref_primary_10_3390_brainsci15090953 crossref_primary_10_1088_2632_072X_ad1c68 crossref_primary_10_1016_j_dsx_2021_102263 crossref_primary_10_1088_1402_4896_ad8fe5 crossref_primary_10_1109_ACCESS_2023_3313632 crossref_primary_10_3390_app14156504 crossref_primary_10_1016_j_compbiomed_2023_106552 crossref_primary_10_1513_AnnalsATS_202011_1372OC crossref_primary_10_1007_s11280_022_01030_5 crossref_primary_10_1016_j_mtcomm_2025_112571 crossref_primary_10_1186_s12859_020_03690_4 crossref_primary_10_1007_s10462_021_10047_7 crossref_primary_10_1002_qute_201800081 crossref_primary_10_3389_fbioe_2022_903426 crossref_primary_10_1038_s41598_020_59847_x crossref_primary_10_3389_fncom_2025_1545971 crossref_primary_10_1186_s12911_022_02044_9 crossref_primary_10_1016_j_neuroimage_2023_120253 crossref_primary_10_3389_fncom_2020_00029 crossref_primary_10_1016_j_rineng_2024_101874 crossref_primary_10_1109_TPAMI_2020_3008107 crossref_primary_10_1016_j_istruc_2022_12_108 crossref_primary_10_1007_s11042_024_19665_z crossref_primary_10_1088_2515_7639_ad467b crossref_primary_10_1007_s11571_023_09946_y crossref_primary_10_1016_j_inffus_2025_103021 crossref_primary_10_3389_fncom_2020_580632 crossref_primary_10_1016_j_petrol_2021_109853 crossref_primary_10_1016_j_commatsci_2022_111836 crossref_primary_10_1109_ACCESS_2024_3478805 crossref_primary_10_1016_j_neucom_2024_129213 crossref_primary_10_1162_jocn_a_01544 crossref_primary_10_1016_j_inffus_2024_102447 crossref_primary_10_1007_s11227_022_04661_7 crossref_primary_10_1016_j_knosys_2024_112587 crossref_primary_10_1073_pnas_1905544116 crossref_primary_10_1111_mice_13078 crossref_primary_10_1038_s41597_022_01299_1 crossref_primary_10_1109_TPAMI_2020_2995909 crossref_primary_10_1038_s41598_020_66690_7 crossref_primary_10_1109_TPAMI_2023_3257846 crossref_primary_10_1038_s41598_022_22468_7 crossref_primary_10_1038_s41597_022_01382_7 crossref_primary_10_1142_S0219091524500280 crossref_primary_10_1007_s11276_024_03755_9 crossref_primary_10_1007_s12559_018_9562_0 crossref_primary_10_1016_j_neuron_2019_08_034 |
| Cites_doi | 10.1101/pdb.err084830 10.1109/TNN.2010.2060353 10.1109/TIP.2012.2210727 10.1152/jn.1987.57.3.835 10.1016/S1053-8119(03)00049-1 10.1038/nature14236 10.1016/j.tics.2009.06.002 10.1002/hbm.20169 10.1126/science.1152876 10.1016/S0042-6989(97)00464-1 10.1109/TPAMI.2013.2297711 10.1016/j.tics.2006.05.009 10.1016/j.neuron.2009.09.006 10.1016/j.neuroimage.2009.11.084 10.1073/pnas.0700622104 10.1073/pnas.1403112111 10.1016/j.neuron.2013.06.034 10.1098/rspb.1980.0020 10.1109/TPAMI.2009.167 10.1038/nature20101 10.1038/nature06713 10.1038/14819 10.1038/340386a0 10.1097/00001756-199901180-00035 10.1002/hbm.20379 10.1073/pnas.0705654104 10.1109/TPAMI.2015.2439285 10.1145/1553374.1553380 10.1109/CVPR.2017.479 10.1371/journal.pcbi.1000579 10.1109/CVPR.2015.7298932 10.1109/CVPR.2016.177 10.1017/S0140525X16001837 10.1109/CVPR.2009.5206651 10.7551/mitpress/1130.003.0016 10.1109/CVPR.2014.222 10.1038/srep27755 10.1109/CVPR.2015.7298799 10.1109/CVPR.2014.223 10.1145/1961189.1961199 10.1109/CVPR.2015.7298640 10.1109/CVPR.2014.22 10.3389/neuro.06.004.2008 10.1007/978-3-540-74198-5_14 10.1007/978-3-642-33712-3_25 10.1109/ICCV.2007.4408844 10.1613/jair.295 10.21236/ADA612443 10.7551/mitpress/1113.003.0014 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-018-23618-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_2e55a068e7f449f5ad9e29c3ff4f18bd PMC5876362 29599461 10_1038_s41598_018_23618_6 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c606t-24559f8fa31a905c10756e7ed2e77e1b6dada0d895e8edfdbb0f37422d5c5b9d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428618900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:35:35 EST 2025 Tue Nov 04 01:59:55 EST 2025 Wed Oct 01 14:45:48 EDT 2025 Mon Oct 06 17:53:18 EDT 2025 Mon Jul 21 05:53:38 EDT 2025 Tue Nov 18 22:20:27 EST 2025 Sat Nov 29 04:07:44 EST 2025 Fri Feb 21 02:38:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-24559f8fa31a905c10756e7ed2e77e1b6dada0d895e8edfdbb0f37422d5c5b9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/2e55a068e7f449f5ad9e29c3ff4f18bd |
| PMID | 29599461 |
| PQID | 2019797674 |
| PQPubID | 2041939 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2e55a068e7f449f5ad9e29c3ff4f18bd pubmedcentral_primary_oai_pubmedcentral_nih_gov_5876362 proquest_miscellaneous_2020493405 proquest_journals_2019797674 pubmed_primary_29599461 crossref_primary_10_1038_s41598_018_23618_6 crossref_citationtrail_10_1038_s41598_018_23618_6 springer_journals_10_1038_s41598_018_23618_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-29 |
| PublicationDateYYYYMMDD | 2018-03-29 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Mnih (CR31) 2015; 518 CR39 Borji, Sihite, Itti (CR4) 2013; 22 CR38 CR37 CR36 CR34 Spiridon, Fischl, Kanwisher. (CR52) 2006; 27 CR32 Lueck (CR44) 1989; 340 Ohki, Reid (CR60) 2014; 2014 Stansbury, Naselaris, Gallant (CR41) 2013; 79 Deng, Krause, Stark, Fei-Fei (CR59) 2016; 38 Chen, Li, Kourtzi, Wu (CR35) 2010; 21 Tenenbaum, Griffiths, Kemp (CR16) 2006; 10 CR2 CR3 CR6 CR5 CR7 Scheirer (CR8) 2014; 36 CR9 CR49 CR48 CR40 Mitchell (CR19) 2008; 320 Mnih (CR15) 2015; 518 Kriegeskorte (CR51) 2007; 104 Reddy, Tsuchiya, Serre (CR21) 2010; 50 Serre, Oliva, Poggio (CR28) 2007; 104 Russakovsky (CR1) 2014; 115 Jäkel (CR17) 2009; 13 CR14 Xu (CR33) 2015; 2 CR58 CR13 CR12 Riesenhuber, Poggio (CR27) 1999; 2 CR56 CR11 CR55 CR10 CR54 CR53 Graves (CR30) 2016; 538 Lee, Mumford, Romero, Lamme (CR42) 1998; 38 Desimone, Schein (CR45) 1987; 57 Kay, David, Prenger, Hansen, Gallant (CR64) 2008; 29 Kanwisher, Stanley, Harris (CR47) 1999; 10 Kay (CR18) 2008; 452 Naselaris (CR20) 2009; 63 Felzenszwalb (CR66) 2010; 32 Settles (CR57) 2010; 52 CR29 Cox, Savoy (CR50) 2003; 19 CR26 CR25 CR69 CR24 Cortes, Vapnik (CR46) 1995; 20 CR68 CR67 CR22 Yamins (CR23) 2014; 111 CR65 CR63 CR62 CR61 Marr, Hildreth (CR43) 1980; 207 T Serre (23618_CR28) 2007; 104 23618_CR36 A Borji (23618_CR4) 2013; 22 23618_CR37 23618_CR38 23618_CR32 23618_CR34 O Russakovsky (23618_CR1) 2014; 115 23618_CR39 L Reddy (23618_CR21) 2010; 50 D Chen (23618_CR35) 2010; 21 N Kanwisher (23618_CR47) 1999; 10 T Naselaris (23618_CR20) 2009; 63 K Xu (23618_CR33) 2015; 2 KN Kay (23618_CR64) 2008; 29 JB Tenenbaum (23618_CR16) 2006; 10 F Jäkel (23618_CR17) 2009; 13 23618_CR24 23618_CR68 23618_CR25 B Settles (23618_CR57) 2010; 52 23618_CR69 23618_CR26 D Yamins (23618_CR23) 2014; 111 D Stansbury (23618_CR41) 2013; 79 23618_CR65 23618_CR22 23618_CR67 23618_CR29 V Mnih (23618_CR31) 2015; 518 TM Mitchell (23618_CR19) 2008; 320 PF Felzenszwalb (23618_CR66) 2010; 32 C Lueck (23618_CR44) 1989; 340 M Riesenhuber (23618_CR27) 1999; 2 R Desimone (23618_CR45) 1987; 57 23618_CR61 23618_CR62 23618_CR63 23618_CR13 23618_CR14 23618_CR58 C Cortes (23618_CR46) 1995; 20 23618_CR53 23618_CR10 N Kriegeskorte (23618_CR51) 2007; 104 23618_CR54 23618_CR11 23618_CR55 23618_CR12 23618_CR56 23618_CR2 D Marr (23618_CR43) 1980; 207 23618_CR3 23618_CR5 23618_CR6 23618_CR7 J Deng (23618_CR59) 2016; 38 23618_CR9 DD Cox (23618_CR50) 2003; 19 TS Lee (23618_CR42) 1998; 38 23618_CR48 23618_CR49 V Mnih (23618_CR15) 2015; 518 K Kay (23618_CR18) 2008; 452 A Graves (23618_CR30) 2016; 538 WJ Scheirer (23618_CR8) 2014; 36 K Ohki (23618_CR60) 2014; 2014 23618_CR40 M Spiridon (23618_CR52) 2006; 27 |
| References_xml | – ident: CR22 – ident: CR49 – volume: 2014 start-page: pdb year: 2014 end-page: prot081455 ident: CR60 article-title: two-photon calcium imaging in the visual system publication-title: Cold Spring Harbor Protocols doi: 10.1101/pdb.err084830 – ident: CR68 – volume: 21 start-page: 1680 year: 2010 end-page: 1685 ident: CR35 article-title: Behavior-constrained support vector machines for fMRI data analysis publication-title: IEEE T-NN doi: 10.1109/TNN.2010.2060353 – volume: 22 start-page: 55 year: 2013 end-page: 69 ident: CR4 article-title: Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study publication-title: IEEE T-IP doi: 10.1109/TIP.2012.2210727 – ident: CR39 – ident: CR12 – ident: CR29 – volume: 57 start-page: 835 year: 1987 end-page: 868 ident: CR45 article-title: Visual properties of neurons in area v4 of the macaque: sensitivity to stimulus form publication-title: Journal of neurophysiology doi: 10.1152/jn.1987.57.3.835 – ident: CR54 – ident: CR61 – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: CR50 article-title: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00049-1 – ident: CR58 – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: CR15 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 13 start-page: 381 year: 2009 end-page: 388 ident: CR17 article-title: Does cognitive science need kernels? publication-title: Trends in Cog. Sci. doi: 10.1016/j.tics.2009.06.002 – ident: CR25 – volume: 27 start-page: 77 year: 2006 end-page: 89 ident: CR52 article-title: Location and spatial profile of category-specific regions in human extrastriate cortex publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20169 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR46 article-title: Support-vector networks publication-title: Machine learning – volume: 320 start-page: 1191 year: 2008 end-page: 1195 ident: CR19 article-title: Predicting human brain activity associated with the meanings of nouns publication-title: Science doi: 10.1126/science.1152876 – volume: 2 start-page: 5 year: 2015 ident: CR33 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: arXiv preprint arXiv:1502.03044 – ident: CR67 – volume: 38 start-page: 2429 year: 1998 end-page: 2454 ident: CR42 article-title: The role of the primary visual cortex in higher level vision publication-title: Vision research doi: 10.1016/S0042-6989(97)00464-1 – ident: CR11 – volume: 36 start-page: 1679 year: 2014 end-page: 1686 ident: CR8 article-title: Perceptual annotation: Measuring human vision to improve computer vision publication-title: IEEE T-PAMI doi: 10.1109/TPAMI.2013.2297711 – ident: CR9 – ident: CR32 – volume: 10 start-page: 309 year: 2006 end-page: 318 ident: CR16 article-title: Theory-based bayesian models of inductive learning and reasoning publication-title: Trends in Cog. Sci. doi: 10.1016/j.tics.2006.05.009 – volume: 63 start-page: 902 year: 2009 end-page: 915 ident: CR20 article-title: Bayesian reconstruction of natural images from human brain activity publication-title: Neuron doi: 10.1016/j.neuron.2009.09.006 – ident: CR36 – ident: CR5 – volume: 50 start-page: 818 year: 2010 end-page: 825 ident: CR21 article-title: Reading the mind’s eye: decoding category information during mental imagery publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.084 – volume: 104 start-page: 6424 year: 2007 end-page: 6429 ident: CR28 article-title: A feedforward architecture accounts for rapid categorization publication-title: PNAS doi: 10.1073/pnas.0700622104 – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: CR23 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: PNAS doi: 10.1073/pnas.1403112111 – ident: CR26 – volume: 79 start-page: 1025 year: 2013 end-page: 1034 ident: CR41 article-title: Natural scene statistics account for the representation of scene categories in human visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2013.06.034 – volume: 207 start-page: 187 year: 1980 end-page: 217 ident: CR43 article-title: Theory of edge detection publication-title: Proceedings of the Royal Society of London B: Biological Sciences doi: 10.1098/rspb.1980.0020 – volume: 32 start-page: 1627 year: 2010 end-page: 1645 ident: CR66 article-title: Object detection with discriminatively trained part-based models publication-title: IEEE T-PAMI doi: 10.1109/TPAMI.2009.167 – volume: 115 start-page: 1 year: 2014 end-page: 42 ident: CR1 article-title: Imagenet large scale visual recognition challenge publication-title: IJCV – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR53 – volume: 538 start-page: 471 year: 2016 end-page: 476 ident: CR30 article-title: Hybrid computing using a neural network with dynamic external memory publication-title: Nature doi: 10.1038/nature20101 – ident: CR10 – volume: 452 start-page: 352 year: 2008 end-page: 355 ident: CR18 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – ident: CR6 – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: CR31 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 2 start-page: 1019 year: 1999 end-page: 1025 ident: CR27 article-title: Hierarchical models of object recognition in cortex publication-title: Nature Neuroscience doi: 10.1038/14819 – ident: CR56 – volume: 340 start-page: 386 year: 1989 end-page: 389 ident: CR44 article-title: The colour centre in the cerebral cortex of man publication-title: Nature doi: 10.1038/340386a0 – ident: CR40 – ident: CR63 – volume: 10 start-page: 183 year: 1999 end-page: 187 ident: CR47 article-title: The fusiform face area is selective for faces not animals publication-title: Neuroreport doi: 10.1097/00001756-199901180-00035 – ident: CR69 – ident: CR48 – ident: CR65 – ident: CR3 – ident: CR38 – volume: 29 start-page: 142 year: 2008 end-page: 156 ident: CR64 article-title: Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fmri publication-title: Human brain mapping doi: 10.1002/hbm.20379 – volume: 52 start-page: 11 year: 2010 ident: CR57 article-title: Active learning literature survey publication-title: University of Wisconsin, Madison – ident: CR13 – volume: 104 start-page: 20600 year: 2007 end-page: 20605 ident: CR51 article-title: Individual faces elicit distinct response patterns in human anterior temporal cortex publication-title: PNAS doi: 10.1073/pnas.0705654104 – ident: CR34 – ident: CR55 – ident: CR7 – ident: CR62 – ident: CR24 – volume: 38 start-page: 666 year: 2016 end-page: 676 ident: CR59 article-title: Leveraging the wisdom of the crowd for fine-grained recognition publication-title: IEEE T-PAMI doi: 10.1109/TPAMI.2015.2439285 – ident: 23618_CR37 doi: 10.1145/1553374.1553380 – volume: 52 start-page: 11 year: 2010 ident: 23618_CR57 publication-title: University of Wisconsin, Madison – volume: 21 start-page: 1680 year: 2010 ident: 23618_CR35 publication-title: IEEE T-NN doi: 10.1109/TNN.2010.2060353 – ident: 23618_CR36 doi: 10.1109/CVPR.2017.479 – ident: 23618_CR29 doi: 10.1371/journal.pcbi.1000579 – ident: 23618_CR3 doi: 10.1109/CVPR.2015.7298932 – volume: 518 start-page: 529 year: 2015 ident: 23618_CR15 publication-title: Nature doi: 10.1038/nature14236 – volume: 340 start-page: 386 year: 1989 ident: 23618_CR44 publication-title: Nature doi: 10.1038/340386a0 – ident: 23618_CR69 – volume: 36 start-page: 1679 year: 2014 ident: 23618_CR8 publication-title: IEEE T-PAMI doi: 10.1109/TPAMI.2013.2297711 – volume: 2 start-page: 5 year: 2015 ident: 23618_CR33 publication-title: arXiv preprint arXiv:1502.03044 – ident: 23618_CR9 doi: 10.1109/CVPR.2016.177 – volume: 10 start-page: 309 year: 2006 ident: 23618_CR16 publication-title: Trends in Cog. Sci. doi: 10.1016/j.tics.2006.05.009 – ident: 23618_CR32 – ident: 23618_CR13 – volume: 27 start-page: 77 year: 2006 ident: 23618_CR52 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20169 – ident: 23618_CR49 – volume: 104 start-page: 20600 year: 2007 ident: 23618_CR51 publication-title: PNAS doi: 10.1073/pnas.0705654104 – volume: 38 start-page: 666 year: 2016 ident: 23618_CR59 publication-title: IEEE T-PAMI doi: 10.1109/TPAMI.2015.2439285 – ident: 23618_CR34 doi: 10.1017/S0140525X16001837 – ident: 23618_CR56 doi: 10.1109/CVPR.2009.5206651 – ident: 23618_CR68 doi: 10.7551/mitpress/1130.003.0016 – volume: 79 start-page: 1025 year: 2013 ident: 23618_CR41 publication-title: Neuron doi: 10.1016/j.neuron.2013.06.034 – volume: 518 start-page: 529 year: 2015 ident: 23618_CR31 publication-title: Nature doi: 10.1038/nature14236 – ident: 23618_CR39 doi: 10.1109/CVPR.2014.222 – ident: 23618_CR62 – volume: 20 start-page: 273 year: 1995 ident: 23618_CR46 publication-title: Machine learning – volume: 63 start-page: 902 year: 2009 ident: 23618_CR20 publication-title: Neuron doi: 10.1016/j.neuron.2009.09.006 – ident: 23618_CR26 doi: 10.1038/srep27755 – ident: 23618_CR10 – ident: 23618_CR6 doi: 10.1109/CVPR.2015.7298799 – volume: 32 start-page: 1627 year: 2010 ident: 23618_CR66 publication-title: IEEE T-PAMI doi: 10.1109/TPAMI.2009.167 – ident: 23618_CR2 doi: 10.1109/CVPR.2014.223 – ident: 23618_CR14 – volume: 115 start-page: 1 year: 2014 ident: 23618_CR1 publication-title: IJCV – ident: 23618_CR65 doi: 10.1145/1961189.1961199 – volume: 22 start-page: 55 year: 2013 ident: 23618_CR4 publication-title: IEEE T-IP doi: 10.1109/TIP.2012.2210727 – ident: 23618_CR12 doi: 10.1109/CVPR.2015.7298640 – ident: 23618_CR48 – volume: 207 start-page: 187 year: 1980 ident: 23618_CR43 publication-title: Proceedings of the Royal Society of London B: Biological Sciences doi: 10.1098/rspb.1980.0020 – volume: 452 start-page: 352 year: 2008 ident: 23618_CR18 publication-title: Nature doi: 10.1038/nature06713 – ident: 23618_CR5 doi: 10.1109/CVPR.2014.22 – volume: 104 start-page: 6424 year: 2007 ident: 23618_CR28 publication-title: PNAS doi: 10.1073/pnas.0700622104 – volume: 38 start-page: 2429 year: 1998 ident: 23618_CR42 publication-title: Vision research doi: 10.1016/S0042-6989(97)00464-1 – ident: 23618_CR24 doi: 10.3389/neuro.06.004.2008 – ident: 23618_CR25 – ident: 23618_CR40 – ident: 23618_CR38 – ident: 23618_CR63 – volume: 13 start-page: 381 year: 2009 ident: 23618_CR17 publication-title: Trends in Cog. Sci. doi: 10.1016/j.tics.2009.06.002 – ident: 23618_CR61 doi: 10.1007/978-3-540-74198-5_14 – volume: 57 start-page: 835 year: 1987 ident: 23618_CR45 publication-title: Journal of neurophysiology doi: 10.1152/jn.1987.57.3.835 – ident: 23618_CR7 doi: 10.1007/978-3-642-33712-3_25 – ident: 23618_CR11 – volume: 111 start-page: 8619 year: 2014 ident: 23618_CR23 publication-title: PNAS doi: 10.1073/pnas.1403112111 – volume: 2 start-page: 1019 year: 1999 ident: 23618_CR27 publication-title: Nature Neuroscience doi: 10.1038/14819 – volume: 10 start-page: 183 year: 1999 ident: 23618_CR47 publication-title: Neuroreport doi: 10.1097/00001756-199901180-00035 – volume: 2014 start-page: pdb year: 2014 ident: 23618_CR60 publication-title: Cold Spring Harbor Protocols doi: 10.1101/pdb.err084830 – volume: 538 start-page: 471 year: 2016 ident: 23618_CR30 publication-title: Nature doi: 10.1038/nature20101 – ident: 23618_CR55 doi: 10.1109/ICCV.2007.4408844 – volume: 50 start-page: 818 year: 2010 ident: 23618_CR21 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.084 – ident: 23618_CR22 – ident: 23618_CR54 doi: 10.1613/jair.295 – volume: 19 start-page: 261 year: 2003 ident: 23618_CR50 publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00049-1 – ident: 23618_CR53 doi: 10.21236/ADA612443 – volume: 29 start-page: 142 year: 2008 ident: 23618_CR64 publication-title: Human brain mapping doi: 10.1002/hbm.20379 – ident: 23618_CR58 – volume: 320 start-page: 1191 year: 2008 ident: 23618_CR19 publication-title: Science doi: 10.1126/science.1152876 – ident: 23618_CR67 doi: 10.7551/mitpress/1113.003.0014 |
| SSID | ssj0000529419 |
| Score | 2.5315802 |
| Snippet | Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human... Abstract Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5397 |
| SubjectTerms | 59/36 631/378/116/2396 639/705/117 Algorithms Artificial intelligence Brain Brain - diagnostic imaging Brain - physiology Brain mapping Functional magnetic resonance imaging Humanities and Social Sciences Humans Image Processing, Computer-Assisted Learning algorithms Machine Learning Magnetic Resonance Imaging multidisciplinary Neural networks Pattern recognition Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JixUxEC50VPDivrSO0oI3bUzSWU-i4uDFYQ4KcwtZnw-0e3yL4L83Sef18Fzm4qUbOmlIUlVJVWr5AJ4zgiLnNHQuINZR41RnLMrJOco6R7ElgRawCXF8LE9P1Um9cFvXsMrdnlg2aj-6fEeejHSshMqlZ16ffe8yalT2rlYIjctwJWk2OId0fSQn8x1L9mJRrGquDOrlq3U6r3JOGU7s0fP05HvnUSnb_zdd88-Qyd_8puU4Orr5vxO5BTeqItq-mTjnNlwKwx24NkFT_rwLtMQStAXCr7UZR6LNKRAZaaLdjO1iu_Sh_VYiMUNboScW9-Dz0ftP7z50FWGhc8lw2XSEJoMiymh6bBRiLtmCjAcRPAlCBGy5N94gLxULMvjorUWxT8Y08cwxq3x_Hw6GcQgPoU3nPu6FSS-JqAnciN4J7pJ66Vkg0jaAd-usXS0_nlEwvuriBu-lnmijE210oY3mDbyY_zmbim9c2PttJt_cMxfOLh_G1UJXOdQkMGYQl0FESlVkxqtAlOtjpBFL6xs43FFNV2le63OSNfBsbk5ymJ0rZgjjNvchydjqk_7bwIOJV-aREMWUohw3IPa4aG-o-y3D8kup9c1yxUBOGni547fzYf17KR5dPIvHcJ1kEUAZxu8QDjarbXgCV92PzXK9elpk6BdSGCKU priority: 102 providerName: ProQuest |
| Title | Using human brain activity to guide machine learning |
| URI | https://link.springer.com/article/10.1038/s41598-018-23618-6 https://www.ncbi.nlm.nih.gov/pubmed/29599461 https://www.proquest.com/docview/2019797674 https://www.proquest.com/docview/2020493405 https://pubmed.ncbi.nlm.nih.gov/PMC5876362 https://doaj.org/article/2e55a068e7f449f5ad9e29c3ff4f18bd |
| Volume | 8 |
| WOSCitedRecordID | wos000428618900040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC50V2Ev4tvWdWjBmzabzjtHV3bRww6NKIynkOc6oD2yM7PgvzdJ94w7Pi9eqqGThlCpdFWRqu8DeM4wipzT0LiAWEONU42xKDfnKOscbS0OtJBNiOlUzmaqu0L1lWvCBnjgQXFHODBmEJdBREpVZMargJUjMdLYSuvz3xcJdSWZGlC9saKtGrtkEJFHy-SpcjdZmwyD8CT5jicqgP2_izJ_LZb86ca0OKLT23BrjCDrV8PK78C10N-FmwOn5Ld7QEsRQF2492qbCSDq3LuQKSLq1aI-X899qL-UEspQj5wR5_fhw-nJ-9dvmpEaoXEp41g1mKZMIMpoSGsUYi4lcYwHETwOQoTWcm-8QV4qFmTw0VuLIklZMPbMMas8eQB7_aIPj6BODrslwqSHRNQEbgRxgrsUF3oWsLQVtBs1aTfihmf6is-63F8TqQfV6qRaXVSreQUvtt98HVAz_jr7OGt_OzMjXpcXyQ70aAf6X3ZQweFm7_R4DJc6RTdKqIxXVMGz7XA6QPlWxPRhsc5zcMqSSApcK3g4bPV2JVgxpShvKxA7RrCz1N2Rfv6pgHSzDPXHcQUvN-byY1l_VsXj_6GKJ3CAs52jzNJ3CHuri3V4Cjfc5Wq-vJjAdTETRcoJ7B-fTLt3k3J4kjzDXZYiyf3u7Vn38Tu9URxt |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9UwEB6VAoIL-xIoECQ4QUTi2E58QIitatXy1EORejOOPXl9UnkpbwH1T_Eb8ThL9Vh664FLIiVO5NifxzOZ5QN4JlhaS8kxsZiKhBurElOllJyjKmt5VjHkgWyiGI3KgwO1twY_-1wYCqvsZWIQ1K6x9I_cG-mZKhSVnnlz_C0h1ijyrvYUGi0sdvDkhzfZ5q-3P_j5fc7Y5sf991tJxyqQWK-sLxLGvRJdl7XJM6NSYb39IyQW6BgWBWaVdMaZ1JVKYImudlWV1rk3IJkTVlTK5f69F-Aip8piFCrI9oZ_OuQ145nqcnPSvHw19_sj5bBlHo659Ee5sv8FmoC_6bZ_hmj-5qcN29_m9f9t4G7AtU7Rjt-2K-MmrOH0FlxuqTdPbgMPsRJxoCiMK-LJiCnFg5g04kUTj5cTh_HXEGmKcUetMb4Dn8-ly3dhfdpM8T7EXq_J8sL4U5lyg9IUuS2k9eqzE8jKKoKsn1dtu_LqxPJxpIObPy91iwXtsaADFrSM4MXwzHFbXOTM1u8ILkNLKgweLjSzse7kjGYohElliUXNuaqFcQqZsnld8zorKxfBRo8S3UmruT6FSARPh9tezpDzyEyxWVIb5o3J3Ov3EdxrsTn0hCmhFJdZBMUKale6unpnOjkMtcwFVUSULIKXPb5Pu_XvoXhw9lc8gStb-5929e72aOchXGW0_FKiLNyA9cVsiY_gkv2-mMxnj8P6jeHLeeP-F8PHgYw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkGCE0RNHNuJDwgBZcWqsNoDSOXkOvZ4WQmSsg9Q_xq_DttJtloevfXAJZFiJ3Lsz-MZe2Y-gMeMpJZzionGlCVUaZGoKvXBOaLSmmYVQRrIJorxuDw4EJMt-NnHwni3yl4mBkFtGu33yJ2RnolC-NQzu7Zzi5jsDV8cfUs8g5Q_ae3pNFqI7OPxD2e-LZ6P9txYPyFk-ObD67dJxzCQaKe4LxNCnUJtS6vyTImUaWcLMY4FGoJFgVnFjTIqNaVgWKKxpqpSmztjkhimWSVM7r57DradSk7JALYno_eTT-sdHn-GRjPRReqkebm7cKulj2jLHDhz7q58YzUMpAF_03T_dNj87dQ2LIbDK_9zN16Fy50KHr9s58w12ML6OlxoSTmPbwANXhRxIC-MK8-gEfvgD8-xES-beLqaGYy_Bh9UjDvSjelN-HgmTb4Fg7qp8Q7ETuPJ8kK5W5lShVwVuS64doq1YUjKKoKsH2Opu8Trnv_jiwwOAHkpW1xIhwsZcCF5BE_X7xy1aUdOrf3KQ2dd06cMDw-a-VR2EkgSZEylvMTCUiosU0YgETq3ltqsrEwEOz1iZCfHFvIELhE8Whc7CeSPlVSNzcrXIc7MzJ3mH8HtFqfrlhDBhKA8i6DYQPBGUzdL6tnnkOWc-VyJnETwrMf6SbP-3RV3T_-Lh3DRwV2-G43378El4mdi6rkMd2CwnK_wPpzX35ezxfxBN5ljODxr4P8CpYaL1Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+human+brain+activity+to+guide+machine+learning&rft.jtitle=Scientific+reports&rft.au=Ruth+C.+Fong&rft.au=Walter+J.+Scheirer&rft.au=David+D.+Cox&rft.date=2018-03-29&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41598-018-23618-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e55a068e7f449f5ad9e29c3ff4f18bd |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |