Observation of higher-order non-Hermitian skin effect

Beyond the scope of Hermitian physics, non-Hermiticity fundamentally changes the topological band theory, leading to interesting phenomena, e.g., non-Hermitian skin effect, as confirmed in one-dimensional systems. However, in higher dimensions, these effects remain elusive. Here, we demonstrate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 12; H. 1; S. 5377 - 8
Hauptverfasser: Zhang, Xiujuan, Tian, Yuan, Jiang, Jian-Hua, Lu, Ming-Hui, Chen, Yan-Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 10.09.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Beyond the scope of Hermitian physics, non-Hermiticity fundamentally changes the topological band theory, leading to interesting phenomena, e.g., non-Hermitian skin effect, as confirmed in one-dimensional systems. However, in higher dimensions, these effects remain elusive. Here, we demonstrate the spin-polarized, higher-order non-Hermitian skin effect in two-dimensional acoustic higher-order topological insulators. We find that non-Hermiticity drives wave localizations toward opposite edges upon different spin polarizations. More interestingly, for finite systems with both edges and corners, the higher-order non-Hermitian skin effect leads to wave localizations toward two opposite corners for all the bulk, edge and corner states in a spin-dependent manner. We further show that such a skin effect enables rich wave manipulation by configuring the non-Hermiticity. Our study reveals the intriguing interplay between higher-order topology and non-Hermiticity, which is further enriched by the pseudospin degree of freedom, unveiling a horizon in the study of non-Hermitian physics. Though non-Hermitian physics has contributed toward the advance of research in quantum, electronic and classical systems, previous work focused on zero- or one-dimensional systems. Here, the authors report higher-order non-Hermitian skin effects in a 2D acoustic higher-order topological insulator.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25716-y