Sharing and Specificity of Co-expression Networks across 35 Human Tissues
To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between...
Uloženo v:
| Vydáno v: | PLoS computational biology Ročník 11; číslo 5; s. e1004220 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
01.05.2015
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America Current address: Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, Canada Conceived and designed the experiments: DK AB SM. Performed the experiments: EP. Analyzed the data: EP. Wrote the paper: EP AB SM. The authors have declared that no competing interests exist. |
| ISSN: | 1553-7358 1553-734X 1553-7358 |
| DOI: | 10.1371/journal.pcbi.1004220 |