Sharing and Specificity of Co-expression Networks across 35 Human Tissues

To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology Vol. 11; no. 5; p. e1004220
Main Authors: Pierson, Emma, Koller, Daphne, Battle, Alexis, Mostafavi, Sara
Format: Journal Article
Language:English
Published: United States Public Library of Science 01.05.2015
Public Library of Science (PLoS)
Subjects:
ISSN:1553-7358, 1553-734X, 1553-7358
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.
AbstractList To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.
To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner. Cells in different tissues perform very different functions with the same DNA. This requires tissue-specific gene expression and regulation; understanding this tissue-specificity is often instrumental to understanding complex diseases. Here, we use tissue-specific gene expression data to learn tissue-specific gene regulatory networks for 35 human tissues, where two genes are linked if their expression levels are correlated. Learning such networks accurately is difficult because of the large number of possible links between genes and small number of samples. We propose a novel algorithm that combats this problem by sharing data between similar tissues and show that this increases the accuracy with which networks are learned. We provide a web tool for exploring these networks, enabling users to pose diverse queries in a gene- or tissue-centric manner, and facilitating explorations into gene function and regulation.
To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.
  To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.
Audience Academic
Author Pierson, Emma
Mostafavi, Sara
Battle, Alexis
Koller, Daphne
AuthorAffiliation Department of Computer Science, Stanford University, Stanford, California, United States of America
Thomas Jefferson University, UNITED STATES
AuthorAffiliation_xml – name: Thomas Jefferson University, UNITED STATES
– name: Department of Computer Science, Stanford University, Stanford, California, United States of America
Author_xml – sequence: 1
  givenname: Emma
  surname: Pierson
  fullname: Pierson, Emma
– sequence: 2
  givenname: Daphne
  surname: Koller
  fullname: Koller, Daphne
– sequence: 3
  givenname: Alexis
  surname: Battle
  fullname: Battle, Alexis
– sequence: 4
  givenname: Sara
  surname: Mostafavi
  fullname: Mostafavi, Sara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25970446$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1v0zAUhi00xLbCP0CQS7hI8UfsJFwgTRWwStOQ6Li2jh0nc0ntYiew_Xu8NkUrF0jIF7bs57w-H-85OnHeGYReEjwnrCTv1n4MDvr5Vis7JxgXlOIn6IxwzvKS8erk0fkUnce4xjgda_EMnVJel7goxBlarm4hWNdl4JpstTXatlbb4T7zbbbwubnbBhOj9S67NsMvH77HDHTwMWaMZ5fjBlx2Y2McTXyOnrbQR_Ni2mfo26ePN4vL_OrL5-Xi4irXAvMhV0IXwCrGG0ZKKnBZ6oKylpuaq1rzRhkKJC0tFKiaVY0QjaIEuBAYamPYDL3e6257H-XUhSiJqDipGE4lz9ByTzQe1nIb7AbCvfRg5e7Ch05CGKzujWzqtuJYCUqhLUqqQJMGQOhStAZUVSatD9Nvo9qYRhs3BOiPRI9fnL2Vnf8piyLlQqsk8GYSCP5HatMgNzZq0_fgjB93eRMqEssSOt-jHaTUrGt9UtRpNWZjdZp-a9P9RUEqgVm1K_TtUUBiBnM3dDDGKJerr__BXh-zrx4X_afag20S8H4P7KwQTCuTZ2BINkkZ214SLB88epiOfPConDyagou_gg_6_wz7DcnR7LE
CitedBy_id crossref_primary_10_3390_genes10030225
crossref_primary_10_1016_j_cell_2021_06_003
crossref_primary_10_1016_j_cell_2020_06_007
crossref_primary_10_1159_000533898
crossref_primary_10_1186_s13040_021_00250_1
crossref_primary_10_1038_s41467_021_26674_1
crossref_primary_10_1371_journal_pcbi_1006436
crossref_primary_10_1002_rco2_23
crossref_primary_10_1111_biom_13235
crossref_primary_10_1371_journal_pone_0149853
crossref_primary_10_1093_nar_gkw581
crossref_primary_10_1016_j_cbpa_2022_102206
crossref_primary_10_3389_fgene_2019_00294
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1038_s41576_019_0200_9
crossref_primary_10_1038_s41578_021_00339_3
crossref_primary_10_1371_journal_pcbi_1005739
crossref_primary_10_1073_pnas_2218478120
crossref_primary_10_1089_bio_2015_0032
crossref_primary_10_1038_s41587_025_02659_z
crossref_primary_10_1016_j_omtn_2019_11_019
crossref_primary_10_1016_j_cmet_2018_03_015
crossref_primary_10_1371_journal_pone_0233543
crossref_primary_10_1109_TCBB_2019_2893170
crossref_primary_10_1016_j_csbj_2021_08_028
crossref_primary_10_1080_01621459_2022_2044333
crossref_primary_10_1093_bib_bbab235
crossref_primary_10_1038_s41598_021_90282_8
crossref_primary_10_1038_nrg3969
crossref_primary_10_1093_bib_bbz135
crossref_primary_10_1371_journal_pcbi_1011616
crossref_primary_10_1101_gr_213611_116
crossref_primary_10_1038_s41431_023_01296_x
crossref_primary_10_1093_bib_bbw139
crossref_primary_10_1016_j_watbs_2021_100003
crossref_primary_10_1186_s12864_024_11118_z
crossref_primary_10_1016_j_jmb_2018_07_004
crossref_primary_10_3389_fgene_2021_719713
crossref_primary_10_1016_j_cels_2019_05_012
crossref_primary_10_1016_j_compbiolchem_2017_10_012
crossref_primary_10_1016_j_copbio_2016_04_007
crossref_primary_10_1186_s13059_021_02499_5
crossref_primary_10_1371_journal_pcbi_1005013
crossref_primary_10_1111_ppl_14386
crossref_primary_10_1038_nchembio_1984
crossref_primary_10_1186_s12864_021_08081_4
crossref_primary_10_1007_s10260_021_00572_8
crossref_primary_10_1093_bioinformatics_bty217
crossref_primary_10_1007_s40291_016_0211_6
crossref_primary_10_1016_j_ymeth_2018_06_002
crossref_primary_10_1186_s13040_020_00216_9
crossref_primary_10_3390_ncrna8040051
crossref_primary_10_1007_s00439_019_02022_8
crossref_primary_10_1371_journal_pcbi_1004791
crossref_primary_10_1038_nmeth_3799
crossref_primary_10_3390_v11110988
crossref_primary_10_1371_journal_pcbi_1011118
crossref_primary_10_1515_dmpt_2015_0032
crossref_primary_10_1038_s41467_023_38637_9
crossref_primary_10_1101_gr_216721_116
crossref_primary_10_1007_s00784_023_05294_7
crossref_primary_10_1109_TCYB_2019_2952711
crossref_primary_10_1093_nar_gkz538
crossref_primary_10_1016_j_physrep_2021_01_003
crossref_primary_10_1007_s40484_020_0210_9
crossref_primary_10_1186_s13059_018_1536_8
crossref_primary_10_1093_bib_bbab603
crossref_primary_10_1371_journal_pcbi_1005157
crossref_primary_10_1186_s12931_019_1032_z
crossref_primary_10_1186_s12967_024_06009_6
crossref_primary_10_1007_s00438_019_01557_9
crossref_primary_10_3390_math11143166
crossref_primary_10_1101_gr_276542_121
crossref_primary_10_3233_JAD_221241
crossref_primary_10_1186_s12859_022_04765_0
crossref_primary_10_1038_s41598_020_72482_w
crossref_primary_10_1073_pnas_2416987121
crossref_primary_10_1016_j_jpsychires_2018_06_014
crossref_primary_10_1093_gigascience_giae108
crossref_primary_10_1007_s40142_016_0102_5
crossref_primary_10_1016_j_cels_2016_06_012
crossref_primary_10_1093_nar_gkaa940
crossref_primary_10_1007_s41745_017_0040_6
crossref_primary_10_1016_j_molcel_2016_12_024
crossref_primary_10_1038_s41587_025_02718_5
crossref_primary_10_1002_sim_9809
crossref_primary_10_1016_j_ygeno_2020_05_026
crossref_primary_10_1002_wics_1582
crossref_primary_10_1186_s13059_022_02606_0
crossref_primary_10_1007_s11432_016_5582_0
crossref_primary_10_1186_s12864_016_3062_y
crossref_primary_10_1016_j_biopsycho_2025_109039
crossref_primary_10_1038_nrneurol_2016_84
crossref_primary_10_1038_s41435_019_0059_y
crossref_primary_10_1109_TCBBIO_2025_3548953
crossref_primary_10_1007_s44192_022_00009_y
crossref_primary_10_1093_nar_gkab1133
crossref_primary_10_1101_gr_254904_119
crossref_primary_10_1371_journal_pone_0152648
crossref_primary_10_1016_j_jgg_2023_01_006
crossref_primary_10_3390_cancers14030706
crossref_primary_10_1186_s13195_020_00674_7
crossref_primary_10_1038_s41576_021_00389_x
crossref_primary_10_1186_s12862_021_01794_w
crossref_primary_10_1002_wsbm_1443
crossref_primary_10_1186_s12859_021_04179_4
crossref_primary_10_1093_g3journal_jkad004
crossref_primary_10_1111_rssb_12479
crossref_primary_10_1186_s12918_017_0517_y
crossref_primary_10_1371_journal_pone_0240523
Cites_doi 10.1038/msb.2009.17
10.1126/science.1136800
10.1093/hmg/ddt499
10.1214/11-EJS631
10.1126/science.1249547
10.1186/1471-2105-8-437
10.1038/ni.2623
10.1038/nrg2538
10.1136/bmj.38036.646030.EE
10.2188/jea.10.163
10.1038/ng.2653
10.1038/ejhg.2011.96
10.2307/3033543
10.1073/pnas.0605457103
10.1016/j.jad.2013.04.010
10.1038/tpj.2011.23
10.1271/bbb.63.917
10.1038/nature02046
10.1016/j.immuni.2010.04.004
10.1371/journal.pgen.1003484
10.1093/hmg/9.16.2365
10.1371/journal.pgen.1003536
10.1038/75556
10.1038/nrg3481
10.1093/molbev/msi072
10.1038/npp.2008.162
10.1086/286013
10.1093/hmg/ddr325
10.1016/0047-259X(88)90040-1
10.1198/jcgs.2011.11051a
10.1038/nature06757
10.1371/journal.pgen.1002505
10.1101/gr.2584104
10.1093/bioinformatics/btr239
10.1111/rssb.12033
10.1186/1471-2164-8-166
10.1186/1741-7007-6-49
10.1101/gad.831000
10.1093/molehr/gam057
10.1096/fj.01-0463com
10.1186/gb-2005-6-4-r33
ContentType Journal Article
Contributor Deluca, David S
Sammeth, Michael
Goldmann, Jakob
Syron, John
Sullivan, Susan
Valentino, Kimberly M
McCarthy, Mark I
Meng, Yan
Monlong, Jean
Undale, Anita H
Foster, Barbara A
Lek, Monkol
Lin, Luan
Shablin, Andrey A
Guigo, Roderic
Bridge, Jason P
Wen, Xiaoquan
Hirschhorn, Joel
Zhu, Jun
Battle, Alexis
Ward, Lucas D
Winckler, Wendy
Koller, Daphne
Huang, Tao
Wright, Fred A
Lappalainen, Tuuli
Tabor, David
Zhou, Yi-Hui
Wu, Shenpei
Long, Quan
Stephens, Matthew
Cox, Nancy J
Kheradpour, Pouya
Sobin, Leslie H
Buia, Stephen A
Sullivan, Timothy J
Brown, Amanda
Thomas, Jeffrey A
Hariharan, Pushpa
Ongen, Halit
Walters, Gary D
Qi, Liqun
Gamazon, Eric R
Fleming, Johnelle
Gillard, Bryan M
Rivas, Manuel A
Rohrer, Daniel C
Tu, Zhidong
Mosavel, Magboeba
Iriarte, Benjamin
Segrè, Ayellet V
Moser, Michael T
Ramsey, Kimberly
Rusyn, Ivan
Shad, Saboor
Ardlie, Kristin G
Traino, Heather
Liu, Jun
Shive, Charles
Mestichelli, Bernadette
Flutre, Timothée
Nicolae, Dan L
Salvatore, Mike
Ferreira, Pedro G
Palmer, Cameron D
MacArthur, Daniel G
Branton, Philip
Pritchard, Jonathan K
Zhang,
Contributor_xml – sequence: 1
  givenname: Kristin G
  surname: Ardlie
  fullname: Ardlie, Kristin G
– sequence: 2
  givenname: David S
  surname: Deluca
  fullname: Deluca, David S
– sequence: 3
  givenname: Ayellet V
  surname: Segrè
  fullname: Segrè, Ayellet V
– sequence: 4
  givenname: Timothy J
  surname: Sullivan
  fullname: Sullivan, Timothy J
– sequence: 5
  givenname: Taylor R
  surname: Young
  fullname: Young, Taylor R
– sequence: 6
  givenname: Ellen T
  surname: Gelfand
  fullname: Gelfand, Ellen T
– sequence: 7
  givenname: Casandra A
  surname: Trowbridge
  fullname: Trowbridge, Casandra A
– sequence: 8
  givenname: Julian B
  surname: Maller
  fullname: Maller, Julian B
– sequence: 9
  givenname: Taru
  surname: Tukiainen
  fullname: Tukiainen, Taru
– sequence: 10
  givenname: Monkol
  surname: Lek
  fullname: Lek, Monkol
– sequence: 11
  givenname: Lucas D
  surname: Ward
  fullname: Ward, Lucas D
– sequence: 12
  givenname: Pouya
  surname: Kheradpour
  fullname: Kheradpour, Pouya
– sequence: 13
  givenname: Benjamin
  surname: Iriarte
  fullname: Iriarte, Benjamin
– sequence: 14
  givenname: Yan
  surname: Meng
  fullname: Meng, Yan
– sequence: 15
  givenname: Cameron D
  surname: Palmer
  fullname: Palmer, Cameron D
– sequence: 16
  givenname: Wendy
  surname: Winckler
  fullname: Winckler, Wendy
– sequence: 17
  givenname: Joel
  surname: Hirschhorn
  fullname: Hirschhorn, Joel
– sequence: 18
  givenname: Manolis
  surname: Kellis
  fullname: Kellis, Manolis
– sequence: 19
  givenname: Daniel G
  surname: MacArthur
  fullname: MacArthur, Daniel G
– sequence: 20
  givenname: Gad
  surname: Getz
  fullname: Getz, Gad
– sequence: 21
  givenname: Andrey A
  surname: Shablin
  fullname: Shablin, Andrey A
– sequence: 22
  givenname: Gen
  surname: Li
  fullname: Li, Gen
– sequence: 23
  givenname: Yi-Hui
  surname: Zhou
  fullname: Zhou, Yi-Hui
– sequence: 24
  givenname: Andrew B
  surname: Nobel
  fullname: Nobel, Andrew B
– sequence: 25
  givenname: Ivan
  surname: Rusyn
  fullname: Rusyn, Ivan
– sequence: 26
  givenname: Fred A
  surname: Wright
  fullname: Wright, Fred A
– sequence: 27
  givenname: Tuuli
  surname: Lappalainen
  fullname: Lappalainen, Tuuli
– sequence: 28
  givenname: Pedro G
  surname: Ferreira
  fullname: Ferreira, Pedro G
– sequence: 29
  givenname: Halit
  surname: Ongen
  fullname: Ongen, Halit
– sequence: 30
  givenname: Manuel A
  surname: Rivas
  fullname: Rivas, Manuel A
– sequence: 31
  givenname: Alexis
  surname: Battle
  fullname: Battle, Alexis
– sequence: 32
  givenname: Sara
  surname: Mostafavi
  fullname: Mostafavi, Sara
– sequence: 33
  givenname: Jean
  surname: Monlong
  fullname: Monlong, Jean
– sequence: 34
  givenname: Michael
  surname: Sammeth
  fullname: Sammeth, Michael
– sequence: 35
  givenname: Marta
  surname: Mele
  fullname: Mele, Marta
– sequence: 36
  givenname: Ferran
  surname: Reverter
  fullname: Reverter, Ferran
– sequence: 37
  givenname: Jakob
  surname: Goldmann
  fullname: Goldmann, Jakob
– sequence: 38
  givenname: Daphne
  surname: Koller
  fullname: Koller, Daphne
– sequence: 39
  givenname: Roderic
  surname: Guigo
  fullname: Guigo, Roderic
– sequence: 40
  givenname: Mark I
  surname: McCarthy
  fullname: McCarthy, Mark I
– sequence: 41
  givenname: Emmanouil T
  surname: Dermitzakis
  fullname: Dermitzakis, Emmanouil T
– sequence: 42
  givenname: Eric R
  surname: Gamazon
  fullname: Gamazon, Eric R
– sequence: 43
  givenname: Hae Kyung
  surname: Im
  fullname: Im, Hae Kyung
– sequence: 44
  givenname: Anuar
  surname: Konkashbaev
  fullname: Konkashbaev, Anuar
– sequence: 45
  givenname: Dan L
  surname: Nicolae
  fullname: Nicolae, Dan L
– sequence: 46
  givenname: Nancy J
  surname: Cox
  fullname: Cox, Nancy J
– sequence: 47
  givenname: Timothée
  surname: Flutre
  fullname: Flutre, Timothée
– sequence: 48
  givenname: Xiaoquan
  surname: Wen
  fullname: Wen, Xiaoquan
– sequence: 49
  givenname: Matthew
  surname: Stephens
  fullname: Stephens, Matthew
– sequence: 50
  givenname: Jonathan K
  surname: Pritchard
  fullname: Pritchard, Jonathan K
– sequence: 51
  givenname: Zhidong
  surname: Tu
  fullname: Tu, Zhidong
– sequence: 52
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
– sequence: 53
  givenname: Tao
  surname: Huang
  fullname: Huang, Tao
– sequence: 54
  givenname: Quan
  surname: Long
  fullname: Long, Quan
– sequence: 55
  givenname: Luan
  surname: Lin
  fullname: Lin, Luan
– sequence: 56
  givenname: Jialiang
  surname: Yang
  fullname: Yang, Jialiang
– sequence: 57
  givenname: Jun
  surname: Zhu
  fullname: Zhu, Jun
– sequence: 58
  givenname: Jun
  surname: Liu
  fullname: Liu, Jun
– sequence: 59
  givenname: Amanda
  surname: Brown
  fullname: Brown, Amanda
– sequence: 60
  givenname: Bernadette
  surname: Mestichelli
  fullname: Mestichelli, Bernadette
– sequence: 61
  givenname: Denee
  surname: Tidwell
  fullname: Tidwell, Denee
– sequence: 62
  givenname: Edmund
  surname: Lo
  fullname: Lo, Edmund
– sequence: 63
  givenname: Mike
  surname: Salvatore
  fullname: Salvatore, Mike
– sequence: 64
  givenname: Saboor
  surname: Shad
  fullname: Shad, Saboor
– sequence: 65
  givenname: Jeffrey A
  surname: Thomas
  fullname: Thomas, Jeffrey A
– sequence: 66
  givenname: John T
  surname: Lonsdale
  fullname: Lonsdale, John T
– sequence: 67
  givenname: Christopher
  surname: Choi
  fullname: Choi, Christopher
– sequence: 68
  givenname: Ellen
  surname: Karasik
  fullname: Karasik, Ellen
– sequence: 69
  givenname: Kimberly
  surname: Ramsey
  fullname: Ramsey, Kimberly
– sequence: 70
  givenname: Michael T
  surname: Moser
  fullname: Moser, Michael T
– sequence: 71
  givenname: Barbara A
  surname: Foster
  fullname: Foster, Barbara A
– sequence: 72
  givenname: Bryan M
  surname: Gillard
  fullname: Gillard, Bryan M
– sequence: 73
  givenname: John
  surname: Syron
  fullname: Syron, John
– sequence: 74
  givenname: Johnelle
  surname: Fleming
  fullname: Fleming, Johnelle
– sequence: 75
  givenname: Harold
  surname: Magazine
  fullname: Magazine, Harold
– sequence: 76
  givenname: Rick
  surname: Hasz
  fullname: Hasz, Rick
– sequence: 77
  givenname: Gary D
  surname: Walters
  fullname: Walters, Gary D
– sequence: 78
  givenname: Jason P
  surname: Bridge
  fullname: Bridge, Jason P
– sequence: 79
  givenname: Mark
  surname: Miklos
  fullname: Miklos, Mark
– sequence: 80
  givenname: Susan
  surname: Sullivan
  fullname: Sullivan, Susan
– sequence: 81
  givenname: Laura K
  surname: Barker
  fullname: Barker, Laura K
– sequence: 82
  givenname: Heather
  surname: Traino
  fullname: Traino, Heather
– sequence: 83
  givenname: Magboeba
  surname: Mosavel
  fullname: Mosavel, Magboeba
– sequence: 84
  givenname: Laura A
  surname: Siminoff
  fullname: Siminoff, Laura A
– sequence: 85
  givenname: Dana R
  surname: Valley
  fullname: Valley, Dana R
– sequence: 86
  givenname: Daniel C
  surname: Rohrer
  fullname: Rohrer, Daniel C
– sequence: 87
  givenname: Scott
  surname: Jewel
  fullname: Jewel, Scott
– sequence: 88
  givenname: Philip
  surname: Branton
  fullname: Branton, Philip
– sequence: 89
  givenname: Leslie H
  surname: Sobin
  fullname: Sobin, Leslie H
– sequence: 90
  givenname: Liqun
  surname: Qi
  fullname: Qi, Liqun
– sequence: 91
  givenname: Pushpa
  surname: Hariharan
  fullname: Hariharan, Pushpa
– sequence: 92
  givenname: Shenpei
  surname: Wu
  fullname: Wu, Shenpei
– sequence: 93
  givenname: David
  surname: Tabor
  fullname: Tabor, David
– sequence: 94
  givenname: Charles
  surname: Shive
  fullname: Shive, Charles
– sequence: 95
  givenname: Anna M
  surname: Smith
  fullname: Smith, Anna M
– sequence: 96
  givenname: Stephen A
  surname: Buia
  fullname: Buia, Stephen A
– sequence: 97
  givenname: Anita H
  surname: Undale
  fullname: Undale, Anita H
– sequence: 98
  givenname: Karna L
  surname: Robinson
  fullname: Robinson, Karna L
– sequence: 99
  givenname: Nancy
  surname: Roche
  fullname: Roche, Nancy
– sequence: 100
  givenname: Kimberly M
  surname: Valentino
  fullname: Valentino, Kimberly M
Copyright COPYRIGHT 2015 Public Library of Science
2015 Pierson et al 2015 Pierson et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pierson E, the GTEx Consortium, Koller D, Battle A, Mostafavi S (2015) Sharing and Specificity of Co-expression Networks across 35 Human Tissues. PLoS Comput Biol 11(5): e1004220. doi:10.1371/journal.pcbi.1004220
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: 2015 Pierson et al 2015 Pierson et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pierson E, the GTEx Consortium, Koller D, Battle A, Mostafavi S (2015) Sharing and Specificity of Co-expression Networks across 35 Human Tissues. PLoS Comput Biol 11(5): e1004220. doi:10.1371/journal.pcbi.1004220
CorporateAuthor the GTEx Consortium
GTEx Consortium
CorporateAuthor_xml – name: the GTEx Consortium
– name: GTEx Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1004220
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Gene Co-expression Networks across 35 Human Tissues
EISSN 1553-7358
ExternalDocumentID 1685183055
oai_doaj_org_article_d9f850b622af472bac1daa6c76feab87
PMC4430528
A418603855
25970446
10_1371_journal_pcbi_1004220
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH101822
– fundername: NIMH NIH HHS
  grantid: R01 MH101810
– fundername: NIMH NIH HHS
  grantid: MH101819
– fundername: NIMH NIH HHS
  grantid: R01 MH101819
– fundername: NIMH NIH HHS
  grantid: R01 MH090936
– fundername: NIMH NIH HHS
  grantid: MH090936
– fundername: NHGRI NIH HHS
  grantid: U01 HG007610
– fundername: NIMH NIH HHS
  grantid: MH101814
– fundername: NIMH NIH HHS
  grantid: R01 MH101814
– fundername: NIMH NIH HHS
  grantid: R01 MH090948
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
7X8
PUEGO
5PM
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M0N
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c605t-b6c4a3835d31726077c423f5e95b9c5dbe2a1a1ac6bab938d66db21a5660a9ee3
IEDL.DBID DOA
ISICitedReferencesCount 133
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356700200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:13:28 EST 2021
Fri Oct 03 12:52:57 EDT 2025
Tue Nov 04 02:02:44 EST 2025
Thu Sep 04 19:37:06 EDT 2025
Tue Nov 04 18:00:18 EST 2025
Thu Nov 13 15:36:28 EST 2025
Thu Nov 13 14:42:18 EST 2025
Mon Jul 21 05:57:28 EDT 2025
Sat Nov 29 03:20:53 EST 2025
Tue Nov 18 21:48:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-b6c4a3835d31726077c423f5e95b9c5dbe2a1a1ac6bab938d66db21a5660a9ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
Current address: Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, Canada
Conceived and designed the experiments: DK AB SM. Performed the experiments: EP. Analyzed the data: EP. Wrote the paper: EP AB SM.
The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/d9f850b622af472bac1daa6c76feab87
PMID 25970446
PQID 1681263053
PQPubID 23479
ParticipantIDs plos_journals_1685183055
doaj_primary_oai_doaj_org_article_d9f850b622af472bac1daa6c76feab87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4430528
proquest_miscellaneous_1681263053
gale_infotracacademiconefile_A418603855
gale_incontextgauss_ISR_A418603855
gale_incontextgauss_ISN_A418603855
pubmed_primary_25970446
crossref_citationtrail_10_1371_journal_pcbi_1004220
crossref_primary_10_1371_journal_pcbi_1004220
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References D.N. Messina (ref2) 2004; 14
Y. Li (ref42) 2012
J. Guo (ref23) 2011
M. Nishiyama (ref37) 2000; 10
K.N. McFarland (ref39) 2014; 23
ref19
F.P. Radner (ref41) 2013; 9
X. Yu (ref3) 2007; 8
A.P. Parikh (ref18) 2011; 27
Z. Dezső (ref6) 2008; 6
P. Ravikumar (ref49) 2011; 5
J. Schug (ref5) 2005; 6
M. Harata (ref32) 1999; 63
ref46
(ref33) 2011
T. Raj (ref7) 2014; 344
B. Georgi (ref30) 2013; 9
R. Mazumder (ref51) 2012; 13
S. Steinberg (ref34) 2011; 20
L. Lit (ref11) 2011; 12
M.H. Moghadasian (ref40) 2001; 15
R. Yagi (ref53) 2010; 32
P.S. Gargalovic (ref13) 2006; 103
M. Ashburner (ref26) 2000; 25
D. Villar (ref27) 2014; 15
P.N. Kirke (ref36) 2004; 328
T. Obayashi (ref25) 2008; 36
J.L. Min (ref15) 2012; 8
D.M. Witten (ref50) 2011; 20
Y. Chen (ref14) 2008; 452
R.M. Piro (ref12) 2011; 19
B.J. Frey (ref45) 2007; 315
J. Dragich (ref38) 2000; 9
P. Danaher (ref20) 2014; 76
J.M. Vaquerizas (ref8) 2009; 10
K. Mohan (ref21) 2012
M.W. Hahn (ref28) 2005; 22
B. Lemon (ref4) 2000; 14
Y. Liang (ref1) 2007; 8
S. Mostafavi (ref9) 2013
Y. Wang (ref54) 2013; 14
X. Gao (ref48) 2012; 22
J.-R. Teyssier (ref35) 2013; 151
M. Lardone (ref43) 2007; 13
S. Ghaemmaghami (ref17) 2003; 425
E.P. Martins (ref24) 1997
A. Bossi (ref31) 2009; 5
C.-J. Hsieh (ref52) 2012
K. Mardia (ref22) 1988; 24
J. Lonsdale (ref16) 2013; 45
L.C. Freeman (ref29) 1977
R.D. Mayfield (ref10) 2009; 34
J. Friedman (ref47) 2007
P. Navarro-Costa (ref44) 2010; 2010
References_xml – volume: 5
  issue: 1
  year: 2009
  ident: ref31
  article-title: Tissue specificity and the human protein interaction network
  publication-title: Molecular Systems Biology
  doi: 10.1038/msb.2009.17
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: ref45
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 23
  start-page: 1036
  issue: 4
  year: 2014
  ident: ref39
  article-title: MeCP2: a novel Huntingtin interactor
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddt499
– volume: 5
  start-page: 935
  year: 2011
  ident: ref49
  article-title: High-dimensional covariance estimation by minimizing L1-penalized log-determinant divergence
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/11-EJS631
– volume: 344
  start-page: 519
  issue: 6183
  year: 2014
  ident: ref7
  article-title: Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles in Leukocytes
  publication-title: Science
  doi: 10.1126/science.1249547
– volume: 8
  start-page: 437
  issue: 1
  year: 2007
  ident: ref3
  article-title: Identification of tissue-specific cis-regulatory modules based on interactions between transcription factors
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-437
– volume: 14
  start-page: 714
  issue: 7
  year: 2013
  ident: ref54
  article-title: GATA-3 controls the maintenance and proliferation of T cells downstream of TCR and cytokine signaling
  publication-title: Nature Immunology
  doi: 10.1038/ni.2623
– volume: 10
  start-page: 252
  issue: 4
  year: 2009
  ident: ref8
  article-title: A census of human transcription factors: function, expression and evolution
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg2538
– start-page: 620
  year: 2012
  ident: ref21
  article-title: Structured learning of Gaussian graphical models
  publication-title: Advances in Neural Information Processing Systems
– volume: 328
  start-page: 1535
  issue: 7455
  year: 2004
  ident: ref36
  article-title: Impact of the MTHFR. C677T polymorphism on risk of neural tube defects: case-control study
  publication-title: BMJ
  doi: 10.1136/bmj.38036.646030.EE
– volume: 10
  start-page: 163
  issue: 3
  year: 2000
  ident: ref37
  article-title: Apolipoprotein E, methylenete-trahydrofolate reductase (MTHFR) mutation and the risk of senile dementia–an epidemiological study using the polymerase chain reaction (PCR) method
  publication-title: Journal of Epidemiology/Japan Epidemiological Association
  doi: 10.2188/jea.10.163
– volume: 45
  start-page: 580
  issue: 6
  year: 2013
  ident: ref16
  article-title: The genotype-tissue expression (GTEx) project
  publication-title: Nature Genetics
  doi: 10.1038/ng.2653
– volume: 36
  start-page: 77
  issue: suppl 1
  year: 2008
  ident: ref25
  article-title: COXPRESdb: a database of coexpressed gene networks in mammals
  publication-title: Nucleic Acids Research
– volume: 2010
  year: 2010
  ident: ref44
  article-title: Genetic dissection of the AZF regions of the human Y chromosome: thriller or filler for male (in) fertility?
  publication-title: BioMed Research International
– volume: 19
  start-page: 1173
  issue: 11
  year: 2011
  ident: ref12
  article-title: An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction
  publication-title: European Journal of Human Genetics
  doi: 10.1038/ejhg.2011.96
– start-page: 35
  year: 1977
  ident: ref29
  article-title: A set of measures of centrality based on betweenness
  publication-title: Sociometry
  doi: 10.2307/3033543
– volume: 103
  start-page: 12741
  issue: 34
  year: 2006
  ident: ref13
  article-title: Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0605457103
– volume: 151
  start-page: 432
  issue: 2
  year: 2013
  ident: ref35
  article-title: Correlative gene expression pattern linking RNF123 to cellular stress-senescence genes in patients with depressive disorder: Implication of DRD1 in the cerebral cortex
  publication-title: Journal of Affective Disorders
  doi: 10.1016/j.jad.2013.04.010
– volume: 12
  start-page: 368
  issue: 5
  year: 2011
  ident: ref11
  article-title: Gene expression in blood is associated with risperidone response in children with autism spectrum disorders
  publication-title: The Pharmacogenomics Journal
  doi: 10.1038/tpj.2011.23
– volume: 63
  start-page: 917
  issue: 5
  year: 1999
  ident: ref32
  article-title: Two isoforms of a human actin-related protein show nuclear localization and mutually selective expression between brain and other tissues
  publication-title: Bioscience, Biotechnology, and Biochemistry
  doi: 10.1271/bbb.63.917
– volume: 425
  start-page: 737
  issue: 6959
  year: 2003
  ident: ref17
  article-title: Global analysis of protein expression in yeast
  publication-title: Nature
  doi: 10.1038/nature02046
– year: 2013
  ident: ref9
  article-title: Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing
  publication-title: Molecular Psychiatry
– volume: 32
  start-page: 507
  issue: 4
  year: 2010
  ident: ref53
  article-title: The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-γ
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.04.004
– start-page: 2330
  year: 2012
  ident: ref52
  article-title: A divide-and-conquer method for sparse inverse covariance estimation
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  start-page: 1003484
  issue: 5
  year: 2013
  ident: ref30
  article-title: From mouse to human: evolutionary genomics analysis of human orthologs of essential genes
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1003484
– volume: 9
  start-page: 2365
  issue: 16
  year: 2000
  ident: ref38
  article-title: Rett syndrome: a surprising result of mutation in MECP2
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/9.16.2365
– volume: 9
  start-page: 1003536
  issue: 6
  year: 2013
  ident: ref41
  article-title: Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1003536
– volume: 22
  start-page: 1123
  issue: 3
  year: 2012
  ident: ref48
  article-title: Tuning parameter selection for penalized likelihood estimation of Gaussian graphical model
  publication-title: Statistica Sinica
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: ref26
  article-title: Gene Ontology: tool for the unification of biology
  publication-title: Nature Genetics
  doi: 10.1038/75556
– volume: 15
  start-page: 221
  issue: 4
  year: 2014
  ident: ref27
  article-title: Evolution of transcription factor binding in metazoans -mechanisms and functional implications
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3481
– volume: 22
  start-page: 803
  issue: 4
  year: 2005
  ident: ref28
  article-title: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msi072
– volume: 34
  start-page: 250
  issue: 1
  year: 2009
  ident: ref10
  article-title: Gene expression profiling in blood: new diagnostics in alcoholism and addiction?
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2008.162
– start-page: 646
  year: 1997
  ident: ref24
  article-title: Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data
  publication-title: American Naturalist
  doi: 10.1086/286013
– volume: 20
  start-page: 4076
  issue: 20
  year: 2011
  ident: ref34
  article-title: Common variants at VRK2 and TCF4 conferring risk of schizophrenia
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddr325
– start-page: 169
  year: 2012
  ident: ref42
  article-title: Subchronic exposure to arsenic inhibits spermatogenesis and down-regulates the expression of Ddx3y in testis and epididymis of mice
  publication-title: Toxicological Sciences
– volume: 24
  start-page: 265
  issue: 2
  year: 1988
  ident: ref22
  article-title: Multi-dimensional multivariate Gaussian Markov random fields with application to image processing
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/0047-259X(88)90040-1
– ident: ref19
– volume: 20
  start-page: 892
  issue: 4
  year: 2011
  ident: ref50
  article-title: New insights and faster computations for the graphical lasso
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2011.11051a
– volume: 452
  start-page: 429
  issue: 7186
  year: 2008
  ident: ref14
  article-title: Variations in DNA elucidate molecular networks that cause disease
  publication-title: Nature
  doi: 10.1038/nature06757
– volume: 8
  start-page: 1002505
  issue: 2
  year: 2012
  ident: ref15
  article-title: Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes
  publication-title: PLoS genetics
  doi: 10.1371/journal.pgen.1002505
– volume: 14
  start-page: 2041
  issue: 10b
  year: 2004
  ident: ref2
  article-title: An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression
  publication-title: Genome Research
  doi: 10.1101/gr.2584104
– volume: 27
  start-page: 196
  issue: 13
  year: 2011
  ident: ref18
  article-title: TREEGL: reverse engineering tree-evolving gene networks underlying developing biological lineages
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr239
– year: 2007
  ident: ref47
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
– volume: 76
  start-page: 373
  issue: 2
  year: 2014
  ident: ref20
  article-title: The joint graphical lasso for inverse covariance estimation across multiple classes
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12033
– ident: ref46
– volume: 8
  start-page: 166
  issue: 1
  year: 2007
  ident: ref1
  article-title: Characterization of microRNA expression profiles in normal human tissues
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-166
– start-page: 060
  year: 2011
  ident: ref23
  article-title: Joint estimation of multiple graphical models
  publication-title: Biometrika
– volume: 6
  start-page: 49
  issue: 1
  year: 2008
  ident: ref6
  article-title: A comprehensive functional analysis of tissue specificity of human gene expression
  publication-title: BMC Biology
  doi: 10.1186/1741-7007-6-49
– year: 2011
  ident: ref33
  article-title: UniProt Knowledgebase: a hub of integrated protein data
  publication-title: UniProt Consortium Database
– volume: 14
  start-page: 2551
  issue: 20
  year: 2000
  ident: ref4
  article-title: Orchestrated response: a symphony of transcription factors for gene control
  publication-title: Genes & Development
  doi: 10.1101/gad.831000
– volume: 13
  start-page: 705
  issue: 10
  year: 2007
  ident: ref43
  article-title: Quantification of DDX3Y, RBMY1, DAZ andTSPYmRNAs in testes of patients with severe impairment of spermatogenesis
  publication-title: Molecular Human Reproduction
  doi: 10.1093/molehr/gam057
– volume: 15
  start-page: 2623
  issue: 14
  year: 2001
  ident: ref40
  article-title: Pathophysiology of apolipoprotein E deficiency in mice: relevance to apo E-related disorders in humans
  publication-title: The FASEB Journal
  doi: 10.1096/fj.01-0463com
– volume: 13
  start-page: 781
  issue: 1
  year: 2012
  ident: ref51
  article-title: Exact covariance thresholding into connected components for large-scale graphical lasso
  publication-title: The Journal of Machine Learning Research
– volume: 6
  start-page: 33
  issue: 4
  year: 2005
  ident: ref5
  article-title: Promoter features related to tissue specificity as measured by Shannon entropy
  publication-title: Genome Biology
  doi: 10.1186/gb-2005-6-4-r33
SSID ssj0035896
Score 2.5156093
Snippet To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human...
  To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004220
SubjectTerms Algorithms
Annotations
Base Sequence
Colleges & universities
Gene expression
Gene Expression Regulation
Gene Regulatory Networks
Genomics
Humans
Identification and classification
Keywords
Methods
Models, Genetic
Organ Specificity - genetics
RNA sequencing
Transcription factors
SummonAdditionalLinks – databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yKvjit179IorgU7VNm48-noeLB7IcesK9hSRNdOFol-uueP-9M2l2tYeLSN_aCSQzk8lMZ_IbQl4bVUjDipA74du8ZpbncCyEHCwfDHCiUa6NzSbkYqHOzpqT34HilQx-Jct3iadvV84uMadfMwYh-nVWCYHB1vzk09byVlw1Il2P2zdycvxElP6dLZ6tzvvhb47m1XrJPw6g-Z3_nfpdcju5mvRw1I175Jrv7pObY_PJywfkGLGa4eCipmtpbEOPYBLrS9oHetTn_mcqke3oYiwVH6iJi6IVp_HfPz2NUhsekq_zD6dHH_PUWAEkUvB1boWrDYSmvAXvAQIaKR14VYH7htvG8dZ6Zkp4nLDGNpVqBXadKg24foVpvK8ekVnXd_6AULARnoOX40yQdc0LyxsQcKtY7UJQlc1IteW3dgl1HJtfnOuYSpMQfYzc0MgknZiUkXw3ajWibvyD_j2KckeLmNnxBUhDpy2o2yYomKBgzIRaMmtc2RojnBTBG6tkRl6hImhExeiw7Oab2QyDPv6y0Id1qQTmUPleos8TojeJKPSwWGfSVQdgGaJtTSgPUOu2ixp0KcAFVgjDlpGXW03UsOUxj2M6328iTckE0FQZeTxq5m7lEM1KzNFnRE50dsKa6Zdu-T3CiteI_sbUk_1Tekpugb_Ix3rPZ2S2vtj45-SG-7FeDhcv4l78BTmQNKM
  priority: 102
  providerName: Public Library of Science
Title Sharing and Specificity of Co-expression Networks across 35 Human Tissues
URI https://www.ncbi.nlm.nih.gov/pubmed/25970446
https://www.proquest.com/docview/1681263053
https://pubmed.ncbi.nlm.nih.gov/PMC4430528
https://doaj.org/article/d9f850b622af472bac1daa6c76feab87
http://dx.doi.org/10.1371/journal.pcbi.1004220
Volume 11
WOSCitedRecordID wos000356700200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6Kvgifl_9WKIIPtXrVz76eHfc4qIu5Txh9SUkaaILR7tcd8X7751Ju8uuKPcihTy0U2hmJslMM_n9CHmjZSJ0lvjYclfHRWZYDMuCj2HmgxcsL6WtA9mEmM3kfF5WO1RfWBPWwwP3ijusSy9ZYniWaV-IzGib1lpzK7h32shwjjwR5SaZ6ufgnMnAzIWkOLHIi_lwaC4X6eFgo3dLaxZYI1BkyPW9sygF7P7tDD1aXrTd38LPP6sod5alyX1yb4gn6VHfjwfkhmsekjs9w-TVIzJFQGZYnahuahq45hExYnVFW09P2tj9GupgGzrr68E7qsM30pzR8IOfngfTdI_Jl8np-cn7eGBPALUnbBUbbgsN-SerIUSArEUIC6GTZ65kprSsNi7TKVyWG23KXNYcqaVSDfFdokvn8idk1LSNOyAUJgLHIJSx2ouiAGuwEqxYy6yw3svcRCTfqE_ZAVocGS4uVNgvE5Bi9NpQqHQ1KD0i8fatZQ-tcY38MVpmK4vA2OEGuIsa3EVd5y4ReY12VQh90WBtzXe97jo1_TxTR0UqOW6Usn8Kne0JvR2EfAudtXo4zwAqQ0itPckDdKJNpzqVcohzJWKtReTVxrEUjGvcrNGNa9dBJs04yOQRedo72rbnkLIK3IiPiNhzwT3V7D9pFj8CdniBEG-ZfPY_dPmc3IXwkfXlny_IaHW5di_Jbftztegux-SmmIvQyjG5dXw6q87GYZBCO6k-QvtBxGOsta2grdg3kKqmn6qvvwEJ1kUA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yKvrit179jCL41LvtRz76eB4et7guh65wbyFJE1042uO6K95_70yaLlZcfJF9KdsJZD46mWEmvyHkrZZTofOpTy13dVrmhqVwLPgUPB8ssLyStg7DJsRiIc_OqtMIKYR3YaIEIUc8b7tQyceHtnEHUZJ94XQ_K0Q2EO9fWLPCcn-Z55C9XxcVHEKI-Hg6H5xywWTF4825XStHJ1MA8N-66Qlu4m8x6J-tlL-dTcd3_yNX98idGKDSw37FfXLNNQ_IzX5k5dVDMkOEZzjuqG5qGobXIwTF-oq2nh61qfsZG2sbuugbzDuqA7-0YDRUDOgy6Lp7RL4ef1genaRxHAPoccrWqeG21JDQshpiDkiDhLAQi3nmKmYqy2rjcp3Bz3KjTVXImuOsqkxDwDjVlXPFYzJpgOc9QsGzOAaxkdVelCWbGlaBWdQyL633sjAJKQZVKBuxynFkxrkKBTgBOUsvDYVCUlFICUm3qy56rI5_0L9HLW9pEWk7_AEKUlExqq68hA3yPNe-FLnRNqu15lZw77SRIiFv0EYUYmk02KzzTW-6Ts2-LNRhmUmOlVe2k-jziOhdJPItMGt1vCABIkOMrhHlHtrPwFSnMg6Bs0TwtoS8HoxUgaPA6o9uXLsJNFnOgaZIyJPeaLecQw4ssLKfEDEy55Foxm-a1fcARl4iZlwun-7e0ity62T5aa7ms8XHZ-Q2RJys7xh9Tibry417QW7YH-tVd_kyfLK_ACoATY8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG-RAvfMPCZ0CIPWXLlz_yOAYVFVNVwZD2gizbsaHSlExLi9h_z53jVARR8YT6UjVny767nu9y598R8lqJlKs8dYlhtk7KXNMEjgWXgOWDAYZVwtS-2QSfz8XpabXYIV-HuzCBgxAjnrWdz-Tjl7axB4GTB4hX1GdP97OCZ8OI_XOjl5jzL_M8feMRh_DN2AovIF0hV3kFoQyiQC6OB0NdUFGxcJtu20Sj08qD-m9M9wQX9je_9M_yyt_Oq-nt_7zTO-RWcGTjw36Wu2THNvfI9b615eV9MkMkaDgWY9XUsW9yj1AVq8u4dfFRm9ifoQC3ied9IXoXK8-DuKCxzyzEJ14nugfky_T9ydGHJLRtAHmndJVoZkoFgS-twTeBcIlzAz6bo7aiujK01jZXGXwM00pXhagZ9rTKFDiWqaqsLR6SSQN82CUxWCBLwYcyyvGypKmmFahPLfLSOCcKHZFiEI80AdMcW2ucSZ-o4xDb9NyQyDMZeBaRZDPqvMf0-Af9W5T8hhYRuf0PIDQZhCXryglYIMtz5Uqea2WyWilmOHNWacEj8gr1RiLmRoNFPd_Uuuvk7PNcHpaZYJihpVuJPo2I9gKRa2GzRoWLFMAy1JgR5S7q1LCpTmYMHGyBIG8ReTkorgSDglki1dh27WmynAFNEZFHvSJvdg6xMscKgIjwkYqPWDN-0iy_e9DyErHlcvF4-5JekBuLd1N5PJt_fEJugmNK-8LSp2SyuljbZ-Sa-bFadhfP_b_4F7FpXMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharing+and+specificity+of+co-expression+networks+across+35+human+tissues&rft.jtitle=PLoS+computational+biology&rft.au=Pierson%2C+Emma&rft.au=Koller%2C+Daphne&rft.au=Battle%2C+Alexis&rft.au=Mostafavi%2C+Sara&rft.date=2015-05-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pcbi.1004220&rft.externalDBID=ISN&rft.externalDocID=A418603855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon