Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections
Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking aft...
Uložené v:
| Vydané v: | Neuron (Cambridge, Mass.) Ročník 83; číslo 6; s. 1453 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
17.09.2014
|
| Predmet: | |
| ISSN: | 1097-4199, 1097-4199 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse. |
|---|---|
| AbstractList | Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse. Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse.Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse. |
| Author | Ma, Yao-Ying Wolf, Marina E Shaham, Yavin Schlüter, Oliver M Wang, Xiusong Cui, Ranji Lee, Brian R Guo, Changyong Liu, Lei Dong, Yan Balcita-Pedicino, Judith J Sesack, Susan R Huang, Yanhua H Lan, Yan |
| Author_xml | – sequence: 1 givenname: Yao-Ying surname: Ma fullname: Ma, Yao-Ying organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA – sequence: 2 givenname: Brian R surname: Lee fullname: Lee, Brian R organization: Allen Institute for Brain Science, Seattle, WA 98103, USA – sequence: 3 givenname: Xiusong surname: Wang fullname: Wang, Xiusong organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA – sequence: 4 givenname: Changyong surname: Guo fullname: Guo, Changyong organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA – sequence: 5 givenname: Lei surname: Liu fullname: Liu, Lei organization: School of Life Science, Northeastern Normal University, Jilin, China – sequence: 6 givenname: Ranji surname: Cui fullname: Cui, Ranji organization: School of Life Science, Northeastern Normal University, Jilin, China – sequence: 7 givenname: Yan surname: Lan fullname: Lan, Yan organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA – sequence: 8 givenname: Judith J surname: Balcita-Pedicino fullname: Balcita-Pedicino, Judith J organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA – sequence: 9 givenname: Marina E surname: Wolf fullname: Wolf, Marina E organization: Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA – sequence: 10 givenname: Susan R surname: Sesack fullname: Sesack, Susan R organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA – sequence: 11 givenname: Yavin surname: Shaham fullname: Shaham, Yavin organization: Behavioral Neuroscience Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA – sequence: 12 givenname: Oliver M surname: Schlüter fullname: Schlüter, Oliver M organization: Molecular Neurobiology and Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain," European Neuroscience Institute, 37077 Göttingen, Germany – sequence: 13 givenname: Yanhua H surname: Huang fullname: Huang, Yanhua H email: huangy3@upmc.edu organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address: huangy3@upmc.edu – sequence: 14 givenname: Yan surname: Dong fullname: Dong, Yan email: yandong@pitt.edu organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address: yandong@pitt.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25199705$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAQRS1URB_wBwh5ySbBTmK7XkLFS6rEBtaRY4-Rq8QucYLoL_DVuGpBrOZ15t7RzNHEBw8IXVKSU0L5zSb3MPbB5wWhVU6WOSnKEzSjRIqsolJO_uVTNI9xQxLIJD1D04KlpiBshr7vnHE96MEFr1rcBTO2al_gYLHzemz-Kh20ch6w7tWn8--42eHoWvADjjuvthGyRkUwuIekAu0eSVvbHmy6ckjiOvQDfOEhYKX12DXgYxqHzcE9nqNTq9oIF8e4QG8P96-rp2z98vi8ul1nmhM2ZMwsgZNKMNMo1hheskJoEI0QjGpLLSFGVMIyJWmlK1pYVZaamYJbriyXpFig64Nu8v4YIQ5156KGtlUewhhryngpl7KsZEKvjujYdGDqbe861e_q3_8VP-7IebA |
| CitedBy_id | crossref_primary_10_1016_j_tips_2017_12_004 crossref_primary_10_1523_JNEUROSCI_2673_16_2016 crossref_primary_10_1038_npp_2015_199 crossref_primary_10_1038_s41386_019_0342_7 crossref_primary_10_3389_fncel_2022_893190 crossref_primary_10_1073_pnas_1524739113 crossref_primary_10_1177_1073858415579405 crossref_primary_10_1038_s41380_021_01112_2 crossref_primary_10_1155_2020_9692321 crossref_primary_10_1038_s41386_018_0142_5 crossref_primary_10_3389_fnsyn_2018_00036 crossref_primary_10_1038_s41380_023_01942_2 crossref_primary_10_1016_j_neubiorev_2021_11_017 crossref_primary_10_1016_j_neuroscience_2015_06_033 crossref_primary_10_1186_s13293_023_00570_3 crossref_primary_10_1002_jnr_24737 crossref_primary_10_1038_s41386_022_01356_8 crossref_primary_10_1038_s41386_022_01417_y crossref_primary_10_1124_pr_116_012484 crossref_primary_10_1016_j_physbeh_2015_03_042 crossref_primary_10_3389_fnsyn_2020_00026 crossref_primary_10_1016_j_pbb_2017_07_006 crossref_primary_10_3389_fnbeh_2018_00144 crossref_primary_10_1111_adb_12759 crossref_primary_10_1016_j_conb_2015_07_005 crossref_primary_10_1016_j_biopsych_2021_08_018 crossref_primary_10_3389_fnbeh_2018_00119 crossref_primary_10_1007_s12035_019_01725_3 crossref_primary_10_1523_JNEUROSCI_1718_22_2022 crossref_primary_10_14348_molcells_2017_0088 crossref_primary_10_1016_j_neubiorev_2017_10_024 crossref_primary_10_1016_j_pharmr_2024_100022 crossref_primary_10_1016_j_pnpbp_2018_01_002 crossref_primary_10_1038_mp_2017_9 crossref_primary_10_1016_j_biopha_2022_112708 crossref_primary_10_1016_j_biopsych_2016_04_002 crossref_primary_10_1111_cns_13469 crossref_primary_10_1038_s41386_019_0425_5 crossref_primary_10_1038_mp_2017_116 crossref_primary_10_1016_j_cobeha_2018_06_014 crossref_primary_10_1016_j_neuron_2019_04_015 crossref_primary_10_1016_j_phrs_2019_01_025 crossref_primary_10_1038_s41386_025_02198_w crossref_primary_10_1038_s41386_018_0131_8 crossref_primary_10_1523_JNEUROSCI_4997_14_2015 crossref_primary_10_1016_j_neuron_2014_08_057 crossref_primary_10_1038_s41398_022_02299_w crossref_primary_10_1016_j_tins_2016_04_007 crossref_primary_10_1093_ijnp_pyv136 crossref_primary_10_1016_j_neuropharm_2019_05_022 crossref_primary_10_1523_JNEUROSCI_0773_16_2016 crossref_primary_10_1155_2016_7538208 crossref_primary_10_1111_adb_12739 crossref_primary_10_15252_embj_201695465 crossref_primary_10_1038_npp_2016_111 crossref_primary_10_3389_fnsyn_2021_661476 crossref_primary_10_1038_nature21376 crossref_primary_10_1002_mco2_148 crossref_primary_10_3389_fpsyt_2022_1031585 crossref_primary_10_1007_s00429_015_1074_z crossref_primary_10_1016_j_neubiorev_2023_105196 crossref_primary_10_1016_j_drugalcdep_2021_109033 crossref_primary_10_3389_fnbeh_2024_1420028 crossref_primary_10_3389_fncir_2021_711564 crossref_primary_10_1016_j_pnpbp_2021_110462 crossref_primary_10_1111_ejn_15441 crossref_primary_10_1124_pr_118_015552 crossref_primary_10_1016_j_biopsych_2021_08_008 crossref_primary_10_1111_bph_16427 crossref_primary_10_1016_j_biopsych_2022_05_008 crossref_primary_10_1016_j_nlm_2016_10_003 crossref_primary_10_1523_JNEUROSCI_1918_20_2021 crossref_primary_10_1523_JNEUROSCI_2023_22_2022 crossref_primary_10_1073_pnas_1519248113 crossref_primary_10_1523_JNEUROSCI_1100_19_2019 crossref_primary_10_1111_adb_13375 crossref_primary_10_1111_adb_13253 crossref_primary_10_1007_s00429_018_1683_4 crossref_primary_10_1038_s41593_019_0537_6 crossref_primary_10_1016_j_pbb_2025_174055 crossref_primary_10_1038_nrn_2016_39 crossref_primary_10_1016_j_neuropharm_2017_12_039 crossref_primary_10_1016_j_biopsych_2022_06_006 crossref_primary_10_1038_nn_4313 crossref_primary_10_1038_s41380_021_01181_3 crossref_primary_10_1038_s41386_020_0781_1 crossref_primary_10_3390_cells12121588 crossref_primary_10_1016_j_biopsych_2017_02_009 crossref_primary_10_1097_j_pain_0000000000002149 crossref_primary_10_1038_s41380_022_01505_x crossref_primary_10_1016_j_phrs_2021_105722 crossref_primary_10_1523_JNEUROSCI_1065_15_2015 crossref_primary_10_3390_ijms22116113 crossref_primary_10_1016_j_neuropharm_2017_05_014 crossref_primary_10_1007_s00429_017_1533_9 crossref_primary_10_1016_j_drugalcdep_2019_107815 crossref_primary_10_1080_01677063_2021_1931180 crossref_primary_10_1073_pnas_2008456117 crossref_primary_10_1016_j_biopsych_2015_08_006 crossref_primary_10_3389_fnsys_2014_00230 crossref_primary_10_1111_adb_12706 crossref_primary_10_1523_ENEURO_0308_17_2017 crossref_primary_10_1111_adb_12388 crossref_primary_10_1016_j_pneurobio_2024_102573 crossref_primary_10_1038_npp_2016_52 crossref_primary_10_1038_s41598_020_67966_8 crossref_primary_10_1016_j_drugalcdep_2020_108309 crossref_primary_10_1016_j_nlm_2018_02_007 crossref_primary_10_1146_annurev_neuro_070815_013920 crossref_primary_10_1038_s41386_022_01285_6 crossref_primary_10_3390_biomedicines11051368 crossref_primary_10_3389_fphar_2020_603445 crossref_primary_10_1038_nrn3877 crossref_primary_10_1016_j_addicn_2022_100031 crossref_primary_10_1016_j_pbb_2017_05_009 crossref_primary_10_1038_npp_2015_351 crossref_primary_10_1124_pr_115_010967 crossref_primary_10_1016_j_pbb_2020_173058 crossref_primary_10_1016_j_neuropharm_2018_08_030 crossref_primary_10_1016_j_neuropharm_2016_12_014 crossref_primary_10_1007_s13311_017_0525_z crossref_primary_10_1038_s41467_021_25080_x crossref_primary_10_1111_adb_13101 crossref_primary_10_1016_j_brainres_2016_04_014 crossref_primary_10_1016_j_phrs_2018_08_025 crossref_primary_10_1038_s41386_024_02030_x crossref_primary_10_1038_s41386_021_01067_6 crossref_primary_10_1016_j_neubiorev_2022_104569 crossref_primary_10_1038_npp_2015_345 crossref_primary_10_1038_s41380_023_02364_w crossref_primary_10_1038_npp_2015_100 crossref_primary_10_1038_npp_2017_90 crossref_primary_10_1038_s41386_018_0049_1 crossref_primary_10_1038_mp_2015_103 crossref_primary_10_1016_j_neuron_2016_05_001 crossref_primary_10_1016_j_neuropharm_2017_10_024 crossref_primary_10_1111_adb_13334 crossref_primary_10_1038_npp_2017_87 crossref_primary_10_3390_brainsci9080183 crossref_primary_10_1016_j_conb_2019_02_010 crossref_primary_10_1111_ejn_14151 crossref_primary_10_1016_j_physbeh_2020_112963 crossref_primary_10_1111_adb_12248 crossref_primary_10_3389_fnbeh_2021_787362 crossref_primary_10_1016_j_addicn_2025_100208 crossref_primary_10_1016_j_neuron_2019_06_008 crossref_primary_10_1016_j_bbi_2023_07_021 crossref_primary_10_1111_ejn_13631 crossref_primary_10_1016_j_biopsych_2020_08_012 crossref_primary_10_1016_j_biopsych_2023_06_002 crossref_primary_10_1038_s41386_019_0479_4 crossref_primary_10_1523_JNEUROSCI_1022_15_2015 crossref_primary_10_1002_hipo_22955 crossref_primary_10_1016_j_bbr_2018_08_015 crossref_primary_10_1111_gbb_12440 crossref_primary_10_3389_fpsyt_2025_1627477 crossref_primary_10_1038_npp_2017_57 crossref_primary_10_1111_adb_12471 crossref_primary_10_1016_j_bpsgos_2025_100531 crossref_primary_10_3389_fphar_2022_940798 crossref_primary_10_1038_s41386_022_01422_1 crossref_primary_10_3389_fnhum_2024_1381935 crossref_primary_10_1073_pnas_1803084115 crossref_primary_10_1038_s41593_018_0081_9 crossref_primary_10_1097_FBP_0000000000000780 crossref_primary_10_1523_JNEUROSCI_2412_17_2018 crossref_primary_10_1016_j_addicn_2022_100049 crossref_primary_10_1038_s41598_020_67185_1 crossref_primary_10_1038_s41380_022_01884_1 crossref_primary_10_3389_fnbeh_2020_582147 crossref_primary_10_3389_fnsys_2019_00028 crossref_primary_10_1038_npp_2015_156 crossref_primary_10_1038_s41386_023_01580_w crossref_primary_10_1038_s41398_023_02318_4 crossref_primary_10_1038_s41380_020_00921_1 crossref_primary_10_1111_acer_12810 crossref_primary_10_1111_jnc_15297 crossref_primary_10_1016_j_biopsych_2020_11_006 crossref_primary_10_1016_j_pbb_2019_172829 crossref_primary_10_1016_j_biopsych_2019_10_030 crossref_primary_10_1111_adb_12690 crossref_primary_10_1016_j_neuron_2016_01_031 crossref_primary_10_1523_JNEUROSCI_3291_17_2018 crossref_primary_10_1016_j_biopsych_2015_02_018 crossref_primary_10_1523_JNEUROSCI_0468_24_2024 crossref_primary_10_1038_npp_2015_142 crossref_primary_10_1016_j_neuropharm_2015_10_038 crossref_primary_10_1016_j_pbb_2024_173889 crossref_primary_10_1038_s41380_024_02684_5 crossref_primary_10_1016_j_neuropharm_2020_108310 crossref_primary_10_1038_s41380_025_03026_9 crossref_primary_10_1111_adb_12205 crossref_primary_10_1523_JNEUROSCI_1457_18_2018 crossref_primary_10_1038_s41386_024_02043_6 crossref_primary_10_1016_j_biopsych_2025_05_026 crossref_primary_10_1038_s41380_021_01080_7 crossref_primary_10_1038_s41467_023_37045_3 crossref_primary_10_1016_j_neubiorev_2021_10_002 crossref_primary_10_1038_npp_2015_253 crossref_primary_10_1016_j_addicn_2023_100097 crossref_primary_10_1038_mp_2016_118 crossref_primary_10_1038_nn_4275 crossref_primary_10_1038_nn_4036 crossref_primary_10_1007_s13365_025_01257_8 crossref_primary_10_1038_s41398_018_0273_9 crossref_primary_10_1523_JNEUROSCI_1821_17_2017 crossref_primary_10_1111_adb_12430 crossref_primary_10_1016_j_neuroscience_2018_05_043 crossref_primary_10_1111_adb_12434 crossref_primary_10_1038_npp_2014_320 crossref_primary_10_1038_s41380_022_01459_0 crossref_primary_10_1038_s41386_021_01064_9 crossref_primary_10_1007_s12035_023_03610_6 crossref_primary_10_1126_sciadv_ads4441 crossref_primary_10_1016_j_cell_2017_11_002 crossref_primary_10_1038_s41386_019_0332_9 crossref_primary_10_1038_s42003_019_0651_8 crossref_primary_10_1523_JNEUROSCI_1559_21_2021 crossref_primary_10_1073_pnas_1705974114 crossref_primary_10_1073_pnas_1702441114 crossref_primary_10_1016_j_brainres_2014_12_024 crossref_primary_10_1016_j_neuroscience_2016_02_052 crossref_primary_10_3389_fncel_2015_00025 crossref_primary_10_1007_s00429_017_1590_0 crossref_primary_10_1016_j_bbr_2019_112318 crossref_primary_10_1038_npp_2016_168 crossref_primary_10_3389_fnsyn_2020_00003 crossref_primary_10_1016_j_neuroscience_2024_11_005 crossref_primary_10_1146_annurev_neuro_112723_032924 crossref_primary_10_1016_j_neuron_2015_08_037 crossref_primary_10_1038_s41467_020_15920_7 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2014.08.023 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 25199705 |
| Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R37 DA023206 – fundername: NIDA NIH HHS grantid: R00 DA029565 – fundername: NIDA NIH HHS grantid: R01 DA015835 – fundername: NIDA NIH HHS grantid: DA029565 – fundername: NIMH NIH HHS grantid: MH101147 – fundername: NIDA NIH HHS grantid: DA009621 – fundername: NIDA NIH HHS grantid: K99 DA029565 – fundername: NIDA NIH HHS grantid: DA023206 – fundername: NIDA NIH HHS grantid: DA015835 – fundername: NIMH NIH HHS grantid: R01 MH101147 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 5VS 62- 7-5 8FE 8FH AACTN AAEDT AAEDW AAKRW AAKUH AALRI AAMRU AAQFI AAVLU AAXUO ABJNI ABMAC ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AHHHB AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P P6G PQQKQ PROAC RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 AAFWJ AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c605t-5d8e60475dba5bd63527ce7b7751cf1f00d747f5a914c412fa33c5d26f6af6902 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 276 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342502400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Sun Nov 09 12:47:59 EST 2025 Thu Apr 03 07:00:44 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright © 2014 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c605t-5d8e60475dba5bd63527ce7b7751cf1f00d747f5a914c412fa33c5d26f6af6902 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neuron.2014.08.023 |
| PMID | 25199705 |
| PQID | 1563989349 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1563989349 pubmed_primary_25199705 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-17 |
| PublicationDateYYYYMMDD | 2014-09-17 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2014 |
| References | 25233302 - Neuron. 2014 Sep 17;83(6):1234-6 Neuron. 2014 Dec 17;84(6):1344-5 |
| References_xml | – reference: 25233302 - Neuron. 2014 Sep 17;83(6):1234-6 – reference: - Neuron. 2014 Dec 17;84(6):1344-5 |
| SSID | ssj0014591 |
| Score | 2.5844216 |
| Snippet | Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1453 |
| SubjectTerms | Animals Cocaine-Related Disorders - physiopathology Craving - physiology Drug-Seeking Behavior - physiology Electrophysiology Male Neural Pathways - drug effects Neural Pathways - physiopathology Neuronal Plasticity - physiology Nucleus Accumbens - drug effects Nucleus Accumbens - physiopathology Optogenetics Prefrontal Cortex - drug effects Prefrontal Cortex - physiopathology Rats Rats, Sprague-Dawley Synapses - drug effects Synapses - physiology |
| Title | Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25199705 https://www.proquest.com/docview/1563989349 |
| Volume | 83 |
| WOSCitedRecordID | wos000342502400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6u4MVlxn0hgngrtmnSNCcZRfHi4EFhbkOaBeYw7TgdxfkL_mrfSzt6EgQvhUITSpL3vrflfYRcZEawOLcqUj6WEc8EA5FyPLK5ZNjujEuvA9mE7PfzwUA9tQG3ui2rXOjEoKhtZTBGfgV-RqoAXLm6nrxGyBqF2dWWQmOZrKZgymBJlxz8ZBG4CIx5mGTFbKdaXJ0L9V2hXyR2QE14aOKJhEW_GZkBbO63_vub22SzNTNprzkXO2TJlR3S7ZXgYo_n9JKGws8QUe-Q9YaPct4lnzejBuJCfJCOK9uSe9HK01Fp3orvN9CjGgxUaqYaQxK0mNN6hAhG63mpJ7WLEB8tnbrAtYOfwKgJ4DF2TIDJDVb5ftBZRbUxSEtS1rQNC6Ek7JKX-7vn24eoJWuIDHhEs0jY3GUxl8IWWhQW7BgmjZOFlCIxPvFxbHHjhVYJNzxhXqepEZZlPtMeXHS2R1bKqnQHhHrGcpOnTsrY8tRLZVSC-UsN2GmcVofkfLH2QxAGzHDo0lVv9fBn9Q_JfrOBw0nTtWOIV3SVjMXRH0Yfkw08F1gXksgTsupBFbhTsmbeZ6N6ehZOGTz7T49fsNzfMQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+modulation+of+incubation+of+cocaine+craving+by+silent+synapse-based+remodeling+of+prefrontal+cortex+to+accumbens+projections&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Ma%2C+Yao-Ying&rft.au=Lee%2C+Brian+R&rft.au=Wang%2C+Xiusong&rft.au=Guo%2C+Changyong&rft.date=2014-09-17&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=83&rft.issue=6&rft.spage=1453&rft_id=info:doi/10.1016%2Fj.neuron.2014.08.023&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |