Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections

Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking aft...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neuron (Cambridge, Mass.) Ročník 83; číslo 6; s. 1453
Hlavní autori: Ma, Yao-Ying, Lee, Brian R, Wang, Xiusong, Guo, Changyong, Liu, Lei, Cui, Ranji, Lan, Yan, Balcita-Pedicino, Judith J, Wolf, Marina E, Sesack, Susan R, Shaham, Yavin, Schlüter, Oliver M, Huang, Yanhua H, Dong, Yan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 17.09.2014
Predmet:
ISSN:1097-4199, 1097-4199
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse.
AbstractList Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse.
Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse.Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse.
Author Ma, Yao-Ying
Wolf, Marina E
Shaham, Yavin
Schlüter, Oliver M
Wang, Xiusong
Cui, Ranji
Lee, Brian R
Guo, Changyong
Liu, Lei
Dong, Yan
Balcita-Pedicino, Judith J
Sesack, Susan R
Huang, Yanhua H
Lan, Yan
Author_xml – sequence: 1
  givenname: Yao-Ying
  surname: Ma
  fullname: Ma, Yao-Ying
  organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
– sequence: 2
  givenname: Brian R
  surname: Lee
  fullname: Lee, Brian R
  organization: Allen Institute for Brain Science, Seattle, WA 98103, USA
– sequence: 3
  givenname: Xiusong
  surname: Wang
  fullname: Wang, Xiusong
  organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
– sequence: 4
  givenname: Changyong
  surname: Guo
  fullname: Guo, Changyong
  organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
– sequence: 5
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  organization: School of Life Science, Northeastern Normal University, Jilin, China
– sequence: 6
  givenname: Ranji
  surname: Cui
  fullname: Cui, Ranji
  organization: School of Life Science, Northeastern Normal University, Jilin, China
– sequence: 7
  givenname: Yan
  surname: Lan
  fullname: Lan, Yan
  organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
– sequence: 8
  givenname: Judith J
  surname: Balcita-Pedicino
  fullname: Balcita-Pedicino, Judith J
  organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
– sequence: 9
  givenname: Marina E
  surname: Wolf
  fullname: Wolf, Marina E
  organization: Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
– sequence: 10
  givenname: Susan R
  surname: Sesack
  fullname: Sesack, Susan R
  organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
– sequence: 11
  givenname: Yavin
  surname: Shaham
  fullname: Shaham, Yavin
  organization: Behavioral Neuroscience Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
– sequence: 12
  givenname: Oliver M
  surname: Schlüter
  fullname: Schlüter, Oliver M
  organization: Molecular Neurobiology and Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain," European Neuroscience Institute, 37077 Göttingen, Germany
– sequence: 13
  givenname: Yanhua H
  surname: Huang
  fullname: Huang, Yanhua H
  email: huangy3@upmc.edu
  organization: Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address: huangy3@upmc.edu
– sequence: 14
  givenname: Yan
  surname: Dong
  fullname: Dong, Yan
  email: yandong@pitt.edu
  organization: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address: yandong@pitt.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25199705$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS1URB_wBwh5ySbBTmK7XkLFS6rEBtaRY4-Rq8QucYLoL_DVuGpBrOZ15t7RzNHEBw8IXVKSU0L5zSb3MPbB5wWhVU6WOSnKEzSjRIqsolJO_uVTNI9xQxLIJD1D04KlpiBshr7vnHE96MEFr1rcBTO2al_gYLHzemz-Kh20ch6w7tWn8--42eHoWvADjjuvthGyRkUwuIekAu0eSVvbHmy6ckjiOvQDfOEhYKX12DXgYxqHzcE9nqNTq9oIF8e4QG8P96-rp2z98vi8ul1nmhM2ZMwsgZNKMNMo1hheskJoEI0QjGpLLSFGVMIyJWmlK1pYVZaamYJbriyXpFig64Nu8v4YIQ5156KGtlUewhhryngpl7KsZEKvjujYdGDqbe861e_q3_8VP-7IebA
CitedBy_id crossref_primary_10_1016_j_tips_2017_12_004
crossref_primary_10_1523_JNEUROSCI_2673_16_2016
crossref_primary_10_1038_npp_2015_199
crossref_primary_10_1038_s41386_019_0342_7
crossref_primary_10_3389_fncel_2022_893190
crossref_primary_10_1073_pnas_1524739113
crossref_primary_10_1177_1073858415579405
crossref_primary_10_1038_s41380_021_01112_2
crossref_primary_10_1155_2020_9692321
crossref_primary_10_1038_s41386_018_0142_5
crossref_primary_10_3389_fnsyn_2018_00036
crossref_primary_10_1038_s41380_023_01942_2
crossref_primary_10_1016_j_neubiorev_2021_11_017
crossref_primary_10_1016_j_neuroscience_2015_06_033
crossref_primary_10_1186_s13293_023_00570_3
crossref_primary_10_1002_jnr_24737
crossref_primary_10_1038_s41386_022_01356_8
crossref_primary_10_1038_s41386_022_01417_y
crossref_primary_10_1124_pr_116_012484
crossref_primary_10_1016_j_physbeh_2015_03_042
crossref_primary_10_3389_fnsyn_2020_00026
crossref_primary_10_1016_j_pbb_2017_07_006
crossref_primary_10_3389_fnbeh_2018_00144
crossref_primary_10_1111_adb_12759
crossref_primary_10_1016_j_conb_2015_07_005
crossref_primary_10_1016_j_biopsych_2021_08_018
crossref_primary_10_3389_fnbeh_2018_00119
crossref_primary_10_1007_s12035_019_01725_3
crossref_primary_10_1523_JNEUROSCI_1718_22_2022
crossref_primary_10_14348_molcells_2017_0088
crossref_primary_10_1016_j_neubiorev_2017_10_024
crossref_primary_10_1016_j_pharmr_2024_100022
crossref_primary_10_1016_j_pnpbp_2018_01_002
crossref_primary_10_1038_mp_2017_9
crossref_primary_10_1016_j_biopha_2022_112708
crossref_primary_10_1016_j_biopsych_2016_04_002
crossref_primary_10_1111_cns_13469
crossref_primary_10_1038_s41386_019_0425_5
crossref_primary_10_1038_mp_2017_116
crossref_primary_10_1016_j_cobeha_2018_06_014
crossref_primary_10_1016_j_neuron_2019_04_015
crossref_primary_10_1016_j_phrs_2019_01_025
crossref_primary_10_1038_s41386_025_02198_w
crossref_primary_10_1038_s41386_018_0131_8
crossref_primary_10_1523_JNEUROSCI_4997_14_2015
crossref_primary_10_1016_j_neuron_2014_08_057
crossref_primary_10_1038_s41398_022_02299_w
crossref_primary_10_1016_j_tins_2016_04_007
crossref_primary_10_1093_ijnp_pyv136
crossref_primary_10_1016_j_neuropharm_2019_05_022
crossref_primary_10_1523_JNEUROSCI_0773_16_2016
crossref_primary_10_1155_2016_7538208
crossref_primary_10_1111_adb_12739
crossref_primary_10_15252_embj_201695465
crossref_primary_10_1038_npp_2016_111
crossref_primary_10_3389_fnsyn_2021_661476
crossref_primary_10_1038_nature21376
crossref_primary_10_1002_mco2_148
crossref_primary_10_3389_fpsyt_2022_1031585
crossref_primary_10_1007_s00429_015_1074_z
crossref_primary_10_1016_j_neubiorev_2023_105196
crossref_primary_10_1016_j_drugalcdep_2021_109033
crossref_primary_10_3389_fnbeh_2024_1420028
crossref_primary_10_3389_fncir_2021_711564
crossref_primary_10_1016_j_pnpbp_2021_110462
crossref_primary_10_1111_ejn_15441
crossref_primary_10_1124_pr_118_015552
crossref_primary_10_1016_j_biopsych_2021_08_008
crossref_primary_10_1111_bph_16427
crossref_primary_10_1016_j_biopsych_2022_05_008
crossref_primary_10_1016_j_nlm_2016_10_003
crossref_primary_10_1523_JNEUROSCI_1918_20_2021
crossref_primary_10_1523_JNEUROSCI_2023_22_2022
crossref_primary_10_1073_pnas_1519248113
crossref_primary_10_1523_JNEUROSCI_1100_19_2019
crossref_primary_10_1111_adb_13375
crossref_primary_10_1111_adb_13253
crossref_primary_10_1007_s00429_018_1683_4
crossref_primary_10_1038_s41593_019_0537_6
crossref_primary_10_1016_j_pbb_2025_174055
crossref_primary_10_1038_nrn_2016_39
crossref_primary_10_1016_j_neuropharm_2017_12_039
crossref_primary_10_1016_j_biopsych_2022_06_006
crossref_primary_10_1038_nn_4313
crossref_primary_10_1038_s41380_021_01181_3
crossref_primary_10_1038_s41386_020_0781_1
crossref_primary_10_3390_cells12121588
crossref_primary_10_1016_j_biopsych_2017_02_009
crossref_primary_10_1097_j_pain_0000000000002149
crossref_primary_10_1038_s41380_022_01505_x
crossref_primary_10_1016_j_phrs_2021_105722
crossref_primary_10_1523_JNEUROSCI_1065_15_2015
crossref_primary_10_3390_ijms22116113
crossref_primary_10_1016_j_neuropharm_2017_05_014
crossref_primary_10_1007_s00429_017_1533_9
crossref_primary_10_1016_j_drugalcdep_2019_107815
crossref_primary_10_1080_01677063_2021_1931180
crossref_primary_10_1073_pnas_2008456117
crossref_primary_10_1016_j_biopsych_2015_08_006
crossref_primary_10_3389_fnsys_2014_00230
crossref_primary_10_1111_adb_12706
crossref_primary_10_1523_ENEURO_0308_17_2017
crossref_primary_10_1111_adb_12388
crossref_primary_10_1016_j_pneurobio_2024_102573
crossref_primary_10_1038_npp_2016_52
crossref_primary_10_1038_s41598_020_67966_8
crossref_primary_10_1016_j_drugalcdep_2020_108309
crossref_primary_10_1016_j_nlm_2018_02_007
crossref_primary_10_1146_annurev_neuro_070815_013920
crossref_primary_10_1038_s41386_022_01285_6
crossref_primary_10_3390_biomedicines11051368
crossref_primary_10_3389_fphar_2020_603445
crossref_primary_10_1038_nrn3877
crossref_primary_10_1016_j_addicn_2022_100031
crossref_primary_10_1016_j_pbb_2017_05_009
crossref_primary_10_1038_npp_2015_351
crossref_primary_10_1124_pr_115_010967
crossref_primary_10_1016_j_pbb_2020_173058
crossref_primary_10_1016_j_neuropharm_2018_08_030
crossref_primary_10_1016_j_neuropharm_2016_12_014
crossref_primary_10_1007_s13311_017_0525_z
crossref_primary_10_1038_s41467_021_25080_x
crossref_primary_10_1111_adb_13101
crossref_primary_10_1016_j_brainres_2016_04_014
crossref_primary_10_1016_j_phrs_2018_08_025
crossref_primary_10_1038_s41386_024_02030_x
crossref_primary_10_1038_s41386_021_01067_6
crossref_primary_10_1016_j_neubiorev_2022_104569
crossref_primary_10_1038_npp_2015_345
crossref_primary_10_1038_s41380_023_02364_w
crossref_primary_10_1038_npp_2015_100
crossref_primary_10_1038_npp_2017_90
crossref_primary_10_1038_s41386_018_0049_1
crossref_primary_10_1038_mp_2015_103
crossref_primary_10_1016_j_neuron_2016_05_001
crossref_primary_10_1016_j_neuropharm_2017_10_024
crossref_primary_10_1111_adb_13334
crossref_primary_10_1038_npp_2017_87
crossref_primary_10_3390_brainsci9080183
crossref_primary_10_1016_j_conb_2019_02_010
crossref_primary_10_1111_ejn_14151
crossref_primary_10_1016_j_physbeh_2020_112963
crossref_primary_10_1111_adb_12248
crossref_primary_10_3389_fnbeh_2021_787362
crossref_primary_10_1016_j_addicn_2025_100208
crossref_primary_10_1016_j_neuron_2019_06_008
crossref_primary_10_1016_j_bbi_2023_07_021
crossref_primary_10_1111_ejn_13631
crossref_primary_10_1016_j_biopsych_2020_08_012
crossref_primary_10_1016_j_biopsych_2023_06_002
crossref_primary_10_1038_s41386_019_0479_4
crossref_primary_10_1523_JNEUROSCI_1022_15_2015
crossref_primary_10_1002_hipo_22955
crossref_primary_10_1016_j_bbr_2018_08_015
crossref_primary_10_1111_gbb_12440
crossref_primary_10_3389_fpsyt_2025_1627477
crossref_primary_10_1038_npp_2017_57
crossref_primary_10_1111_adb_12471
crossref_primary_10_1016_j_bpsgos_2025_100531
crossref_primary_10_3389_fphar_2022_940798
crossref_primary_10_1038_s41386_022_01422_1
crossref_primary_10_3389_fnhum_2024_1381935
crossref_primary_10_1073_pnas_1803084115
crossref_primary_10_1038_s41593_018_0081_9
crossref_primary_10_1097_FBP_0000000000000780
crossref_primary_10_1523_JNEUROSCI_2412_17_2018
crossref_primary_10_1016_j_addicn_2022_100049
crossref_primary_10_1038_s41598_020_67185_1
crossref_primary_10_1038_s41380_022_01884_1
crossref_primary_10_3389_fnbeh_2020_582147
crossref_primary_10_3389_fnsys_2019_00028
crossref_primary_10_1038_npp_2015_156
crossref_primary_10_1038_s41386_023_01580_w
crossref_primary_10_1038_s41398_023_02318_4
crossref_primary_10_1038_s41380_020_00921_1
crossref_primary_10_1111_acer_12810
crossref_primary_10_1111_jnc_15297
crossref_primary_10_1016_j_biopsych_2020_11_006
crossref_primary_10_1016_j_pbb_2019_172829
crossref_primary_10_1016_j_biopsych_2019_10_030
crossref_primary_10_1111_adb_12690
crossref_primary_10_1016_j_neuron_2016_01_031
crossref_primary_10_1523_JNEUROSCI_3291_17_2018
crossref_primary_10_1016_j_biopsych_2015_02_018
crossref_primary_10_1523_JNEUROSCI_0468_24_2024
crossref_primary_10_1038_npp_2015_142
crossref_primary_10_1016_j_neuropharm_2015_10_038
crossref_primary_10_1016_j_pbb_2024_173889
crossref_primary_10_1038_s41380_024_02684_5
crossref_primary_10_1016_j_neuropharm_2020_108310
crossref_primary_10_1038_s41380_025_03026_9
crossref_primary_10_1111_adb_12205
crossref_primary_10_1523_JNEUROSCI_1457_18_2018
crossref_primary_10_1038_s41386_024_02043_6
crossref_primary_10_1016_j_biopsych_2025_05_026
crossref_primary_10_1038_s41380_021_01080_7
crossref_primary_10_1038_s41467_023_37045_3
crossref_primary_10_1016_j_neubiorev_2021_10_002
crossref_primary_10_1038_npp_2015_253
crossref_primary_10_1016_j_addicn_2023_100097
crossref_primary_10_1038_mp_2016_118
crossref_primary_10_1038_nn_4275
crossref_primary_10_1038_nn_4036
crossref_primary_10_1007_s13365_025_01257_8
crossref_primary_10_1038_s41398_018_0273_9
crossref_primary_10_1523_JNEUROSCI_1821_17_2017
crossref_primary_10_1111_adb_12430
crossref_primary_10_1016_j_neuroscience_2018_05_043
crossref_primary_10_1111_adb_12434
crossref_primary_10_1038_npp_2014_320
crossref_primary_10_1038_s41380_022_01459_0
crossref_primary_10_1038_s41386_021_01064_9
crossref_primary_10_1007_s12035_023_03610_6
crossref_primary_10_1126_sciadv_ads4441
crossref_primary_10_1016_j_cell_2017_11_002
crossref_primary_10_1038_s41386_019_0332_9
crossref_primary_10_1038_s42003_019_0651_8
crossref_primary_10_1523_JNEUROSCI_1559_21_2021
crossref_primary_10_1073_pnas_1705974114
crossref_primary_10_1073_pnas_1702441114
crossref_primary_10_1016_j_brainres_2014_12_024
crossref_primary_10_1016_j_neuroscience_2016_02_052
crossref_primary_10_3389_fncel_2015_00025
crossref_primary_10_1007_s00429_017_1590_0
crossref_primary_10_1016_j_bbr_2019_112318
crossref_primary_10_1038_npp_2016_168
crossref_primary_10_3389_fnsyn_2020_00003
crossref_primary_10_1016_j_neuroscience_2024_11_005
crossref_primary_10_1146_annurev_neuro_112723_032924
crossref_primary_10_1016_j_neuron_2015_08_037
crossref_primary_10_1038_s41467_020_15920_7
ContentType Journal Article
Copyright Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2014.08.023
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
ExternalDocumentID 25199705
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R37 DA023206
– fundername: NIDA NIH HHS
  grantid: R00 DA029565
– fundername: NIDA NIH HHS
  grantid: R01 DA015835
– fundername: NIDA NIH HHS
  grantid: DA029565
– fundername: NIMH NIH HHS
  grantid: MH101147
– fundername: NIDA NIH HHS
  grantid: DA009621
– fundername: NIDA NIH HHS
  grantid: K99 DA029565
– fundername: NIDA NIH HHS
  grantid: DA023206
– fundername: NIDA NIH HHS
  grantid: DA015835
– fundername: NIMH NIH HHS
  grantid: R01 MH101147
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
5VS
62-
7-5
8FE
8FH
AACTN
AAEDT
AAEDW
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
AAFWJ
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c605t-5d8e60475dba5bd63527ce7b7751cf1f00d747f5a914c412fa33c5d26f6af6902
IEDL.DBID 7X8
ISICitedReferencesCount 276
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342502400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4199
IngestDate Sun Nov 09 12:47:59 EST 2025
Thu Apr 03 07:00:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-5d8e60475dba5bd63527ce7b7751cf1f00d747f5a914c412fa33c5d26f6af6902
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.neuron.2014.08.023
PMID 25199705
PQID 1563989349
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1563989349
pubmed_primary_25199705
PublicationCentury 2000
PublicationDate 2014-09-17
PublicationDateYYYYMMDD 2014-09-17
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2014
References 25233302 - Neuron. 2014 Sep 17;83(6):1234-6
Neuron. 2014 Dec 17;84(6):1344-5
References_xml – reference: 25233302 - Neuron. 2014 Sep 17;83(6):1234-6
– reference: - Neuron. 2014 Dec 17;84(6):1344-5
SSID ssj0014591
Score 2.5844216
Snippet Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1453
SubjectTerms Animals
Cocaine-Related Disorders - physiopathology
Craving - physiology
Drug-Seeking Behavior - physiology
Electrophysiology
Male
Neural Pathways - drug effects
Neural Pathways - physiopathology
Neuronal Plasticity - physiology
Nucleus Accumbens - drug effects
Nucleus Accumbens - physiopathology
Optogenetics
Prefrontal Cortex - drug effects
Prefrontal Cortex - physiopathology
Rats
Rats, Sprague-Dawley
Synapses - drug effects
Synapses - physiology
Title Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections
URI https://www.ncbi.nlm.nih.gov/pubmed/25199705
https://www.proquest.com/docview/1563989349
Volume 83
WOSCitedRecordID wos000342502400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6u4MVlxn0hgngrtmnSNCcZRfHi4EFhbkOaBeYw7TgdxfkL_mrfSzt6EgQvhUITSpL3vrflfYRcZEawOLcqUj6WEc8EA5FyPLK5ZNjujEuvA9mE7PfzwUA9tQG3ui2rXOjEoKhtZTBGfgV-RqoAXLm6nrxGyBqF2dWWQmOZrKZgymBJlxz8ZBG4CIx5mGTFbKdaXJ0L9V2hXyR2QE14aOKJhEW_GZkBbO63_vub22SzNTNprzkXO2TJlR3S7ZXgYo_n9JKGws8QUe-Q9YaPct4lnzejBuJCfJCOK9uSe9HK01Fp3orvN9CjGgxUaqYaQxK0mNN6hAhG63mpJ7WLEB8tnbrAtYOfwKgJ4DF2TIDJDVb5ftBZRbUxSEtS1rQNC6Ek7JKX-7vn24eoJWuIDHhEs0jY3GUxl8IWWhQW7BgmjZOFlCIxPvFxbHHjhVYJNzxhXqepEZZlPtMeXHS2R1bKqnQHhHrGcpOnTsrY8tRLZVSC-UsN2GmcVofkfLH2QxAGzHDo0lVv9fBn9Q_JfrOBw0nTtWOIV3SVjMXRH0Yfkw08F1gXksgTsupBFbhTsmbeZ6N6ehZOGTz7T49fsNzfMQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+modulation+of+incubation+of+cocaine+craving+by+silent+synapse-based+remodeling+of+prefrontal+cortex+to+accumbens+projections&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Ma%2C+Yao-Ying&rft.au=Lee%2C+Brian+R&rft.au=Wang%2C+Xiusong&rft.au=Guo%2C+Changyong&rft.date=2014-09-17&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=83&rft.issue=6&rft.spage=1453&rft_id=info:doi/10.1016%2Fj.neuron.2014.08.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon