Ferritinophagy and ferroptosis in the management of metabolic diseases

Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for tar...

Full description

Saved in:
Bibliographic Details
Published in:TRENDS IN ENDOCRINOLOGY AND METABOLISM Vol. 32; no. 7; pp. 444 - 462
Main Authors: Ajoolabady, Amir, Aslkhodapasandhokmabad, Hamid, Libby, Peter, Tuomilehto, Jaakko, Lip, Gregory Y.H., Penninger, Josef M., Richardson, Des R., Tang, Daolin, Zhou, Hao, Wang, Shuyi, Klionsky, Daniel J., Kroemer, Guido, Ren, Jun
Format: Journal Article Publication
Language:English
Published: United States Elsevier Ltd 01.07.2021
Subjects:
ISSN:1043-2760, 1879-3061, 1879-3061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases. Ferroptosis is a form of regulated cell death that is driven by iron overload and lipid peroxidation.Ferroptosis contributes to the onset or progression of various metabolic diseases.Ferritinophagy is a selective type of autophagy, which induces ferroptosis by degrading ferritin and inducing iron overload.Ferritinophagy inhibition may ameliorate ferroptosis and ease the management of metabolic diseases.
AbstractList Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.
Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.
Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases. Ferroptosis is a form of regulated cell death that is driven by iron overload and lipid peroxidation.Ferroptosis contributes to the onset or progression of various metabolic diseases.Ferritinophagy is a selective type of autophagy, which induces ferroptosis by degrading ferritin and inducing iron overload.Ferritinophagy inhibition may ameliorate ferroptosis and ease the management of metabolic diseases.
Author Aslkhodapasandhokmabad, Hamid
Tang, Daolin
Wang, Shuyi
Richardson, Des R.
Klionsky, Daniel J.
Libby, Peter
Zhou, Hao
Ren, Jun
Lip, Gregory Y.H.
Ajoolabady, Amir
Tuomilehto, Jaakko
Penninger, Josef M.
Kroemer, Guido
Author_xml – sequence: 1
  givenname: Amir
  surname: Ajoolabady
  fullname: Ajoolabady, Amir
  organization: Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
– sequence: 2
  givenname: Hamid
  surname: Aslkhodapasandhokmabad
  fullname: Aslkhodapasandhokmabad, Hamid
  organization: University of Visayas, Gullas College of Medicine, Dionisio Jakosalem St, Cebu City, 6000, Cebu, Philippines
– sequence: 3
  givenname: Peter
  surname: Libby
  fullname: Libby, Peter
  organization: Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 4
  givenname: Jaakko
  surname: Tuomilehto
  fullname: Tuomilehto, Jaakko
  organization: Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
– sequence: 5
  givenname: Gregory Y.H.
  surname: Lip
  fullname: Lip, Gregory Y.H.
  organization: University of Liverpool Institute of Ageing and Chronic Disease, Liverpool Centre for Cardiovascular Science, Liverpool, UK
– sequence: 6
  givenname: Josef M.
  surname: Penninger
  fullname: Penninger, Josef M.
  organization: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
– sequence: 7
  givenname: Des R.
  surname: Richardson
  fullname: Richardson, Des R.
  organization: Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
– sequence: 8
  givenname: Daolin
  surname: Tang
  fullname: Tang, Daolin
  organization: Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
– sequence: 9
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  organization: Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
– sequence: 10
  givenname: Shuyi
  surname: Wang
  fullname: Wang, Shuyi
  email: shuyiwang23@outlook.com
  organization: Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
– sequence: 11
  givenname: Daniel J.
  surname: Klionsky
  fullname: Klionsky, Daniel J.
  email: klionsky@umich.edu
  organization: Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 12
  givenname: Guido
  surname: Kroemer
  fullname: Kroemer, Guido
  email: kroemer@orange.fr
  organization: Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
– sequence: 13
  givenname: Jun
  orcidid: 0000-0002-0275-0783
  surname: Ren
  fullname: Ren, Jun
  email: jren_aldh2@outlook.com
  organization: Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34006412$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNqFkl1rFTEQhoNU7If-AG9kL73ZdZLsJ4IgxWMLBS_U6yGbnW1zupsck2zl_HuznFMvClYIZDK8zxuYd87ZiXWWGHvLoeDA6w_bItJcCBC8gLIADi_YGW-bLpdQ85NUQylz0dRwys5D2ALwsuXVK3YqS4C65OKMbTbkvYnGut2dut1nyg7ZmFpuF10wITM2i3eUzcqqW5rJxsyN2UxR9W4yOhtMIBUovGYvRzUFenO8L9jPzZcfl1f5zbev15efb3JdQxXzqmulkEPTtkp10Hd9OiM0fVWlB2nQtZJNBQOXfS3qsho7GEs16H4kxfUwyguWH3zDb9otPe68mZXfo1MGj637VBEmWEiZ9O8P-p13vxYKEWcTNE2TsuSWgKISbQcNL7skfXeULv1Mw1_rx1klQXMQaO9C8DSiNlFF42z0ykzIAddUcIspFVxTQSgxpZJI_oR8NH-O-XhgKI3zwZDHoA1ZTYPxpCMOzjxLf3pC68lYo9V0T3sKW7d4m3JCjkEg4Pd1U9ZFERwAumodXPdvg_98_gdhIs07
CitedBy_id crossref_primary_10_1016_j_ecoenv_2025_117964
crossref_primary_10_1016_j_jff_2023_105441
crossref_primary_10_1007_s00210_025_04206_8
crossref_primary_10_1016_j_jsbmb_2024_106663
crossref_primary_10_1016_j_prp_2025_155991
crossref_primary_10_1016_j_jep_2024_118465
crossref_primary_10_2147_JIR_S493001
crossref_primary_10_1016_j_celrep_2025_116186
crossref_primary_10_1016_j_freeradbiomed_2024_07_002
crossref_primary_10_1002_sen2_5
crossref_primary_10_1142_S0192415X22500902
crossref_primary_10_1186_s13019_025_03554_z
crossref_primary_10_1039_D3NR04733D
crossref_primary_10_26599_1671_5411_2025_01_006
crossref_primary_10_1016_j_freeradbiomed_2023_09_004
crossref_primary_10_1186_s10020_024_00825_8
crossref_primary_10_1007_s12672_025_02803_w
crossref_primary_10_1080_15548627_2025_2503564
crossref_primary_10_3389_fendo_2022_945976
crossref_primary_10_1002_ptr_70028
crossref_primary_10_1016_j_bbagen_2024_130706
crossref_primary_10_3389_fendo_2023_1176430
crossref_primary_10_3389_fimmu_2022_956361
crossref_primary_10_1016_j_jhazmat_2025_138515
crossref_primary_10_3389_fimmu_2025_1587075
crossref_primary_10_1016_j_abb_2023_109737
crossref_primary_10_1016_j_coph_2023_102430
crossref_primary_10_1016_j_cbi_2024_111292
crossref_primary_10_3390_molecules27228039
crossref_primary_10_1016_j_lfs_2025_123950
crossref_primary_10_1016_j_freeradbiomed_2024_03_015
crossref_primary_10_1186_s12933_024_02224_z
crossref_primary_10_3389_fcell_2025_1551003
crossref_primary_10_1007_s00204_024_03745_y
crossref_primary_10_1016_j_freeradbiomed_2024_01_043
crossref_primary_10_1038_s41467_024_48433_8
crossref_primary_10_1016_j_bcp_2021_114661
crossref_primary_10_1186_s10020_023_00724_4
crossref_primary_10_1016_j_freeradbiomed_2022_04_014
crossref_primary_10_1038_s41467_024_50222_2
crossref_primary_10_1080_01480545_2023_2295230
crossref_primary_10_1186_s12944_024_02108_x
crossref_primary_10_1016_j_freeradbiomed_2025_05_390
crossref_primary_10_4062_biomolther_2025_037
crossref_primary_10_1016_j_ijbiomac_2024_133424
crossref_primary_10_1038_s41392_024_01969_z
crossref_primary_10_1007_s13402_023_00858_x
crossref_primary_10_1016_j_ajpath_2024_02_009
crossref_primary_10_1016_j_bbagen_2022_130245
crossref_primary_10_1016_j_biopha_2022_112702
crossref_primary_10_1016_j_intimp_2025_115188
crossref_primary_10_1039_D2EN00116K
crossref_primary_10_1186_s13098_023_01135_5
crossref_primary_10_3389_fendo_2024_1421838
crossref_primary_10_1016_j_heliyon_2024_e29654
crossref_primary_10_4103_jcrt_jcrt_806_23
crossref_primary_10_1096_fj_202302596R
crossref_primary_10_1097_CAD_0000000000001724
crossref_primary_10_1089_ars_2023_0473
crossref_primary_10_1016_j_jhazmat_2024_134319
crossref_primary_10_1038_s41420_023_01753_y
crossref_primary_10_1016_j_phrs_2022_106072
crossref_primary_10_1002_cbf_3985
crossref_primary_10_3892_mmr_2025_13557
crossref_primary_10_1089_ars_2022_0202
crossref_primary_10_1016_j_biopha_2025_118304
crossref_primary_10_1158_0008_5472_CAN_24_3785
crossref_primary_10_1016_j_biopha_2021_111872
crossref_primary_10_3390_antiox13060714
crossref_primary_10_1016_j_tox_2022_153119
crossref_primary_10_3390_antiox12122119
crossref_primary_10_1016_j_tips_2021_11_011
crossref_primary_10_1155_2022_5918218
crossref_primary_10_3390_ijms241814108
crossref_primary_10_1007_s10815_024_03155_0
crossref_primary_10_1016_j_hbpd_2023_10_005
crossref_primary_10_1016_j_phrs_2022_106086
crossref_primary_10_1186_s12906_024_04463_9
crossref_primary_10_1080_1120009X_2023_2177808
crossref_primary_10_1002_med_21881
crossref_primary_10_1017_S204017442400045X
crossref_primary_10_3389_fonc_2021_778492
crossref_primary_10_1016_j_phymed_2024_155443
crossref_primary_10_3389_fcell_2023_1213995
crossref_primary_10_31083_j_fbl2812332
crossref_primary_10_1016_j_envpol_2025_126101
crossref_primary_10_1155_2023_8257217
crossref_primary_10_3390_ijms23179524
crossref_primary_10_1007_s00204_024_03812_4
crossref_primary_10_1016_j_biocel_2024_106632
crossref_primary_10_1080_15548627_2025_2481126
crossref_primary_10_1016_j_intimp_2024_113083
crossref_primary_10_31083_j_fbl2908291
crossref_primary_10_1016_j_bbadis_2023_166958
crossref_primary_10_2174_0113862073271348231213071225
crossref_primary_10_1016_j_freeradbiomed_2023_06_019
crossref_primary_10_3390_biology14040367
crossref_primary_10_1038_s41419_022_04883_w
crossref_primary_10_1007_s10495_025_02121_0
crossref_primary_10_3389_fonc_2022_1025067
crossref_primary_10_1080_09553002_2022_2020358
crossref_primary_10_5114_aoms_185257
crossref_primary_10_1016_j_freeradbiomed_2024_09_039
crossref_primary_10_3389_fendo_2023_1177488
crossref_primary_10_1080_10408398_2025_2540044
crossref_primary_10_1016_j_biopha_2023_115802
crossref_primary_10_1080_0886022X_2024_2379601
crossref_primary_10_3390_jcm12206547
crossref_primary_10_1038_s41698_025_01090_6
crossref_primary_10_1089_ars_2022_0110
crossref_primary_10_3390_biomedicines11010163
crossref_primary_10_1111_tra_12905
crossref_primary_10_1021_acs_jafc_5c02034
crossref_primary_10_3389_fphar_2024_1379058
crossref_primary_10_3390_biomedicines13081880
crossref_primary_10_1186_s12974_022_02570_3
crossref_primary_10_1186_s12951_025_03620_7
crossref_primary_10_1016_j_ijrobp_2023_04_004
crossref_primary_10_1007_s11033_023_08264_0
crossref_primary_10_1016_j_lfs_2023_121821
crossref_primary_10_1177_21621918251372954
crossref_primary_10_1016_j_drup_2024_101154
crossref_primary_10_3389_fcvm_2022_841545
crossref_primary_10_1016_j_jare_2025_07_043
crossref_primary_10_1631_jzus_B2300097
crossref_primary_10_1016_j_fsi_2024_109745
crossref_primary_10_1007_s00204_025_03973_w
crossref_primary_10_3390_ijms242417279
crossref_primary_10_1007_s10495_025_02083_3
crossref_primary_10_1016_j_lfs_2023_122370
crossref_primary_10_1002_advs_202300325
crossref_primary_10_1016_j_jnutbio_2023_109339
crossref_primary_10_3390_ijms23126583
crossref_primary_10_1002_advs_202507536
crossref_primary_10_1111_jcmm_70125
crossref_primary_10_1016_j_taap_2025_117376
crossref_primary_10_1002_advs_202207216
crossref_primary_10_1186_s40364_022_00365_5
crossref_primary_10_3389_fimmu_2022_877634
crossref_primary_10_1007_s12035_023_03640_0
crossref_primary_10_1016_j_metabol_2021_154840
crossref_primary_10_1016_j_phrs_2025_107915
crossref_primary_10_1016_j_cjca_2024_11_028
crossref_primary_10_1007_s00210_025_04478_0
crossref_primary_10_3389_fmicb_2022_889835
crossref_primary_10_3390_ijms252111613
crossref_primary_10_1016_j_brainresbull_2024_110991
crossref_primary_10_1038_s41380_023_02399_z
crossref_primary_10_1080_15548627_2024_2319901
crossref_primary_10_4103_1673_5374_350187
crossref_primary_10_1016_j_canlet_2023_216147
crossref_primary_10_1016_j_yebeh_2024_109890
crossref_primary_10_1016_j_biopha_2024_117513
crossref_primary_10_1097_MD_0000000000039158
crossref_primary_10_1007_s12035_024_04018_6
crossref_primary_10_1016_j_drup_2025_101266
crossref_primary_10_1016_j_semcancer_2025_02_013
crossref_primary_10_1016_j_ajpath_2022_08_010
crossref_primary_10_1039_D2FO03331C
crossref_primary_10_1007_s00262_023_03625_x
crossref_primary_10_1016_j_exger_2022_111836
crossref_primary_10_3389_fnins_2022_1068611
crossref_primary_10_1038_s41401_025_01499_6
crossref_primary_10_1016_j_lfs_2022_121207
crossref_primary_10_3389_fcvm_2022_906753
crossref_primary_10_1016_j_lfs_2023_121987
crossref_primary_10_1155_2022_9304383
crossref_primary_10_3389_fphar_2023_1286718
crossref_primary_10_1186_s13046_023_02925_5
crossref_primary_10_1210_endrev_bnad001
crossref_primary_10_1016_j_bioactmat_2024_07_024
crossref_primary_10_1016_j_intimp_2025_114490
crossref_primary_10_1016_j_ejphar_2023_175881
crossref_primary_10_1038_s41419_022_04974_8
crossref_primary_10_1155_2022_6558060
crossref_primary_10_1186_s12872_024_04233_y
crossref_primary_10_2147_JAA_S416276
crossref_primary_10_1016_j_freeradbiomed_2022_02_033
crossref_primary_10_3389_fphys_2022_993904
crossref_primary_10_1007_s13273_025_00557_8
crossref_primary_10_1007_s40495_023_00339_7
crossref_primary_10_1016_j_bbamcr_2025_120054
crossref_primary_10_1038_s41388_024_03050_z
crossref_primary_10_1097_WNR_0000000000002080
crossref_primary_10_1016_j_cbi_2024_111104
crossref_primary_10_3390_ijms232214195
crossref_primary_10_1016_j_intimp_2024_112605
crossref_primary_10_3389_fcvm_2022_993592
crossref_primary_10_1002_1878_0261_13574
crossref_primary_10_1002_mco2_70010
crossref_primary_10_1016_j_bbadis_2022_166448
crossref_primary_10_1111_jcmm_17171
crossref_primary_10_2147_DDDT_S535517
crossref_primary_10_1016_j_lfs_2023_122291
crossref_primary_10_1016_j_isci_2025_112404
crossref_primary_10_1002_med_21921
crossref_primary_10_1155_2022_3568597
crossref_primary_10_1016_j_jep_2024_117963
crossref_primary_10_1016_j_yexcr_2023_113612
crossref_primary_10_1002_adma_202501933
crossref_primary_10_1016_j_biopha_2023_115538
crossref_primary_10_1016_j_jhazmat_2024_135542
crossref_primary_10_1007_s11064_023_03963_3
crossref_primary_10_1080_17435390_2023_2197055
crossref_primary_10_1016_j_bcp_2023_115909
crossref_primary_10_3389_fphar_2022_1066244
crossref_primary_10_3389_fphar_2022_930958
crossref_primary_10_1016_j_intimp_2025_115250
crossref_primary_10_1007_s43032_022_01004_y
crossref_primary_10_1002_adma_202105348
crossref_primary_10_1016_j_intimp_2024_112818
crossref_primary_10_1016_j_freeradbiomed_2023_04_008
crossref_primary_10_1016_j_heliyon_2024_e38553
crossref_primary_10_3389_fimmu_2022_920059
crossref_primary_10_1016_j_phrs_2022_106386
crossref_primary_10_31083_j_jin2201019
crossref_primary_10_3390_ijms25189947
crossref_primary_10_1177_09731296231221610
crossref_primary_10_1186_s12951_022_01661_w
crossref_primary_10_1002_jat_4453
crossref_primary_10_1016_j_biopha_2023_114312
crossref_primary_10_1079_fsncases_2025_0014
crossref_primary_10_2147_JIR_S400107
crossref_primary_10_3389_fphar_2024_1374445
crossref_primary_10_1016_j_ejphar_2023_175569
crossref_primary_10_1016_j_phymed_2023_154671
crossref_primary_10_1186_s12964_024_01751_2
crossref_primary_10_2147_JHC_S395617
crossref_primary_10_3390_genes14112005
crossref_primary_10_1016_j_jhazmat_2024_134356
crossref_primary_10_1155_2022_2948248
crossref_primary_10_1007_s11010_024_04940_2
crossref_primary_10_1038_s41419_022_04764_2
crossref_primary_10_3390_nu14214549
crossref_primary_10_1002_med_21934
crossref_primary_10_1016_j_lfs_2023_122086
crossref_primary_10_1016_j_cbi_2025_111723
Cites_doi 10.1097/01.ccm.0000552187.51051.23
10.1172/JCI129903
10.1016/j.neuroscience.2021.03.009
10.1038/ncb3064
10.1016/j.arr.2020.101129
10.1016/j.metabol.2020.154397
10.2147/DMSO.S249382
10.1152/ajpheart.00237.2020
10.1111/cns.13069
10.1016/j.fct.2020.111329
10.1016/j.cub.2007.07.029
10.1002/ctm2.173
10.1016/j.redox.2020.101670
10.1016/j.bbrc.2019.06.015
10.1021/cb200492h
10.1021/acs.jmedchem.8b01299
10.1016/j.jddst.2017.09.013
10.3389/fphys.2020.551318
10.1016/j.ajpath.2019.09.012
10.1038/s41419-019-2061-8
10.1186/s12931-020-01500-2
10.1038/s41467-020-15646-6
10.1016/j.tcb.2020.02.009
10.1002/ehf2.12958
10.1074/jbc.RA119.010949
10.1016/j.chom.2018.05.009
10.1089/dna.2019.5097
10.1161/CIRCRESAHA.120.316509
10.1016/j.taap.2019.114665
10.1016/j.bbrc.2019.05.147
10.1073/pnas.1821022116
10.18632/aging.103378
10.7554/eLife.62174
10.1016/j.matpr.2018.04.174
10.1016/j.bbamcr.2020.118913
10.1016/j.freeradbiomed.2020.08.009
10.1038/s41422-020-00441-1
10.18663/tjcl.769961
10.1093/carcin/bgs295
10.7554/eLife.02523
10.1093/cdn/nzz044.OR15-07-19
10.1038/nchembio.2239
10.1016/j.foodchem.2020.126368
10.1016/j.lfs.2020.118660
10.1016/j.cell.2007.12.018
10.1080/15548627.2016.1187366
10.1016/j.freeradbiomed.2019.01.052
10.1172/jci.insight.90777
10.1002/iub.1621
10.4239/wjd.v12.i2.124
10.1080/15548627.2018.1474314
10.1210/endrev/bnab006
10.1016/j.fct.2021.112114
10.1016/j.jchemneu.2020.101807
10.1038/s41418-019-0299-4
10.1016/j.celrep.2017.07.055
10.3390/nu12102954
10.1016/j.cell.2012.03.042
10.1038/s41418-020-0528-x
10.1016/j.freeradbiomed.2020.07.026
10.1016/j.brainres.2018.10.023
10.1016/j.freeradbiomed.2020.10.307
10.1016/j.envpol.2019.07.105
10.4103/1673-5374.245480
10.3390/antiox9080682
10.1007/s13311-020-00929-z
10.1111/ajt.15773
10.7554/eLife.10308
10.1161/STROKEAHA.116.015609
10.1016/j.bbrc.2018.02.061
10.1080/15548627.2018.1503146
10.1016/j.chembiol.2020.02.005
10.1126/sciadv.aaw2238
10.1016/j.lfs.2019.116795
10.1016/j.bbcan.2020.188366
10.1016/j.tips.2017.02.005
10.1016/j.ejmech.2020.112842
10.1096/fasebj.2020.34.s1.02704
10.3892/mmr.2020.11114
10.1016/j.cell.2019.03.032
10.3892/ijo.2014.2313
10.1152/ajprenal.00044.2017
10.1038/s41467-019-10991-7
10.3892/mmr.2020.11647
10.1172/jci.insight.141299
10.1007/s10620-020-06225-2
10.1016/j.bbrc.2019.10.006
10.1016/j.ajpath.2019.09.011
10.1111/1440-1681.13500
10.4046/trd.2013.75.1.9
10.1530/JOE-20-0155
10.1126/science.1197203
10.1007/s00018-019-03305-z
10.1172/JCI99032
10.1038/nature13148
10.1016/j.joim.2020.01.008
10.1038/s41598-017-12862-x
10.1016/j.cub.2020.09.068
10.1016/j.lfs.2020.118487
10.1093/eurheartj/ehy822
10.1007/s00210-020-01932-z
10.1111/bph.15283
10.1038/nchembio.2238
10.1016/j.jare.2020.07.007
10.1038/s41419-020-02871-6
10.1038/s41419-020-03135-z
10.1161/str.47.suppl_1.221
10.1016/j.bbagen.2017.05.019
10.1007/s10571-020-00850-1
10.1038/s41589-020-0472-6
10.3389/fneur.2018.00581
10.1186/s11658-020-00205-0
10.1002/ana.25356
ContentType Journal Article
Publication
Copyright 2021 Elsevier Ltd
Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
BZJLE
DOI 10.1016/j.tem.2021.04.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
SwePub
SwePub Other
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-3061
EndPage 462
ExternalDocumentID oai_swepub_ki_se_645233
34006412
10_1016_j_tem_2021_04_010
S1043276021000953
1_s2_0_S1043276021000953
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OB0
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
XFW
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RCE
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
LCYCR
9DU
AAYXX
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTPV
BZJLE
ID FETCH-LOGICAL-c605t-598323d788aa90b9bb9bf07b550b9ec0c6a3750d13b62645f90f4adcbfea1cdf3
ISICitedReferencesCount 261
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659494900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1043-2760
1879-3061
IngestDate Tue Nov 25 03:36:44 EST 2025
Sun Sep 28 02:39:09 EDT 2025
Mon Apr 28 11:35:44 EDT 2025
Sat Nov 29 07:06:25 EST 2025
Tue Nov 18 22:41:14 EST 2025
Fri Feb 23 02:44:41 EST 2024
Tue Feb 25 19:56:48 EST 2025
Tue Oct 14 19:30:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords iron overload
ferritinophagy
ferroptosis
metabolic diseases
lipid peroxidation
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605t-598323d788aa90b9bb9bf07b550b9ec0c6a3750d13b62645f90f4adcbfea1cdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0275-0783
OpenAccessLink http://hdl.handle.net/10072/405135
PMID 34006412
PQID 2528907149
PQPubID 23479
PageCount 19
ParticipantIDs swepub_primary_oai_swepub_ki_se_645233
proquest_miscellaneous_2528907149
pubmed_primary_34006412
crossref_citationtrail_10_1016_j_tem_2021_04_010
crossref_primary_10_1016_j_tem_2021_04_010
elsevier_sciencedirect_doi_10_1016_j_tem_2021_04_010
elsevier_clinicalkeyesjournals_1_s2_0_S1043276021000953
elsevier_clinicalkey_doi_10_1016_j_tem_2021_04_010
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle TRENDS IN ENDOCRINOLOGY AND METABOLISM
PublicationTitleAlternate Trends Endocrinol Metab
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu (bb0030) 2020; 27
Javidfar (bb0605) 2018; 43
Zhou (bb0540) 2020; 190
Zhang (bb0335) 2018; 14
Wang, Tang (bb0180) 2019; 254
Mayr (bb0600) 2020; 11
Yao (bb0585) 2019; 14
Menon (bb0070) 2020; 34
Jacobs (bb0110) 2020; 7
Nai (bb0630) 2021; 106
Grabherr (bb0405) 2019; 57
Yamada (bb0530) 2020; 20
Hou (bb0025) 2016; 12
Rui (bb0465) 2020; 70
Bai (bb0170) 2020; 160
Ito (bb0115) 2021; 10
Qi (bb0365) 2020; 190
Li (bb0435) 2020; 41
Tang (bb0145) 2020
Liu (bb0470) 2019; 9
Luo (bb0445) 2020; 13
Tang (bb0120) 2021; 394
Zhang (bb0215) 2020; 246
Stamenkovic (bb0125) 2021; 320
Yang (bb0655) 2019; 5
Levine, Kroemer (bb0020) 2008; 132
Zhang (bb0515) 2019; 1706
Ajoolabady (bb0005) 2020; 1874
Yang (bb0420) 2020; 209
Li (bb0340) 2018; 9
Wang (bb0415) 2020; 11
Xiao (bb0185) 2019; 515
Dixon (bb0040) 2012; 149
Zille (bb0570) 2017; 48
Guo (bb0270) 2021; 178
Tian (bb0320) 2020; 17
Tang (bb0150) 2021; 162
Hassannia (bb0090) 2018; 128
Tang (bb0305) 2019; 134
Khiavi (bb0610) 2020; 77
Lin (bb0315) 2020; 9
Alim (bb0510) 2019; 177
Mancias (bb0295) 2015; 4
Guan (bb0455) 2020; 264
Tumer (bb0485) 2020; 11
Wang (bb0505) 2020; 28
Wei (bb0460) 2020; 10
Ajoolabady (bb0015) 2021
Proneth (bb0260) 2016; 100
Deng (bb0265) 2019; 129
Kagan (bb0060) 2017; 13
Jianga (bb0135) 2020; 29
Feng (bb0130) 2019; 520
Prakash (bb0560) 2020
Angeli (bb0285) 2014; 16
Chen (bb0565) 2020
Mancias (bb0290) 2014; 509
Liu (bb0440) 2020; 25
Arosio (bb0075) 2017; 69
Park (bb0140) 2019; 10
Wang (bb0425) 2020; 22
Abdul (bb0210) 2016; 47
Dixon (bb0235) 2014; 3
Luo (bb0240) 2021; 12
Ding (bb0280) 2020; 11
Franck (bb0175) 2019; 40
Ajoolabady (bb0010) 2020; 62
Das (bb0620) 2020
Xie (bb0220) 2017; 20
Ma (bb0155) 2020; 11
Zhang (bb0225) 2020
Su (bb0245) 2019; 294
Hao (bb0195) 2021; 463
Sasazawa (bb0350) 2012; 7
Radadiya (bb0635) 2021; 6
Jiang (bb0645) 2020; 140
Zhou (bb0200) 2020; 13
Ma (bb0275) 2021; 66
Angeli (bb0380) 2017; 38
Tang, Kroemer (bb0035) 2020; 30
Yang (bb0520) 2020; 261
Li (bb0190) 2020; 12
Sampilvanjil (bb0385) 2020; 318
Yoshida (bb0390) 2019; 10
Yao (bb0575) 2019; 31
Guan (bb0410) 2019; 235
Li (bb0400) 2020; 319
Karuppagounder (bb0480) 2018; 84
Fang (bb0095) 2019; 116
Zhou (bb0250) 2020
Park (bb0535) 2019; 379
Zou (bb0065) 2020; 16
Stockwell (bb0045) 2020; 30
Gryzik (bb0300) 2021; 1868
Li (bb0430) 2017; 2
Bengson, Ryu (bb0625) 2019; 3
Ajoolabady (bb0640) 2021
Gilbert (bb0375) 2011; 331
Latunde-Dada (bb0050) 2017; 1861
Tang (bb0055) 2020; 31
Doll (bb0370) 2017; 13
Zhao (bb0525) 2020; 11
Mauthe (bb0355) 2018; 14
Fang (bb0080) 2020; 127
Li (bb0230) 2020; 39
Jiang (bb0490) 2021; 23
Choi (bb0650) 2013; 75
Li (bb0555) 2020; 27
Dong (bb0545) 2020; 12
Liu (bb0500) 2018; 497
Lee (bb0330) 2007; 17
Shao (bb0345) 2014; 44
Qiu (bb0550) 2020; 21
Adedoyin (bb0100) 2018; 314
Xiao (bb0590) 2021; 151
Yin (bb0085) 2020; 113
Devisscher (bb0450) 2018; 61
Wang (bb0360) 2013; 34
Usman, Farrukh (bb0615) 2018; 5
Su (bb0255) 2019; 47
Fuhrmann (bb0310) 2020; 36
Kang (bb0165) 2018; 24
Li (bb0160) 2020; 160
Lan (bb0475) 2020; 18
Xie (bb0580) 2019; 25
Baksi, Singh (bb0325) 2017; 7
Li (bb0595) 2019; 26
Abdul (bb0205) 2020
Chen (bb0105) 2019; 516
Ren (bb0395) 2020; 40
Zhou (bb0495) 2020; 107
Javidfar (10.1016/j.tem.2021.04.010_bb0605) 2018; 43
Ajoolabady (10.1016/j.tem.2021.04.010_bb0640) 2021
Park (10.1016/j.tem.2021.04.010_bb0535) 2019; 379
Mancias (10.1016/j.tem.2021.04.010_bb0295) 2015; 4
Yoshida (10.1016/j.tem.2021.04.010_bb0390) 2019; 10
Xie (10.1016/j.tem.2021.04.010_bb0580) 2019; 25
Yao (10.1016/j.tem.2021.04.010_bb0575) 2019; 31
Zille (10.1016/j.tem.2021.04.010_bb0570) 2017; 48
Tang (10.1016/j.tem.2021.04.010_bb0120) 2021; 394
Xie (10.1016/j.tem.2021.04.010_bb0220) 2017; 20
Ajoolabady (10.1016/j.tem.2021.04.010_bb0005) 2020; 1874
Choi (10.1016/j.tem.2021.04.010_bb0650) 2013; 75
Radadiya (10.1016/j.tem.2021.04.010_bb0635) 2021; 6
Zhang (10.1016/j.tem.2021.04.010_bb0225) 2020
Kang (10.1016/j.tem.2021.04.010_bb0165) 2018; 24
Zhao (10.1016/j.tem.2021.04.010_bb0525) 2020; 11
Li (10.1016/j.tem.2021.04.010_bb0340) 2018; 9
Rui (10.1016/j.tem.2021.04.010_bb0465) 2020; 70
Wang (10.1016/j.tem.2021.04.010_bb0180) 2019; 254
Yang (10.1016/j.tem.2021.04.010_bb0420) 2020; 209
Zhou (10.1016/j.tem.2021.04.010_bb0540) 2020; 190
Li (10.1016/j.tem.2021.04.010_bb0555) 2020; 27
Gryzik (10.1016/j.tem.2021.04.010_bb0300) 2021; 1868
Zhang (10.1016/j.tem.2021.04.010_bb0335) 2018; 14
Liu (10.1016/j.tem.2021.04.010_bb0470) 2019; 9
Luo (10.1016/j.tem.2021.04.010_bb0240) 2021; 12
Fuhrmann (10.1016/j.tem.2021.04.010_bb0310) 2020; 36
Mauthe (10.1016/j.tem.2021.04.010_bb0355) 2018; 14
Li (10.1016/j.tem.2021.04.010_bb0160) 2020; 160
Su (10.1016/j.tem.2021.04.010_bb0255) 2019; 47
Zhou (10.1016/j.tem.2021.04.010_bb0200) 2020; 13
Yamada (10.1016/j.tem.2021.04.010_bb0530) 2020; 20
Lan (10.1016/j.tem.2021.04.010_bb0475) 2020; 18
Wang (10.1016/j.tem.2021.04.010_bb0415) 2020; 11
Jianga (10.1016/j.tem.2021.04.010_bb0135) 2020; 29
Hao (10.1016/j.tem.2021.04.010_bb0195) 2021; 463
Sasazawa (10.1016/j.tem.2021.04.010_bb0350) 2012; 7
Arosio (10.1016/j.tem.2021.04.010_bb0075) 2017; 69
Liu (10.1016/j.tem.2021.04.010_bb0500) 2018; 497
Park (10.1016/j.tem.2021.04.010_bb0140) 2019; 10
Usman (10.1016/j.tem.2021.04.010_bb0615) 2018; 5
Karuppagounder (10.1016/j.tem.2021.04.010_bb0480) 2018; 84
Hou (10.1016/j.tem.2021.04.010_bb0025) 2016; 12
Doll (10.1016/j.tem.2021.04.010_bb0370) 2017; 13
Menon (10.1016/j.tem.2021.04.010_bb0070) 2020; 34
Li (10.1016/j.tem.2021.04.010_bb0230) 2020; 39
Dong (10.1016/j.tem.2021.04.010_bb0545) 2020; 12
Su (10.1016/j.tem.2021.04.010_bb0245) 2019; 294
Lee (10.1016/j.tem.2021.04.010_bb0330) 2007; 17
Gilbert (10.1016/j.tem.2021.04.010_bb0375) 2011; 331
Wang (10.1016/j.tem.2021.04.010_bb0505) 2020; 28
Shao (10.1016/j.tem.2021.04.010_bb0345) 2014; 44
Sampilvanjil (10.1016/j.tem.2021.04.010_bb0385) 2020; 318
Li (10.1016/j.tem.2021.04.010_bb0595) 2019; 26
Abdul (10.1016/j.tem.2021.04.010_bb0205) 2020
Tang (10.1016/j.tem.2021.04.010_bb0145) 2020
Tang (10.1016/j.tem.2021.04.010_bb0150) 2021; 162
Baksi (10.1016/j.tem.2021.04.010_bb0325) 2017; 7
Das (10.1016/j.tem.2021.04.010_bb0620) 2020
Luo (10.1016/j.tem.2021.04.010_bb0445) 2020; 13
Kagan (10.1016/j.tem.2021.04.010_bb0060) 2017; 13
Ito (10.1016/j.tem.2021.04.010_bb0115) 2021; 10
Feng (10.1016/j.tem.2021.04.010_bb0130) 2019; 520
Li (10.1016/j.tem.2021.04.010_bb0190) 2020; 12
Yang (10.1016/j.tem.2021.04.010_bb0520) 2020; 261
Ma (10.1016/j.tem.2021.04.010_bb0155) 2020; 11
Jiang (10.1016/j.tem.2021.04.010_bb0490) 2021; 23
Prakash (10.1016/j.tem.2021.04.010_bb0560) 2020
Tang (10.1016/j.tem.2021.04.010_bb0055) 2020; 31
Zhang (10.1016/j.tem.2021.04.010_bb0215) 2020; 246
Proneth (10.1016/j.tem.2021.04.010_bb0260) 2016; 100
Lin (10.1016/j.tem.2021.04.010_bb0315) 2020; 9
Li (10.1016/j.tem.2021.04.010_bb0430) 2017; 2
Khiavi (10.1016/j.tem.2021.04.010_bb0610) 2020; 77
Yao (10.1016/j.tem.2021.04.010_bb0585) 2019; 14
Zhou (10.1016/j.tem.2021.04.010_bb0250) 2020
Xiao (10.1016/j.tem.2021.04.010_bb0185) 2019; 515
Zhang (10.1016/j.tem.2021.04.010_bb0515) 2019; 1706
Dixon (10.1016/j.tem.2021.04.010_bb0235) 2014; 3
Fang (10.1016/j.tem.2021.04.010_bb0080) 2020; 127
Zhou (10.1016/j.tem.2021.04.010_bb0495) 2020; 107
Wei (10.1016/j.tem.2021.04.010_bb0460) 2020; 10
Yang (10.1016/j.tem.2021.04.010_bb0655) 2019; 5
Yin (10.1016/j.tem.2021.04.010_bb0085) 2020; 113
Ajoolabady (10.1016/j.tem.2021.04.010_bb0015) 2021
Angeli (10.1016/j.tem.2021.04.010_bb0380) 2017; 38
Abdul (10.1016/j.tem.2021.04.010_bb0210) 2016; 47
Jacobs (10.1016/j.tem.2021.04.010_bb0110) 2020; 7
Tumer (10.1016/j.tem.2021.04.010_bb0485) 2020; 11
Dixon (10.1016/j.tem.2021.04.010_bb0040) 2012; 149
Fang (10.1016/j.tem.2021.04.010_bb0095) 2019; 116
Deng (10.1016/j.tem.2021.04.010_bb0265) 2019; 129
Tang (10.1016/j.tem.2021.04.010_bb0305) 2019; 134
Wang (10.1016/j.tem.2021.04.010_bb0425) 2020; 22
Guo (10.1016/j.tem.2021.04.010_bb0270) 2021; 178
Latunde-Dada (10.1016/j.tem.2021.04.010_bb0050) 2017; 1861
Adedoyin (10.1016/j.tem.2021.04.010_bb0100) 2018; 314
Franck (10.1016/j.tem.2021.04.010_bb0175) 2019; 40
Wang (10.1016/j.tem.2021.04.010_bb0360) 2013; 34
Li (10.1016/j.tem.2021.04.010_bb0435) 2020; 41
Qiu (10.1016/j.tem.2021.04.010_bb0550) 2020; 21
Zou (10.1016/j.tem.2021.04.010_bb0065) 2020; 16
Liu (10.1016/j.tem.2021.04.010_bb0030) 2020; 27
Stamenkovic (10.1016/j.tem.2021.04.010_bb0125) 2021; 320
Nai (10.1016/j.tem.2021.04.010_bb0630) 2021; 106
Mancias (10.1016/j.tem.2021.04.010_bb0290) 2014; 509
Bai (10.1016/j.tem.2021.04.010_bb0170) 2020; 160
Ren (10.1016/j.tem.2021.04.010_bb0395) 2020; 40
Mayr (10.1016/j.tem.2021.04.010_bb0600) 2020; 11
Ma (10.1016/j.tem.2021.04.010_bb0275) 2021; 66
Guan (10.1016/j.tem.2021.04.010_bb0410) 2019; 235
Chen (10.1016/j.tem.2021.04.010_bb0105) 2019; 516
Levine (10.1016/j.tem.2021.04.010_bb0020) 2008; 132
Alim (10.1016/j.tem.2021.04.010_bb0510) 2019; 177
Tang (10.1016/j.tem.2021.04.010_bb0035) 2020; 30
Devisscher (10.1016/j.tem.2021.04.010_bb0450) 2018; 61
Stockwell (10.1016/j.tem.2021.04.010_bb0045) 2020; 30
Grabherr (10.1016/j.tem.2021.04.010_bb0405) 2019; 57
Liu (10.1016/j.tem.2021.04.010_bb0440) 2020; 25
Bengson (10.1016/j.tem.2021.04.010_bb0625) 2019; 3
Xiao (10.1016/j.tem.2021.04.010_bb0590) 2021; 151
Jiang (10.1016/j.tem.2021.04.010_bb0645) 2020; 140
Guan (10.1016/j.tem.2021.04.010_bb0455) 2020; 264
Qi (10.1016/j.tem.2021.04.010_bb0365) 2020; 190
Chen (10.1016/j.tem.2021.04.010_bb0565) 2020
Li (10.1016/j.tem.2021.04.010_bb0400) 2020; 319
Hassannia (10.1016/j.tem.2021.04.010_bb0090) 2018; 128
Angeli (10.1016/j.tem.2021.04.010_bb0285) 2014; 16
Ajoolabady (10.1016/j.tem.2021.04.010_bb0010) 2020; 62
Ding (10.1016/j.tem.2021.04.010_bb0280) 2020; 11
Tian (10.1016/j.tem.2021.04.010_bb0320) 2020; 17
References_xml – volume: 134
  start-page: 445
  year: 2019
  end-page: 457
  ident: bb0305
  article-title: Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy
  publication-title: Free Radic. Biol. Med.
– volume: 235
  start-page: 116795
  year: 2019
  ident: bb0410
  article-title: The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation
  publication-title: Life Sci.
– volume: 34
  start-page: 1
  year: 2020
  ident: bb0070
  article-title: Cardiac iron overload promotes ferroptosis and cardiac dysfunction in mice with sickle cell disease
  publication-title: FASEB J.
– volume: 44
  start-page: 1661
  year: 2014
  end-page: 1668
  ident: bb0345
  article-title: Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia
  publication-title: Int. J. Oncol.
– year: 2021
  ident: bb0640
  article-title: ER stress in cardiometabolic diseases: from molecular mechanisms to therapeutics
  publication-title: Endocr. Rev.
– volume: 9
  start-page: 682
  year: 2020
  ident: bb0315
  article-title: Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells
  publication-title: Antioxidants
– volume: 12
  start-page: 12943
  year: 2020
  ident: bb0545
  article-title: Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1
  publication-title: Aging (Albany NY)
– volume: 12
  start-page: 2954
  year: 2020
  ident: bb0190
  article-title: Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes
  publication-title: Nutrients
– volume: 17
  start-page: 1796
  year: 2020
  end-page: 1812
  ident: bb0320
  article-title: FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease
  publication-title: Neurotherapeutics
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  ident: bb0040
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 30
  start-page: 478
  year: 2020
  end-page: 490
  ident: bb0045
  article-title: Emerging mechanisms and disease relevance of ferroptosis
  publication-title: Trends Cell Biol.
– volume: 320
  start-page: H1170
  year: 2021
  end-page: H1184
  ident: bb0125
  article-title: Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– start-page: A5560
  year: 2020
  ident: bb0560
  article-title: Ferroptosis mediates inflammation in lung ischemia-reperfusion (IR) sterile injury in mice
  publication-title: C58. Acute Lung Injury: Atypical Triggers
– volume: 100
  start-page: S229
  year: 2016
  ident: bb0260
  article-title: Development of novel ferroptosis inhibitors for the treatment of ischemia/reperfusion injuries
  publication-title: Transplantation
– volume: 11
  start-page: 1
  year: 2020
  end-page: 15
  ident: bb0415
  article-title: (+)-Clausenamide protects against drug-induced liver injury by inhibiting hepatocyte ferroptosis
  publication-title: Cell Death Dis.
– volume: 246
  start-page: 247
  year: 2020
  end-page: 263
  ident: bb0215
  article-title: Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats
  publication-title: J. Endocrinol.
– volume: 1706
  start-page: 48
  year: 2019
  end-page: 57
  ident: bb0515
  article-title: Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury
  publication-title: Brain Res.
– volume: 294
  start-page: 19395
  year: 2019
  end-page: 19404
  ident: bb0245
  article-title: Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 1
  year: 2021
  ident: bb0490
  article-title: Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury
  publication-title: Mol. Med. Rep.
– volume: 43
  start-page: 19
  year: 2018
  end-page: 26
  ident: bb0605
  article-title: The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 16
  start-page: 302
  year: 2020
  end-page: 309
  ident: bb0065
  article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis
  publication-title: Nat. Chem. Biol.
– volume: 30
  start-page: R1292
  year: 2020
  end-page: R1297
  ident: bb0035
  article-title: Ferroptosis
  publication-title: Curr. Biol.
– volume: 515
  start-page: 448
  year: 2019
  end-page: 454
  ident: bb0185
  article-title: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 62
  start-page: 101129
  year: 2020
  ident: bb0010
  article-title: Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing
  publication-title: Ageing Res. Rev.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 15
  ident: bb0525
  article-title: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia− reperfusion injury
  publication-title: Cell Death Dis.
– volume: 3
  year: 2014
  ident: bb0235
  article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis
  publication-title: eLife
– volume: 10
  start-page: 3145
  year: 2019
  ident: bb0390
  article-title: Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis
  publication-title: Nat. Commun.
– volume: 1874
  start-page: 188366
  year: 2020
  ident: bb0005
  article-title: Enzyme-based autophagy in anti-neoplastic management: from molecular mechanisms to clinical therapeutics
  publication-title: Biochim. Biophys. Acta Rev. Cancer
– volume: 107
  start-page: 101807
  year: 2020
  ident: bb0495
  article-title: Proanthocyanidin promotes functional recovery of spinal cord injury via inhibiting ferroptosis
  publication-title: J. Chem. Neuroanat.
– volume: 40
  start-page: 1097
  year: 2020
  end-page: 1102
  ident: bb0395
  article-title: Vitamin E reduces radiation injury of hippocampal neurons in mice by inhibiting ferroptosis
  publication-title: Nan Fang Yi Ke Da Xue Bao
– volume: 38
  start-page: 489
  year: 2017
  end-page: 498
  ident: bb0380
  article-title: Ferroptosis inhibition: mechanisms and opportunities
  publication-title: Trends Pharmacol. Sci.
– volume: 26
  start-page: 2284
  year: 2019
  end-page: 2299
  ident: bb0595
  article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion
  publication-title: Cell Death Differ.
– volume: 151
  start-page: 112114
  year: 2021
  ident: bb0590
  article-title: Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy
  publication-title: Food Chem. Toxicol.
– volume: 27
  start-page: 420
  year: 2020
  end-page: 435
  ident: bb0030
  article-title: Autophagy-dependent ferroptosis: machinery and regulation
  publication-title: Cell Chem. Biol.
– volume: 497
  start-page: 233
  year: 2018
  end-page: 240
  ident: bb0500
  article-title: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 331
  start-page: 217
  year: 2011
  end-page: 219
  ident: bb0375
  article-title: The structure of human 5-lipoxygenase
  publication-title: Science
– volume: 1868
  start-page: 118913
  year: 2021
  ident: bb0300
  article-title: NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells
  publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res.
– volume: 17
  start-page: 1561
  year: 2007
  end-page: 1567
  ident: bb0330
  article-title: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration
  publication-title: Curr. Biol.
– volume: 31
  start-page: 107
  year: 2020
  end-page: 125
  ident: bb0055
  article-title: Ferroptosis: molecular mechanisms and health implications
  publication-title: Cell Res.
– volume: 47
  start-page: 698
  year: 2019
  ident: bb0255
  article-title: TIMP-2 promoted ferroptosis in ischemia reperfusion kidney injury via TIMP-2-NRF-2-SLC7A11 pathway
  publication-title: Crit. Care Med.
– volume: 264
  start-page: 118660
  year: 2020
  ident: bb0455
  article-title: Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils
  publication-title: Life Sci.
– year: 2020
  ident: bb0620
  article-title: Intestinal ferritinophagy is regulated by HIF-2 and is essential for systemic iron homeostasis
  publication-title: bioRxiv
– volume: 162
  start-page: 339
  year: 2021
  end-page: 352
  ident: bb0150
  article-title: Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion
  publication-title: Free Radic. Biol. Med.
– volume: 160
  start-page: 92
  year: 2020
  end-page: 102
  ident: bb0170
  article-title: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell
  publication-title: Free Radic. Biol. Med.
– volume: 84
  start-page: 854
  year: 2018
  end-page: 872
  ident: bb0480
  article-title: N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice
  publication-title: Ann. Neurol.
– volume: 314
  start-page: F702
  year: 2018
  end-page: F714
  ident: bb0100
  article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 261
  start-page: 118487
  year: 2020
  ident: bb0520
  article-title: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model
  publication-title: Life Sci.
– volume: 39
  start-page: 210
  year: 2020
  end-page: 225
  ident: bb0230
  article-title: Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress
  publication-title: DNA Cell Biol.
– volume: 29
  start-page: 1214
  year: 2020
  end-page: 1222
  ident: bb0135
  article-title: Effect of electroacupuncture ‘Shenmen’ HT7 on the expression of ferroptosis related proteins GPX4, FTH1, TfR1 and ACSL4 in acute myocardial ischemia model rats
  publication-title: Rev. Argentina Clín. Psicol.
– volume: 190
  start-page: 82
  year: 2020
  end-page: 92
  ident: bb0540
  article-title: Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis
  publication-title: Am. J. Pathol.
– volume: 209
  start-page: 112842
  year: 2020
  ident: bb0420
  article-title: Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model
  publication-title: Eur. J. Med. Chem.
– volume: 2
  year: 2017
  ident: bb0430
  article-title: Inhibition of neuronal ferroptosis protects hemorrhagic brain
  publication-title: JCI Insight
– year: 2020
  ident: bb0145
  article-title: MiR-30d inhibits cardiomyocytes autophagy promoting ferroptosis after myocardial infarction
  publication-title: Panminerva Med.
– volume: 463
  start-page: 216
  year: 2021
  end-page: 226
  ident: bb0195
  article-title: SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes
  publication-title: Neuroscience
– volume: 11
  start-page: 1
  year: 2020
  end-page: 14
  ident: bb0280
  article-title: miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury
  publication-title: Cell Death Dis.
– volume: 34
  start-page: 128
  year: 2013
  end-page: 138
  ident: bb0360
  article-title: Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases
  publication-title: Carcinogenesis
– volume: 10
  year: 2021
  ident: bb0115
  article-title: Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice
  publication-title: eLife
– year: 2021
  ident: bb0015
  article-title: Targeting autophagy in neurodegenerative diseases: from molecular mechanisms to clinical therapeutics
  publication-title: Clin. Exp. Pharmacol. Physiol.
– volume: 177
  start-page: 1262
  year: 2019
  end-page: 1279
  ident: bb0510
  article-title: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke
  publication-title: Cell
– volume: 132
  start-page: 27
  year: 2008
  end-page: 42
  ident: bb0020
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
– volume: 66
  start-page: 483
  year: 2021
  end-page: 492
  ident: bb0275
  article-title: Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis
  publication-title: Dig. Dis. Sci.
– year: 2020
  ident: bb0250
  article-title: Impact of prolonged mechanical ventilation on ferroptosis in renal ischemia/reperfusion injury in rats
  publication-title: Biomed. Res. Int.
– volume: 5
  year: 2019
  ident: bb0655
  article-title: Clockophagy is a novel selective autophagy process favoring ferroptosis
  publication-title: Sci. Adv.
– year: 2020
  ident: bb0565
  article-title: Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis
  publication-title: Brain Res.
– volume: 106
  start-page: 795
  year: 2021
  end-page: 805
  ident: bb0630
  article-title: NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice
  publication-title: Haematologica
– volume: 31
  start-page: 1389
  year: 2019
  end-page: 1394
  ident: bb0575
  article-title: Hippocampal neuronal ferroptosis involved in cognitive dysfunction in rats with sepsis-related encephalopathy through the Nrf2/GPX4 signaling pathway
  publication-title: Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
– volume: 11
  start-page: 551318
  year: 2020
  ident: bb0155
  article-title: USP22 protects against myocardial ischemia–reperfusion injury via the SIRT1-p53/SLC7A11–dependent inhibition of ferroptosis–induced cardiomyocyte death
  publication-title: Front. Physiol.
– volume: 516
  start-page: 37
  year: 2019
  end-page: 43
  ident: bb0105
  article-title: Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 116
  start-page: 2672
  year: 2019
  end-page: 2680
  ident: bb0095
  article-title: Ferroptosis as a target for protection against cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 190
  start-page: 68
  year: 2020
  end-page: 81
  ident: bb0365
  article-title: Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation–mediated cell death in mice
  publication-title: Am. J. Pathol.
– volume: 13
  start-page: 2041
  year: 2020
  ident: bb0445
  article-title: Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 13
  start-page: 91
  year: 2017
  end-page: 98
  ident: bb0370
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
– volume: 319
  start-page: 126368
  year: 2020
  ident: bb0400
  article-title: Maillard reaction products with furan ring, like furosine, cause kidney injury through triggering ferroptosis pathway
  publication-title: Food Chem.
– volume: 140
  start-page: 111329
  year: 2020
  ident: bb0645
  article-title: Impaired ferritinophagy flux induced by high fat diet mediates hepatic insulin resistance via endoplasmic reticulum stress
  publication-title: Food Chem. Toxicol.
– volume: 18
  start-page: 344
  year: 2020
  end-page: 350
  ident: bb0475
  article-title: Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats
  publication-title: J. Integr. Med.
– volume: 20
  start-page: 1692
  year: 2017
  end-page: 1704
  ident: bb0220
  article-title: The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity
  publication-title: Cell Rep.
– volume: 13
  start-page: 81
  year: 2017
  end-page: 90
  ident: bb0060
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat. Chem. Biol.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  ident: bb0325
  article-title: α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson’s disease
  publication-title: Sci. Rep.
– volume: 3
  year: 2019
  ident: bb0625
  article-title: NCOA4-mediated ferritinophagy is essential for HT22 neuronal cell survival during iron deficiency (OR15-07-19)
  publication-title: Curr. Dev. Nutr.
– volume: 12
  start-page: 124
  year: 2021
  ident: bb0240
  article-title: Role of ferroptosis in the process of diabetes-induced endothelial dysfunction
  publication-title: World J. Diabetes
– volume: 11
  start-page: 1
  year: 2020
  end-page: 15
  ident: bb0600
  article-title: Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease
  publication-title: Nat. Commun.
– volume: 75
  start-page: 9
  year: 2013
  end-page: 17
  ident: bb0650
  article-title: Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells
  publication-title: Tuberc. Respir. Dis.
– volume: 7
  start-page: 3772
  year: 2020
  end-page: 3781
  ident: bb0110
  article-title: Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature
  publication-title: ESC Heart Failure
– volume: 509
  start-page: 105
  year: 2014
  end-page: 109
  ident: bb0290
  article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
  publication-title: Nature
– volume: 113
  start-page: 154397
  year: 2020
  ident: bb0085
  article-title: Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury
  publication-title: Metabolism
– volume: 57
  start-page: V04
  year: 2019
  ident: bb0405
  article-title: Western-diet-derived arachidonic acid induces epithelial ferroptosis which is a feature of Crohn's disease
  publication-title: Z. Gastroenterol.
– volume: 25
  start-page: 465
  year: 2019
  end-page: 475
  ident: bb0580
  article-title: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice
  publication-title: CNS Neurosci. Ther.
– volume: 27
  start-page: 2635
  year: 2020
  end-page: 2650
  ident: bb0555
  article-title: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury
  publication-title: Cell Death Differ.
– volume: 14
  start-page: 1435
  year: 2018
  end-page: 1455
  ident: bb0355
  article-title: Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion
  publication-title: Autophagy
– volume: 6
  start-page: 141299
  year: 2021
  ident: bb0635
  article-title: Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease
  publication-title: JCI Insight
– volume: 1861
  start-page: 1893
  year: 2017
  end-page: 1900
  ident: bb0050
  article-title: Ferroptosis: role of lipid peroxidation, iron and ferritinophagy
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 13
  start-page: 1921
  year: 2020
  end-page: 1931
  ident: bb0200
  article-title: The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis
  publication-title: Diabetes Metab. Syndr. Obes.
– volume: 24
  start-page: 97
  year: 2018
  end-page: 108
  ident: bb0165
  article-title: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis
  publication-title: Cell Host Microbe
– volume: 9
  start-page: 581
  year: 2018
  ident: bb0340
  article-title: Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis
  publication-title: Front. Neurol.
– volume: 160
  start-page: 303
  year: 2020
  end-page: 318
  ident: bb0160
  article-title: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury
  publication-title: Free Radic. Biol. Med.
– volume: 128
  start-page: 3341
  year: 2018
  end-page: 3355
  ident: bb0090
  article-title: Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma
  publication-title: J. Clin. Invest.
– volume: 16
  start-page: 1180
  year: 2014
  end-page: 1191
  ident: bb0285
  article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
  publication-title: Nat. Cell Biol.
– year: 2020
  ident: bb0205
  article-title: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis
  publication-title: Transl. Stroke Res.
– volume: 25
  start-page: 1
  year: 2020
  end-page: 14
  ident: bb0440
  article-title: Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis
  publication-title: Cell. Mol. Biol. Lett.
– year: 2020
  ident: bb0225
  article-title: Induction of hyperandrogenism and insulin resistance differentially modulates ferroptosis in uterine and placental tissues of pregnant rats
  publication-title: bioRxiv
– volume: 4
  year: 2015
  ident: bb0295
  article-title: Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis
  publication-title: eLife
– volume: 21
  start-page: 1
  year: 2020
  end-page: 16
  ident: bb0550
  article-title: Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis
  publication-title: Respir. Res.
– volume: 12
  start-page: 1425
  year: 2016
  end-page: 1428
  ident: bb0025
  article-title: Autophagy promotes ferroptosis by degradation of ferritin
  publication-title: Autophagy
– volume: 28
  start-page: 231
  year: 2020
  end-page: 243
  ident: bb0505
  article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis
  publication-title: J. Adv. Res.
– volume: 129
  start-page: 5033
  year: 2019
  end-page: 5049
  ident: bb0265
  article-title: Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule
  publication-title: J. Clin. Invest.
– volume: 40
  start-page: 928
  year: 2019
  end-page: 937
  ident: bb0175
  article-title: Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis
  publication-title: Eur. Heart J.
– volume: 61
  start-page: 10126
  year: 2018
  end-page: 10140
  ident: bb0450
  article-title: Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy
  publication-title: J. Med. Chem.
– volume: 520
  start-page: 606
  year: 2019
  ident: bb0130
  article-title: Ferroptosis inhibitor, liproxstatin-1, protects the myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and rescuing GPX4 levels
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 15
  ident: bb0140
  article-title: Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes
  publication-title: Cell Death Dis.
– volume: 254
  start-page: 112937
  year: 2019
  ident: bb0180
  article-title: PM2. 5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance
  publication-title: Environ. Pollut.
– volume: 22
  start-page: 175
  year: 2020
  end-page: 184
  ident: bb0425
  article-title: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury
  publication-title: Mol. Med. Rep.
– volume: 7
  start-page: 892
  year: 2012
  end-page: 900
  ident: bb0350
  article-title: Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein
  publication-title: ACS Chem. Biol.
– volume: 5
  start-page: 15645
  year: 2018
  end-page: 15652
  ident: bb0615
  article-title: Delayed release profile of iron nano-chloroquine phosphate and evaluation of its toxicity
  publication-title: Mater. Today Proc.
– volume: 77
  start-page: 997
  year: 2020
  end-page: 1019
  ident: bb0610
  article-title: Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer
  publication-title: Cell. Mol. Life Sci.
– volume: 69
  start-page: 414
  year: 2017
  end-page: 422
  ident: bb0075
  article-title: Ferritin, cellular iron storage and regulation
  publication-title: IUBMB Life
– volume: 14
  start-page: 532
  year: 2019
  ident: bb0585
  article-title: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis
  publication-title: Neural Regen. Res.
– volume: 48
  start-page: 1033
  year: 2017
  end-page: 1043
  ident: bb0570
  article-title: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis
  publication-title: Stroke
– volume: 9
  start-page: 41
  year: 2019
  ident: bb0470
  article-title: Myrrh extract alleviated ROS-mediated ferroptosis through regulating TXNIP/NLRP3 axis in ischemic stroke
  publication-title: Chin. J. Pharmacol. Toxicol.
– volume: 11
  start-page: 288
  year: 2020
  end-page: 293
  ident: bb0485
  article-title: N-acetyl cysteine attenuates ferroptosis mediated lung injury induced by lower limb ischaemia/reperfusion
  publication-title: Turk. J. Clin. Lab.
– volume: 178
  start-page: 328
  year: 2021
  end-page: 345
  ident: bb0270
  article-title: Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury
  publication-title: Br. J. Pharmacol.
– volume: 36
  start-page: 101670
  year: 2020
  ident: bb0310
  article-title: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis
  publication-title: Redox Biol.
– volume: 14
  start-page: 2083
  year: 2018
  end-page: 2103
  ident: bb0335
  article-title: Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells
  publication-title: Autophagy
– volume: 41
  start-page: 263
  year: 2020
  end-page: 278
  ident: bb0435
  article-title: Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation
  publication-title: Cell. Mol. Neurobiol.
– volume: 394
  start-page: 401
  year: 2021
  end-page: 410
  ident: bb0120
  article-title: Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion
  publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol.
– volume: 47
  start-page: A221
  year: 2016
  ident: bb0210
  article-title: Tlr-4 activation decreases brain endothelial cell survival in hypoxia/reoxygenation in diabetes: role of necroptosis and ferroptosis
  publication-title: Stroke
– volume: 379
  start-page: 114665
  year: 2019
  ident: bb0535
  article-title: Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 10
  year: 2020
  ident: bb0460
  article-title: Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice
  publication-title: Clin. Transl. Med.
– volume: 70
  year: 2020
  ident: bb0465
  article-title: Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis
  publication-title: J. Pineal Res.
– volume: 20
  start-page: 1606
  year: 2020
  end-page: 1618
  ident: bb0530
  article-title: Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis
  publication-title: Am. J. Transplant.
– volume: 127
  start-page: 486
  year: 2020
  end-page: 501
  ident: bb0080
  article-title: Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis
  publication-title: Circ. Res.
– volume: 318
  start-page: H508
  year: 2020
  end-page: H518
  ident: bb0385
  article-title: Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells
  publication-title: Am. J. Phys. Heart Circ. Phys.
– volume: 47
  start-page: 698
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0255
  article-title: TIMP-2 promoted ferroptosis in ischemia reperfusion kidney injury via TIMP-2-NRF-2-SLC7A11 pathway
  publication-title: Crit. Care Med.
  doi: 10.1097/01.ccm.0000552187.51051.23
– volume: 129
  start-page: 5033
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0265
  article-title: Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI129903
– volume: 463
  start-page: 216
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0195
  article-title: SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.03.009
– volume: 16
  start-page: 1180
  year: 2014
  ident: 10.1016/j.tem.2021.04.010_bb0285
  article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3064
– year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0205
  article-title: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis
  publication-title: Transl. Stroke Res.
– volume: 62
  start-page: 101129
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0010
  article-title: Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2020.101129
– volume: 31
  start-page: 1389
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0575
  article-title: Hippocampal neuronal ferroptosis involved in cognitive dysfunction in rats with sepsis-related encephalopathy through the Nrf2/GPX4 signaling pathway
  publication-title: Zhonghua Wei Zhong Bing Ji Jiu Yi Xue
– volume: 113
  start-page: 154397
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0085
  article-title: Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154397
– volume: 13
  start-page: 1921
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0200
  article-title: The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis
  publication-title: Diabetes Metab. Syndr. Obes.
  doi: 10.2147/DMSO.S249382
– volume: 100
  start-page: S229
  year: 2016
  ident: 10.1016/j.tem.2021.04.010_bb0260
  article-title: Development of novel ferroptosis inhibitors for the treatment of ischemia/reperfusion injuries
  publication-title: Transplantation
– volume: 320
  start-page: H1170
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0125
  article-title: Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00237.2020
– volume: 25
  start-page: 465
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0580
  article-title: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice
  publication-title: CNS Neurosci. Ther.
  doi: 10.1111/cns.13069
– volume: 140
  start-page: 111329
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0645
  article-title: Impaired ferritinophagy flux induced by high fat diet mediates hepatic insulin resistance via endoplasmic reticulum stress
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2020.111329
– volume: 17
  start-page: 1561
  year: 2007
  ident: 10.1016/j.tem.2021.04.010_bb0330
  article-title: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.07.029
– volume: 10
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0460
  article-title: Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice
  publication-title: Clin. Transl. Med.
  doi: 10.1002/ctm2.173
– volume: 36
  start-page: 101670
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0310
  article-title: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101670
– volume: 516
  start-page: 37
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0105
  article-title: Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.06.015
– volume: 7
  start-page: 892
  year: 2012
  ident: 10.1016/j.tem.2021.04.010_bb0350
  article-title: Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb200492h
– volume: 61
  start-page: 10126
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0450
  article-title: Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b01299
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0415
  article-title: (+)-Clausenamide protects against drug-induced liver injury by inhibiting hepatocyte ferroptosis
  publication-title: Cell Death Dis.
– volume: 43
  start-page: 19
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0605
  article-title: The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2017.09.013
– volume: 11
  start-page: 551318
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0155
  article-title: USP22 protects against myocardial ischemia–reperfusion injury via the SIRT1-p53/SLC7A11–dependent inhibition of ferroptosis–induced cardiomyocyte death
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.551318
– volume: 190
  start-page: 82
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0540
  article-title: Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2019.09.012
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0140
  article-title: Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-2061-8
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0550
  article-title: Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis
  publication-title: Respir. Res.
  doi: 10.1186/s12931-020-01500-2
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0600
  article-title: Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15646-6
– volume: 30
  start-page: 478
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0045
  article-title: Emerging mechanisms and disease relevance of ferroptosis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2020.02.009
– volume: 7
  start-page: 3772
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0110
  article-title: Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature
  publication-title: ESC Heart Failure
  doi: 10.1002/ehf2.12958
– volume: 294
  start-page: 19395
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0245
  article-title: Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.010949
– volume: 24
  start-page: 97
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0165
  article-title: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.05.009
– volume: 39
  start-page: 210
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0230
  article-title: Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress
  publication-title: DNA Cell Biol.
  doi: 10.1089/dna.2019.5097
– year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0565
  article-title: Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis
  publication-title: Brain Res.
– volume: 127
  start-page: 486
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0080
  article-title: Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.120.316509
– volume: 379
  start-page: 114665
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0535
  article-title: Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2019.114665
– volume: 515
  start-page: 448
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0185
  article-title: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.05.147
– volume: 116
  start-page: 2672
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0095
  article-title: Ferroptosis as a target for protection against cardiomyopathy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1821022116
– volume: 12
  start-page: 12943
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0545
  article-title: Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103378
– volume: 10
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0115
  article-title: Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice
  publication-title: eLife
  doi: 10.7554/eLife.62174
– volume: 5
  start-page: 15645
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0615
  article-title: Delayed release profile of iron nano-chloroquine phosphate and evaluation of its toxicity
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.04.174
– volume: 1868
  start-page: 118913
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0300
  article-title: NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells
  publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2020.118913
– volume: 160
  start-page: 303
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0160
  article-title: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.08.009
– volume: 31
  start-page: 107
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0055
  article-title: Ferroptosis: molecular mechanisms and health implications
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00441-1
– volume: 11
  start-page: 288
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0485
  article-title: N-acetyl cysteine attenuates ferroptosis mediated lung injury induced by lower limb ischaemia/reperfusion
  publication-title: Turk. J. Clin. Lab.
  doi: 10.18663/tjcl.769961
– year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0620
  article-title: Intestinal ferritinophagy is regulated by HIF-2 and is essential for systemic iron homeostasis
  publication-title: bioRxiv
– volume: 34
  start-page: 128
  year: 2013
  ident: 10.1016/j.tem.2021.04.010_bb0360
  article-title: Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs295
– volume: 106
  start-page: 795
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0630
  article-title: NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice
  publication-title: Haematologica
– volume: 9
  start-page: 41
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0470
  article-title: Myrrh extract alleviated ROS-mediated ferroptosis through regulating TXNIP/NLRP3 axis in ischemic stroke
  publication-title: Chin. J. Pharmacol. Toxicol.
– volume: 3
  year: 2014
  ident: 10.1016/j.tem.2021.04.010_bb0235
  article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis
  publication-title: eLife
  doi: 10.7554/eLife.02523
– volume: 3
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0625
  article-title: NCOA4-mediated ferritinophagy is essential for HT22 neuronal cell survival during iron deficiency (OR15-07-19)
  publication-title: Curr. Dev. Nutr.
  doi: 10.1093/cdn/nzz044.OR15-07-19
– volume: 13
  start-page: 91
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0370
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 319
  start-page: 126368
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0400
  article-title: Maillard reaction products with furan ring, like furosine, cause kidney injury through triggering ferroptosis pathway
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126368
– volume: 264
  start-page: 118660
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0455
  article-title: Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.118660
– volume: 132
  start-page: 27
  year: 2008
  ident: 10.1016/j.tem.2021.04.010_bb0020
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.018
– volume: 12
  start-page: 1425
  year: 2016
  ident: 10.1016/j.tem.2021.04.010_bb0025
  article-title: Autophagy promotes ferroptosis by degradation of ferritin
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1187366
– volume: 134
  start-page: 445
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0305
  article-title: Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.01.052
– volume: 2
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0430
  article-title: Inhibition of neuronal ferroptosis protects hemorrhagic brain
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.90777
– volume: 69
  start-page: 414
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0075
  article-title: Ferritin, cellular iron storage and regulation
  publication-title: IUBMB Life
  doi: 10.1002/iub.1621
– volume: 12
  start-page: 124
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0240
  article-title: Role of ferroptosis in the process of diabetes-induced endothelial dysfunction
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v12.i2.124
– volume: 14
  start-page: 1435
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0355
  article-title: Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1474314
– year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0640
  article-title: ER stress in cardiometabolic diseases: from molecular mechanisms to therapeutics
  publication-title: Endocr. Rev.
  doi: 10.1210/endrev/bnab006
– volume: 151
  start-page: 112114
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0590
  article-title: Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2021.112114
– volume: 70
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0465
  article-title: Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis
  publication-title: J. Pineal Res.
– volume: 107
  start-page: 101807
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0495
  article-title: Proanthocyanidin promotes functional recovery of spinal cord injury via inhibiting ferroptosis
  publication-title: J. Chem. Neuroanat.
  doi: 10.1016/j.jchemneu.2020.101807
– volume: 26
  start-page: 2284
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0595
  article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0299-4
– volume: 20
  start-page: 1692
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0220
  article-title: The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.07.055
– volume: 12
  start-page: 2954
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0190
  article-title: Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes
  publication-title: Nutrients
  doi: 10.3390/nu12102954
– volume: 149
  start-page: 1060
  year: 2012
  ident: 10.1016/j.tem.2021.04.010_bb0040
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 57
  start-page: V04
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0405
  article-title: Western-diet-derived arachidonic acid induces epithelial ferroptosis which is a feature of Crohn's disease
  publication-title: Z. Gastroenterol.
– volume: 27
  start-page: 2635
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0555
  article-title: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-0528-x
– year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0250
  article-title: Impact of prolonged mechanical ventilation on ferroptosis in renal ischemia/reperfusion injury in rats
  publication-title: Biomed. Res. Int.
– volume: 160
  start-page: 92
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0170
  article-title: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.07.026
– volume: 1706
  start-page: 48
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0515
  article-title: Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2018.10.023
– volume: 162
  start-page: 339
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0150
  article-title: Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.10.307
– start-page: A5560
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0560
  article-title: Ferroptosis mediates inflammation in lung ischemia-reperfusion (IR) sterile injury in mice
– volume: 254
  start-page: 112937
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0180
  article-title: PM2. 5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.07.105
– volume: 14
  start-page: 532
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0585
  article-title: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.245480
– volume: 9
  start-page: 682
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0315
  article-title: Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells
  publication-title: Antioxidants
  doi: 10.3390/antiox9080682
– volume: 17
  start-page: 1796
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0320
  article-title: FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-020-00929-z
– year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0145
  article-title: MiR-30d inhibits cardiomyocytes autophagy promoting ferroptosis after myocardial infarction
  publication-title: Panminerva Med.
– volume: 20
  start-page: 1606
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0530
  article-title: Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.15773
– volume: 4
  year: 2015
  ident: 10.1016/j.tem.2021.04.010_bb0295
  article-title: Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis
  publication-title: eLife
  doi: 10.7554/eLife.10308
– volume: 48
  start-page: 1033
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0570
  article-title: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.116.015609
– volume: 497
  start-page: 233
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0500
  article-title: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.02.061
– volume: 14
  start-page: 2083
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0335
  article-title: Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1503146
– volume: 27
  start-page: 420
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0030
  article-title: Autophagy-dependent ferroptosis: machinery and regulation
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2020.02.005
– volume: 5
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0655
  article-title: Clockophagy is a novel selective autophagy process favoring ferroptosis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2238
– volume: 235
  start-page: 116795
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0410
  article-title: The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.116795
– volume: 1874
  start-page: 188366
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0005
  article-title: Enzyme-based autophagy in anti-neoplastic management: from molecular mechanisms to clinical therapeutics
  publication-title: Biochim. Biophys. Acta Rev. Cancer
  doi: 10.1016/j.bbcan.2020.188366
– volume: 38
  start-page: 489
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0380
  article-title: Ferroptosis inhibition: mechanisms and opportunities
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2017.02.005
– volume: 209
  start-page: 112842
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0420
  article-title: Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2020.112842
– volume: 29
  start-page: 1214
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0135
  article-title: Effect of electroacupuncture ‘Shenmen’ HT7 on the expression of ferroptosis related proteins GPX4, FTH1, TfR1 and ACSL4 in acute myocardial ischemia model rats
  publication-title: Rev. Argentina Clín. Psicol.
– volume: 34
  start-page: 1
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0070
  article-title: Cardiac iron overload promotes ferroptosis and cardiac dysfunction in mice with sickle cell disease
  publication-title: FASEB J.
  doi: 10.1096/fasebj.2020.34.s1.02704
– volume: 22
  start-page: 175
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0425
  article-title: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2020.11114
– volume: 177
  start-page: 1262
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0510
  article-title: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.032
– volume: 44
  start-page: 1661
  year: 2014
  ident: 10.1016/j.tem.2021.04.010_bb0345
  article-title: Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2014.2313
– volume: 314
  start-page: F702
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0100
  article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00044.2017
– volume: 10
  start-page: 3145
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0390
  article-title: Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10991-7
– volume: 23
  start-page: 1
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0490
  article-title: Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2020.11647
– volume: 6
  start-page: 141299
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0635
  article-title: Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.141299
– volume: 66
  start-page: 483
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0275
  article-title: Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-020-06225-2
– volume: 520
  start-page: 606
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0130
  article-title: Ferroptosis inhibitor, liproxstatin-1, protects the myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and rescuing GPX4 levels
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.10.006
– volume: 190
  start-page: 68
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0365
  article-title: Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation–mediated cell death in mice
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2019.09.011
– year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0015
  article-title: Targeting autophagy in neurodegenerative diseases: from molecular mechanisms to clinical therapeutics
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/1440-1681.13500
– volume: 75
  start-page: 9
  year: 2013
  ident: 10.1016/j.tem.2021.04.010_bb0650
  article-title: Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells
  publication-title: Tuberc. Respir. Dis.
  doi: 10.4046/trd.2013.75.1.9
– volume: 246
  start-page: 247
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0215
  article-title: Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-20-0155
– volume: 331
  start-page: 217
  year: 2011
  ident: 10.1016/j.tem.2021.04.010_bb0375
  article-title: The structure of human 5-lipoxygenase
  publication-title: Science
  doi: 10.1126/science.1197203
– volume: 77
  start-page: 997
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0610
  article-title: Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-019-03305-z
– volume: 128
  start-page: 3341
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0090
  article-title: Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI99032
– volume: 509
  start-page: 105
  year: 2014
  ident: 10.1016/j.tem.2021.04.010_bb0290
  article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
  publication-title: Nature
  doi: 10.1038/nature13148
– volume: 18
  start-page: 344
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0475
  article-title: Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats
  publication-title: J. Integr. Med.
  doi: 10.1016/j.joim.2020.01.008
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0325
  article-title: α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson’s disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12862-x
– volume: 30
  start-page: R1292
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0035
  article-title: Ferroptosis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.09.068
– volume: 261
  start-page: 118487
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0520
  article-title: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.118487
– volume: 40
  start-page: 928
  year: 2019
  ident: 10.1016/j.tem.2021.04.010_bb0175
  article-title: Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehy822
– volume: 40
  start-page: 1097
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0395
  article-title: Vitamin E reduces radiation injury of hippocampal neurons in mice by inhibiting ferroptosis
  publication-title: Nan Fang Yi Ke Da Xue Bao
– volume: 13
  start-page: 2041
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0445
  article-title: Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 394
  start-page: 401
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0120
  article-title: Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion
  publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol.
  doi: 10.1007/s00210-020-01932-z
– volume: 178
  start-page: 328
  year: 2021
  ident: 10.1016/j.tem.2021.04.010_bb0270
  article-title: Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.15283
– volume: 13
  start-page: 81
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0060
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2238
– volume: 28
  start-page: 231
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0505
  article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.07.007
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0525
  article-title: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia− reperfusion injury
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-02871-6
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0280
  article-title: miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-03135-z
– volume: 47
  start-page: A221
  year: 2016
  ident: 10.1016/j.tem.2021.04.010_bb0210
  article-title: Tlr-4 activation decreases brain endothelial cell survival in hypoxia/reoxygenation in diabetes: role of necroptosis and ferroptosis
  publication-title: Stroke
  doi: 10.1161/str.47.suppl_1.221
– volume: 1861
  start-page: 1893
  year: 2017
  ident: 10.1016/j.tem.2021.04.010_bb0050
  article-title: Ferroptosis: role of lipid peroxidation, iron and ferritinophagy
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2017.05.019
– volume: 41
  start-page: 263
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0435
  article-title: Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-020-00850-1
– volume: 16
  start-page: 302
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0065
  article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0472-6
– volume: 9
  start-page: 581
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0340
  article-title: Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00581
– volume: 25
  start-page: 1
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0440
  article-title: Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.1186/s11658-020-00205-0
– year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0225
  article-title: Induction of hyperandrogenism and insulin resistance differentially modulates ferroptosis in uterine and placental tissues of pregnant rats
  publication-title: bioRxiv
– volume: 318
  start-page: H508
  year: 2020
  ident: 10.1016/j.tem.2021.04.010_bb0385
  article-title: Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells
  publication-title: Am. J. Phys. Heart Circ. Phys.
– volume: 84
  start-page: 854
  year: 2018
  ident: 10.1016/j.tem.2021.04.010_bb0480
  article-title: N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25356
SSID ssj0014815
Score 2.6955283
SecondaryResourceType review_article
Snippet Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 444
SubjectTerms Autophagy
Endocrinology and Metabolism
ferritinophagy
Ferritins
Ferroptosis
Humans
Iron - metabolism
iron overload
lipid peroxidation
Metabolic Diseases
Title Ferritinophagy and ferroptosis in the management of metabolic diseases
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1043276021000953
https://www.clinicalkey.es/playcontent/1-s2.0-S1043276021000953
https://dx.doi.org/10.1016/j.tem.2021.04.010
https://www.ncbi.nlm.nih.gov/pubmed/34006412
https://www.proquest.com/docview/2528907149
http://kipublications.ki.se/Default.aspx?queryparsed=id
Volume 32
WOSCitedRecordID wos000659494900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014815
  issn: 1043-2760
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOsZexu7LLsWD0YeBi20plvwYRsI2umywFPImZFkmVzurndJ_sb-8o0hykrbruodBcIxixYnOp2MdnU-fEHpPVJaFIop9HCWBXpLDfMZC7IuUSEICJXMsN5tN0OGQjcfJ91brl1sLc7GgRcEuL5PVfzU1lIGx9dLZfzB386VQAOdgdDiC2eF4J8MPtNZiPS3K1URYdaUcispVXWrxEctrXDa0F5NhrwEMWu_aJmyq3UHrljcL7yW4mWIr3ORqWiFCDZ1ZCeFyKoz37i2nDf23Vy3mkzKDx3MFVSflfKkv2zz8xNIx6_V22qmR-9zjDo_W5RI82KQ2qSIh5vNyd8oiCht6q_OyjGrChVFhP1E3lFnXvJ36XDtCsfGzxIhGXvP_ZipidlIrrTIQhRsZW8ub3dPaHn7jg7PTUz7qj0fHq5--3oZMp-vtniwH6DCi3YS10WHvc3_8pUlMaW0bHcO7X-sS5RvK4JW7_mmocz2UuaJTuxnbjB6hhzYo8XoGTI9RSxVP0P2vlnbxFA32MeWB9bwdTHnTwgNMeVtMeWXuNZjyHKaeobNBf_Txk2834PAlRLm1Dw2AI5xRxoRIgjRJ4ZUHNIWoNk2UDGQsMIw4sxCnEBeTbp4EORGZTHMlQpnl-DlqF2WhXiKPxTmLcZiJSDAiRS5wKBXFYMdYJrQrOyhwbcWlVafXm6QsuKMhzjg0L9fNywPCoXk76ENTZWWkWW67OHIG4G7NMTwlOQDntkr0pkqqst294iGvIh7wH6FWtqSxnkDRQQvuINLUtENZM0T92w3fOWxwcPM6dycKVa4rHnU1I4CGJOmgFwY0zZ_GRAcWYdRBxwZFzSdaO94WzeFMcU1jwPjVHW7zGj3Ydt03qF2fr9VbdE9e1NPq_Agd0DE7sp3jN4QK4-s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferritinophagy+and+ferroptosis+in+the+management+of+metabolic+diseases&rft.jtitle=Trends+in+endocrinology+and+metabolism&rft.au=Ajoolabady%2C+Amir&rft.au=Aslkhodapasandhokmabad%2C+Hamid&rft.au=Libby%2C+Peter&rft.au=Tuomilehto%2C+Jaakko&rft.date=2021-07-01&rft.issn=1879-3061&rft.eissn=1879-3061&rft.volume=32&rft.issue=7&rft.spage=444&rft_id=info:doi/10.1016%2Fj.tem.2021.04.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-2760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-2760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-2760&client=summon