Ferritinophagy and ferroptosis in the management of metabolic diseases
Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for tar...
Saved in:
| Published in: | TRENDS IN ENDOCRINOLOGY AND METABOLISM Vol. 32; no. 7; pp. 444 - 462 |
|---|---|
| Main Authors: | , , , , , , , , , , , , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.07.2021
|
| Subjects: | |
| ISSN: | 1043-2760, 1879-3061, 1879-3061 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.
Ferroptosis is a form of regulated cell death that is driven by iron overload and lipid peroxidation.Ferroptosis contributes to the onset or progression of various metabolic diseases.Ferritinophagy is a selective type of autophagy, which induces ferroptosis by degrading ferritin and inducing iron overload.Ferritinophagy inhibition may ameliorate ferroptosis and ease the management of metabolic diseases. |
|---|---|
| AbstractList | Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases. Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases. Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases. Ferroptosis is a form of regulated cell death that is driven by iron overload and lipid peroxidation.Ferroptosis contributes to the onset or progression of various metabolic diseases.Ferritinophagy is a selective type of autophagy, which induces ferroptosis by degrading ferritin and inducing iron overload.Ferritinophagy inhibition may ameliorate ferroptosis and ease the management of metabolic diseases. |
| Author | Aslkhodapasandhokmabad, Hamid Tang, Daolin Wang, Shuyi Richardson, Des R. Klionsky, Daniel J. Libby, Peter Zhou, Hao Ren, Jun Lip, Gregory Y.H. Ajoolabady, Amir Tuomilehto, Jaakko Penninger, Josef M. Kroemer, Guido |
| Author_xml | – sequence: 1 givenname: Amir surname: Ajoolabady fullname: Ajoolabady, Amir organization: Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA – sequence: 2 givenname: Hamid surname: Aslkhodapasandhokmabad fullname: Aslkhodapasandhokmabad, Hamid organization: University of Visayas, Gullas College of Medicine, Dionisio Jakosalem St, Cebu City, 6000, Cebu, Philippines – sequence: 3 givenname: Peter surname: Libby fullname: Libby, Peter organization: Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 4 givenname: Jaakko surname: Tuomilehto fullname: Tuomilehto, Jaakko organization: Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland – sequence: 5 givenname: Gregory Y.H. surname: Lip fullname: Lip, Gregory Y.H. organization: University of Liverpool Institute of Ageing and Chronic Disease, Liverpool Centre for Cardiovascular Science, Liverpool, UK – sequence: 6 givenname: Josef M. surname: Penninger fullname: Penninger, Josef M. organization: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria – sequence: 7 givenname: Des R. surname: Richardson fullname: Richardson, Des R. organization: Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia – sequence: 8 givenname: Daolin surname: Tang fullname: Tang, Daolin organization: Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA – sequence: 9 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA – sequence: 10 givenname: Shuyi surname: Wang fullname: Wang, Shuyi email: shuyiwang23@outlook.com organization: Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA – sequence: 11 givenname: Daniel J. surname: Klionsky fullname: Klionsky, Daniel J. email: klionsky@umich.edu organization: Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 12 givenname: Guido surname: Kroemer fullname: Kroemer, Guido email: kroemer@orange.fr organization: Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France – sequence: 13 givenname: Jun orcidid: 0000-0002-0275-0783 surname: Ren fullname: Ren, Jun email: jren_aldh2@outlook.com organization: Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34006412$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNqFkl1rFTEQhoNU7If-AG9kL73ZdZLsJ4IgxWMLBS_U6yGbnW1zupsck2zl_HuznFMvClYIZDK8zxuYd87ZiXWWGHvLoeDA6w_bItJcCBC8gLIADi_YGW-bLpdQ85NUQylz0dRwys5D2ALwsuXVK3YqS4C65OKMbTbkvYnGut2dut1nyg7ZmFpuF10wITM2i3eUzcqqW5rJxsyN2UxR9W4yOhtMIBUovGYvRzUFenO8L9jPzZcfl1f5zbev15efb3JdQxXzqmulkEPTtkp10Hd9OiM0fVWlB2nQtZJNBQOXfS3qsho7GEs16H4kxfUwyguWH3zDb9otPe68mZXfo1MGj637VBEmWEiZ9O8P-p13vxYKEWcTNE2TsuSWgKISbQcNL7skfXeULv1Mw1_rx1klQXMQaO9C8DSiNlFF42z0ykzIAddUcIspFVxTQSgxpZJI_oR8NH-O-XhgKI3zwZDHoA1ZTYPxpCMOzjxLf3pC68lYo9V0T3sKW7d4m3JCjkEg4Pd1U9ZFERwAumodXPdvg_98_gdhIs07 |
| CitedBy_id | crossref_primary_10_1016_j_ecoenv_2025_117964 crossref_primary_10_1016_j_jff_2023_105441 crossref_primary_10_1007_s00210_025_04206_8 crossref_primary_10_1016_j_jsbmb_2024_106663 crossref_primary_10_1016_j_prp_2025_155991 crossref_primary_10_1016_j_jep_2024_118465 crossref_primary_10_2147_JIR_S493001 crossref_primary_10_1016_j_celrep_2025_116186 crossref_primary_10_1016_j_freeradbiomed_2024_07_002 crossref_primary_10_1002_sen2_5 crossref_primary_10_1142_S0192415X22500902 crossref_primary_10_1186_s13019_025_03554_z crossref_primary_10_1039_D3NR04733D crossref_primary_10_26599_1671_5411_2025_01_006 crossref_primary_10_1016_j_freeradbiomed_2023_09_004 crossref_primary_10_1186_s10020_024_00825_8 crossref_primary_10_1007_s12672_025_02803_w crossref_primary_10_1080_15548627_2025_2503564 crossref_primary_10_3389_fendo_2022_945976 crossref_primary_10_1002_ptr_70028 crossref_primary_10_1016_j_bbagen_2024_130706 crossref_primary_10_3389_fendo_2023_1176430 crossref_primary_10_3389_fimmu_2022_956361 crossref_primary_10_1016_j_jhazmat_2025_138515 crossref_primary_10_3389_fimmu_2025_1587075 crossref_primary_10_1016_j_abb_2023_109737 crossref_primary_10_1016_j_coph_2023_102430 crossref_primary_10_1016_j_cbi_2024_111292 crossref_primary_10_3390_molecules27228039 crossref_primary_10_1016_j_lfs_2025_123950 crossref_primary_10_1016_j_freeradbiomed_2024_03_015 crossref_primary_10_1186_s12933_024_02224_z crossref_primary_10_3389_fcell_2025_1551003 crossref_primary_10_1007_s00204_024_03745_y crossref_primary_10_1016_j_freeradbiomed_2024_01_043 crossref_primary_10_1038_s41467_024_48433_8 crossref_primary_10_1016_j_bcp_2021_114661 crossref_primary_10_1186_s10020_023_00724_4 crossref_primary_10_1016_j_freeradbiomed_2022_04_014 crossref_primary_10_1038_s41467_024_50222_2 crossref_primary_10_1080_01480545_2023_2295230 crossref_primary_10_1186_s12944_024_02108_x crossref_primary_10_1016_j_freeradbiomed_2025_05_390 crossref_primary_10_4062_biomolther_2025_037 crossref_primary_10_1016_j_ijbiomac_2024_133424 crossref_primary_10_1038_s41392_024_01969_z crossref_primary_10_1007_s13402_023_00858_x crossref_primary_10_1016_j_ajpath_2024_02_009 crossref_primary_10_1016_j_bbagen_2022_130245 crossref_primary_10_1016_j_biopha_2022_112702 crossref_primary_10_1016_j_intimp_2025_115188 crossref_primary_10_1039_D2EN00116K crossref_primary_10_1186_s13098_023_01135_5 crossref_primary_10_3389_fendo_2024_1421838 crossref_primary_10_1016_j_heliyon_2024_e29654 crossref_primary_10_4103_jcrt_jcrt_806_23 crossref_primary_10_1096_fj_202302596R crossref_primary_10_1097_CAD_0000000000001724 crossref_primary_10_1089_ars_2023_0473 crossref_primary_10_1016_j_jhazmat_2024_134319 crossref_primary_10_1038_s41420_023_01753_y crossref_primary_10_1016_j_phrs_2022_106072 crossref_primary_10_1002_cbf_3985 crossref_primary_10_3892_mmr_2025_13557 crossref_primary_10_1089_ars_2022_0202 crossref_primary_10_1016_j_biopha_2025_118304 crossref_primary_10_1158_0008_5472_CAN_24_3785 crossref_primary_10_1016_j_biopha_2021_111872 crossref_primary_10_3390_antiox13060714 crossref_primary_10_1016_j_tox_2022_153119 crossref_primary_10_3390_antiox12122119 crossref_primary_10_1016_j_tips_2021_11_011 crossref_primary_10_1155_2022_5918218 crossref_primary_10_3390_ijms241814108 crossref_primary_10_1007_s10815_024_03155_0 crossref_primary_10_1016_j_hbpd_2023_10_005 crossref_primary_10_1016_j_phrs_2022_106086 crossref_primary_10_1186_s12906_024_04463_9 crossref_primary_10_1080_1120009X_2023_2177808 crossref_primary_10_1002_med_21881 crossref_primary_10_1017_S204017442400045X crossref_primary_10_3389_fonc_2021_778492 crossref_primary_10_1016_j_phymed_2024_155443 crossref_primary_10_3389_fcell_2023_1213995 crossref_primary_10_31083_j_fbl2812332 crossref_primary_10_1016_j_envpol_2025_126101 crossref_primary_10_1155_2023_8257217 crossref_primary_10_3390_ijms23179524 crossref_primary_10_1007_s00204_024_03812_4 crossref_primary_10_1016_j_biocel_2024_106632 crossref_primary_10_1080_15548627_2025_2481126 crossref_primary_10_1016_j_intimp_2024_113083 crossref_primary_10_31083_j_fbl2908291 crossref_primary_10_1016_j_bbadis_2023_166958 crossref_primary_10_2174_0113862073271348231213071225 crossref_primary_10_1016_j_freeradbiomed_2023_06_019 crossref_primary_10_3390_biology14040367 crossref_primary_10_1038_s41419_022_04883_w crossref_primary_10_1007_s10495_025_02121_0 crossref_primary_10_3389_fonc_2022_1025067 crossref_primary_10_1080_09553002_2022_2020358 crossref_primary_10_5114_aoms_185257 crossref_primary_10_1016_j_freeradbiomed_2024_09_039 crossref_primary_10_3389_fendo_2023_1177488 crossref_primary_10_1080_10408398_2025_2540044 crossref_primary_10_1016_j_biopha_2023_115802 crossref_primary_10_1080_0886022X_2024_2379601 crossref_primary_10_3390_jcm12206547 crossref_primary_10_1038_s41698_025_01090_6 crossref_primary_10_1089_ars_2022_0110 crossref_primary_10_3390_biomedicines11010163 crossref_primary_10_1111_tra_12905 crossref_primary_10_1021_acs_jafc_5c02034 crossref_primary_10_3389_fphar_2024_1379058 crossref_primary_10_3390_biomedicines13081880 crossref_primary_10_1186_s12974_022_02570_3 crossref_primary_10_1186_s12951_025_03620_7 crossref_primary_10_1016_j_ijrobp_2023_04_004 crossref_primary_10_1007_s11033_023_08264_0 crossref_primary_10_1016_j_lfs_2023_121821 crossref_primary_10_1177_21621918251372954 crossref_primary_10_1016_j_drup_2024_101154 crossref_primary_10_3389_fcvm_2022_841545 crossref_primary_10_1016_j_jare_2025_07_043 crossref_primary_10_1631_jzus_B2300097 crossref_primary_10_1016_j_fsi_2024_109745 crossref_primary_10_1007_s00204_025_03973_w crossref_primary_10_3390_ijms242417279 crossref_primary_10_1007_s10495_025_02083_3 crossref_primary_10_1016_j_lfs_2023_122370 crossref_primary_10_1002_advs_202300325 crossref_primary_10_1016_j_jnutbio_2023_109339 crossref_primary_10_3390_ijms23126583 crossref_primary_10_1002_advs_202507536 crossref_primary_10_1111_jcmm_70125 crossref_primary_10_1016_j_taap_2025_117376 crossref_primary_10_1002_advs_202207216 crossref_primary_10_1186_s40364_022_00365_5 crossref_primary_10_3389_fimmu_2022_877634 crossref_primary_10_1007_s12035_023_03640_0 crossref_primary_10_1016_j_metabol_2021_154840 crossref_primary_10_1016_j_phrs_2025_107915 crossref_primary_10_1016_j_cjca_2024_11_028 crossref_primary_10_1007_s00210_025_04478_0 crossref_primary_10_3389_fmicb_2022_889835 crossref_primary_10_3390_ijms252111613 crossref_primary_10_1016_j_brainresbull_2024_110991 crossref_primary_10_1038_s41380_023_02399_z crossref_primary_10_1080_15548627_2024_2319901 crossref_primary_10_4103_1673_5374_350187 crossref_primary_10_1016_j_canlet_2023_216147 crossref_primary_10_1016_j_yebeh_2024_109890 crossref_primary_10_1016_j_biopha_2024_117513 crossref_primary_10_1097_MD_0000000000039158 crossref_primary_10_1007_s12035_024_04018_6 crossref_primary_10_1016_j_drup_2025_101266 crossref_primary_10_1016_j_semcancer_2025_02_013 crossref_primary_10_1016_j_ajpath_2022_08_010 crossref_primary_10_1039_D2FO03331C crossref_primary_10_1007_s00262_023_03625_x crossref_primary_10_1016_j_exger_2022_111836 crossref_primary_10_3389_fnins_2022_1068611 crossref_primary_10_1038_s41401_025_01499_6 crossref_primary_10_1016_j_lfs_2022_121207 crossref_primary_10_3389_fcvm_2022_906753 crossref_primary_10_1016_j_lfs_2023_121987 crossref_primary_10_1155_2022_9304383 crossref_primary_10_3389_fphar_2023_1286718 crossref_primary_10_1186_s13046_023_02925_5 crossref_primary_10_1210_endrev_bnad001 crossref_primary_10_1016_j_bioactmat_2024_07_024 crossref_primary_10_1016_j_intimp_2025_114490 crossref_primary_10_1016_j_ejphar_2023_175881 crossref_primary_10_1038_s41419_022_04974_8 crossref_primary_10_1155_2022_6558060 crossref_primary_10_1186_s12872_024_04233_y crossref_primary_10_2147_JAA_S416276 crossref_primary_10_1016_j_freeradbiomed_2022_02_033 crossref_primary_10_3389_fphys_2022_993904 crossref_primary_10_1007_s13273_025_00557_8 crossref_primary_10_1007_s40495_023_00339_7 crossref_primary_10_1016_j_bbamcr_2025_120054 crossref_primary_10_1038_s41388_024_03050_z crossref_primary_10_1097_WNR_0000000000002080 crossref_primary_10_1016_j_cbi_2024_111104 crossref_primary_10_3390_ijms232214195 crossref_primary_10_1016_j_intimp_2024_112605 crossref_primary_10_3389_fcvm_2022_993592 crossref_primary_10_1002_1878_0261_13574 crossref_primary_10_1002_mco2_70010 crossref_primary_10_1016_j_bbadis_2022_166448 crossref_primary_10_1111_jcmm_17171 crossref_primary_10_2147_DDDT_S535517 crossref_primary_10_1016_j_lfs_2023_122291 crossref_primary_10_1016_j_isci_2025_112404 crossref_primary_10_1002_med_21921 crossref_primary_10_1155_2022_3568597 crossref_primary_10_1016_j_jep_2024_117963 crossref_primary_10_1016_j_yexcr_2023_113612 crossref_primary_10_1002_adma_202501933 crossref_primary_10_1016_j_biopha_2023_115538 crossref_primary_10_1016_j_jhazmat_2024_135542 crossref_primary_10_1007_s11064_023_03963_3 crossref_primary_10_1080_17435390_2023_2197055 crossref_primary_10_1016_j_bcp_2023_115909 crossref_primary_10_3389_fphar_2022_1066244 crossref_primary_10_3389_fphar_2022_930958 crossref_primary_10_1016_j_intimp_2025_115250 crossref_primary_10_1007_s43032_022_01004_y crossref_primary_10_1002_adma_202105348 crossref_primary_10_1016_j_intimp_2024_112818 crossref_primary_10_1016_j_freeradbiomed_2023_04_008 crossref_primary_10_1016_j_heliyon_2024_e38553 crossref_primary_10_3389_fimmu_2022_920059 crossref_primary_10_1016_j_phrs_2022_106386 crossref_primary_10_31083_j_jin2201019 crossref_primary_10_3390_ijms25189947 crossref_primary_10_1177_09731296231221610 crossref_primary_10_1186_s12951_022_01661_w crossref_primary_10_1002_jat_4453 crossref_primary_10_1016_j_biopha_2023_114312 crossref_primary_10_1079_fsncases_2025_0014 crossref_primary_10_2147_JIR_S400107 crossref_primary_10_3389_fphar_2024_1374445 crossref_primary_10_1016_j_ejphar_2023_175569 crossref_primary_10_1016_j_phymed_2023_154671 crossref_primary_10_1186_s12964_024_01751_2 crossref_primary_10_2147_JHC_S395617 crossref_primary_10_3390_genes14112005 crossref_primary_10_1016_j_jhazmat_2024_134356 crossref_primary_10_1155_2022_2948248 crossref_primary_10_1007_s11010_024_04940_2 crossref_primary_10_1038_s41419_022_04764_2 crossref_primary_10_3390_nu14214549 crossref_primary_10_1002_med_21934 crossref_primary_10_1016_j_lfs_2023_122086 crossref_primary_10_1016_j_cbi_2025_111723 |
| Cites_doi | 10.1097/01.ccm.0000552187.51051.23 10.1172/JCI129903 10.1016/j.neuroscience.2021.03.009 10.1038/ncb3064 10.1016/j.arr.2020.101129 10.1016/j.metabol.2020.154397 10.2147/DMSO.S249382 10.1152/ajpheart.00237.2020 10.1111/cns.13069 10.1016/j.fct.2020.111329 10.1016/j.cub.2007.07.029 10.1002/ctm2.173 10.1016/j.redox.2020.101670 10.1016/j.bbrc.2019.06.015 10.1021/cb200492h 10.1021/acs.jmedchem.8b01299 10.1016/j.jddst.2017.09.013 10.3389/fphys.2020.551318 10.1016/j.ajpath.2019.09.012 10.1038/s41419-019-2061-8 10.1186/s12931-020-01500-2 10.1038/s41467-020-15646-6 10.1016/j.tcb.2020.02.009 10.1002/ehf2.12958 10.1074/jbc.RA119.010949 10.1016/j.chom.2018.05.009 10.1089/dna.2019.5097 10.1161/CIRCRESAHA.120.316509 10.1016/j.taap.2019.114665 10.1016/j.bbrc.2019.05.147 10.1073/pnas.1821022116 10.18632/aging.103378 10.7554/eLife.62174 10.1016/j.matpr.2018.04.174 10.1016/j.bbamcr.2020.118913 10.1016/j.freeradbiomed.2020.08.009 10.1038/s41422-020-00441-1 10.18663/tjcl.769961 10.1093/carcin/bgs295 10.7554/eLife.02523 10.1093/cdn/nzz044.OR15-07-19 10.1038/nchembio.2239 10.1016/j.foodchem.2020.126368 10.1016/j.lfs.2020.118660 10.1016/j.cell.2007.12.018 10.1080/15548627.2016.1187366 10.1016/j.freeradbiomed.2019.01.052 10.1172/jci.insight.90777 10.1002/iub.1621 10.4239/wjd.v12.i2.124 10.1080/15548627.2018.1474314 10.1210/endrev/bnab006 10.1016/j.fct.2021.112114 10.1016/j.jchemneu.2020.101807 10.1038/s41418-019-0299-4 10.1016/j.celrep.2017.07.055 10.3390/nu12102954 10.1016/j.cell.2012.03.042 10.1038/s41418-020-0528-x 10.1016/j.freeradbiomed.2020.07.026 10.1016/j.brainres.2018.10.023 10.1016/j.freeradbiomed.2020.10.307 10.1016/j.envpol.2019.07.105 10.4103/1673-5374.245480 10.3390/antiox9080682 10.1007/s13311-020-00929-z 10.1111/ajt.15773 10.7554/eLife.10308 10.1161/STROKEAHA.116.015609 10.1016/j.bbrc.2018.02.061 10.1080/15548627.2018.1503146 10.1016/j.chembiol.2020.02.005 10.1126/sciadv.aaw2238 10.1016/j.lfs.2019.116795 10.1016/j.bbcan.2020.188366 10.1016/j.tips.2017.02.005 10.1016/j.ejmech.2020.112842 10.1096/fasebj.2020.34.s1.02704 10.3892/mmr.2020.11114 10.1016/j.cell.2019.03.032 10.3892/ijo.2014.2313 10.1152/ajprenal.00044.2017 10.1038/s41467-019-10991-7 10.3892/mmr.2020.11647 10.1172/jci.insight.141299 10.1007/s10620-020-06225-2 10.1016/j.bbrc.2019.10.006 10.1016/j.ajpath.2019.09.011 10.1111/1440-1681.13500 10.4046/trd.2013.75.1.9 10.1530/JOE-20-0155 10.1126/science.1197203 10.1007/s00018-019-03305-z 10.1172/JCI99032 10.1038/nature13148 10.1016/j.joim.2020.01.008 10.1038/s41598-017-12862-x 10.1016/j.cub.2020.09.068 10.1016/j.lfs.2020.118487 10.1093/eurheartj/ehy822 10.1007/s00210-020-01932-z 10.1111/bph.15283 10.1038/nchembio.2238 10.1016/j.jare.2020.07.007 10.1038/s41419-020-02871-6 10.1038/s41419-020-03135-z 10.1161/str.47.suppl_1.221 10.1016/j.bbagen.2017.05.019 10.1007/s10571-020-00850-1 10.1038/s41589-020-0472-6 10.3389/fneur.2018.00581 10.1186/s11658-020-00205-0 10.1002/ana.25356 |
| ContentType | Journal Article Publication |
| Copyright | 2021 Elsevier Ltd Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV BZJLE |
| DOI | 10.1016/j.tem.2021.04.010 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Other |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-3061 |
| EndPage | 462 |
| ExternalDocumentID | oai_swepub_ki_se_645233 34006412 10_1016_j_tem_2021_04_010 S1043276021000953 1_s2_0_S1043276021000953 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LZ1 M29 M41 MO0 MVM N9A O-L O9- OAUVE OB0 ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K WUQ XFW Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RCE RIG AAIAV ABLVK ABYKQ AJBFU DOVZS LCYCR 9DU AAYXX CITATION AGCQF CGR CUY CVF ECM EIF NPM 7X8 ADTPV BZJLE |
| ID | FETCH-LOGICAL-c605t-598323d788aa90b9bb9bf07b550b9ec0c6a3750d13b62645f90f4adcbfea1cdf3 |
| ISICitedReferencesCount | 261 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659494900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1043-2760 1879-3061 |
| IngestDate | Tue Nov 25 03:36:44 EST 2025 Sun Sep 28 02:39:09 EDT 2025 Mon Apr 28 11:35:44 EDT 2025 Sat Nov 29 07:06:25 EST 2025 Tue Nov 18 22:41:14 EST 2025 Fri Feb 23 02:44:41 EST 2024 Tue Feb 25 19:56:48 EST 2025 Tue Oct 14 19:30:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | iron overload ferritinophagy ferroptosis metabolic diseases lipid peroxidation |
| Language | English |
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c605t-598323d788aa90b9bb9bf07b550b9ec0c6a3750d13b62645f90f4adcbfea1cdf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-0275-0783 |
| OpenAccessLink | http://hdl.handle.net/10072/405135 |
| PMID | 34006412 |
| PQID | 2528907149 |
| PQPubID | 23479 |
| PageCount | 19 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_645233 proquest_miscellaneous_2528907149 pubmed_primary_34006412 crossref_citationtrail_10_1016_j_tem_2021_04_010 crossref_primary_10_1016_j_tem_2021_04_010 elsevier_sciencedirect_doi_10_1016_j_tem_2021_04_010 elsevier_clinicalkeyesjournals_1_s2_0_S1043276021000953 elsevier_clinicalkey_doi_10_1016_j_tem_2021_04_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | TRENDS IN ENDOCRINOLOGY AND METABOLISM |
| PublicationTitleAlternate | Trends Endocrinol Metab |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu (bb0030) 2020; 27 Javidfar (bb0605) 2018; 43 Zhou (bb0540) 2020; 190 Zhang (bb0335) 2018; 14 Wang, Tang (bb0180) 2019; 254 Mayr (bb0600) 2020; 11 Yao (bb0585) 2019; 14 Menon (bb0070) 2020; 34 Jacobs (bb0110) 2020; 7 Nai (bb0630) 2021; 106 Grabherr (bb0405) 2019; 57 Yamada (bb0530) 2020; 20 Hou (bb0025) 2016; 12 Rui (bb0465) 2020; 70 Bai (bb0170) 2020; 160 Ito (bb0115) 2021; 10 Qi (bb0365) 2020; 190 Li (bb0435) 2020; 41 Tang (bb0145) 2020 Liu (bb0470) 2019; 9 Luo (bb0445) 2020; 13 Tang (bb0120) 2021; 394 Zhang (bb0215) 2020; 246 Stamenkovic (bb0125) 2021; 320 Yang (bb0655) 2019; 5 Levine, Kroemer (bb0020) 2008; 132 Zhang (bb0515) 2019; 1706 Ajoolabady (bb0005) 2020; 1874 Yang (bb0420) 2020; 209 Li (bb0340) 2018; 9 Wang (bb0415) 2020; 11 Xiao (bb0185) 2019; 515 Dixon (bb0040) 2012; 149 Zille (bb0570) 2017; 48 Guo (bb0270) 2021; 178 Tian (bb0320) 2020; 17 Tang (bb0150) 2021; 162 Hassannia (bb0090) 2018; 128 Tang (bb0305) 2019; 134 Khiavi (bb0610) 2020; 77 Lin (bb0315) 2020; 9 Alim (bb0510) 2019; 177 Mancias (bb0295) 2015; 4 Guan (bb0455) 2020; 264 Tumer (bb0485) 2020; 11 Wang (bb0505) 2020; 28 Wei (bb0460) 2020; 10 Ajoolabady (bb0015) 2021 Proneth (bb0260) 2016; 100 Deng (bb0265) 2019; 129 Kagan (bb0060) 2017; 13 Jianga (bb0135) 2020; 29 Feng (bb0130) 2019; 520 Prakash (bb0560) 2020 Angeli (bb0285) 2014; 16 Chen (bb0565) 2020 Mancias (bb0290) 2014; 509 Liu (bb0440) 2020; 25 Arosio (bb0075) 2017; 69 Park (bb0140) 2019; 10 Wang (bb0425) 2020; 22 Abdul (bb0210) 2016; 47 Dixon (bb0235) 2014; 3 Luo (bb0240) 2021; 12 Ding (bb0280) 2020; 11 Franck (bb0175) 2019; 40 Ajoolabady (bb0010) 2020; 62 Das (bb0620) 2020 Xie (bb0220) 2017; 20 Ma (bb0155) 2020; 11 Zhang (bb0225) 2020 Su (bb0245) 2019; 294 Hao (bb0195) 2021; 463 Sasazawa (bb0350) 2012; 7 Radadiya (bb0635) 2021; 6 Jiang (bb0645) 2020; 140 Zhou (bb0200) 2020; 13 Ma (bb0275) 2021; 66 Angeli (bb0380) 2017; 38 Tang, Kroemer (bb0035) 2020; 30 Yang (bb0520) 2020; 261 Li (bb0190) 2020; 12 Sampilvanjil (bb0385) 2020; 318 Yoshida (bb0390) 2019; 10 Yao (bb0575) 2019; 31 Guan (bb0410) 2019; 235 Li (bb0400) 2020; 319 Karuppagounder (bb0480) 2018; 84 Fang (bb0095) 2019; 116 Zhou (bb0250) 2020 Park (bb0535) 2019; 379 Zou (bb0065) 2020; 16 Stockwell (bb0045) 2020; 30 Gryzik (bb0300) 2021; 1868 Li (bb0430) 2017; 2 Bengson, Ryu (bb0625) 2019; 3 Ajoolabady (bb0640) 2021 Gilbert (bb0375) 2011; 331 Latunde-Dada (bb0050) 2017; 1861 Tang (bb0055) 2020; 31 Doll (bb0370) 2017; 13 Zhao (bb0525) 2020; 11 Mauthe (bb0355) 2018; 14 Fang (bb0080) 2020; 127 Li (bb0230) 2020; 39 Jiang (bb0490) 2021; 23 Choi (bb0650) 2013; 75 Li (bb0555) 2020; 27 Dong (bb0545) 2020; 12 Liu (bb0500) 2018; 497 Lee (bb0330) 2007; 17 Shao (bb0345) 2014; 44 Qiu (bb0550) 2020; 21 Adedoyin (bb0100) 2018; 314 Xiao (bb0590) 2021; 151 Yin (bb0085) 2020; 113 Devisscher (bb0450) 2018; 61 Wang (bb0360) 2013; 34 Usman, Farrukh (bb0615) 2018; 5 Su (bb0255) 2019; 47 Fuhrmann (bb0310) 2020; 36 Kang (bb0165) 2018; 24 Li (bb0160) 2020; 160 Lan (bb0475) 2020; 18 Xie (bb0580) 2019; 25 Baksi, Singh (bb0325) 2017; 7 Li (bb0595) 2019; 26 Abdul (bb0205) 2020 Chen (bb0105) 2019; 516 Ren (bb0395) 2020; 40 Zhou (bb0495) 2020; 107 Javidfar (10.1016/j.tem.2021.04.010_bb0605) 2018; 43 Ajoolabady (10.1016/j.tem.2021.04.010_bb0640) 2021 Park (10.1016/j.tem.2021.04.010_bb0535) 2019; 379 Mancias (10.1016/j.tem.2021.04.010_bb0295) 2015; 4 Yoshida (10.1016/j.tem.2021.04.010_bb0390) 2019; 10 Xie (10.1016/j.tem.2021.04.010_bb0580) 2019; 25 Yao (10.1016/j.tem.2021.04.010_bb0575) 2019; 31 Zille (10.1016/j.tem.2021.04.010_bb0570) 2017; 48 Tang (10.1016/j.tem.2021.04.010_bb0120) 2021; 394 Xie (10.1016/j.tem.2021.04.010_bb0220) 2017; 20 Ajoolabady (10.1016/j.tem.2021.04.010_bb0005) 2020; 1874 Choi (10.1016/j.tem.2021.04.010_bb0650) 2013; 75 Radadiya (10.1016/j.tem.2021.04.010_bb0635) 2021; 6 Zhang (10.1016/j.tem.2021.04.010_bb0225) 2020 Kang (10.1016/j.tem.2021.04.010_bb0165) 2018; 24 Zhao (10.1016/j.tem.2021.04.010_bb0525) 2020; 11 Li (10.1016/j.tem.2021.04.010_bb0340) 2018; 9 Rui (10.1016/j.tem.2021.04.010_bb0465) 2020; 70 Wang (10.1016/j.tem.2021.04.010_bb0180) 2019; 254 Yang (10.1016/j.tem.2021.04.010_bb0420) 2020; 209 Zhou (10.1016/j.tem.2021.04.010_bb0540) 2020; 190 Li (10.1016/j.tem.2021.04.010_bb0555) 2020; 27 Gryzik (10.1016/j.tem.2021.04.010_bb0300) 2021; 1868 Zhang (10.1016/j.tem.2021.04.010_bb0335) 2018; 14 Liu (10.1016/j.tem.2021.04.010_bb0470) 2019; 9 Luo (10.1016/j.tem.2021.04.010_bb0240) 2021; 12 Fuhrmann (10.1016/j.tem.2021.04.010_bb0310) 2020; 36 Mauthe (10.1016/j.tem.2021.04.010_bb0355) 2018; 14 Li (10.1016/j.tem.2021.04.010_bb0160) 2020; 160 Su (10.1016/j.tem.2021.04.010_bb0255) 2019; 47 Zhou (10.1016/j.tem.2021.04.010_bb0200) 2020; 13 Yamada (10.1016/j.tem.2021.04.010_bb0530) 2020; 20 Lan (10.1016/j.tem.2021.04.010_bb0475) 2020; 18 Wang (10.1016/j.tem.2021.04.010_bb0415) 2020; 11 Jianga (10.1016/j.tem.2021.04.010_bb0135) 2020; 29 Hao (10.1016/j.tem.2021.04.010_bb0195) 2021; 463 Sasazawa (10.1016/j.tem.2021.04.010_bb0350) 2012; 7 Arosio (10.1016/j.tem.2021.04.010_bb0075) 2017; 69 Liu (10.1016/j.tem.2021.04.010_bb0500) 2018; 497 Park (10.1016/j.tem.2021.04.010_bb0140) 2019; 10 Usman (10.1016/j.tem.2021.04.010_bb0615) 2018; 5 Karuppagounder (10.1016/j.tem.2021.04.010_bb0480) 2018; 84 Hou (10.1016/j.tem.2021.04.010_bb0025) 2016; 12 Doll (10.1016/j.tem.2021.04.010_bb0370) 2017; 13 Menon (10.1016/j.tem.2021.04.010_bb0070) 2020; 34 Li (10.1016/j.tem.2021.04.010_bb0230) 2020; 39 Dong (10.1016/j.tem.2021.04.010_bb0545) 2020; 12 Su (10.1016/j.tem.2021.04.010_bb0245) 2019; 294 Lee (10.1016/j.tem.2021.04.010_bb0330) 2007; 17 Gilbert (10.1016/j.tem.2021.04.010_bb0375) 2011; 331 Wang (10.1016/j.tem.2021.04.010_bb0505) 2020; 28 Shao (10.1016/j.tem.2021.04.010_bb0345) 2014; 44 Sampilvanjil (10.1016/j.tem.2021.04.010_bb0385) 2020; 318 Li (10.1016/j.tem.2021.04.010_bb0595) 2019; 26 Abdul (10.1016/j.tem.2021.04.010_bb0205) 2020 Tang (10.1016/j.tem.2021.04.010_bb0145) 2020 Tang (10.1016/j.tem.2021.04.010_bb0150) 2021; 162 Baksi (10.1016/j.tem.2021.04.010_bb0325) 2017; 7 Das (10.1016/j.tem.2021.04.010_bb0620) 2020 Luo (10.1016/j.tem.2021.04.010_bb0445) 2020; 13 Kagan (10.1016/j.tem.2021.04.010_bb0060) 2017; 13 Ito (10.1016/j.tem.2021.04.010_bb0115) 2021; 10 Feng (10.1016/j.tem.2021.04.010_bb0130) 2019; 520 Li (10.1016/j.tem.2021.04.010_bb0190) 2020; 12 Yang (10.1016/j.tem.2021.04.010_bb0520) 2020; 261 Ma (10.1016/j.tem.2021.04.010_bb0155) 2020; 11 Jiang (10.1016/j.tem.2021.04.010_bb0490) 2021; 23 Prakash (10.1016/j.tem.2021.04.010_bb0560) 2020 Tang (10.1016/j.tem.2021.04.010_bb0055) 2020; 31 Zhang (10.1016/j.tem.2021.04.010_bb0215) 2020; 246 Proneth (10.1016/j.tem.2021.04.010_bb0260) 2016; 100 Lin (10.1016/j.tem.2021.04.010_bb0315) 2020; 9 Li (10.1016/j.tem.2021.04.010_bb0430) 2017; 2 Khiavi (10.1016/j.tem.2021.04.010_bb0610) 2020; 77 Yao (10.1016/j.tem.2021.04.010_bb0585) 2019; 14 Zhou (10.1016/j.tem.2021.04.010_bb0250) 2020 Xiao (10.1016/j.tem.2021.04.010_bb0185) 2019; 515 Zhang (10.1016/j.tem.2021.04.010_bb0515) 2019; 1706 Dixon (10.1016/j.tem.2021.04.010_bb0235) 2014; 3 Fang (10.1016/j.tem.2021.04.010_bb0080) 2020; 127 Zhou (10.1016/j.tem.2021.04.010_bb0495) 2020; 107 Wei (10.1016/j.tem.2021.04.010_bb0460) 2020; 10 Yang (10.1016/j.tem.2021.04.010_bb0655) 2019; 5 Yin (10.1016/j.tem.2021.04.010_bb0085) 2020; 113 Ajoolabady (10.1016/j.tem.2021.04.010_bb0015) 2021 Angeli (10.1016/j.tem.2021.04.010_bb0380) 2017; 38 Abdul (10.1016/j.tem.2021.04.010_bb0210) 2016; 47 Jacobs (10.1016/j.tem.2021.04.010_bb0110) 2020; 7 Tumer (10.1016/j.tem.2021.04.010_bb0485) 2020; 11 Dixon (10.1016/j.tem.2021.04.010_bb0040) 2012; 149 Fang (10.1016/j.tem.2021.04.010_bb0095) 2019; 116 Deng (10.1016/j.tem.2021.04.010_bb0265) 2019; 129 Tang (10.1016/j.tem.2021.04.010_bb0305) 2019; 134 Wang (10.1016/j.tem.2021.04.010_bb0425) 2020; 22 Guo (10.1016/j.tem.2021.04.010_bb0270) 2021; 178 Latunde-Dada (10.1016/j.tem.2021.04.010_bb0050) 2017; 1861 Adedoyin (10.1016/j.tem.2021.04.010_bb0100) 2018; 314 Franck (10.1016/j.tem.2021.04.010_bb0175) 2019; 40 Wang (10.1016/j.tem.2021.04.010_bb0360) 2013; 34 Li (10.1016/j.tem.2021.04.010_bb0435) 2020; 41 Qiu (10.1016/j.tem.2021.04.010_bb0550) 2020; 21 Zou (10.1016/j.tem.2021.04.010_bb0065) 2020; 16 Liu (10.1016/j.tem.2021.04.010_bb0030) 2020; 27 Stamenkovic (10.1016/j.tem.2021.04.010_bb0125) 2021; 320 Nai (10.1016/j.tem.2021.04.010_bb0630) 2021; 106 Mancias (10.1016/j.tem.2021.04.010_bb0290) 2014; 509 Bai (10.1016/j.tem.2021.04.010_bb0170) 2020; 160 Ren (10.1016/j.tem.2021.04.010_bb0395) 2020; 40 Mayr (10.1016/j.tem.2021.04.010_bb0600) 2020; 11 Ma (10.1016/j.tem.2021.04.010_bb0275) 2021; 66 Guan (10.1016/j.tem.2021.04.010_bb0410) 2019; 235 Chen (10.1016/j.tem.2021.04.010_bb0105) 2019; 516 Levine (10.1016/j.tem.2021.04.010_bb0020) 2008; 132 Alim (10.1016/j.tem.2021.04.010_bb0510) 2019; 177 Tang (10.1016/j.tem.2021.04.010_bb0035) 2020; 30 Devisscher (10.1016/j.tem.2021.04.010_bb0450) 2018; 61 Stockwell (10.1016/j.tem.2021.04.010_bb0045) 2020; 30 Grabherr (10.1016/j.tem.2021.04.010_bb0405) 2019; 57 Liu (10.1016/j.tem.2021.04.010_bb0440) 2020; 25 Bengson (10.1016/j.tem.2021.04.010_bb0625) 2019; 3 Xiao (10.1016/j.tem.2021.04.010_bb0590) 2021; 151 Jiang (10.1016/j.tem.2021.04.010_bb0645) 2020; 140 Guan (10.1016/j.tem.2021.04.010_bb0455) 2020; 264 Qi (10.1016/j.tem.2021.04.010_bb0365) 2020; 190 Chen (10.1016/j.tem.2021.04.010_bb0565) 2020 Li (10.1016/j.tem.2021.04.010_bb0400) 2020; 319 Hassannia (10.1016/j.tem.2021.04.010_bb0090) 2018; 128 Angeli (10.1016/j.tem.2021.04.010_bb0285) 2014; 16 Ajoolabady (10.1016/j.tem.2021.04.010_bb0010) 2020; 62 Ding (10.1016/j.tem.2021.04.010_bb0280) 2020; 11 Tian (10.1016/j.tem.2021.04.010_bb0320) 2020; 17 |
| References_xml | – volume: 134 start-page: 445 year: 2019 end-page: 457 ident: bb0305 article-title: Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy publication-title: Free Radic. Biol. Med. – volume: 235 start-page: 116795 year: 2019 ident: bb0410 article-title: The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation publication-title: Life Sci. – volume: 34 start-page: 1 year: 2020 ident: bb0070 article-title: Cardiac iron overload promotes ferroptosis and cardiac dysfunction in mice with sickle cell disease publication-title: FASEB J. – volume: 44 start-page: 1661 year: 2014 end-page: 1668 ident: bb0345 article-title: Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia publication-title: Int. J. Oncol. – year: 2021 ident: bb0640 article-title: ER stress in cardiometabolic diseases: from molecular mechanisms to therapeutics publication-title: Endocr. Rev. – volume: 9 start-page: 682 year: 2020 ident: bb0315 article-title: Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells publication-title: Antioxidants – volume: 12 start-page: 12943 year: 2020 ident: bb0545 article-title: Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1 publication-title: Aging (Albany NY) – volume: 12 start-page: 2954 year: 2020 ident: bb0190 article-title: Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes publication-title: Nutrients – volume: 17 start-page: 1796 year: 2020 end-page: 1812 ident: bb0320 article-title: FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease publication-title: Neurotherapeutics – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: bb0040 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 30 start-page: 478 year: 2020 end-page: 490 ident: bb0045 article-title: Emerging mechanisms and disease relevance of ferroptosis publication-title: Trends Cell Biol. – volume: 320 start-page: H1170 year: 2021 end-page: H1184 ident: bb0125 article-title: Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury publication-title: Am. J. Physiol. Heart Circ. Physiol. – start-page: A5560 year: 2020 ident: bb0560 article-title: Ferroptosis mediates inflammation in lung ischemia-reperfusion (IR) sterile injury in mice publication-title: C58. Acute Lung Injury: Atypical Triggers – volume: 100 start-page: S229 year: 2016 ident: bb0260 article-title: Development of novel ferroptosis inhibitors for the treatment of ischemia/reperfusion injuries publication-title: Transplantation – volume: 11 start-page: 1 year: 2020 end-page: 15 ident: bb0415 article-title: (+)-Clausenamide protects against drug-induced liver injury by inhibiting hepatocyte ferroptosis publication-title: Cell Death Dis. – volume: 246 start-page: 247 year: 2020 end-page: 263 ident: bb0215 article-title: Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats publication-title: J. Endocrinol. – volume: 1706 start-page: 48 year: 2019 end-page: 57 ident: bb0515 article-title: Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury publication-title: Brain Res. – volume: 294 start-page: 19395 year: 2019 end-page: 19404 ident: bb0245 article-title: Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury publication-title: J. Biol. Chem. – volume: 23 start-page: 1 year: 2021 ident: bb0490 article-title: Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury publication-title: Mol. Med. Rep. – volume: 43 start-page: 19 year: 2018 end-page: 26 ident: bb0605 article-title: The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells publication-title: J. Drug Deliv. Sci. Technol. – volume: 16 start-page: 302 year: 2020 end-page: 309 ident: bb0065 article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis publication-title: Nat. Chem. Biol. – volume: 30 start-page: R1292 year: 2020 end-page: R1297 ident: bb0035 article-title: Ferroptosis publication-title: Curr. Biol. – volume: 515 start-page: 448 year: 2019 end-page: 454 ident: bb0185 article-title: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis publication-title: Biochem. Biophys. Res. Commun. – volume: 62 start-page: 101129 year: 2020 ident: bb0010 article-title: Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing publication-title: Ageing Res. Rev. – volume: 11 start-page: 1 year: 2020 end-page: 15 ident: bb0525 article-title: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia− reperfusion injury publication-title: Cell Death Dis. – volume: 3 year: 2014 ident: bb0235 article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis publication-title: eLife – volume: 10 start-page: 3145 year: 2019 ident: bb0390 article-title: Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis publication-title: Nat. Commun. – volume: 1874 start-page: 188366 year: 2020 ident: bb0005 article-title: Enzyme-based autophagy in anti-neoplastic management: from molecular mechanisms to clinical therapeutics publication-title: Biochim. Biophys. Acta Rev. Cancer – volume: 107 start-page: 101807 year: 2020 ident: bb0495 article-title: Proanthocyanidin promotes functional recovery of spinal cord injury via inhibiting ferroptosis publication-title: J. Chem. Neuroanat. – volume: 40 start-page: 1097 year: 2020 end-page: 1102 ident: bb0395 article-title: Vitamin E reduces radiation injury of hippocampal neurons in mice by inhibiting ferroptosis publication-title: Nan Fang Yi Ke Da Xue Bao – volume: 38 start-page: 489 year: 2017 end-page: 498 ident: bb0380 article-title: Ferroptosis inhibition: mechanisms and opportunities publication-title: Trends Pharmacol. Sci. – volume: 26 start-page: 2284 year: 2019 end-page: 2299 ident: bb0595 article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion publication-title: Cell Death Differ. – volume: 151 start-page: 112114 year: 2021 ident: bb0590 article-title: Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy publication-title: Food Chem. Toxicol. – volume: 27 start-page: 420 year: 2020 end-page: 435 ident: bb0030 article-title: Autophagy-dependent ferroptosis: machinery and regulation publication-title: Cell Chem. Biol. – volume: 497 start-page: 233 year: 2018 end-page: 240 ident: bb0500 article-title: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis publication-title: Biochem. Biophys. Res. Commun. – volume: 331 start-page: 217 year: 2011 end-page: 219 ident: bb0375 article-title: The structure of human 5-lipoxygenase publication-title: Science – volume: 1868 start-page: 118913 year: 2021 ident: bb0300 article-title: NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res. – volume: 17 start-page: 1561 year: 2007 end-page: 1567 ident: bb0330 article-title: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration publication-title: Curr. Biol. – volume: 31 start-page: 107 year: 2020 end-page: 125 ident: bb0055 article-title: Ferroptosis: molecular mechanisms and health implications publication-title: Cell Res. – volume: 47 start-page: 698 year: 2019 ident: bb0255 article-title: TIMP-2 promoted ferroptosis in ischemia reperfusion kidney injury via TIMP-2-NRF-2-SLC7A11 pathway publication-title: Crit. Care Med. – volume: 264 start-page: 118660 year: 2020 ident: bb0455 article-title: Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils publication-title: Life Sci. – year: 2020 ident: bb0620 article-title: Intestinal ferritinophagy is regulated by HIF-2 and is essential for systemic iron homeostasis publication-title: bioRxiv – volume: 162 start-page: 339 year: 2021 end-page: 352 ident: bb0150 article-title: Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion publication-title: Free Radic. Biol. Med. – volume: 160 start-page: 92 year: 2020 end-page: 102 ident: bb0170 article-title: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell publication-title: Free Radic. Biol. Med. – volume: 84 start-page: 854 year: 2018 end-page: 872 ident: bb0480 article-title: N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice publication-title: Ann. Neurol. – volume: 314 start-page: F702 year: 2018 end-page: F714 ident: bb0100 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells publication-title: Am. J. Physiol. Renal Physiol. – volume: 261 start-page: 118487 year: 2020 ident: bb0520 article-title: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model publication-title: Life Sci. – volume: 39 start-page: 210 year: 2020 end-page: 225 ident: bb0230 article-title: Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress publication-title: DNA Cell Biol. – volume: 29 start-page: 1214 year: 2020 end-page: 1222 ident: bb0135 article-title: Effect of electroacupuncture ‘Shenmen’ HT7 on the expression of ferroptosis related proteins GPX4, FTH1, TfR1 and ACSL4 in acute myocardial ischemia model rats publication-title: Rev. Argentina Clín. Psicol. – volume: 190 start-page: 82 year: 2020 end-page: 92 ident: bb0540 article-title: Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis publication-title: Am. J. Pathol. – volume: 209 start-page: 112842 year: 2020 ident: bb0420 article-title: Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model publication-title: Eur. J. Med. Chem. – volume: 2 year: 2017 ident: bb0430 article-title: Inhibition of neuronal ferroptosis protects hemorrhagic brain publication-title: JCI Insight – year: 2020 ident: bb0145 article-title: MiR-30d inhibits cardiomyocytes autophagy promoting ferroptosis after myocardial infarction publication-title: Panminerva Med. – volume: 463 start-page: 216 year: 2021 end-page: 226 ident: bb0195 article-title: SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes publication-title: Neuroscience – volume: 11 start-page: 1 year: 2020 end-page: 14 ident: bb0280 article-title: miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury publication-title: Cell Death Dis. – volume: 34 start-page: 128 year: 2013 end-page: 138 ident: bb0360 article-title: Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases publication-title: Carcinogenesis – volume: 10 year: 2021 ident: bb0115 article-title: Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice publication-title: eLife – year: 2021 ident: bb0015 article-title: Targeting autophagy in neurodegenerative diseases: from molecular mechanisms to clinical therapeutics publication-title: Clin. Exp. Pharmacol. Physiol. – volume: 177 start-page: 1262 year: 2019 end-page: 1279 ident: bb0510 article-title: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke publication-title: Cell – volume: 132 start-page: 27 year: 2008 end-page: 42 ident: bb0020 article-title: Autophagy in the pathogenesis of disease publication-title: Cell – volume: 66 start-page: 483 year: 2021 end-page: 492 ident: bb0275 article-title: Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis publication-title: Dig. Dis. Sci. – year: 2020 ident: bb0250 article-title: Impact of prolonged mechanical ventilation on ferroptosis in renal ischemia/reperfusion injury in rats publication-title: Biomed. Res. Int. – volume: 5 year: 2019 ident: bb0655 article-title: Clockophagy is a novel selective autophagy process favoring ferroptosis publication-title: Sci. Adv. – year: 2020 ident: bb0565 article-title: Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis publication-title: Brain Res. – volume: 106 start-page: 795 year: 2021 end-page: 805 ident: bb0630 article-title: NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice publication-title: Haematologica – volume: 31 start-page: 1389 year: 2019 end-page: 1394 ident: bb0575 article-title: Hippocampal neuronal ferroptosis involved in cognitive dysfunction in rats with sepsis-related encephalopathy through the Nrf2/GPX4 signaling pathway publication-title: Zhonghua Wei Zhong Bing Ji Jiu Yi Xue – volume: 11 start-page: 551318 year: 2020 ident: bb0155 article-title: USP22 protects against myocardial ischemia–reperfusion injury via the SIRT1-p53/SLC7A11–dependent inhibition of ferroptosis–induced cardiomyocyte death publication-title: Front. Physiol. – volume: 516 start-page: 37 year: 2019 end-page: 43 ident: bb0105 article-title: Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure publication-title: Biochem. Biophys. Res. Commun. – volume: 116 start-page: 2672 year: 2019 end-page: 2680 ident: bb0095 article-title: Ferroptosis as a target for protection against cardiomyopathy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 190 start-page: 68 year: 2020 end-page: 81 ident: bb0365 article-title: Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation–mediated cell death in mice publication-title: Am. J. Pathol. – volume: 13 start-page: 2041 year: 2020 ident: bb0445 article-title: Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice publication-title: Int. J. Clin. Exp. Pathol. – volume: 13 start-page: 91 year: 2017 end-page: 98 ident: bb0370 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. – volume: 319 start-page: 126368 year: 2020 ident: bb0400 article-title: Maillard reaction products with furan ring, like furosine, cause kidney injury through triggering ferroptosis pathway publication-title: Food Chem. – volume: 140 start-page: 111329 year: 2020 ident: bb0645 article-title: Impaired ferritinophagy flux induced by high fat diet mediates hepatic insulin resistance via endoplasmic reticulum stress publication-title: Food Chem. Toxicol. – volume: 18 start-page: 344 year: 2020 end-page: 350 ident: bb0475 article-title: Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats publication-title: J. Integr. Med. – volume: 20 start-page: 1692 year: 2017 end-page: 1704 ident: bb0220 article-title: The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity publication-title: Cell Rep. – volume: 13 start-page: 81 year: 2017 end-page: 90 ident: bb0060 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat. Chem. Biol. – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: bb0325 article-title: α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson’s disease publication-title: Sci. Rep. – volume: 3 year: 2019 ident: bb0625 article-title: NCOA4-mediated ferritinophagy is essential for HT22 neuronal cell survival during iron deficiency (OR15-07-19) publication-title: Curr. Dev. Nutr. – volume: 12 start-page: 124 year: 2021 ident: bb0240 article-title: Role of ferroptosis in the process of diabetes-induced endothelial dysfunction publication-title: World J. Diabetes – volume: 11 start-page: 1 year: 2020 end-page: 15 ident: bb0600 article-title: Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease publication-title: Nat. Commun. – volume: 75 start-page: 9 year: 2013 end-page: 17 ident: bb0650 article-title: Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells publication-title: Tuberc. Respir. Dis. – volume: 7 start-page: 3772 year: 2020 end-page: 3781 ident: bb0110 article-title: Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature publication-title: ESC Heart Failure – volume: 509 start-page: 105 year: 2014 end-page: 109 ident: bb0290 article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy publication-title: Nature – volume: 113 start-page: 154397 year: 2020 ident: bb0085 article-title: Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury publication-title: Metabolism – volume: 57 start-page: V04 year: 2019 ident: bb0405 article-title: Western-diet-derived arachidonic acid induces epithelial ferroptosis which is a feature of Crohn's disease publication-title: Z. Gastroenterol. – volume: 25 start-page: 465 year: 2019 end-page: 475 ident: bb0580 article-title: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice publication-title: CNS Neurosci. Ther. – volume: 27 start-page: 2635 year: 2020 end-page: 2650 ident: bb0555 article-title: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury publication-title: Cell Death Differ. – volume: 14 start-page: 1435 year: 2018 end-page: 1455 ident: bb0355 article-title: Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion publication-title: Autophagy – volume: 6 start-page: 141299 year: 2021 ident: bb0635 article-title: Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease publication-title: JCI Insight – volume: 1861 start-page: 1893 year: 2017 end-page: 1900 ident: bb0050 article-title: Ferroptosis: role of lipid peroxidation, iron and ferritinophagy publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 13 start-page: 1921 year: 2020 end-page: 1931 ident: bb0200 article-title: The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis publication-title: Diabetes Metab. Syndr. Obes. – volume: 24 start-page: 97 year: 2018 end-page: 108 ident: bb0165 article-title: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis publication-title: Cell Host Microbe – volume: 9 start-page: 581 year: 2018 ident: bb0340 article-title: Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis publication-title: Front. Neurol. – volume: 160 start-page: 303 year: 2020 end-page: 318 ident: bb0160 article-title: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury publication-title: Free Radic. Biol. Med. – volume: 128 start-page: 3341 year: 2018 end-page: 3355 ident: bb0090 article-title: Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma publication-title: J. Clin. Invest. – volume: 16 start-page: 1180 year: 2014 end-page: 1191 ident: bb0285 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat. Cell Biol. – year: 2020 ident: bb0205 article-title: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis publication-title: Transl. Stroke Res. – volume: 25 start-page: 1 year: 2020 end-page: 14 ident: bb0440 article-title: Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis publication-title: Cell. Mol. Biol. Lett. – year: 2020 ident: bb0225 article-title: Induction of hyperandrogenism and insulin resistance differentially modulates ferroptosis in uterine and placental tissues of pregnant rats publication-title: bioRxiv – volume: 4 year: 2015 ident: bb0295 article-title: Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis publication-title: eLife – volume: 21 start-page: 1 year: 2020 end-page: 16 ident: bb0550 article-title: Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis publication-title: Respir. Res. – volume: 12 start-page: 1425 year: 2016 end-page: 1428 ident: bb0025 article-title: Autophagy promotes ferroptosis by degradation of ferritin publication-title: Autophagy – volume: 28 start-page: 231 year: 2020 end-page: 243 ident: bb0505 article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis publication-title: J. Adv. Res. – volume: 129 start-page: 5033 year: 2019 end-page: 5049 ident: bb0265 article-title: Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule publication-title: J. Clin. Invest. – volume: 40 start-page: 928 year: 2019 end-page: 937 ident: bb0175 article-title: Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis publication-title: Eur. Heart J. – volume: 61 start-page: 10126 year: 2018 end-page: 10140 ident: bb0450 article-title: Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy publication-title: J. Med. Chem. – volume: 520 start-page: 606 year: 2019 ident: bb0130 article-title: Ferroptosis inhibitor, liproxstatin-1, protects the myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and rescuing GPX4 levels publication-title: Biochem. Biophys. Res. Commun. – volume: 10 start-page: 1 year: 2019 end-page: 15 ident: bb0140 article-title: Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes publication-title: Cell Death Dis. – volume: 254 start-page: 112937 year: 2019 ident: bb0180 article-title: PM2. 5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance publication-title: Environ. Pollut. – volume: 22 start-page: 175 year: 2020 end-page: 184 ident: bb0425 article-title: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury publication-title: Mol. Med. Rep. – volume: 7 start-page: 892 year: 2012 end-page: 900 ident: bb0350 article-title: Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein publication-title: ACS Chem. Biol. – volume: 5 start-page: 15645 year: 2018 end-page: 15652 ident: bb0615 article-title: Delayed release profile of iron nano-chloroquine phosphate and evaluation of its toxicity publication-title: Mater. Today Proc. – volume: 77 start-page: 997 year: 2020 end-page: 1019 ident: bb0610 article-title: Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer publication-title: Cell. Mol. Life Sci. – volume: 69 start-page: 414 year: 2017 end-page: 422 ident: bb0075 article-title: Ferritin, cellular iron storage and regulation publication-title: IUBMB Life – volume: 14 start-page: 532 year: 2019 ident: bb0585 article-title: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis publication-title: Neural Regen. Res. – volume: 48 start-page: 1033 year: 2017 end-page: 1043 ident: bb0570 article-title: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis publication-title: Stroke – volume: 9 start-page: 41 year: 2019 ident: bb0470 article-title: Myrrh extract alleviated ROS-mediated ferroptosis through regulating TXNIP/NLRP3 axis in ischemic stroke publication-title: Chin. J. Pharmacol. Toxicol. – volume: 11 start-page: 288 year: 2020 end-page: 293 ident: bb0485 article-title: N-acetyl cysteine attenuates ferroptosis mediated lung injury induced by lower limb ischaemia/reperfusion publication-title: Turk. J. Clin. Lab. – volume: 178 start-page: 328 year: 2021 end-page: 345 ident: bb0270 article-title: Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury publication-title: Br. J. Pharmacol. – volume: 36 start-page: 101670 year: 2020 ident: bb0310 article-title: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis publication-title: Redox Biol. – volume: 14 start-page: 2083 year: 2018 end-page: 2103 ident: bb0335 article-title: Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells publication-title: Autophagy – volume: 41 start-page: 263 year: 2020 end-page: 278 ident: bb0435 article-title: Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation publication-title: Cell. Mol. Neurobiol. – volume: 394 start-page: 401 year: 2021 end-page: 410 ident: bb0120 article-title: Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol. – volume: 47 start-page: A221 year: 2016 ident: bb0210 article-title: Tlr-4 activation decreases brain endothelial cell survival in hypoxia/reoxygenation in diabetes: role of necroptosis and ferroptosis publication-title: Stroke – volume: 379 start-page: 114665 year: 2019 ident: bb0535 article-title: Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury publication-title: Toxicol. Appl. Pharmacol. – volume: 10 year: 2020 ident: bb0460 article-title: Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice publication-title: Clin. Transl. Med. – volume: 70 year: 2020 ident: bb0465 article-title: Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis publication-title: J. Pineal Res. – volume: 20 start-page: 1606 year: 2020 end-page: 1618 ident: bb0530 article-title: Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis publication-title: Am. J. Transplant. – volume: 127 start-page: 486 year: 2020 end-page: 501 ident: bb0080 article-title: Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis publication-title: Circ. Res. – volume: 318 start-page: H508 year: 2020 end-page: H518 ident: bb0385 article-title: Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells publication-title: Am. J. Phys. Heart Circ. Phys. – volume: 47 start-page: 698 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0255 article-title: TIMP-2 promoted ferroptosis in ischemia reperfusion kidney injury via TIMP-2-NRF-2-SLC7A11 pathway publication-title: Crit. Care Med. doi: 10.1097/01.ccm.0000552187.51051.23 – volume: 129 start-page: 5033 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0265 article-title: Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule publication-title: J. Clin. Invest. doi: 10.1172/JCI129903 – volume: 463 start-page: 216 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0195 article-title: SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes publication-title: Neuroscience doi: 10.1016/j.neuroscience.2021.03.009 – volume: 16 start-page: 1180 year: 2014 ident: 10.1016/j.tem.2021.04.010_bb0285 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nat. Cell Biol. doi: 10.1038/ncb3064 – year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0205 article-title: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis publication-title: Transl. Stroke Res. – volume: 62 start-page: 101129 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0010 article-title: Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2020.101129 – volume: 31 start-page: 1389 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0575 article-title: Hippocampal neuronal ferroptosis involved in cognitive dysfunction in rats with sepsis-related encephalopathy through the Nrf2/GPX4 signaling pathway publication-title: Zhonghua Wei Zhong Bing Ji Jiu Yi Xue – volume: 113 start-page: 154397 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0085 article-title: Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury publication-title: Metabolism doi: 10.1016/j.metabol.2020.154397 – volume: 13 start-page: 1921 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0200 article-title: The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis publication-title: Diabetes Metab. Syndr. Obes. doi: 10.2147/DMSO.S249382 – volume: 100 start-page: S229 year: 2016 ident: 10.1016/j.tem.2021.04.010_bb0260 article-title: Development of novel ferroptosis inhibitors for the treatment of ischemia/reperfusion injuries publication-title: Transplantation – volume: 320 start-page: H1170 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0125 article-title: Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00237.2020 – volume: 25 start-page: 465 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0580 article-title: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.13069 – volume: 140 start-page: 111329 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0645 article-title: Impaired ferritinophagy flux induced by high fat diet mediates hepatic insulin resistance via endoplasmic reticulum stress publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2020.111329 – volume: 17 start-page: 1561 year: 2007 ident: 10.1016/j.tem.2021.04.010_bb0330 article-title: ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.07.029 – volume: 10 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0460 article-title: Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice publication-title: Clin. Transl. Med. doi: 10.1002/ctm2.173 – volume: 36 start-page: 101670 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0310 article-title: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101670 – volume: 516 start-page: 37 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0105 article-title: Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.06.015 – volume: 7 start-page: 892 year: 2012 ident: 10.1016/j.tem.2021.04.010_bb0350 article-title: Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein publication-title: ACS Chem. Biol. doi: 10.1021/cb200492h – volume: 61 start-page: 10126 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0450 article-title: Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b01299 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0415 article-title: (+)-Clausenamide protects against drug-induced liver injury by inhibiting hepatocyte ferroptosis publication-title: Cell Death Dis. – volume: 43 start-page: 19 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0605 article-title: The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2017.09.013 – volume: 11 start-page: 551318 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0155 article-title: USP22 protects against myocardial ischemia–reperfusion injury via the SIRT1-p53/SLC7A11–dependent inhibition of ferroptosis–induced cardiomyocyte death publication-title: Front. Physiol. doi: 10.3389/fphys.2020.551318 – volume: 190 start-page: 82 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0540 article-title: Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2019.09.012 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0140 article-title: Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes publication-title: Cell Death Dis. doi: 10.1038/s41419-019-2061-8 – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0550 article-title: Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis publication-title: Respir. Res. doi: 10.1186/s12931-020-01500-2 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0600 article-title: Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-020-15646-6 – volume: 30 start-page: 478 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0045 article-title: Emerging mechanisms and disease relevance of ferroptosis publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.02.009 – volume: 7 start-page: 3772 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0110 article-title: Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature publication-title: ESC Heart Failure doi: 10.1002/ehf2.12958 – volume: 294 start-page: 19395 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0245 article-title: Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.010949 – volume: 24 start-page: 97 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0165 article-title: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.05.009 – volume: 39 start-page: 210 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0230 article-title: Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress publication-title: DNA Cell Biol. doi: 10.1089/dna.2019.5097 – year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0565 article-title: Ferritin reduction is essential for cerebral ischemia-induced hippocampal neuronal death through p53/SLC7A11-mediated ferroptosis publication-title: Brain Res. – volume: 127 start-page: 486 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0080 article-title: Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.316509 – volume: 379 start-page: 114665 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0535 article-title: Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2019.114665 – volume: 515 start-page: 448 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0185 article-title: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.05.147 – volume: 116 start-page: 2672 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0095 article-title: Ferroptosis as a target for protection against cardiomyopathy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1821022116 – volume: 12 start-page: 12943 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0545 article-title: Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1 publication-title: Aging (Albany NY) doi: 10.18632/aging.103378 – volume: 10 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0115 article-title: Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice publication-title: eLife doi: 10.7554/eLife.62174 – volume: 5 start-page: 15645 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0615 article-title: Delayed release profile of iron nano-chloroquine phosphate and evaluation of its toxicity publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2018.04.174 – volume: 1868 start-page: 118913 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0300 article-title: NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells publication-title: Biochim. Biophys. Acta (BBA) Mol. Cell Res. doi: 10.1016/j.bbamcr.2020.118913 – volume: 160 start-page: 303 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0160 article-title: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.08.009 – volume: 31 start-page: 107 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0055 article-title: Ferroptosis: molecular mechanisms and health implications publication-title: Cell Res. doi: 10.1038/s41422-020-00441-1 – volume: 11 start-page: 288 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0485 article-title: N-acetyl cysteine attenuates ferroptosis mediated lung injury induced by lower limb ischaemia/reperfusion publication-title: Turk. J. Clin. Lab. doi: 10.18663/tjcl.769961 – year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0620 article-title: Intestinal ferritinophagy is regulated by HIF-2 and is essential for systemic iron homeostasis publication-title: bioRxiv – volume: 34 start-page: 128 year: 2013 ident: 10.1016/j.tem.2021.04.010_bb0360 article-title: Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases publication-title: Carcinogenesis doi: 10.1093/carcin/bgs295 – volume: 106 start-page: 795 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0630 article-title: NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice publication-title: Haematologica – volume: 9 start-page: 41 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0470 article-title: Myrrh extract alleviated ROS-mediated ferroptosis through regulating TXNIP/NLRP3 axis in ischemic stroke publication-title: Chin. J. Pharmacol. Toxicol. – volume: 3 year: 2014 ident: 10.1016/j.tem.2021.04.010_bb0235 article-title: Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis publication-title: eLife doi: 10.7554/eLife.02523 – volume: 3 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0625 article-title: NCOA4-mediated ferritinophagy is essential for HT22 neuronal cell survival during iron deficiency (OR15-07-19) publication-title: Curr. Dev. Nutr. doi: 10.1093/cdn/nzz044.OR15-07-19 – volume: 13 start-page: 91 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0370 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 319 start-page: 126368 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0400 article-title: Maillard reaction products with furan ring, like furosine, cause kidney injury through triggering ferroptosis pathway publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126368 – volume: 264 start-page: 118660 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0455 article-title: Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils publication-title: Life Sci. doi: 10.1016/j.lfs.2020.118660 – volume: 132 start-page: 27 year: 2008 ident: 10.1016/j.tem.2021.04.010_bb0020 article-title: Autophagy in the pathogenesis of disease publication-title: Cell doi: 10.1016/j.cell.2007.12.018 – volume: 12 start-page: 1425 year: 2016 ident: 10.1016/j.tem.2021.04.010_bb0025 article-title: Autophagy promotes ferroptosis by degradation of ferritin publication-title: Autophagy doi: 10.1080/15548627.2016.1187366 – volume: 134 start-page: 445 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0305 article-title: Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.01.052 – volume: 2 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0430 article-title: Inhibition of neuronal ferroptosis protects hemorrhagic brain publication-title: JCI Insight doi: 10.1172/jci.insight.90777 – volume: 69 start-page: 414 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0075 article-title: Ferritin, cellular iron storage and regulation publication-title: IUBMB Life doi: 10.1002/iub.1621 – volume: 12 start-page: 124 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0240 article-title: Role of ferroptosis in the process of diabetes-induced endothelial dysfunction publication-title: World J. Diabetes doi: 10.4239/wjd.v12.i2.124 – volume: 14 start-page: 1435 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0355 article-title: Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion publication-title: Autophagy doi: 10.1080/15548627.2018.1474314 – year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0640 article-title: ER stress in cardiometabolic diseases: from molecular mechanisms to therapeutics publication-title: Endocr. Rev. doi: 10.1210/endrev/bnab006 – volume: 151 start-page: 112114 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0590 article-title: Arsenite induces ferroptosis in the neuronal cells via activation of ferritinophagy publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2021.112114 – volume: 70 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0465 article-title: Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis publication-title: J. Pineal Res. – volume: 107 start-page: 101807 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0495 article-title: Proanthocyanidin promotes functional recovery of spinal cord injury via inhibiting ferroptosis publication-title: J. Chem. Neuroanat. doi: 10.1016/j.jchemneu.2020.101807 – volume: 26 start-page: 2284 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0595 article-title: Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0299-4 – volume: 20 start-page: 1692 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0220 article-title: The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.07.055 – volume: 12 start-page: 2954 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0190 article-title: Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes publication-title: Nutrients doi: 10.3390/nu12102954 – volume: 149 start-page: 1060 year: 2012 ident: 10.1016/j.tem.2021.04.010_bb0040 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 57 start-page: V04 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0405 article-title: Western-diet-derived arachidonic acid induces epithelial ferroptosis which is a feature of Crohn's disease publication-title: Z. Gastroenterol. – volume: 27 start-page: 2635 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0555 article-title: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury publication-title: Cell Death Differ. doi: 10.1038/s41418-020-0528-x – year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0250 article-title: Impact of prolonged mechanical ventilation on ferroptosis in renal ischemia/reperfusion injury in rats publication-title: Biomed. Res. Int. – volume: 160 start-page: 92 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0170 article-title: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.07.026 – volume: 1706 start-page: 48 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0515 article-title: Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury publication-title: Brain Res. doi: 10.1016/j.brainres.2018.10.023 – volume: 162 start-page: 339 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0150 article-title: Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.10.307 – start-page: A5560 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0560 article-title: Ferroptosis mediates inflammation in lung ischemia-reperfusion (IR) sterile injury in mice – volume: 254 start-page: 112937 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0180 article-title: PM2. 5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.07.105 – volume: 14 start-page: 532 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0585 article-title: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.245480 – volume: 9 start-page: 682 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0315 article-title: Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells publication-title: Antioxidants doi: 10.3390/antiox9080682 – volume: 17 start-page: 1796 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0320 article-title: FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease publication-title: Neurotherapeutics doi: 10.1007/s13311-020-00929-z – year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0145 article-title: MiR-30d inhibits cardiomyocytes autophagy promoting ferroptosis after myocardial infarction publication-title: Panminerva Med. – volume: 20 start-page: 1606 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0530 article-title: Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis publication-title: Am. J. Transplant. doi: 10.1111/ajt.15773 – volume: 4 year: 2015 ident: 10.1016/j.tem.2021.04.010_bb0295 article-title: Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis publication-title: eLife doi: 10.7554/eLife.10308 – volume: 48 start-page: 1033 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0570 article-title: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis publication-title: Stroke doi: 10.1161/STROKEAHA.116.015609 – volume: 497 start-page: 233 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0500 article-title: Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.02.061 – volume: 14 start-page: 2083 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0335 article-title: Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells publication-title: Autophagy doi: 10.1080/15548627.2018.1503146 – volume: 27 start-page: 420 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0030 article-title: Autophagy-dependent ferroptosis: machinery and regulation publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2020.02.005 – volume: 5 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0655 article-title: Clockophagy is a novel selective autophagy process favoring ferroptosis publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2238 – volume: 235 start-page: 116795 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0410 article-title: The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116795 – volume: 1874 start-page: 188366 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0005 article-title: Enzyme-based autophagy in anti-neoplastic management: from molecular mechanisms to clinical therapeutics publication-title: Biochim. Biophys. Acta Rev. Cancer doi: 10.1016/j.bbcan.2020.188366 – volume: 38 start-page: 489 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0380 article-title: Ferroptosis inhibition: mechanisms and opportunities publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.02.005 – volume: 209 start-page: 112842 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0420 article-title: Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112842 – volume: 29 start-page: 1214 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0135 article-title: Effect of electroacupuncture ‘Shenmen’ HT7 on the expression of ferroptosis related proteins GPX4, FTH1, TfR1 and ACSL4 in acute myocardial ischemia model rats publication-title: Rev. Argentina Clín. Psicol. – volume: 34 start-page: 1 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0070 article-title: Cardiac iron overload promotes ferroptosis and cardiac dysfunction in mice with sickle cell disease publication-title: FASEB J. doi: 10.1096/fasebj.2020.34.s1.02704 – volume: 22 start-page: 175 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0425 article-title: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2020.11114 – volume: 177 start-page: 1262 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0510 article-title: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke publication-title: Cell doi: 10.1016/j.cell.2019.03.032 – volume: 44 start-page: 1661 year: 2014 ident: 10.1016/j.tem.2021.04.010_bb0345 article-title: Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia publication-title: Int. J. Oncol. doi: 10.3892/ijo.2014.2313 – volume: 314 start-page: F702 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0100 article-title: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00044.2017 – volume: 10 start-page: 3145 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0390 article-title: Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis publication-title: Nat. Commun. doi: 10.1038/s41467-019-10991-7 – volume: 23 start-page: 1 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0490 article-title: Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2020.11647 – volume: 6 start-page: 141299 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0635 article-title: Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease publication-title: JCI Insight doi: 10.1172/jci.insight.141299 – volume: 66 start-page: 483 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0275 article-title: Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-020-06225-2 – volume: 520 start-page: 606 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0130 article-title: Ferroptosis inhibitor, liproxstatin-1, protects the myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and rescuing GPX4 levels publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.10.006 – volume: 190 start-page: 68 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0365 article-title: Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation–mediated cell death in mice publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2019.09.011 – year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0015 article-title: Targeting autophagy in neurodegenerative diseases: from molecular mechanisms to clinical therapeutics publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/1440-1681.13500 – volume: 75 start-page: 9 year: 2013 ident: 10.1016/j.tem.2021.04.010_bb0650 article-title: Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells publication-title: Tuberc. Respir. Dis. doi: 10.4046/trd.2013.75.1.9 – volume: 246 start-page: 247 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0215 article-title: Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats publication-title: J. Endocrinol. doi: 10.1530/JOE-20-0155 – volume: 331 start-page: 217 year: 2011 ident: 10.1016/j.tem.2021.04.010_bb0375 article-title: The structure of human 5-lipoxygenase publication-title: Science doi: 10.1126/science.1197203 – volume: 77 start-page: 997 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0610 article-title: Multifunctional nanomedicines for targeting epidermal growth factor receptor in colorectal cancer publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03305-z – volume: 128 start-page: 3341 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0090 article-title: Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma publication-title: J. Clin. Invest. doi: 10.1172/JCI99032 – volume: 509 start-page: 105 year: 2014 ident: 10.1016/j.tem.2021.04.010_bb0290 article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy publication-title: Nature doi: 10.1038/nature13148 – volume: 18 start-page: 344 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0475 article-title: Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats publication-title: J. Integr. Med. doi: 10.1016/j.joim.2020.01.008 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0325 article-title: α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson’s disease publication-title: Sci. Rep. doi: 10.1038/s41598-017-12862-x – volume: 30 start-page: R1292 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0035 article-title: Ferroptosis publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.09.068 – volume: 261 start-page: 118487 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0520 article-title: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model publication-title: Life Sci. doi: 10.1016/j.lfs.2020.118487 – volume: 40 start-page: 928 year: 2019 ident: 10.1016/j.tem.2021.04.010_bb0175 article-title: Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehy822 – volume: 40 start-page: 1097 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0395 article-title: Vitamin E reduces radiation injury of hippocampal neurons in mice by inhibiting ferroptosis publication-title: Nan Fang Yi Ke Da Xue Bao – volume: 13 start-page: 2041 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0445 article-title: Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice publication-title: Int. J. Clin. Exp. Pathol. – volume: 394 start-page: 401 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0120 article-title: Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol. doi: 10.1007/s00210-020-01932-z – volume: 178 start-page: 328 year: 2021 ident: 10.1016/j.tem.2021.04.010_bb0270 article-title: Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury publication-title: Br. J. Pharmacol. doi: 10.1111/bph.15283 – volume: 13 start-page: 81 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0060 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2238 – volume: 28 start-page: 231 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0505 article-title: Quercetin alleviates acute kidney injury by inhibiting ferroptosis publication-title: J. Adv. Res. doi: 10.1016/j.jare.2020.07.007 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0525 article-title: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia− reperfusion injury publication-title: Cell Death Dis. doi: 10.1038/s41419-020-02871-6 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0280 article-title: miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury publication-title: Cell Death Dis. doi: 10.1038/s41419-020-03135-z – volume: 47 start-page: A221 year: 2016 ident: 10.1016/j.tem.2021.04.010_bb0210 article-title: Tlr-4 activation decreases brain endothelial cell survival in hypoxia/reoxygenation in diabetes: role of necroptosis and ferroptosis publication-title: Stroke doi: 10.1161/str.47.suppl_1.221 – volume: 1861 start-page: 1893 year: 2017 ident: 10.1016/j.tem.2021.04.010_bb0050 article-title: Ferroptosis: role of lipid peroxidation, iron and ferritinophagy publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2017.05.019 – volume: 41 start-page: 263 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0435 article-title: Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-020-00850-1 – volume: 16 start-page: 302 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0065 article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0472-6 – volume: 9 start-page: 581 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0340 article-title: Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00581 – volume: 25 start-page: 1 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0440 article-title: Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis publication-title: Cell. Mol. Biol. Lett. doi: 10.1186/s11658-020-00205-0 – year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0225 article-title: Induction of hyperandrogenism and insulin resistance differentially modulates ferroptosis in uterine and placental tissues of pregnant rats publication-title: bioRxiv – volume: 318 start-page: H508 year: 2020 ident: 10.1016/j.tem.2021.04.010_bb0385 article-title: Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells publication-title: Am. J. Phys. Heart Circ. Phys. – volume: 84 start-page: 854 year: 2018 ident: 10.1016/j.tem.2021.04.010_bb0480 article-title: N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice publication-title: Ann. Neurol. doi: 10.1002/ana.25356 |
| SSID | ssj0014815 |
| Score | 2.6955283 |
| SecondaryResourceType | review_article |
| Snippet | Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has... |
| SourceID | swepub proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 444 |
| SubjectTerms | Autophagy Endocrinology and Metabolism ferritinophagy Ferritins Ferroptosis Humans Iron - metabolism iron overload lipid peroxidation Metabolic Diseases |
| Title | Ferritinophagy and ferroptosis in the management of metabolic diseases |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1043276021000953 https://www.clinicalkey.es/playcontent/1-s2.0-S1043276021000953 https://dx.doi.org/10.1016/j.tem.2021.04.010 https://www.ncbi.nlm.nih.gov/pubmed/34006412 https://www.proquest.com/docview/2528907149 http://kipublications.ki.se/Default.aspx?queryparsed=id |
| Volume | 32 |
| WOSCitedRecordID | wos000659494900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014815 issn: 1043-2760 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOsZexu7LLsWD0YeBi20plvwYRsI2umywFPImZFkmVzurndJ_sb-8o0hykrbruodBcIxixYnOp2MdnU-fEHpPVJaFIop9HCWBXpLDfMZC7IuUSEICJXMsN5tN0OGQjcfJ91brl1sLc7GgRcEuL5PVfzU1lIGx9dLZfzB386VQAOdgdDiC2eF4J8MPtNZiPS3K1URYdaUcispVXWrxEctrXDa0F5NhrwEMWu_aJmyq3UHrljcL7yW4mWIr3ORqWiFCDZ1ZCeFyKoz37i2nDf23Vy3mkzKDx3MFVSflfKkv2zz8xNIx6_V22qmR-9zjDo_W5RI82KQ2qSIh5vNyd8oiCht6q_OyjGrChVFhP1E3lFnXvJ36XDtCsfGzxIhGXvP_ZipidlIrrTIQhRsZW8ub3dPaHn7jg7PTUz7qj0fHq5--3oZMp-vtniwH6DCi3YS10WHvc3_8pUlMaW0bHcO7X-sS5RvK4JW7_mmocz2UuaJTuxnbjB6hhzYo8XoGTI9RSxVP0P2vlnbxFA32MeWB9bwdTHnTwgNMeVtMeWXuNZjyHKaeobNBf_Txk2834PAlRLm1Dw2AI5xRxoRIgjRJ4ZUHNIWoNk2UDGQsMIw4sxCnEBeTbp4EORGZTHMlQpnl-DlqF2WhXiKPxTmLcZiJSDAiRS5wKBXFYMdYJrQrOyhwbcWlVafXm6QsuKMhzjg0L9fNywPCoXk76ENTZWWkWW67OHIG4G7NMTwlOQDntkr0pkqqst294iGvIh7wH6FWtqSxnkDRQQvuINLUtENZM0T92w3fOWxwcPM6dycKVa4rHnU1I4CGJOmgFwY0zZ_GRAcWYdRBxwZFzSdaO94WzeFMcU1jwPjVHW7zGj3Ydt03qF2fr9VbdE9e1NPq_Agd0DE7sp3jN4QK4-s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferritinophagy+and+ferroptosis+in+the+management+of+metabolic+diseases&rft.jtitle=Trends+in+endocrinology+and+metabolism&rft.au=Ajoolabady%2C+Amir&rft.au=Aslkhodapasandhokmabad%2C+Hamid&rft.au=Libby%2C+Peter&rft.au=Tuomilehto%2C+Jaakko&rft.date=2021-07-01&rft.issn=1879-3061&rft.eissn=1879-3061&rft.volume=32&rft.issue=7&rft.spage=444&rft_id=info:doi/10.1016%2Fj.tem.2021.04.010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-2760&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-2760&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-2760&client=summon |