Decomposing the spatial and temporal effects of climate on bird populations in northern European mountains

The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under “space‐for‐time substitution”, the effects of climate variation on species are assumed to be equivalent in both space...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Global change biology Ročník 28; číslo 21; s. 6209 - 6227
Hlavní autoři: Bradter, Ute, Johnston, Alison, Hochachka, Wesley M., Soultan, Alaaeldin, Brommer, Jon E., Gaget, Elie, Kålås, John Atle, Lehikoinen, Aleksi, Lindström, Åke, Piirainen, Sirke, Pavón‐Jordán, Diego, Pärt, Tomas, Øien, Ingar Jostein, Sandercock, Brett K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.11.2022
John Wiley and Sons Inc
Témata:
ISSN:1354-1013, 1365-2486, 1365-2486
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under “space‐for‐time substitution”, the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space‐for‐time substitution are the time period for species' responses and also the relative contributions of rapid‐ versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23‐year period (1996–2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space‐for‐time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space‐for‐time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales. We separated variation in temperature and precipitation into spatial, temporal, and spatiotemporal components, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia over a 23‐year period. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Implicit in forecasts of species' distributions based on space‐for‐time substitution is the assumption of equivalent species' response to spatial and temporal variation in climate, which was seldom met in our study system.
AbstractList The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under “space‐for‐time substitution”, the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space‐for‐time substitution are the time period for species' responses and also the relative contributions of rapid‐ versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23‐year period (1996–2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space‐for‐time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space‐for‐time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales. We separated variation in temperature and precipitation into spatial, temporal, and spatiotemporal components, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia over a 23‐year period. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Implicit in forecasts of species' distributions based on space‐for‐time substitution is the assumption of equivalent species' response to spatial and temporal variation in climate, which was seldom met in our study system.
The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under “space-for-time substitution”, the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space-for-time substitution are the time period for species' responses and also the relative contributions of rapid- versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23-year period (1996–2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space-for-time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space-for-time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales.
The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under "space-for-time substitution", the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space-for-time substitution are the time period for species' responses and also the relative contributions of rapid- versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23-year period (1996-2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space-for-time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space-for-time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales.The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under "space-for-time substitution", the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space-for-time substitution are the time period for species' responses and also the relative contributions of rapid- versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23-year period (1996-2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space-for-time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space-for-time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales.
The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under “space‐for‐time substitution”, the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space‐for‐time substitution are the time period for species' responses and also the relative contributions of rapid‐ versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23‐year period (1996–2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space‐for‐time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space‐for‐time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales. We separated variation in temperature and precipitation into spatial, temporal, and spatiotemporal components, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia over a 23‐year period. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Implicit in forecasts of species' distributions based on space‐for‐time substitution is the assumption of equivalent species' response to spatial and temporal variation in climate, which was seldom met in our study system.
The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under “space‐for‐time substitution”, the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space‐for‐time substitution are the time period for species' responses and also the relative contributions of rapid‐ versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23‐year period (1996–2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space‐for‐time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space‐for‐time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales.
Author Sandercock, Brett K.
Lehikoinen, Aleksi
Brommer, Jon E.
Øien, Ingar Jostein
Bradter, Ute
Kålås, John Atle
Pavón‐Jordán, Diego
Hochachka, Wesley M.
Piirainen, Sirke
Lindström, Åke
Johnston, Alison
Pärt, Tomas
Soultan, Alaaeldin
Gaget, Elie
AuthorAffiliation 6 International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria
7 Finnish Museum of Natural History Helsinki Finland
8 Department of Biology, Biodiversity Unit Lund University Lund Sweden
4 Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
3 CREEM, School of Mathematics and Statistics University of St. Andrews St. Andrews UK
10 BirdLife Norway Trondheim Norway
9 Arctic Centre, University of Lapland Rovaniemi Finland
5 Department of Biology University of Turku Turku Finland
1 Department of Terrestrial Ecology Norwegian Institute for Nature Research Trondheim Norway
2 Cornell Lab of Ornithology Cornell University Ithaca New York USA
AuthorAffiliation_xml – name: 1 Department of Terrestrial Ecology Norwegian Institute for Nature Research Trondheim Norway
– name: 2 Cornell Lab of Ornithology Cornell University Ithaca New York USA
– name: 5 Department of Biology University of Turku Turku Finland
– name: 7 Finnish Museum of Natural History Helsinki Finland
– name: 9 Arctic Centre, University of Lapland Rovaniemi Finland
– name: 4 Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
– name: 6 International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria
– name: 3 CREEM, School of Mathematics and Statistics University of St. Andrews St. Andrews UK
– name: 10 BirdLife Norway Trondheim Norway
– name: 8 Department of Biology, Biodiversity Unit Lund University Lund Sweden
Author_xml – sequence: 1
  givenname: Ute
  orcidid: 0000-0001-5687-1233
  surname: Bradter
  fullname: Bradter, Ute
  email: ute.bradter@nina.no
  organization: Norwegian Institute for Nature Research
– sequence: 2
  givenname: Alison
  orcidid: 0000-0001-8221-013X
  surname: Johnston
  fullname: Johnston, Alison
  organization: University of St. Andrews
– sequence: 3
  givenname: Wesley M.
  orcidid: 0000-0002-0595-7827
  surname: Hochachka
  fullname: Hochachka, Wesley M.
  organization: Cornell University
– sequence: 4
  givenname: Alaaeldin
  orcidid: 0000-0002-3976-2657
  surname: Soultan
  fullname: Soultan, Alaaeldin
  organization: Swedish University of Agricultural Sciences
– sequence: 5
  givenname: Jon E.
  orcidid: 0000-0002-2435-2612
  surname: Brommer
  fullname: Brommer, Jon E.
  organization: University of Turku
– sequence: 6
  givenname: Elie
  orcidid: 0000-0003-3462-9686
  surname: Gaget
  fullname: Gaget, Elie
  organization: International Institute for Applied Systems Analysis (IIASA)
– sequence: 7
  givenname: John Atle
  orcidid: 0000-0002-2126-0261
  surname: Kålås
  fullname: Kålås, John Atle
  organization: Norwegian Institute for Nature Research
– sequence: 8
  givenname: Aleksi
  orcidid: 0000-0002-1989-277X
  surname: Lehikoinen
  fullname: Lehikoinen, Aleksi
  organization: Finnish Museum of Natural History
– sequence: 9
  givenname: Åke
  orcidid: 0000-0002-5597-6209
  surname: Lindström
  fullname: Lindström, Åke
  organization: Lund University
– sequence: 10
  givenname: Sirke
  orcidid: 0000-0002-2568-8134
  surname: Piirainen
  fullname: Piirainen, Sirke
  organization: Arctic Centre, University of Lapland
– sequence: 11
  givenname: Diego
  orcidid: 0000-0001-5105-3426
  surname: Pavón‐Jordán
  fullname: Pavón‐Jordán, Diego
  organization: Norwegian Institute for Nature Research
– sequence: 12
  givenname: Tomas
  orcidid: 0000-0001-7388-6672
  surname: Pärt
  fullname: Pärt, Tomas
  organization: Swedish University of Agricultural Sciences
– sequence: 13
  givenname: Ingar Jostein
  orcidid: 0000-0003-0986-2726
  surname: Øien
  fullname: Øien, Ingar Jostein
  organization: BirdLife Norway
– sequence: 14
  givenname: Brett K.
  orcidid: 0000-0002-9240-0268
  surname: Sandercock
  fullname: Sandercock, Brett K.
  organization: Norwegian Institute for Nature Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35899584$$D View this record in MEDLINE/PubMed
https://res.slu.se/id/publ/118746$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet)
BookMark eNqFkstu1DAUhiNURNuBBS-ALLGBxUx9j7NBKkMpSJXYwNpynJMZjzx2sBOqvj2eplS0UsEb2_L3_-fic1odhRigql4TvCJlnW1suyKSCfGsOiFMiiXlSh4dzoIvCSbsuDrNeYcxZhTLF9UxE6pphOIn1e4T2LgfYnZhg8YtoDyY0RmPTOjQCOUllQv0Pdgxo9gj693ejIBiQK1LHRriMPkiiSEjF1CIqbikgC6mFAcwAe3jFEbjQn5ZPe-Nz_Dqbl9UPz5ffF9_WV59u_y6Pr9aWomFWKqmJ8xg2RHC6q63hjMOSvVSUtJ0jEuGQQGuLQBVHNegiFACK9yRtuYGs0W1mn3zNQxTq4dUMk43Ohqns59akw6bzqAJUXXxW1TmSUGpfzReJ8hgkt3qWVgo7-xctW4EkYQCaEtarrnpQLedAd3VtFWtgFYRW2J8mGMU6R46C2EsjX0Y6sFLcFu9ib90ozAvlReDd3cGKf6cII9677IF702AOGVNGyU550LK_6OykRg3pWUFffsI3cUphfI9mtYU05oxKgr15u_k77P-M0YFeD8DNsWcE_T3CMH6MKK6jKi-HdHCnj1irRtvW1nqdv5fimvn4eZpa325_jgrfgMuUfph
CitedBy_id crossref_primary_10_1111_1365_2656_70025
crossref_primary_10_1016_j_scitotenv_2024_176229
crossref_primary_10_1111_1365_2435_70005
crossref_primary_10_1111_1365_2435_70079
crossref_primary_10_1126_science_adq2110
crossref_primary_10_1111_brv_13004
crossref_primary_10_1111_ddi_70055
Cites_doi 10.1111/2041‐210x.12184
10.1890/10‐1831.1
10.1642/auk‐15‐111.1
10.1007/s10661‐016‐5457‐2
10.1016/j.baae.2006.11.001
10.1093/bioinformatics/bty633
10.1111/ibi.12682
10.1890/08‐1304.1
10.1016/j.biocon.2021.109329
10.1002/joc.4691
10.1111/j.1365‐2699.2006.01460.x
10.1111/ddi.12968
10.1002/qj.3208
10.1016/j.biocon.2006.02.008
10.1111/j.1365‐2699.2012.02737.x
10.1111/j.1474-919X.2004.00278.x
10.1111/j.1365‐2486.2012.02784.x
10.1111/j.2041‐210x.2012.00253.x
10.1111/ecog.01294
10.1890/02-3090
10.1111/j.1365‐2656.2008.01508.x
10.1073/pnas.1804224115
10.1111/ecog.05271
10.1111/j.2007.0906-7590.05171.x
10.1002/ece3.5938
10.1111/2041‐210x.12811
10.1007/978-0-387-87458-6
10.1177/0049124104268644
10.1111/j.1461‐0248.2007.01150.x
10.1002/fee.2290
10.5194/essd‐10‐235‐2018
10.1111/gcb.12642
10.1890/11‐1930.1
10.1016/j.biocon.2021.109330
10.1111/j.1600-048X.2013.00177.x
10.1016/j.tree.2021.08.010
10.1016/j.ecolmodel.2019.108927
10.1111/1365-2656.12364
10.1046/j.1466‐822X.2003.00042.x
10.1093/oso/9780198506492.001.0001
10.1111/geb.12239
10.1111/gcb.13097
10.1016/j.ecolmodel.2015.11.007
10.1126/science.aac4858
10.1126/science.aad8466
10.1201/9781420039719.pt3
10.1007/s10980‐016‐0429‐z
10.1111/jav.02649
10.1111/jav.01225
10.1086/377190
10.1111/j.1466‐8238.2011.00693.x
10.1111/gcb.15723
10.1111/gcb.14773
10.1111/gcb.13150
10.1639/0044‐7447(2001)030[0072:Ccwatl]2.0.Co;2
10.1371/journal.pone.0040212
10.1073/pnas.1913579117
10.1111/ddi.13395
10.1007/s10336‐020‐01821‐5
10.2307/2403611
10.3354/cr00920
10.1080/00063657.2014.988120
10.1098/rsbl.2008.0052
10.1111/ddi.13409
10.1111/ecog.05504
10.32614/RJ-2017-066
10.1088/1748‐9326/ac4ebe
10.1007/s10144‐012‐0359‐9
10.1890/10‐1325.1
10.1890/14‐1826.1
10.1080/00291950802517551
10.1111/ele.13898
10.1111/j.1365‐2486.2005.01000.x
10.1111/j.1365‐2486.2011.02635.x
10.1002/eap.1416
10.1073/pnas.1220228110
10.1016/j.tree.2019.01.013
10.1007/s13253‐017‐0287‐4
10.1111/gcb.13337
10.1111/j.1600-0587.2012.07348.x
10.1111/j.1365-2656.2004.00782.x
10.1111/j.1365-2699.2006.01466.x
10.1126/science.281.5382.1513
10.1080/00063657.2012.733337
10.1111/j.2041-210X.2011.00170.x
10.1111/2041‐210X.13012
10.2307/2389612
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Forskargrupper vid Biologiska institutionen
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
BECC: Biodiversity and Ecosystem services in a Changing Climate
Faculty of Science
Lund University
Biodiversitet och bevarandevetenskap
Department of Biology
Strategiska forskningsområden (SFO)
Biologiska institutionen
Strategic research areas (SRA)
Research groups at the Department of Biology
Biodiversity and Conservation Science
Profilområden och andra starka forskningsmiljöer
Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Forskargrupper vid Biologiska institutionen
– name: Biodiversitet och bevarandevetenskap
– name: Biodiversity and Conservation Science
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Biologiska institutionen
– name: Profile areas and other strong research environments
– name: Department of Biology
– name: Research groups at the Department of Biology
– name: Sveriges lantbruksuniversitet
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1111/gcb.16355
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic


Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Ecology
DocumentTitleAlternate Bradter et al
EISSN 1365-2486
EndPage 6227
ExternalDocumentID oai_slubar_slu_se_118746
oai_portal_research_lu_se_publications_951612ee_c1b4_4ade_bdae_d72b8b5eb81c
PMC9804621
35899584
10_1111_gcb_16355
GCB16355
Genre article
Journal Article
GeographicLocations Fennoscandia
Scandinavia
GeographicLocations_xml – name: Fennoscandia
– name: Scandinavia
GrantInformation_xml – fundername: Academy of Finland
  funderid: 323527; 326327; 326338
– fundername: Swedish Environmental Protection Agency
– fundername: U.S. National Science Foundation
  funderid: ICER‐1927646
– fundername: Svenska Forskningsrådet Formas
  funderid: 2018‐02440; 2018‐02441
– fundername: Norges Forskningsråd
  funderid: 295767
– fundername: Norwegian Ministry of Climate and Environment
– fundername: Norwegian Environment Agency
– fundername: Swedish Regional County Boards
– fundername: ;
– fundername: ;
  grantid: ICER‐1927646
– fundername: ;
  grantid: 323527; 326327; 326338
– fundername: ;
  grantid: 295767
– fundername: ;
  grantid: 2018‐02440; 2018‐02441
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c6055-89f13a06d1137dfca434e88f66219d34630e8e07cee28407e81585080d1b74a03
IEDL.DBID 24P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840391200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
1365-2486
IngestDate Tue Nov 04 16:38:41 EST 2025
Sun Nov 30 03:10:30 EST 2025
Tue Nov 04 02:06:50 EST 2025
Fri Jul 11 18:40:14 EDT 2025
Thu Jul 10 23:48:36 EDT 2025
Mon Nov 10 03:04:38 EST 2025
Wed Feb 19 02:24:48 EST 2025
Sat Nov 29 06:02:40 EST 2025
Tue Nov 18 22:35:34 EST 2025
Wed Jan 22 16:21:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords anticipatory forecasts
spatiotemporal pattern
space-for-time substitution
species distribution models
forecast horizon
static forecasts
dynamic forecasts
climate decomposition
spatiotemporal forecasts
Language English
License Attribution
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6055-89f13a06d1137dfca434e88f66219d34630e8e07cee28407e81585080d1b74a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2568-8134
0000-0001-7388-6672
0000-0002-3976-2657
0000-0002-2435-2612
0000-0002-0595-7827
0000-0001-5105-3426
0000-0002-9240-0268
0000-0002-1989-277X
0000-0002-2126-0261
0000-0003-0986-2726
0000-0003-3462-9686
0000-0001-5687-1233
0000-0001-8221-013X
0000-0002-5597-6209
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16355
PMID 35899584
PQID 2720273325
PQPubID 30327
PageCount 19
ParticipantIDs swepub_primary_oai_slubar_slu_se_118746
swepub_primary_oai_portal_research_lu_se_publications_951612ee_c1b4_4ade_bdae_d72b8b5eb81c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9804621
proquest_miscellaneous_2986444566
proquest_miscellaneous_2696009080
proquest_journals_2720273325
pubmed_primary_35899584
crossref_primary_10_1111_gcb_16355
crossref_citationtrail_10_1111_gcb_16355
wiley_primary_10_1111_gcb_16355_GCB16355
PublicationCentury 2000
PublicationDate November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2022
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2021; 27
1998; 281
2017; 8
2013; 4
2017; 48
2006; 33
2016; 188
2021; 162
2022; 25
2006; 131
2012; 18
2007; 30
2008; 4
2020; 10
2019; 161
2017; 9
2014; 23
2014; 20
2003; 12
2004; 33
2018; 9
2014; 5
2004; 73
2014; 4
2017; 37
2001
2013; 55
2015; 84
2017; 32
2009; 90
2019; 25
2007; 8
2003; 162
2013; 60
2016; 353
2022; 37
2016; 352
2013; 110
2020; 43
2008; 62
2003; 84
2012; 21
2021; 2021
1989; 3
2018; 144
2021; 44
2004; 146
2017; 22
2019; 35
2019; 34
2011; 81
2009
2007
2021; 263
2016; 326
2004
2008; 11
2012; 39
2020; 422
2002
2014; 45
2010; 45
2009; 78
2012; 93
2015; 25
2013; 36
2012; 3
2021
2015; 62
1988; 25
2011; 92
2018; 115
2021; 19
2014; 37
2019
2020; 117
2018
2020; 26
2016; 133
2012; 7
2018; 10
2016; 26
2005; 11
2001; 30
2022; 17
2016; 22
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_50_1
European Union (e_1_2_9_31_1) 2019
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
Franklin J. (e_1_2_9_32_1) 2009
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
Ottvall R. (e_1_2_9_63_1) 2007
R Core Team (e_1_2_9_73_1) 2021
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_95_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
Kålås J. A. (e_1_2_9_46_1) 2014; 4
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
Svensson L. (e_1_2_9_85_1) 2009
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
Roekaerts M. (e_1_2_9_77_1) 2002
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 62
  start-page: 251
  issue: 4
  year: 2008
  end-page: 270
  article-title: Recent forest limit changes in south‐East Norway: Effects of climate change or regrowth after abandoned utilisation?
  publication-title: Norwegian Journal of Geography
– volume: 263
  year: 2021
  article-title: Climate variability has idiosyncratic impacts on north American aerial insectivorous bird population trajectories
  publication-title: Biological Conservation
– volume: 25
  start-page: 581
  issue: 3
  year: 2022
  end-page: 597
  article-title: AVONET: Morphological, ecological and geographical data for all birds
  publication-title: Ecology Letters
– volume: 34
  start-page: 416
  year: 2019
  end-page: 421
  article-title: A critique of the space‐for‐time substitution practice in community ecology
  publication-title: Trends in Ecology & Evolution
– volume: 23
  start-page: 1186
  issue: 11
  year: 2014
  end-page: 1197
  article-title: Environmental niche modelling fails to predict last glacial maximum refugia: Niche shifts, microrefugia or incorrect palaeoclimate estimates?
  publication-title: Global Ecology and Biogeography
– volume: 21
  start-page: 568
  issue: 5
  year: 2012
  end-page: 578
  article-title: Rise of the generalists: Evidence for climate driven homogenization in avian communities
  publication-title: Global Ecology and Biogeography
– volume: 4
  start-page: 599
  issue: 5
  year: 2008
  end-page: 602
  article-title: Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change
  publication-title: Biology Letters
– volume: 25
  start-page: 1749
  issue: 7
  year: 2015
  end-page: 1756
  article-title: Abundance models improve spatial and temporal prioritization of conservation resources
  publication-title: Ecological Applications
– volume: 8
  start-page: 387
  year: 2007
  end-page: 397
  article-title: Promising the future? Global change projections of species distributions
  publication-title: Basic and Applied Ecology
– volume: 25
  start-page: 1670
  issue: 11
  year: 2019
  end-page: 1683
  article-title: Direct and indirect effects of climate on bird abundance along elevation gradients in the northern Appalachian mountains
  publication-title: Diversity and Distributions
– volume: 30
  start-page: 72
  issue: 2
  year: 2001
  end-page: 80
  article-title: 20th century climate warming and tree‐limit rise in the southern Scandes of Sweden
  publication-title: Ambio
– volume: 26
  start-page: 2718
  issue: 8
  year: 2016
  end-page: 2729
  article-title: Potential breeding distributions of US birds predicted with both short‐term variability and long‐term average climate data
  publication-title: Ecological Applications
– year: 2001
– volume: 92
  start-page: 1414
  issue: 7
  year: 2011
  end-page: 1421
  article-title: Using the negative binomial distribution to model overdispersion in ecological count data
  publication-title: Ecology
– year: 2021
– start-page: 91
  year: 2004
  end-page: 113
– volume: 326
  start-page: 63
  year: 2016
  end-page: 74
  article-title: Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?
  publication-title: Ecological Modelling
– volume: 26
  start-page: 642
  issue: 2
  year: 2020
  end-page: 657
  article-title: Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high‐arctic warming
  publication-title: Global Change Biology
– volume: 11
  start-page: 357
  issue: 4
  year: 2008
  end-page: 369
  article-title: Prediction of plant species distributions across six millennia
  publication-title: Ecology Letters
– volume: 19
  start-page: 30
  year: 2021
  end-page: 38
  article-title: Addressing data integration challenges to link ecological processes across scales
  publication-title: Frontiers in Ecology and the Environment
– volume: 22
  start-page: 427
  issue: 4
  year: 2017
  end-page: 445
  article-title: A new approach to modelling the relationship between annual population abundance indices and weather data
  publication-title: Journal of Agricultural Biological and Environmental Statistics
– year: 2018
– volume: 27
  start-page: 4269
  issue: 18
  year: 2021
  end-page: 4282
  article-title: Can dynamic occupancy models improve predictions of species' range dynamics? A test using swiss birds
  publication-title: Global Change Biology
– volume: 44
  start-page: 832
  issue: 6
  year: 2021
  end-page: 844
  article-title: Exploring timescales of predictability in species distributions
  publication-title: Ecography
– volume: 9
  start-page: 378
  year: 2017
  end-page: 400
  article-title: glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling
  publication-title: The R Journal
– volume: 10
  start-page: 235
  issue: 1
  year: 2018
  end-page: 249
  article-title: seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day
  publication-title: Earth System Science Data
– volume: 9
  start-page: 1667
  year: 2018
  end-page: 1678
  article-title: Can opportunistically collected citizen science data fill a data gap for habitat suitability models of less common species?
  publication-title: Methods in Ecology and Evolution
– volume: 281
  start-page: 1513
  year: 1998
  end-page: 1515
  article-title: Extrapolating species abundance across spatial scales
  publication-title: Science
– volume: 12
  start-page: 361
  issue: 5
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?
  publication-title: Global Ecology and Biogeography
– volume: 17
  year: 2022
  article-title: The future distribution of wetland birds breeding in Europe validated against the observed changes in distribution
  publication-title: Environmental Research Letters
– volume: 162
  start-page: 366
  issue: 3
  year: 2003
  end-page: 375
  article-title: Occupancy, spatial variance, and the abundance of species
  publication-title: The American Naturalist
– volume: 62
  start-page: 96
  issue: 1
  year: 2015
  end-page: 105
  article-title: Breeding success affects site fidelity in a whinchat population in abandoned fields
  publication-title: Bird Study
– volume: 18
  start-page: 3279
  issue: 11
  year: 2012
  end-page: 3290
  article-title: The push and pull of climate change causes heterogeneous shifts in avian elevational ranges
  publication-title: Global Change Biology
– volume: 2021
  year: 2021
  article-title: Nestling diet and parental food provisioning in a declining mountain passerine reveal high sensitivity to climate change
  publication-title: Journal of Avian Biology
– volume: 78
  start-page: 625
  issue: 3
  year: 2009
  end-page: 635
  article-title: Effect of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture‐recapture models
  publication-title: Journal of Animal Ecology
– volume: 45
  start-page: 119
  issue: 1
  year: 2010
  end-page: U435
  article-title: Using diet to assess the sensitivity of northern and upland birds to climate change
  publication-title: Climate Research
– volume: 73
  start-page: 75
  year: 2004
  end-page: 87
  article-title: Availability and use of public information and conspecific density for settlement decisions in the collared flycatcher
  publication-title: Journal of Animal Ecology
– volume: 84
  start-page: 943
  year: 2015
  end-page: 954
  article-title: Drivers of climate change impacts on bird communities
  publication-title: Journal of Animal Ecology
– volume: 45
  start-page: 3
  year: 2014
  end-page: 14
  article-title: Common montane birds are declining in northern Europe
  publication-title: Journal of Avian Biology
– volume: 22
  start-page: 530
  issue: 2
  year: 2016
  end-page: 543
  article-title: Continent‐scale global change attribution in European birds—Combining annual and decadal time scales
  publication-title: Global Change Biology
– volume: 22
  start-page: 1121
  issue: 3
  year: 2016
  end-page: 1129
  article-title: North by north‐west: Climate change and directions of density shifts in birds
  publication-title: Global Change Biology
– volume: 110
  start-page: 9374
  issue: 23
  year: 2013
  end-page: 9379
  article-title: Space can substitute for time in predicting climate‐change effects on biodiversity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 27
  start-page: 2397
  year: 2021
  end-page: 2411
  article-title: Habitat suitability models based on opportunistic citizen science data: Evaluating forecasts from alternative methods versus an individual‐based model
  publication-title: Diversity and Distributions
– volume: 35
  start-page: 526
  year: 2019
  end-page: 528
  article-title: Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R
  publication-title: Bioinformatics
– volume: 353
  year: 2016
  article-title: Improving the forecast for biodiversity under climate change
  publication-title: Science
– volume: 11
  start-page: 1504
  issue: 9
  year: 2005
  end-page: 1513
  article-title: Validation of species‐climate impact models under climate change
  publication-title: Global Change Biology
– volume: 7
  issue: 7
  year: 2012
  article-title: Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change
  publication-title: PLoS One
– volume: 263
  year: 2021
  article-title: Overlooked effects of temporal resolution choice on climate‐proof spatial conservation plans for biodiversity
  publication-title: Biological Conservation
– year: 2019
– volume: 22
  start-page: 3967
  issue: 12
  year: 2016
  end-page: 3983
  article-title: Hotspots of uncertainty in land‐use and land‐cover change projections: A global‐scale model comparison
  publication-title: Global Change Biology
– volume: 39
  start-page: 2146
  issue: 12
  year: 2012
  end-page: 2162
  article-title: How to understand species' niches and range dynamics: A demographic research agenda for biogeography
  publication-title: Journal of Biogeography
– volume: 33
  start-page: 1704
  issue: 10
  year: 2006
  end-page: 1711
  article-title: Model‐based uncertainty in species range prediction
  publication-title: Journal of Biogeography
– volume: 48
  start-page: 1505
  year: 2017
  end-page: 1516
  article-title: Integrating demography, dispersal and interspecific interactions into bird distribution models
  publication-title: Journal of Avian Biology
– volume: 5
  start-page: 506
  issue: 6
  year: 2014
  end-page: 513
  article-title: Improving species distribution models: The value of data on abundance
  publication-title: Methods in Ecology and Evolution
– volume: 37
  start-page: 123
  issue: 1
  year: 2017
  end-page: 142
  article-title: Tailored climate indices for climate‐proofing operational forestry applications in Sweden and Finland
  publication-title: International Journal of Climatology
– volume: 3
  start-page: 385
  issue: 4
  year: 1989
  end-page: 397
  article-title: Spatial scaling in ecology
  publication-title: Functional Ecology
– volume: 33
  start-page: 1689
  year: 2006
  end-page: 1703
  article-title: Are niche‐based species distribution models transferable in space?
  publication-title: Journal of Biogeography
– volume: 4
  start-page: 167
  year: 2013
  end-page: 174
  article-title: Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm
  publication-title: Methods in Ecology and Evolution
– volume: 33
  start-page: 261
  year: 2004
  end-page: 304
  article-title: Multimodel inference: Understanding AIC and BIC in model selection
  publication-title: Sociological Methods & Research
– year: 2007
– volume: 36
  start-page: 27
  year: 2013
  end-page: 46
  article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– volume: 144
  start-page: 344
  issue: 711
  year: 2018
  end-page: 364
  article-title: Three‐dimensional spatial interpolation of 2m temperature over Norway
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 60
  start-page: 60
  year: 2013
  end-page: 66
  article-title: Current population trends mirror forecasted changes in climatic suitability for Swedish breeding birds
  publication-title: Bird Study
– volume: 131
  start-page: 93
  issue: 1
  year: 2006
  end-page: 105
  article-title: Long‐term population declines in afro‐palearctic migrant birds
  publication-title: Biological Conservation
– volume: 117
  start-page: 18557
  issue: 31
  year: 2020
  end-page: 18565
  article-title: Shifts in timing and duration of breeding for 73 boreal bird species over four decades
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 37
  start-page: 30
  year: 2022
  end-page: 41
  article-title: Animal migration to northern latitudes: Environmental changes and increasing threats
  publication-title: Trends in Ecology & Evolution
– volume: 20
  start-page: 3351
  issue: 11
  year: 2014
  end-page: 3364
  article-title: Precipitation and winter temperature predict long‐term range‐scale abundance changes in Western north American birds
  publication-title: Global Change Biology
– volume: 90
  start-page: 2213
  issue: 8
  year: 2009
  end-page: 2222
  article-title: Historically calibrated predictions of butterfly species' range shift using global change as a pseudo‐experiment
  publication-title: Ecology
– volume: 84
  start-page: 2200
  year: 2003
  end-page: 2207
  article-title: Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly
  publication-title: Ecology
– volume: 32
  start-page: 1399
  issue: 7
  year: 2017
  end-page: 1413
  article-title: Changes in forest biomass and tree species distribution under climate change in the northeastern United States
  publication-title: Landscape Ecology
– volume: 162
  start-page: 143
  issue: 1
  year: 2021
  end-page: 154
  article-title: Phenological mismatch between breeding birds and their surveyors and implications for estimating population trends
  publication-title: Journal of Ornithology
– volume: 4
  start-page: 1
  year: 2014
  end-page: 36
  article-title: Bestandsvariasjoner for terrestriske fugler i Norge 1996–2013
  publication-title: NOF ‐ Rapport
– volume: 55
  start-page: 315
  issue: 2
  year: 2013
  end-page: 323
  article-title: Climate change, phenology and species detectability in a monitoring scheme
  publication-title: Population Ecology
– volume: 8
  start-page: 1690
  issue: 12
  year: 2017
  end-page: 1702
  article-title: Attributing changes in the distribution of species abundance to weather variables using the example of British breeding birds
  publication-title: Methods in Ecology and Evolution
– volume: 146
  start-page: 335
  issue: 2
  year: 2004
  end-page: 346
  article-title: Habitat selection, diet, arthropod availability and growth of a moorland wader: The ecology of European golden plover chicks
  publication-title: Ibis
– volume: 188
  start-page: 452
  issue: 8
  year: 2016
  article-title: Changes in vegetation cover and composition in the Swedish mountain region
  publication-title: Environmental Monitoring and Assessment
– volume: 37
  start-page: 1133
  issue: 11
  year: 2014
  end-page: 1138
  article-title: Ecological niche models of mammalian glacial refugia show consistent bias
  publication-title: Ecography
– volume: 422
  year: 2020
  article-title: Estimating species distributions from spatially biased citizen science data
  publication-title: Ecological Modelling
– volume: 133
  start-page: 261
  issue: 2
  year: 2016
  end-page: 272
  article-title: Nestling growth rates in relation to food abundance and weather in the Arctic
  publication-title: Auk
– year: 2002
– volume: 352
  start-page: 84
  issue: 6281
  year: 2016
  end-page: 87
  article-title: Consistent response of bird populations to climate change on two continents
  publication-title: Science
– volume: 93
  start-page: 1527
  issue: 7
  year: 2012
  end-page: 1539
  article-title: Uses and misuses of bioclimatic envelope modeling
  publication-title: Ecology
– volume: 161
  start-page: 730
  issue: 4
  year: 2019
  end-page: 743
  article-title: Small changes in timing of breeding among subarctic passerines over a 32‐year period
  publication-title: Ibis
– volume: 27
  start-page: 2218
  year: 2021
  end-page: 2230
  article-title: Multi‐decadal land use impacts across the vast range of an iconic threatened species
  publication-title: Diversity and Distributions
– volume: 81
  start-page: 241
  issue: 2
  year: 2011
  end-page: 257
  article-title: Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits
  publication-title: Ecological Monographs
– volume: 30
  start-page: 609
  year: 2007
  end-page: 628
  article-title: Methods to account for spatial autocorrelation in the analysis of species distributional data: A review
  publication-title: Ecography
– volume: 115
  start-page: 11982
  issue: 47
  year: 2018
  end-page: 11987
  article-title: Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  start-page: 79
  issue: 1
  year: 1988
  end-page: 93
  article-title: Effects of environmental factors on the timing and success of breeding of common snipe (Aves: Scolopacidae)
  publication-title: Journal of Applied Ecology
– volume: 3
  start-page: 260
  year: 2012
  end-page: 267
  article-title: Assessing transferability of ecological models: An underappreciated aspect of statistical validation
  publication-title: Methods in Ecology and Evolution
– volume: 43
  start-page: 1729
  issue: 11
  year: 2020
  end-page: 1739
  article-title: Matching the forecast horizon with the relevant spatial and temporal processes and data sources
  publication-title: Ecography
– volume: 10
  start-page: 1087
  issue: 2
  year: 2020
  end-page: 1092
  article-title: Integrating dynamic environmental predictors and species occurrences: Toward true dynamic species distribution models
  publication-title: Ecology and Evolution
– volume: 18
  start-page: 1698
  issue: 5
  year: 2012
  end-page: 1713
  article-title: No‐analog climates and shifting realized niches during the late quaternary: Implications for 21st‐century predictions by species distribution models
  publication-title: Global Change Biology
– ident: e_1_2_9_40_1
  doi: 10.1111/2041‐210x.12184
– volume-title: Collins bird guide
  year: 2009
  ident: e_1_2_9_85_1
– ident: e_1_2_9_55_1
  doi: 10.1890/10‐1831.1
– ident: e_1_2_9_71_1
  doi: 10.1642/auk‐15‐111.1
– ident: e_1_2_9_39_1
  doi: 10.1007/s10661‐016‐5457‐2
– ident: e_1_2_9_25_1
  doi: 10.1016/j.baae.2006.11.001
– ident: e_1_2_9_64_1
  doi: 10.1093/bioinformatics/bty633
– ident: e_1_2_9_74_1
  doi: 10.1111/ibi.12682
– ident: e_1_2_9_47_1
  doi: 10.1890/08‐1304.1
– ident: e_1_2_9_60_1
  doi: 10.1016/j.biocon.2021.109329
– ident: e_1_2_9_6_1
  doi: 10.1002/joc.4691
– ident: e_1_2_9_70_1
  doi: 10.1111/j.1365‐2699.2006.01460.x
– ident: e_1_2_9_28_1
  doi: 10.1111/ddi.12968
– ident: e_1_2_9_57_1
  doi: 10.1002/qj.3208
– ident: e_1_2_9_78_1
  doi: 10.1016/j.biocon.2006.02.008
– ident: e_1_2_9_80_1
  doi: 10.1111/j.1365‐2699.2012.02737.x
– ident: e_1_2_9_67_1
  doi: 10.1111/j.1474-919X.2004.00278.x
– ident: e_1_2_9_86_1
  doi: 10.1111/j.1365‐2486.2012.02784.x
– ident: e_1_2_9_9_1
  doi: 10.1111/j.2041‐210x.2012.00253.x
– ident: e_1_2_9_21_1
  doi: 10.1111/ecog.01294
– ident: e_1_2_9_58_1
  doi: 10.1890/02-3090
– ident: e_1_2_9_79_1
  doi: 10.1111/j.1365‐2656.2008.01508.x
– ident: e_1_2_9_33_1
  doi: 10.1073/pnas.1804224115
– ident: e_1_2_9_2_1
  doi: 10.1111/ecog.05271
– ident: e_1_2_9_27_1
  doi: 10.1111/j.2007.0906-7590.05171.x
– ident: e_1_2_9_61_1
  doi: 10.1002/ece3.5938
– volume-title: Copernicus land monitoring service
  year: 2019
  ident: e_1_2_9_31_1
– ident: e_1_2_9_62_1
  doi: 10.1111/2041‐210x.12811
– ident: e_1_2_9_96_1
  doi: 10.1007/978-0-387-87458-6
– ident: e_1_2_9_17_1
  doi: 10.1177/0049124104268644
– ident: e_1_2_9_68_1
  doi: 10.1111/j.1461‐0248.2007.01150.x
– ident: e_1_2_9_94_1
  doi: 10.1002/fee.2290
– ident: e_1_2_9_56_1
  doi: 10.5194/essd‐10‐235‐2018
– ident: e_1_2_9_41_1
  doi: 10.1111/gcb.12642
– ident: e_1_2_9_4_1
  doi: 10.1890/11‐1930.1
– ident: e_1_2_9_29_1
  doi: 10.1016/j.biocon.2021.109330
– ident: e_1_2_9_53_1
  doi: 10.1111/j.1600-048X.2013.00177.x
– ident: e_1_2_9_48_1
  doi: 10.1016/j.tree.2021.08.010
– ident: e_1_2_9_44_1
  doi: 10.1016/j.ecolmodel.2019.108927
– ident: e_1_2_9_66_1
  doi: 10.1111/1365-2656.12364
– ident: e_1_2_9_69_1
  doi: 10.1046/j.1466‐822X.2003.00042.x
– ident: e_1_2_9_16_1
  doi: 10.1093/oso/9780198506492.001.0001
– ident: e_1_2_9_93_1
  doi: 10.1111/geb.12239
– ident: e_1_2_9_45_1
  doi: 10.1111/gcb.13097
– ident: e_1_2_9_82_1
  doi: 10.1016/j.ecolmodel.2015.11.007
– ident: e_1_2_9_84_1
  doi: 10.1126/science.aac4858
– ident: e_1_2_9_88_1
  doi: 10.1126/science.aad8466
– ident: e_1_2_9_18_1
  doi: 10.1201/9781420039719.pt3
– volume-title: R: A language and environment for statistical computing
  year: 2021
  ident: e_1_2_9_73_1
– ident: e_1_2_9_90_1
  doi: 10.1007/s10980‐016‐0429‐z
– ident: e_1_2_9_5_1
  doi: 10.1111/jav.02649
– ident: e_1_2_9_95_1
  doi: 10.1111/jav.01225
– ident: e_1_2_9_38_1
  doi: 10.1086/377190
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1466‐8238.2011.00693.x
– ident: e_1_2_9_12_1
  doi: 10.1111/gcb.15723
– volume-title: Mapping species distributions—Spatial inference and prediction
  year: 2009
  ident: e_1_2_9_32_1
– ident: e_1_2_9_51_1
  doi: 10.1111/gcb.14773
– ident: e_1_2_9_54_1
  doi: 10.1111/gcb.13150
– ident: e_1_2_9_49_1
  doi: 10.1639/0044‐7447(2001)030[0072:Ccwatl]2.0.Co;2
– ident: e_1_2_9_76_1
  doi: 10.1371/journal.pone.0040212
– ident: e_1_2_9_36_1
  doi: 10.1073/pnas.1913579117
– ident: e_1_2_9_22_1
  doi: 10.1111/ddi.13395
– ident: e_1_2_9_59_1
  doi: 10.1007/s10336‐020‐01821‐5
– ident: e_1_2_9_34_1
  doi: 10.2307/2403611
– volume-title: The biogeographical regions map of Europe
  year: 2002
  ident: e_1_2_9_77_1
– ident: e_1_2_9_65_1
  doi: 10.3354/cr00920
– ident: e_1_2_9_81_1
  doi: 10.1080/00063657.2014.988120
– volume: 4
  start-page: 1
  year: 2014
  ident: e_1_2_9_46_1
  article-title: Bestandsvariasjoner for terrestriske fugler i Norge 1996–2013
  publication-title: NOF ‐ Rapport
– ident: e_1_2_9_35_1
  doi: 10.1098/rsbl.2008.0052
– ident: e_1_2_9_11_1
  doi: 10.1111/ddi.13409
– ident: e_1_2_9_13_1
  doi: 10.1111/ecog.05504
– ident: e_1_2_9_14_1
  doi: 10.32614/RJ-2017-066
– ident: e_1_2_9_83_1
  doi: 10.1088/1748‐9326/ac4ebe
– ident: e_1_2_9_52_1
  doi: 10.1007/s10144‐012‐0359‐9
– ident: e_1_2_9_23_1
  doi: 10.1890/10‐1325.1
– ident: e_1_2_9_43_1
  doi: 10.1890/14‐1826.1
– ident: e_1_2_9_15_1
  doi: 10.1080/00291950802517551
– ident: e_1_2_9_87_1
  doi: 10.1111/ele.13898
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1365‐2486.2005.01000.x
– ident: e_1_2_9_89_1
  doi: 10.1111/j.1365‐2486.2011.02635.x
– ident: e_1_2_9_7_1
  doi: 10.1002/eap.1416
– ident: e_1_2_9_8_1
  doi: 10.1073/pnas.1220228110
– ident: e_1_2_9_19_1
  doi: 10.1016/j.tree.2019.01.013
– ident: e_1_2_9_30_1
  doi: 10.1007/s13253‐017‐0287‐4
– ident: e_1_2_9_72_1
  doi: 10.1111/gcb.13337
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1365-2656.2004.00782.x
– ident: e_1_2_9_37_1
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1365-2699.2006.01466.x
– ident: e_1_2_9_50_1
  doi: 10.1126/science.281.5382.1513
– volume-title: Landskapets betydelse för fåglarnas förekomst och populationsutveckling: en pilotstudie med monitoringdata från Svensk Fågeltaxering och NILS
  year: 2007
  ident: e_1_2_9_63_1
– ident: e_1_2_9_42_1
  doi: 10.1080/00063657.2012.733337
– ident: e_1_2_9_91_1
  doi: 10.1111/j.2041-210X.2011.00170.x
– ident: e_1_2_9_10_1
  doi: 10.1111/2041‐210X.13012
– ident: e_1_2_9_92_1
  doi: 10.2307/2389612
SSID ssj0003206
Score 2.450916
Snippet The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6209
SubjectTerms Abundance
Animal breeding
Animals
anticipatory forecasts
Biologi
Biological Sciences
Bird populations
Birds
Birds - physiology
Breeding
Breeding seasons
Climate Change
climate decomposition
Climate effects
Climate models
Climate Research
Climate Science
climatic factors
Components
Decomposition
dynamic forecasts
Earth and Related Environmental Sciences
Ecology
Ecology (including Biodiversity Conservation)
Ecosystem
Ekologi
Environmental Sciences
Equivalence
forecast horizon
Geographical distribution
Geovetenskap och relaterad miljövetenskap
Klimatforskning
Klimatvetenskap
Land cover
Miljövetenskap
Mountains
Natural Sciences
Naturvetenskap
Population Dynamics
Scandinavia
Seasons
space‐for‐time substitution
Spatial variations
spatiotemporal forecasts
spatiotemporal pattern
Species
species abundance
species distribution models
static forecasts
Substitutes
Surveys
Temperature
temporal variation
Temporal variations
topography
Title Decomposing the spatial and temporal effects of climate on bird populations in northern European mountains
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16355
https://www.ncbi.nlm.nih.gov/pubmed/35899584
https://www.proquest.com/docview/2720273325
https://www.proquest.com/docview/2696009080
https://www.proquest.com/docview/2986444566
https://pubmed.ncbi.nlm.nih.gov/PMC9804621
https://res.slu.se/id/publ/118746
Volume 28
WOSCitedRecordID wos000840391200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDSRe-CgMAmMyCMFeguLYiVPxBN0KDzBNiEkVL5YduyyoOFWyIvHfc3bSsGoDIfGSpvI5ip37-J19vgN4ro0ttUh5XDIrYk41jzXa0ThVY0s10wh5TSg2IY6Pi9lsfLIFr9dnYbr8EMOCm5eMoK-9gCvdXhDyr6V-Rb25vAY7lLLC121I-cmghlkaCmtSlnHUNZT1aYV8GM_QddMYXUKYlwMl-3Sim0g2mKLp7f8axB241SNQ8qZjmbuwZd0IbnQ1KX-OYPfo99E3JOtlvx1B9BHxdd0EMvKCTBYVgt3w7x58O7Q-Nr32Cw8EISVpfaA2dlfOkD771YL0sSOknpMy9LakdkRXjSHLoY5YSypHnN9Nso0j680C8t3XtFCVa-_D6fTo8-R93FdxiEt0lbK4GM8pU0lu8CMJMy8VZ9wWxTzPUVkaxnOW2MImAq01mspE2IKiC4NA1lAtuErYLmy72tmHQHKOrj8qjUSIOacqU7lItc2zMkFHW-U6goP155Rln-LcV9pYyLWrg_Mtw3xH8GwgXXZ5Pa4i2lvzhOxFu5V-4xoxH0ux-enQjELpd1qUs_UKaXJ0DJMxDuIvND4xPkf8mkfwoGOz4U1Yhm4wQsMIxAYDDgQ-Kfhmi6vOQnLwceGPG9MIvnSsutkluHSyzyN1Jhcr2Vq5vLBALBFxI-i1VpYot5IrY6U2ykqDU13ozOqClhG8vOLh7WKlVeN__EN9GXuOQzsI7P_nOZbvJm_DzaN_J30MN1N_CiUcCd2D7fNmZZ_A9fLHedU2-0EN4FXMin3YOfw0Pf3wC7hgZ18
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aGwheuBQGgQEGIdhLUBw7l0q8QLcyRFchtEkTL5btuCyoJFWyIvHvOXbcsGoDIfHUVj6OaudcvmOfC8ALVRitspiHmpks5FTxUKEdDWM5NFQxhZC3cM0msuk0PzkZftqAN6tcmK4-RH_gZiXD6Wsr4PZA-pyUf9XqNbX28gpscWQj5O-tvc_j40mviVnsemtSlnBUN5T5ykI2kqefvG6PLoDMi7GSvqLoOph11mh86__WcRtuehRK3nZscwc2TDWAa11fyp8D2N7_nf6GZF7-2wEEh4ix68aRkZdkNC8R8Lpfd-HbnrHx6bU9fCAIK0lrg7VxuqwK4itgzYmPHyH1jGg325C6IqpsCrLoe4m1pKxIZW-UTFOR1YUB-W77Wsiyau_B8Xj_aHQQ-k4OoUZ3KQnz4YwyGaUFpSwrZlpyxk2ez9IUFWbB8O1FJjdRhhYbzWWUmZyiG4NgtqAq4zJi27BZ1ZV5ACTl6P6j4oiybMapTGSaxcqkiY7Q2ZapCmB39T6F9mXObbeNuVi5O7jfwu13AM970kVX2-Myop0VUwgv3q2wl9eI-1iMw8_6YRRMe9siK1MvkSZF5zAa4iL-QmOL43PEsGkA9zs-6_8JS9AVRngYQLbGgT2BLQy-PlKVp65A-DC3Kcc0gC8dr65PcW6d8LWkTsV8KVojFucOiQWibgS-xgiNsiu4LIxQhTSiwK3OVWJUTnUAry55eDtfKtnYD_tQ28qe49J2Hf__eY_F-9E79-Xhv5M-hesHR4cTMfkw_fgIbsQ2K8WliO7A5lmzNI_hqv5xVrbNE68VfgG1L2pd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aHSBeuBQGgQEGIdhLUBw7l0q8QLsCYlQTYtLEi2XHDgsKSZWsSPx7jp00rNpASDy1lY-j2D2X79jnAvBMaZOpJOR-xkzic6q4r9CO-qGcGKqYQsirXbOJZLFIj48nh1vwap0L09WHGA7crGQ4fW0F3Cx1fkbKv2bqJbX28hJsc9tEZgTbs0_zo4NBE7PQ9dakLOKobijrKwvZSJ5h8qY9Ogcyz8dK9hVFN8Gss0bzG_-3jptwvUeh5HXHNrdgy1RjuNL1pfw5hp393-lvSNbLfzsG7yNi7LpxZOQ5mZYFAl736zZ8mxkbn17bwweCsJK0Nlgbp8tKk74CVkn6-BFS5yRzsw2pK6KKRpPl0EusJUVFKnujZJqKrC8MyHfb10IWVXsHjub7n6fv_L6Tg5-huxT56SSnTAaxppQlOs8kZ9ykaR7HqDA14zELTGqCBC02mssgMSlFNwbBrKYq4TJgOzCq6srcAxJzdP9RcQRJknMqIxknoTJxlAXobMtYebC3_j9F1pc5t902SrF2d3C_hdtvD54OpMuutsdFRLtrphC9eLfCXl4j7mMhDj8ZhlEw7W2LrEy9QpoYncNggov4C40tjs8Rw8Ye3O34bHgTFqErjPDQg2SDAwcCWxh8c6QqTlyB8ElqU46pB186Xt2c4tw60deSOhHlSrRGLM8cEgtE3Qh8jREZyq7gUhuhtDRC41anKjIqpZkHLy54eFuulGzsh32obWXPcWl7jv__vMfi7fSN-3L_30kfw9XD2VwcvF98eADXQpuU4jJEd2F02qzMQ7ic_Tgt2uZRrxR-Aae6adg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposing+the+spatial+and+temporal+effects+of+climate+on+bird+populations+in+northern+European+mountains&rft.jtitle=Global+change+biology&rft.au=Bradter%2C+Ute&rft.au=Johnston%2C+Alison&rft.au=Hochachka%2C+Wesley+M.&rft.au=Soultan%2C+Alaaeldin&rft.date=2022-11-01&rft.issn=1354-1013&rft.volume=28&rft.issue=21+p.6209-6227&rft.spage=6209&rft.epage=6227&rft_id=info:doi/10.1111%2Fgcb.16355&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon