A decade of metaproteomics: Where we stand and what the future holds
We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establ...
Saved in:
| Published in: | Proteomics (Weinheim) Vol. 15; no. 20; pp. 3409 - 3417 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Blackwell Publishing Ltd
01.10.2015
Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 1615-9853, 1615-9861, 1615-9861 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype‐phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ. |
|---|---|
| AbstractList | We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype‐phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ. We are living through exciting times during which we are able to unravel the "microbial dark matter" in and around us through the application of high-resolution "meta-omics". Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype-phenotype linkages from in situ samples. A decade has passed since the term "metaproteomics" was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ.We are living through exciting times during which we are able to unravel the "microbial dark matter" in and around us through the application of high-resolution "meta-omics". Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype-phenotype linkages from in situ samples. A decade has passed since the term "metaproteomics" was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ. |
| Author | Wilmes, Paul Bond, Philip L. Heintz-Buschart, Anna |
| AuthorAffiliation | 2 Advanced Water Management Centre University of Queensland Brisbane Australia 1 Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg |
| AuthorAffiliation_xml | – name: 1 Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg – name: 2 Advanced Water Management Centre University of Queensland Brisbane Australia |
| Author_xml | – sequence: 1 givenname: Paul surname: Wilmes fullname: Wilmes, Paul email: paul.wilmes@uni.lu organization: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg – sequence: 2 givenname: Anna surname: Heintz-Buschart fullname: Heintz-Buschart, Anna organization: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg – sequence: 3 givenname: Philip L. surname: Bond fullname: Bond, Philip L. organization: Advanced Water Management Centre, University of Queensland, Brisbane, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26315987$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URNuBLUsUiQ2bDH7ELxZI7VBKUXksCl1aju2QlCQebIdp_z2Oph1BJQQLy9a93zm6vucQ7I1-dAA8RXCJIMQv10NnlhgiCiES5AE4QAzRUgqG9nZvSvbBYYxXGeFC8kdgHzOCqBT8ALw5Kqwz2rrCN8Xgkl4Hn5zPrvFVcdm64IqNK2LSoy3ms2l1KlLrimZKU262vrfxMXjY6D66J7f3Anx5e3Kxeleefzo9Wx2dl4ZBWpVGc84raZAmopY14tzVFbXUQi2RhbZGuhayElg6bCquhbaIM1nnUoNgXZMFeL31XU_14KxxYwq6V-vQDTrcKK879Wdn7Fr1zf9UFFaSEZkNXtwaBP9jcjGpoYvG9b0enZ-iQhxzJqDk1f-gWGLO89YX4Pk99MpPYcybUBgSyiqR88jUs9-H3019l0UGqi1ggo8xuEaZLunU-fkvXa8QVHPkao5c7SLPsuU92Z3zXwV0K9h0vbv5B60-fzhbIYzQvJFyq-tictc7nQ7fFeOEU3X58VQh8l58PWZQXZBf1UnLhw |
| CitedBy_id | crossref_primary_10_3390_ijms17081275 crossref_primary_10_1002_pmic_201500305 crossref_primary_10_3390_genes13122280 crossref_primary_10_1016_j_nbt_2017_05_002 crossref_primary_10_1016_j_ibiod_2020_104934 crossref_primary_10_1016_j_tifs_2020_11_028 crossref_primary_10_3389_fmicb_2019_02395 crossref_primary_10_1016_j_heliyon_2024_e32828 crossref_primary_10_1186_s40168_021_01176_w crossref_primary_10_1016_j_clinms_2019_04_004 crossref_primary_10_3390_microorganisms9071400 crossref_primary_10_1021_acs_analchem_4c06645 crossref_primary_10_1016_j_foodchem_2025_146366 crossref_primary_10_3389_fchem_2017_00004 crossref_primary_10_1016_j_ymeth_2020_07_011 crossref_primary_10_1002_pmic_201700150 crossref_primary_10_1093_bib_bbx120 crossref_primary_10_1088_1755_1315_974_1_012003 crossref_primary_10_1093_ismeco_ycaf145 crossref_primary_10_1002_pmic_202500002 crossref_primary_10_3390_foods13040601 crossref_primary_10_1136_bmjopen_2022_071380 crossref_primary_10_1002_pmic_201800176 crossref_primary_10_1002_imt2_70031 crossref_primary_10_1080_1040841X_2017_1332003 crossref_primary_10_1016_j_biortech_2021_126246 crossref_primary_10_3390_proteomes7010004 crossref_primary_10_1002_elsc_202300207 crossref_primary_10_1016_j_watres_2023_120700 crossref_primary_10_1016_j_tube_2018_12_003 crossref_primary_10_1080_14789450_2017_1314786 crossref_primary_10_3390_metabo14030157 crossref_primary_10_1016_j_tim_2016_05_004 crossref_primary_10_1007_s42398_020_00158_2 crossref_primary_10_3389_fmicb_2022_845562 crossref_primary_10_3389_fmicb_2018_00540 crossref_primary_10_1007_s00216_016_0175_8 crossref_primary_10_1016_j_rhisph_2017_05_003 crossref_primary_10_1016_j_rhisph_2017_05_001 crossref_primary_10_3389_fmicb_2019_00238 crossref_primary_10_1016_j_biocon_2017_10_035 crossref_primary_10_1080_20002297_2022_2138251 crossref_primary_10_3390_ijerph20043068 crossref_primary_10_1016_j_bbapap_2019_140320 crossref_primary_10_1186_s12263_018_0594_6 crossref_primary_10_1038_s44221_025_00430_x crossref_primary_10_1016_j_copbio_2016_02_025 crossref_primary_10_1016_j_margen_2023_101017 crossref_primary_10_1007_s13762_024_06209_z crossref_primary_10_1016_j_copbio_2016_04_018 crossref_primary_10_1186_s40793_025_00750_1 crossref_primary_10_3390_microorganisms8111694 crossref_primary_10_1038_s41576_021_00326_y crossref_primary_10_1186_s40168_017_0247_9 crossref_primary_10_3389_fmicb_2020_01275 crossref_primary_10_1186_s40168_020_00797_x crossref_primary_10_1016_j_jbiotec_2017_06_1201 crossref_primary_10_1016_j_jprot_2017_05_022 crossref_primary_10_1111_nyas_13033 crossref_primary_10_1016_j_jprot_2018_11_011 crossref_primary_10_1038_srep34477 crossref_primary_10_1016_j_lwt_2017_03_022 crossref_primary_10_1038_s41467_020_17081_z crossref_primary_10_1186_s40168_021_01139_1 crossref_primary_10_1128_CMR_00060_16 crossref_primary_10_1016_j_soilbio_2021_108170 crossref_primary_10_3389_fbioe_2021_613307 crossref_primary_10_1080_00365521_2018_1444788 crossref_primary_10_1038_srep25773 crossref_primary_10_3390_ijms20061430 crossref_primary_10_1038_nprot_2016_148 crossref_primary_10_3390_proteomes6010007 crossref_primary_10_1111_1541_4337_12601 crossref_primary_10_1016_j_ebiom_2019_08_048 crossref_primary_10_1038_s41591_023_02260_4 crossref_primary_10_1016_j_ab_2016_10_008 crossref_primary_10_3390_ani11123551 crossref_primary_10_1080_10408398_2023_2199425 crossref_primary_10_3389_fmicb_2020_00088 crossref_primary_10_1002_pmic_201500369 crossref_primary_10_3390_microorganisms13081771 crossref_primary_10_1080_14789450_2020_1738931 crossref_primary_10_1186_s12866_023_02991_x crossref_primary_10_1007_s00784_017_2213_0 crossref_primary_10_1371_journal_pone_0153294 crossref_primary_10_1080_14737175_2019_1623026 crossref_primary_10_1111_1755_0998_12979 crossref_primary_10_3390_toxins11100576 crossref_primary_10_1007_s00248_019_01360_4 crossref_primary_10_1038_s41587_025_02660_6 crossref_primary_10_1093_femsle_fnx211 crossref_primary_10_1016_j_tifs_2017_05_002 crossref_primary_10_3390_microorganisms10102013 crossref_primary_10_1002_pmic_201900282 crossref_primary_10_1016_j_cofs_2017_01_002 crossref_primary_10_1111_1751_7915_12855 crossref_primary_10_1186_s12859_017_1849_8 crossref_primary_10_1007_s00248_016_0769_x crossref_primary_10_1016_j_watres_2023_119805 |
| Cites_doi | 10.1038/ismej.2014.200 10.2166/wst.2013.030 10.1126/science.1121225 10.1002/pmic.201200569 10.1016/j.chemosphere.2012.10.002 10.1007/s00248-013-0346-5 10.1111/j.1462-2920.2004.00687.x 10.1016/j.watres.2008.05.014 10.1038/nbt1247 10.1111/1758-2229.12188 10.1128/AEM.01938-12 10.1186/1746-1448-1-7 10.1038/npjbiofilms.2015.7 10.1016/j.tibtech.2006.09.002 10.1111/j.1462-2920.2012.02716.x 10.1371/journal.pone.0001778 10.1136/gut.2005.073817 10.1111/j.2041-1014.2009.00558.x 10.1038/ismej.2008.17 10.1371/journal.pone.0029913 10.1111/j.1574-6941.2011.01140.x 10.1002/pmic.201200576 10.1038/ismej.2013.234 10.1126/science.1112665 10.1038/ismej.2008.108 10.1038/ismej.2011.188 10.1126/science.1109070 10.1016/j.anaerobe.2013.11.009 10.1002/pmic.201400167 10.1021/cb400210q 10.1111/1462-2920.12488 10.1016/j.jprot.2014.02.006 10.1371/journal.pone.0034242 10.1038/nature05624 10.1371/journal.pone.0026542 10.1073/pnas.0907041107 10.1021/pr500936p 10.1038/ismej.2014.113 10.1126/science.1218344 10.1007/s00253-012-4157-2 10.1128/AEM.00969-14 10.1111/1758-2229.12239 10.1136/gutjnl-2012-303184 10.1002/ibd.21793 10.1128/mBio.00246-10 10.1111/j.1462-2920.2009.02007.x 10.1016/j.resmic.2010.04.010 10.1002/pmic.201300003 10.1038/ismej.2007.53 10.1073/pnas.1121198109 10.1641/0006-3568(2000)050[1062:LBASBA]2.0.CO;2 10.1073/pnas.1322132111 10.1007/s00442-004-1698-9 10.1038/ncomms6603 10.1021/pr060477v 10.1002/pmic.201100059 10.1073/pnas.142680199 10.1038/ismej.2012.28 10.1080/08927014.2014.977267 10.1371/journal.pone.0049138 10.1074/mcp.M114.046425 10.1126/science.1126593 10.1038/msb.2010.30 10.1038/ismej.2010.4 10.1038/ismej.2012.11 10.1038/ismej.2010.168 10.1038/ismej.2010.185 10.1038/ismej.2008.38 10.1007/s00248-006-9121-1 10.1111/1462-2920.12283 10.1038/ismej.2007.39 10.1038/ismej.2010.28 10.1038/nature14238 10.1021/pr501246w 10.1093/bioinformatics/btu267 10.1038/ismej.2009.139 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2015 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.1002/pmic.201500183 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic Engineering Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Chemistry |
| DocumentTitleAlternate | P. Wilmes et al |
| EISSN | 1615-9861 |
| EndPage | 3417 |
| ExternalDocumentID | PMC5049639 26315987 10_1002_pmic_201500183 PMIC12114 ark_67375_WNG_13J8VB60_T |
| Genre | commentary Journal Article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-1 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 Y6R ZGI ZZTAW ~IA ~KM ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI WRC AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 8FD FR3 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c6054-ca77749c1a38b9b177eb45d5d0a91d0db1ab894829e2c47a8ad1769b948f10bb3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 125 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363090700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-9853 1615-9861 |
| IngestDate | Tue Nov 04 01:54:53 EST 2025 Tue Oct 07 09:26:59 EDT 2025 Sun Nov 09 13:28:00 EST 2025 Sat Nov 29 14:44:11 EST 2025 Mon Jul 21 06:01:54 EDT 2025 Sat Nov 29 07:07:09 EST 2025 Tue Nov 18 21:18:31 EST 2025 Wed Jan 22 16:56:46 EST 2025 Tue Nov 11 03:32:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Metagenomics Microbial systems ecology Metaproteomics Microbiology Integrated omics Microbial community |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6054-ca77749c1a38b9b177eb45d5d0a91d0db1ab894829e2c47a8ad1769b948f10bb3 |
| Notes | ark:/67375/WNG-13J8VB60-T ArticleID:PMIC12114 istex:E6122B6B398ECB6D70D874FEB6E19F7B48A2AB66 phil.bond@awmc.uq.edu.au E‐mail Additional corresponding author: Dr. Philip L. Bond ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 E‐mail: phil.bond@awmc.uq.edu.au |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201500183 |
| PMID | 26315987 |
| PQID | 2035648986 |
| PQPubID | 1016439 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5049639 proquest_miscellaneous_1727680974 proquest_miscellaneous_1722927718 proquest_journals_2035648986 pubmed_primary_26315987 crossref_citationtrail_10_1002_pmic_201500183 crossref_primary_10_1002_pmic_201500183 wiley_primary_10_1002_pmic_201500183_PMIC12114 istex_primary_ark_67375_WNG_13J8VB60_T |
| PublicationCentury | 2000 |
| PublicationDate | October 2015 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Proteomics (Weinheim) |
| PublicationTitleAlternate | Proteomics |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | Hanson, B. T., Hewson, I., Madsen, E. L., Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb. Ecol. 2014, 67, 520-539. Wilmes, P., Wexler, M., Bond, P. L., Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 2008, 3, e1778. Wilmes, P., Bond, P. L., The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 2004, 6, 911-920. Kohrs, F., Heyer, R., Magnussen, A., Benndorf, D. et al., Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 2014, 29, 59-67. Wilmes, P., Bowen, B. P., Thomas, B. C., Mueller, R. S. et al., Metabolome-proteome differentiation coupled to microbial divergence. MBio 2010, 1. Lo, I., Denef, V. J., Verberkmoes, N. C., Shah, M. B. et al., Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 2007, 446, 537-541. Zhang, T., Shao, M.-F., Ye, L., 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2011, 6, 1137-1147. Pérez-Cobas, A. E., Gosalbes, M. J., Friedrichs, A., Knecht, H. et al., Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013, 62, 1591-1601. Hanson, B. T., Madsen, E. L., In situ expression of nitrite-dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co-occurring with expressed anammox proteins in a contaminated aquifer. Environ. Microbiol. Rep. 2015, 7, 252-264. Hansen, S. H., Stensballe, A., Nielsen, P. H., Herbst, F.-A., Metaproteomics: evaluation of protein extraction from activated sludge. Proteomics 2014, 14, 2535-2539. Bunge, J., Comment on "computational improvements reveal great bacterial diversity and high metal toxicity in soil." Science 2006, 313, 918c-918c. Schulze, W. X., Gleixner, G., Kaiser, K., Guggenberger, G. et al., A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 2004, 142, 335-343. Urich, T., Lanzén, A., Stokke, R., Pedersen, R. B. et al., Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ. Microbiol. 2014, 16, 2699-2710. Daims, H., Taylor, M. W., Wagner, M., Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 2006, 24, 483-489. Mosier, A. C., Li, Z., Thomas, B. C., Hettich, R. L. et al., Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. 2014, 9, 180-194. Armengaud, J., Marie Hartmann, E., Bland, C., Proteogenomics for environmental microbiology. Proteomics 2013, 13, 2731-2742. Li, Z., Wang, Y., Yao, Q., Justice, N. B. et al., Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nat. Commun. 2014, 5, 1-11. Williams, T. J., Long, E., Evans, F., DeMaere, M. Z. et al., A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012, 6, 1883-1900. Lauro, F. M., DeMaere, M. Z., Yau, S., Brown, M. V. et al., An integrative study of a meromictic lake ecosystem in Antarctica. ISME J. 2011, 5, 879-895. Manichanh, C., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006, 55, 205-211. Hawley, A. K., Brewer, H. M., Norbeck, A. D., Pasa-Tolic, L., Hallam, S. J., Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl. Acad. Sci. USA 2014, 111, 11395-11400. Gans, J., Wolinsky, M., Dunbar, J., Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 2005, 309, 1387-1390. Curtis, T. P., Sloan, W. T., Scannell, J. W., Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 2002, 99, 10494-10499. Albertsen, M., Stensballe, A., Nielsen, K. L., Nielsen, P. H., Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach. Water Sci. Technol. 2013, 67, 1650-1656. Lacerda, C. M. R., Choe, L. H., Reardon, K. F., Metaproteomic analysis of a bacterial community response to cadmium exposure. J. Proteome Res. 2007, 6, 1145-1152. Silva, A. F., Carvalho, G., Soares, R., Coelho, A. V., Barreto Crespo, M. T., Step-by-step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems. Appl. Microbiol. Biotechnol. 2012, 95, 767-776. Dong, H.-P., Hong, Y.-G., Lu, S., Xie, L.-Y., Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. Environ. Microbiol. Rep. 2014, 6, 683-695. Verberkmoes, N. C., Russell, A. L., Shah, M., Godzik, A. et al., Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2008, 3, 179-189. Kolmeder, C. A., deBeen, M., Nikkilä, J., Ritamo, I. et al., Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 2012, 7, e29913. Mueller, R. S., Denef, V. J., Kalnejais, L. H., Suttle, K. B. et al., Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 2010, 6, 1-12. Markert, S., Gardebrecht, A., Felbeck, H., Sievert, S. M. et al., Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 2011, 11, 3106-3117. Jeans, C., Singer, S. W., Chan, C. S., Verberkmoes, N. C. et al., Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2008, 2, 542-550. Denef, V. J., Kalnejais, L. H., Mueller, R. S., Wilmes, P. et al., Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl. Acad. Sci. USA 2010, 107, 2383-2390. Penzlin, A., Lindner, M. S., Doellinger, J., Dabrowski, P. W. et al., Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics. Bioinformatics 2014, 30, i149-i156. Fischer, C. R., Bowen, B. P., Pan, C., Northen, T. R., Banfield, J. F., Stable-isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species-specific. ACS Chem. Biol. 2013, 8, 1755-1763. Aliaga Goltsman, D. S., Comolli, L. R., Thomas, B. C., Banfield, J.F., Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J. 2015, 9, 1014-1023. Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. W., Walsh, D.A., Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014, 8, 1301-1313. Kleiner, M., Wentrup, C., Lott, C., Teeling, H. et al., Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc. Natl. Acad. Sci. USA 2012, 109, E1173-E1182. Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W. et al., Community proteomics of a natural microbial biofilm. Science 2005, 308, 1915-1920. Martin, H. G., Ivanova, N., Kunin, V., Warnecke, F. et al., Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 2006, 24, 1263-1269. Nicora, C. D., Anderson, B. J., Callister, S. J., Norbeck, A. D. et al., Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 2013, 13, 2776-2785. Justice, N. B., Pan, C., Mueller, R., Spaulding, S. E. et al., Heterotrophic Archaea Contribute to Carbon Cycling in Low-pH, Suboxic Biofilm Communities. Appl. Environ. Microbiol. 2012, 78, 8321-8330. Stokke, R., Roalkvam, I., Lanzén, A., Haflidason, H., Steen, I.H., Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 2012, 14, 1333-1346. Rudney, J. D., Xie, H., Rhodus, N. L., Ondrey, F. G., Griffin, T. J., A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Oral Microbiol. 2010, 25, 38-49. Palmer, M. A., Covich, A. P., Lake, S., Biro, P. et al., Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 2000, 50, 1062-1075. Benndorf, D., Balcke, G. U., Harms, H., von Bergen, M., Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J. 2007, 1, 224-234. Xiong, W., Giannone, R. J., Morowitz, M. J., Banfield, J. F., Hettich, R. L., Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J. Proteome Res. 2015, 14, 133-141. Herbst, F.-A., Bahr, A., Duarte, M., Pieper, D. H. et al., Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 2013, 13, 2910-2920. Lombard, N., Prestat, E., vanElsas, J. D., Simonet, P., Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol. Ecol. 2011, 78, 31-49. Ng, C., DeMaere, M. Z., Williams, T. J., Lauro, F. M. et al., Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J. 2010, 4, 1002-1019. Gillet, L.C., Navarro, P., Tate, S., Roest, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. P 2010; 107 2013; 67 2013; 62 2002; 99 2000; 50 2004; 6 2011; 11 2012; 18 2008; 3 2014; 29 2012; 14 2008; 2 2013; 8 2014; 67 2012; 95 2009; 11 2014; 5 2010; 1 2010; 25 2006; 24 2013; 13 2014; 16 2007; 6 2014; 14 2005; 308 2005; 309 2014; 9 2014; 8 2007; 1 2012; 336 2014; 6 2010; 4 2010; 6 2015; 1 2004; 142 2015; 14 2007; 446 2012 2015; 521 2006; 55 2013; 90 2010; 161 2011; 78 2007; 53 2015; 9 2014; 111 2006; 313 2012; 78 2011; 6 2011; 5 2015; 7 2012; 109 2014; 80 2005; 1 2008; 42 2009; 4 2014; 30 2012; 6 2012; 7 2014; 101 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Li Z. (e_1_2_10_23_1) 2014; 5 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Gillet L.C. (e_1_2_10_67_1) 2012 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
| References_xml | – reference: Rudney, J. D., Xie, H., Rhodus, N. L., Ondrey, F. G., Griffin, T. J., A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Oral Microbiol. 2010, 25, 38-49. – reference: Mocali, S., Benedetti, A., Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res. Microbiol. 2010, 161, 497-505. – reference: Mosier, A. C., Li, Z., Thomas, B. C., Hettich, R. L. et al., Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. 2014, 9, 180-194. – reference: Presley, L. L., Ye, J., Li, X., LeBlanc, J. et al., Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm. Bowel Dis. 2012, 18, 409-417. – reference: Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. W., Walsh, D.A., Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014, 8, 1301-1313. – reference: Morris, R. M., Nunn, B. L., Frazar, C., Goodlett, D. R. et al., Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J. 2010, 4, 673-685. – reference: Justice, N. B., Li, Z., Wang, Y., Spaudling, S. E. et al., 15N- and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity. Environ. Microbiol. 2014, 16, 3224-3237. – reference: Wilmes, P., Wexler, M., Bond, P. L., Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 2008, 3, e1778. – reference: Wexler, M., Richardson, D. J., Bond, P. L., Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal. Environ. Microbiol. 2009, 11, 3029-3044. – reference: Kleiner, M., Wentrup, C., Lott, C., Teeling, H. et al., Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc. Natl. Acad. Sci. USA 2012, 109, E1173-E1182. – reference: Verberkmoes, N. C., Russell, A. L., Shah, M., Godzik, A. et al., Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2008, 3, 179-189. – reference: Manichanh, C., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006, 55, 205-211. – reference: Markert, S., Gardebrecht, A., Felbeck, H., Sievert, S. M. et al., Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 2011, 11, 3106-3117. – reference: Ng, C., DeMaere, M. Z., Williams, T. J., Lauro, F. M. et al., Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J. 2010, 4, 1002-1019. – reference: Jeans, C., Singer, S. W., Chan, C. S., Verberkmoes, N. C. et al., Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2008, 2, 542-550. – reference: Silva, A. F., Carvalho, G., Soares, R., Coelho, A. V., Barreto Crespo, M. T., Step-by-step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems. Appl. Microbiol. Biotechnol. 2012, 95, 767-776. – reference: Pérez-Cobas, A. E., Gosalbes, M. J., Friedrichs, A., Knecht, H. et al., Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013, 62, 1591-1601. – reference: Li, X., LeBlanc, J., Truong, A., Vuthoori, R. et al., A Metaproteomic Approach to Study Human-Microbial Ecosystems at the Mucosal Luminal Interface. PLoS ONE 2011, 6, e26542. – reference: Mueller, R. S., Denef, V. J., Kalnejais, L. H., Suttle, K. B. et al., Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 2010, 6, 1-12. – reference: Pierre-Alain, M., Christophe, M., Severine, S., Houria, A. et al., Protein extraction and fingerprinting optimization of bacterial communities in natural environment. Microb. Ecol. 2007, 53, 426-434. – reference: Bastida, F., Hernández, T., García, C., Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J. Proteomics 2014, 101, 31-42. – reference: Kohrs, F., Heyer, R., Magnussen, A., Benndorf, D. et al., Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 2014, 29, 59-67. – reference: Wilmes, P., Andersson, A. F., Lefsrud, M. G., Wexler, M. et al., Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J. 2008, 2, 853-864. – reference: Teeling, H., Fuchs, B. M., Becher, D., Klockow, C. et al., Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom. Science 2012, 336, 608-611. – reference: Martin, H. G., Ivanova, N., Kunin, V., Warnecke, F. et al., Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 2006, 24, 1263-1269. – reference: Justice, N. B., Pan, C., Mueller, R., Spaulding, S. E. et al., Heterotrophic Archaea Contribute to Carbon Cycling in Low-pH, Suboxic Biofilm Communities. Appl. Environ. Microbiol. 2012, 78, 8321-8330. – reference: Erickson, A. R., Cantarel, B. L., Lamendella, R., Darzi, Y. et al., Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease. PLoS ONE 2012, 7, e49138. – reference: Park, C., Novak, J. T., Helm, R. F., Ahn, Y.-O., Esen, A., Evaluation of the extracellular proteins in full-scale activated sludges. Water Res. 2008, 42, 3879-3889. – reference: Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W. et al., Community proteomics of a natural microbial biofilm. Science 2005, 308, 1915-1920. – reference: Li, Z., Wang, Y., Yao, Q., Justice, N. B. et al., Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nat. Commun. 2014, 5, 1-11. – reference: Benndorf, D., Balcke, G. U., Harms, H., von Bergen, M., Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J. 2007, 1, 224-234. – reference: Muller, E. E. L., Pinel, N., Laczny, C. C., Hoopmann, M. R. et al., Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nat. Commun. 2014, 5, 5603. – reference: Albertsen, M., Stensballe, A., Nielsen, K. L., Nielsen, P. H., Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach. Water Sci. Technol. 2013, 67, 1650-1656. – reference: Roume, H., Heintz-Buschart, A., Muller, E. E. L., May, P. et al., Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biofilms Microbiomes 2015, 1, 15007. – reference: Kolmeder, C. A., deBeen, M., Nikkilä, J., Ritamo, I. et al., Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 2012, 7, e29913. – reference: Lombard, N., Prestat, E., vanElsas, J. D., Simonet, P., Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol. Ecol. 2011, 78, 31-49. – reference: Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G. et al., Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007, 1, 283-290. – reference: Kan, J., Hanson, T. E., Ginter, J. M., Wang, K., Chen, F., Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 2005, 1, 7. – reference: Herbst, F.-A., Bahr, A., Duarte, M., Pieper, D. H. et al., Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 2013, 13, 2910-2920. – reference: Hultman, J., Waldrop, M. P., Mackelprang, R., David, M. M. et al., Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 2015, 521, 208-212. – reference: Nicora, C. D., Anderson, B. J., Callister, S. J., Norbeck, A. D. et al., Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 2013, 13, 2776-2785. – reference: Volkov, I., Comment on "computational improvements reveal great bacterial diversity and high metal toxicity in soil." Science 2006, 313, 918a. – reference: Xiong, W., Giannone, R. J., Morowitz, M. J., Banfield, J. F., Hettich, R. L., Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J. Proteome Res. 2015, 14, 133-141. – reference: Gans, J., Wolinsky, M., Dunbar, J., Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 2005, 309, 1387-1390. – reference: Denef, V. J., Kalnejais, L. H., Mueller, R. S., Wilmes, P. et al., Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl. Acad. Sci. USA 2010, 107, 2383-2390. – reference: Curtis, T. P., Sloan, W. T., Scannell, J. W., Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 2002, 99, 10494-10499. – reference: Hanson, B. T., Hewson, I., Madsen, E. L., Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb. Ecol. 2014, 67, 520-539. – reference: Schulze, W. X., Gleixner, G., Kaiser, K., Guggenberger, G. et al., A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 2004, 142, 335-343. – reference: Krisp, C., Yang, H., van Soest, R., Molloy, M.P., Online peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics. Mol. Cell. Proteomics 2015, 14, 1708-1719. – reference: Lauro, F. M., DeMaere, M. Z., Yau, S., Brown, M. V. et al., An integrative study of a meromictic lake ecosystem in Antarctica. ISME J. 2011, 5, 879-895. – reference: Wilmes, P., Bowen, B. P., Thomas, B. C., Mueller, R. S. et al., Metabolome-proteome differentiation coupled to microbial divergence. MBio 2010, 1. – reference: Lo, I., Denef, V. J., Verberkmoes, N. C., Shah, M. B. et al., Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 2007, 446, 537-541. – reference: Leary, D. H., Li, R. W., Hamdan, L. J., Hervey, W. J. et al., Integrated metagenomic and metaproteomic analyses of marine biofilm communities. Biofouling 2014, 30, 1211-1223. – reference: Huse, S. M., Ye, Y., Zhou, Y., Fodor, A. A., A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 2012, 7, e34242. – reference: Bao, Z., Okubo, T., Kubota, K., Kasahara, Y. et al., Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl. Environ. Microbiol. 2014, 80, 5043-5052. – reference: Belnap, C. P., Pan, C., Verberkmoes, N. C., Power, M. E. et al., Cultivation and quantitative proteomic analyses of acidophilic microbial communities. ISME J. 2009, 4, 520-530. – reference: Hawley, A. K., Brewer, H. M., Norbeck, A. D., Pasa-Tolic, L., Hallam, S. J., Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl. Acad. Sci. USA 2014, 111, 11395-11400. – reference: Daims, H., Taylor, M. W., Wagner, M., Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 2006, 24, 483-489. – reference: Wilmes, P., Bond, P. L., The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 2004, 6, 911-920. – reference: Williams, T. J., Long, E., Evans, F., DeMaere, M. Z. et al., A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012, 6, 1883-1900. – reference: Hanson, B. T., Madsen, E. L., In situ expression of nitrite-dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co-occurring with expressed anammox proteins in a contaminated aquifer. Environ. Microbiol. Rep. 2015, 7, 252-264. – reference: Collado, N., Buttiglieri, G., Kolvenbach, B. A., Comas, J. et al., Exploring the potential of applying proteomics for tracking bisphenol A and nonylphenol degradation in activated sludge. Chemosphere 2013, 90, 2309-2314. – reference: Urich, T., Lanzén, A., Stokke, R., Pedersen, R. B. et al., Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ. Microbiol. 2014, 16, 2699-2710. – reference: Palmer, M. A., Covich, A. P., Lake, S., Biro, P. et al., Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 2000, 50, 1062-1075. – reference: Muth, T., Behne, A., Heyer, R., Kohrs, F. et al., The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. J. Proteome Res. 2015, 14, 1557-1565. – reference: Lacerda, C. M. R., Choe, L. H., Reardon, K. F., Metaproteomic analysis of a bacterial community response to cadmium exposure. J. Proteome Res. 2007, 6, 1145-1152. – reference: Hansen, S. H., Stensballe, A., Nielsen, P. H., Herbst, F.-A., Metaproteomics: evaluation of protein extraction from activated sludge. Proteomics 2014, 14, 2535-2539. – reference: Aliaga Goltsman, D. S., Comolli, L. R., Thomas, B. C., Banfield, J.F., Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J. 2015, 9, 1014-1023. – reference: Bunge, J., Comment on "computational improvements reveal great bacterial diversity and high metal toxicity in soil." Science 2006, 313, 918c-918c. – reference: Dong, H.-P., Hong, Y.-G., Lu, S., Xie, L.-Y., Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. Environ. Microbiol. Rep. 2014, 6, 683-695. – reference: Gillet, L.C., Navarro, P., Tate, S., Roest, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012, O111.016717. – reference: Penzlin, A., Lindner, M. S., Doellinger, J., Dabrowski, P. W. et al., Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics. Bioinformatics 2014, 30, i149-i156. – reference: Zhang, T., Shao, M.-F., Ye, L., 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2011, 6, 1137-1147. – reference: Stokke, R., Roalkvam, I., Lanzén, A., Haflidason, H., Steen, I.H., Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 2012, 14, 1333-1346. – reference: Armengaud, J., Marie Hartmann, E., Bland, C., Proteogenomics for environmental microbiology. Proteomics 2013, 13, 2731-2742. – reference: Fischer, C. R., Bowen, B. P., Pan, C., Northen, T. R., Banfield, J. F., Stable-isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species-specific. ACS Chem. Biol. 2013, 8, 1755-1763. – reference: Sowell, S. M., Abraham, P. E., Shah, M., Verberkmoes, N. C. et al., Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 2011, 5, 856-865. – volume: 142 start-page: 335 year: 2004 end-page: 343 article-title: A proteomic fingerprint of dissolved organic carbon and of soil particles publication-title: Oecologia – volume: 4 start-page: 520 year: 2009 end-page: 530 article-title: Cultivation and quantitative proteomic analyses of acidophilic microbial communities publication-title: ISME J. – volume: 4 start-page: 1002 year: 2010 end-page: 1019 article-title: Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica publication-title: ISME J. – volume: 313 start-page: 918a year: 2006 article-title: Comment on “computational improvements reveal great bacterial diversity and high metal toxicity in soil publication-title: Science – volume: 107 start-page: 2383 year: 2010 end-page: 2390 article-title: Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities publication-title: Proc. Natl. Acad. Sci. USA – volume: 161 start-page: 497 year: 2010 end-page: 505 article-title: Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology publication-title: Res. Microbiol. – volume: 16 start-page: 2699 year: 2014 end-page: 2710 article-title: Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta‐omics publication-title: Environ. Microbiol. – volume: 42 start-page: 3879 year: 2008 end-page: 3889 article-title: Evaluation of the extracellular proteins in full‐scale activated sludges publication-title: Water Res. – volume: 14 start-page: 1333 year: 2012 end-page: 1346 article-title: Integrated metagenomic and metaproteomic analyses of an ANME‐1‐dominated community in marine cold seep sediments publication-title: Environ. Microbiol. – volume: 18 start-page: 409 year: 2012 end-page: 417 article-title: Host–microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal–luminal interface publication-title: Inflamm. Bowel Dis. – volume: 6 start-page: 683 year: 2014 end-page: 695 article-title: Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea publication-title: Environ. Microbiol. Rep. – volume: 111 start-page: 11395 year: 2014 end-page: 11400 article-title: Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 1749 year: 2012 end-page: 1762 article-title: Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions – volume: 7 start-page: e49138 year: 2012 article-title: Integrated Metagenomics/Metaproteomics Reveals Human Host‐Microbiota Signatures of Crohn's Disease publication-title: PLoS ONE – volume: 29 start-page: 59 year: 2014 end-page: 67 article-title: Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants publication-title: Anaerobe – volume: 313 start-page: 918c year: 2006 end-page: 918c article-title: Comment on “computational improvements reveal great bacterial diversity and high metal toxicity in soil publication-title: Science – volume: 99 start-page: 10494 year: 2002 end-page: 10499 article-title: Estimating prokaryotic diversity and its limits publication-title: Proc. Natl. Acad. Sci. USA – volume: 521 start-page: 208 year: 2015 end-page: 212 article-title: Multi‐omics of permafrost, active layer and thermokarst bog soil microbiomes publication-title: Nature – volume: 336 start-page: 608 year: 2012 end-page: 611 article-title: Substrate‐Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom publication-title: Science – volume: 1 start-page: 283 year: 2007 end-page: 290 article-title: Pyrosequencing enumerates and contrasts soil microbial diversity publication-title: ISME J. – volume: 67 start-page: 1650 year: 2013 end-page: 1656 article-title: Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach publication-title: Water Sci. Technol. – volume: 25 start-page: 38 year: 2010 end-page: 49 article-title: A metaproteomic analysis of the human salivary microbiota by three‐dimensional peptide fractionation and tandem mass spectrometry publication-title: Mol. Oral Microbiol. – volume: 4 start-page: 673 year: 2010 end-page: 685 article-title: Comparative metaproteomics reveals ocean‐scale shifts in microbial nutrient utilization and energy transduction publication-title: ISME J. – volume: 6 start-page: 911 year: 2004 end-page: 920 article-title: The application of two‐dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms publication-title: Environ. Microbiol. – volume: 1 start-page: 224 year: 2007 end-page: 234 article-title: Functional metaproteome analysis of protein extracts from contaminated soil and groundwater publication-title: ISME J. – volume: 62 start-page: 1591 year: 2013 end-page: 1601 article-title: Gut microbiota disturbance during antibiotic therapy: a multi‐omic approach publication-title: Gut – volume: 24 start-page: 1263 year: 2006 end-page: 1269 article-title: Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities publication-title: Nat. Biotechnol. – volume: 3 start-page: e1778 year: 2008 article-title: Metaproteomics provides functional insight into activated sludge wastewater treatment publication-title: PLoS ONE – volume: 11 start-page: 3029 year: 2009 end-page: 3044 article-title: Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal publication-title: Environ. Microbiol. – volume: 5 start-page: 879 year: 2011 end-page: 895 article-title: An integrative study of a meromictic lake ecosystem in Antarctica publication-title: ISME J. – volume: 7 start-page: 252 year: 2015 end-page: 264 article-title: In situ expression of nitrite‐dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co‐occurring with expressed anammox proteins in a contaminated aquifer publication-title: Environ. Microbiol. Rep. – volume: 6 start-page: 1883 year: 2012 end-page: 1900 article-title: A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters publication-title: ISME J. – volume: 24 start-page: 483 year: 2006 end-page: 489 article-title: Wastewater treatment: a model system for microbial ecology publication-title: Trends Biotechnol. – volume: 55 start-page: 205 year: 2006 end-page: 211 article-title: Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach publication-title: Gut – volume: 13 start-page: 2776 year: 2013 end-page: 2785 article-title: Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies publication-title: Proteomics – volume: 1 start-page: 15007 year: 2015 article-title: Comparative integrated omics: identification of key functionalities in microbial community‐wide metabolic networks publication-title: npj Biofilms Microbiomes – volume: 308 start-page: 1915 year: 2005 end-page: 1920 article-title: Community proteomics of a natural microbial biofilm publication-title: Science – volume: 2 start-page: 853 year: 2008 end-page: 864 article-title: Community proteogenomics highlights microbial strain‐variant protein expression within activated sludge performing enhanced biological phosphorus removal publication-title: ISME J. – volume: 78 start-page: 8321 year: 2012 end-page: 8330 article-title: Heterotrophic Archaea Contribute to Carbon Cycling in Low‐pH, Suboxic Biofilm Communities publication-title: Appl. Environ. Microbiol. – volume: 446 start-page: 537 year: 2007 end-page: 541 article-title: Strain‐resolved community proteomics reveals recombining genomes of acidophilic bacteria publication-title: Nature – volume: 13 start-page: 2910 year: 2013 end-page: 2920 article-title: Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein‐SIP) publication-title: Proteomics – volume: 30 start-page: i149 year: 2014 end-page: i156 article-title: Pipasic: similarity and expression correction for strain‐level identification and quantification in metaproteomics publication-title: Bioinformatics – volume: 78 start-page: 31 year: 2011 end-page: 49 article-title: Soil‐specific limitations for access and analysis of soil microbial communities by metagenomics publication-title: FEMS Microbiol. Ecol. – volume: 14 start-page: 2535 year: 2014 end-page: 2539 article-title: Metaproteomics: evaluation of protein extraction from activated sludge publication-title: Proteomics – volume: 6 start-page: 1145 year: 2007 end-page: 1152 article-title: Metaproteomic analysis of a bacterial community response to cadmium exposure publication-title: J. Proteome Res. – volume: 109 start-page: E1173 year: 2012 end-page: E1182 article-title: Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use publication-title: Proc. Natl. Acad. Sci. USA – volume: 90 start-page: 2309 year: 2013 end-page: 2314 article-title: Exploring the potential of applying proteomics for tracking bisphenol A and nonylphenol degradation in activated sludge publication-title: Chemosphere – volume: 6 start-page: e26542 year: 2011 article-title: A Metaproteomic Approach to Study Human‐Microbial Ecosystems at the Mucosal Luminal Interface publication-title: PLoS ONE – volume: 2 start-page: 542 year: 2008 end-page: 550 article-title: Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community publication-title: ISME J. – volume: 67 start-page: 520 year: 2014 end-page: 539 article-title: Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling publication-title: Microb. Ecol. – volume: 1 start-page: 7 year: 2005 article-title: Metaproteomic analysis of Chesapeake Bay microbial communities publication-title: Saline Systems – volume: 8 start-page: 1755 year: 2013 end-page: 1763 article-title: Stable‐isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species‐specific publication-title: ACS Chem. Biol. – volume: 8 start-page: 1301 year: 2014 end-page: 1313 article-title: Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton publication-title: ISME J. – volume: 7 start-page: e34242 year: 2012 article-title: A core human microbiome as viewed through 16S rRNA sequence clusters publication-title: PLoS ONE – volume: 9 start-page: 180 year: 2014 end-page: 194 article-title: Elevated temperature alters proteomic responses of individual organisms within a biofilm community publication-title: ISME J. – volume: 6 start-page: 1137 year: 2011 end-page: 1147 article-title: 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants publication-title: ISME J. – volume: 13 start-page: 2731 year: 2013 end-page: 2742 article-title: Proteogenomics for environmental microbiology publication-title: Proteomics – volume: 53 start-page: 426 year: 2007 end-page: 434 article-title: Protein extraction and fingerprinting optimization of bacterial communities in natural environment publication-title: Microb. Ecol. – volume: 7 start-page: e29913 year: 2012 article-title: Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions publication-title: PLoS ONE – volume: 101 start-page: 31 year: 2014 end-page: 42 article-title: Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods publication-title: J. Proteomics – volume: 11 start-page: 3106 year: 2011 end-page: 3117 article-title: Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont publication-title: Proteomics – volume: 9 start-page: 1014 year: 2015 end-page: 1023 article-title: Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities publication-title: ISME J. – volume: 14 start-page: 133 year: 2015 end-page: 141 article-title: Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut publication-title: J. Proteome Res. – year: 2012 article-title: Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell. Proteomics – volume: 16 start-page: 3224 year: 2014 end-page: 3237 article-title: 15N‐ and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity publication-title: Environ. Microbiol. – volume: 6 start-page: 1 year: 2010 end-page: 12 article-title: Ecological distribution and population physiology defined by proteomics in a natural microbial community publication-title: Mol. Syst. Biol. – volume: 3 start-page: 179 year: 2008 end-page: 189 article-title: Shotgun metaproteomics of the human distal gut microbiota publication-title: ISME J. – volume: 309 start-page: 1387 year: 2005 end-page: 1390 article-title: Computational improvements reveal great bacterial diversity and high metal toxicity in soil publication-title: Science – volume: 14 start-page: 1708 year: 2015 end-page: 1719 article-title: Online peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics publication-title: Mol. Cell. Proteomics – volume: 30 start-page: 1211 year: 2014 end-page: 1223 article-title: Integrated metagenomic and metaproteomic analyses of marine biofilm communities publication-title: Biofouling – volume: 80 start-page: 5043 year: 2014 end-page: 5052 article-title: Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field‐grown rice plants publication-title: Appl. Environ. Microbiol. – volume: 1 year: 2010 article-title: Metabolome‐proteome differentiation coupled to microbial divergence publication-title: MBio – volume: 50 start-page: 1062 year: 2000 end-page: 1075 article-title: Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes publication-title: Bioscience – volume: 5 start-page: 5603 year: 2014 article-title: Community‐integrated omics links dominance of a microbial generalist to fine‐tuned resource usage publication-title: Nat. Commun. – volume: 5 start-page: 1 year: 2014 end-page: 11 article-title: Diverse and divergent protein post‐translational modifications in two growth stages of a natural microbial community publication-title: Nat. Commun. – volume: 5 start-page: 856 year: 2011 end-page: 865 article-title: Environmental proteomics of microbial plankton in a highly productive coastal upwelling system publication-title: ISME J – volume: 14 start-page: 1557 year: 2015 end-page: 1565 article-title: The MetaProteomeAnalyzer: a powerful open‐source software suite for metaproteomics data analysis and interpretation publication-title: J. Proteome Res. – volume: 95 start-page: 767 year: 2012 end-page: 776 article-title: Step‐by‐step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems publication-title: Appl. Microbiol. Biotechnol. – ident: e_1_2_10_26_1 doi: 10.1038/ismej.2014.200 – ident: e_1_2_10_13_1 doi: 10.2166/wst.2013.030 – ident: e_1_2_10_50_1 doi: 10.1126/science.1121225 – ident: e_1_2_10_46_1 doi: 10.1002/pmic.201200569 – ident: e_1_2_10_11_1 doi: 10.1016/j.chemosphere.2012.10.002 – ident: e_1_2_10_42_1 doi: 10.1007/s00248-013-0346-5 – ident: e_1_2_10_3_1 doi: 10.1111/j.1462-2920.2004.00687.x – ident: e_1_2_10_14_1 doi: 10.1016/j.watres.2008.05.014 – ident: e_1_2_10_7_1 doi: 10.1038/nbt1247 – ident: e_1_2_10_28_1 doi: 10.1111/1758-2229.12188 – ident: e_1_2_10_20_1 doi: 10.1128/AEM.01938-12 – ident: e_1_2_10_27_1 doi: 10.1186/1746-1448-1-7 – ident: e_1_2_10_70_1 doi: 10.1038/npjbiofilms.2015.7 – ident: e_1_2_10_5_1 doi: 10.1016/j.tibtech.2006.09.002 – ident: e_1_2_10_38_1 doi: 10.1111/j.1462-2920.2012.02716.x – ident: e_1_2_10_6_1 doi: 10.1371/journal.pone.0001778 – ident: e_1_2_10_62_1 doi: 10.1136/gut.2005.073817 – ident: e_1_2_10_79_1 doi: 10.1111/j.2041-1014.2009.00558.x – ident: e_1_2_10_16_1 doi: 10.1038/ismej.2008.17 – ident: e_1_2_10_64_1 doi: 10.1371/journal.pone.0029913 – ident: e_1_2_10_48_1 doi: 10.1111/j.1574-6941.2011.01140.x – ident: e_1_2_10_2_1 doi: 10.1002/pmic.201200576 – ident: e_1_2_10_29_1 doi: 10.1038/ismej.2013.234 – ident: e_1_2_10_51_1 doi: 10.1126/science.1112665 – year: 2012 ident: e_1_2_10_67_1 article-title: Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell. Proteomics – ident: e_1_2_10_60_1 doi: 10.1038/ismej.2008.108 – ident: e_1_2_10_74_1 doi: 10.1038/ismej.2011.188 – ident: e_1_2_10_4_1 doi: 10.1126/science.1109070 – ident: e_1_2_10_66_1 doi: 10.1016/j.anaerobe.2013.11.009 – ident: e_1_2_10_12_1 doi: 10.1002/pmic.201400167 – ident: e_1_2_10_21_1 doi: 10.1021/cb400210q – ident: e_1_2_10_22_1 doi: 10.1111/1462-2920.12488 – ident: e_1_2_10_52_1 doi: 10.1016/j.jprot.2014.02.006 – ident: e_1_2_10_78_1 doi: 10.1371/journal.pone.0034242 – ident: e_1_2_10_17_1 doi: 10.1038/nature05624 – ident: e_1_2_10_58_1 doi: 10.1371/journal.pone.0026542 – ident: e_1_2_10_18_1 doi: 10.1073/pnas.0907041107 – ident: e_1_2_10_61_1 doi: 10.1021/pr500936p – ident: e_1_2_10_25_1 doi: 10.1038/ismej.2014.113 – ident: e_1_2_10_32_1 doi: 10.1126/science.1218344 – ident: e_1_2_10_15_1 doi: 10.1007/s00253-012-4157-2 – ident: e_1_2_10_56_1 doi: 10.1128/AEM.00969-14 – ident: e_1_2_10_45_1 doi: 10.1111/1758-2229.12239 – ident: e_1_2_10_65_1 doi: 10.1136/gutjnl-2012-303184 – ident: e_1_2_10_59_1 doi: 10.1002/ibd.21793 – ident: e_1_2_10_73_1 doi: 10.1128/mBio.00246-10 – ident: e_1_2_10_9_1 doi: 10.1111/j.1462-2920.2009.02007.x – ident: e_1_2_10_47_1 doi: 10.1016/j.resmic.2010.04.010 – ident: e_1_2_10_53_1 doi: 10.1002/pmic.201300003 – ident: e_1_2_10_77_1 doi: 10.1038/ismej.2007.53 – ident: e_1_2_10_35_1 doi: 10.1073/pnas.1121198109 – ident: e_1_2_10_76_1 doi: 10.1641/0006-3568(2000)050[1062:LBASBA]2.0.CO;2 – ident: e_1_2_10_33_1 doi: 10.1073/pnas.1322132111 – ident: e_1_2_10_54_1 doi: 10.1007/s00442-004-1698-9 – ident: e_1_2_10_69_1 doi: 10.1038/ncomms6603 – ident: e_1_2_10_10_1 doi: 10.1021/pr060477v – ident: e_1_2_10_36_1 doi: 10.1002/pmic.201100059 – ident: e_1_2_10_75_1 doi: 10.1073/pnas.142680199 – ident: e_1_2_10_39_1 doi: 10.1038/ismej.2012.28 – volume: 5 start-page: 1 year: 2014 ident: e_1_2_10_23_1 article-title: Diverse and divergent protein post‐translational modifications in two growth stages of a natural microbial community publication-title: Nat. Commun. – ident: e_1_2_10_34_1 doi: 10.1080/08927014.2014.977267 – ident: e_1_2_10_63_1 doi: 10.1371/journal.pone.0049138 – ident: e_1_2_10_68_1 doi: 10.1074/mcp.M114.046425 – ident: e_1_2_10_49_1 doi: 10.1126/science.1126593 – ident: e_1_2_10_19_1 doi: 10.1038/msb.2010.30 – ident: e_1_2_10_31_1 doi: 10.1038/ismej.2010.4 – ident: e_1_2_10_55_1 doi: 10.1038/ismej.2012.11 – ident: e_1_2_10_30_1 doi: 10.1038/ismej.2010.168 – ident: e_1_2_10_43_1 doi: 10.1038/ismej.2010.185 – ident: e_1_2_10_8_1 doi: 10.1038/ismej.2008.38 – ident: e_1_2_10_40_1 doi: 10.1007/s00248-006-9121-1 – ident: e_1_2_10_37_1 doi: 10.1111/1462-2920.12283 – ident: e_1_2_10_41_1 doi: 10.1038/ismej.2007.39 – ident: e_1_2_10_44_1 doi: 10.1038/ismej.2010.28 – ident: e_1_2_10_57_1 doi: 10.1038/nature14238 – ident: e_1_2_10_71_1 doi: 10.1021/pr501246w – ident: e_1_2_10_72_1 doi: 10.1093/bioinformatics/btu267 – ident: e_1_2_10_24_1 doi: 10.1038/ismej.2009.139 |
| SSID | ssj0017897 |
| Score | 2.5425844 |
| Snippet | We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of... We are living through exciting times during which we are able to unravel the "microbial dark matter" in and around us through the application of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3409 |
| SubjectTerms | Acid mine drainage Activated sludge Betaproteobacteria - genetics Biofilms Catalysis Chemical analysis Communities Community composition Cyanobacteria - genetics Dark matter Ecological function Ecosystem Fresh Water Genotypes Humans Integrated omics Intestinal microflora Leptospiraceae - genetics Metagenomics Metaproteomics Microbial activity Microbial community Microbial systems ecology Microbiology Microbiota Microorganisms Phenotypes Proteins Proteome - genetics Proteomics Seawater Soil Microbiology Viewpoint Water analysis |
| Title | A decade of metaproteomics: Where we stand and what the future holds |
| URI | https://api.istex.fr/ark:/67375/WNG-13J8VB60-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201500183 https://www.ncbi.nlm.nih.gov/pubmed/26315987 https://www.proquest.com/docview/2035648986 https://www.proquest.com/docview/1722927718 https://www.proquest.com/docview/1727680974 https://pubmed.ncbi.nlm.nih.gov/PMC5049639 |
| Volume | 15 |
| WOSCitedRecordID | wos000363090700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1615-9861 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017897 issn: 1615-9853 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BigQ88NHxERiTkdB4iuY4TmzzVjYKQqiq0AZ9i2zH0SpoOjUdg_-es9OGVnwJ8ZA8xJcoOd_Zv7MvvwN4litJlZFVLDXVMQ54MpZVxeOKSWozo5kwOhSbEKORnEzUeOMv_pYfoltw854Rxmvv4No0hz9IQ89nU09BiICGollehV6SpMLbNePjbh9ByLa8Cs7bscKZaU3bSNnh9v1b01LPa_jrrzDnz6mTm5A2zEnD2___NXfg1gqPkkFrQHfhiqv7sDuoMRaffSMHJGSIhqX3Plw_WleH68PNDSLDXTgekNL5THsyr8jMLXWgf_A_PDcvCI73C0cuHQnLFsQfl2d6SRB6kpbShPg9sOYenA5fnRy9iVf1GWKLQRCPrRYIHpVNdCqN8jxWzvCszEqqVVLS0iTaSMUlU45ZLrTUZSJyZfBSlVBj0vuwU89r9xCIZcaaUldpriXHqNngsJdIw2WuTWbzMoJ43T2FXZGX-xoan4uWdpkVXoFFp8AInnfy5y1tx28lD0Jvd2J68cknu4ms-Dh6XSTpW_nhZU6Lkwj21uZQrPy8wcekWc6lknkET7tm7Aq_7aJrN79oCoSITDGBIOCPMhj3UQzuInjQWlj3QgxVkSkpIhBbttcJeIbw7ZZ6ehaYwjOM_xCCRtDa3l9UUYzR8z3lH3_0rzc8hhv-apvluAc7y8WFewLX7JfltFnsB5_Es5jIfegdvx-evvsO1H05Fg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BizR44KODERhgJDSeojmuk9i8lY0yoFQT6mBvlu04WjWaTk3H4L_nnKRhFV9C4iEvycVKznf27-zz7wCeJVJQaUQeCk11iAOeCEWe8zBngtrYaJYaXRWbSMdjcXwsD5tsQn8WpuaHaBfcvGdU47V3cL8gvfuDNfRsNvUchIhoKNrlVehytKW4A939D8OjUbuVkIq6wgpO3aHEyWnF3EjZ7noLazNT1yv5669g58_Zk5dRbTUtDW_9hx-6DTcbTEoGtRHdgSuu6MHmoMB4fPaN7JAqS7Rafu_Bxt6qQlwPblwiM9yE_QHJnM-2J_OczNxSVxQQ_tBz-YLgmL9w5MKRaumC-OviRC8Jwk9S05oQvw9W3oWj4avJ3kHY1GgILQZCPLQ6RQApbaT7wkjPZeUMj7M4o1pGGc1MpI2QXDDpmOWpFjqL0kQavJVH1Jj-PegU88LdB2KZsSbTeT_RgmPkbHDoi4ThItEmtkkWQLjqH2UbAnNfR-OzqqmXmfIKVK0CA3jeyp_V1B2_ldypursV04tTn_CWxurT-LWK-m_Fx5cJVZMAtlf2oBpfL7GZfpxwIUUSwNP2MXaF33rRhZuflwphIpMsRSDwRxmM_SgGeAFs1SbWfhBDVcRSpAGka8bXCniW8PUnxfSkYguPMQZEGBpAbXx_UYU6RO_3tH_8wb--8AQ2DibvR2r0ZvzuIVz3EnXW4zZ0lotz9wiu2S_Labl43Ljod-LMPAs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Bi3gceGxpCRQwEmpPURPHiW1uS8vy1GoPBXqzbMdRV7DZ1WZL4d8zdnZDV7yExCGXZBwl43na428AnhZSJNKIKhY60TEaPBGLqmJxRUVic6MpNzo0m-DDoTg5kaNlNaE_C9PiQ3QLbl4zgr32Cu5mZXXwAzV0Nhl7DEKMaBKUy8uwyXI0tB7cmY26jQQu2v4q6Lhjia5phduY0IP18Wt-adOz-Ouvgs6faycvxrTBKQ1u_YffuQ03lxEp6bcidAcuuboHW_0as_HJN7JHQo1oWHzvwbXDVX-4Hty4AGW4BUd9Ujpfa0-mFZm4hQ4AEP7Ic_OMoMWfO3LuSFi4IP46P9ULgsEnaUFNiN8Fa-7C-8GL48NX8bJDQ2wxDWKx1RzDR2lTnQkjPZKVMywv8zLRMi2T0qTaCMkElY5axrXQZcoLafBWlSbGZNuwUU9rdw-IpcaaUldZoQXDvNmg4UuFYaLQJrdFGUG8mh9ll_DlvovGZ9UCL1PlGag6Bkaw39HPWuCO31LuhenuyPT8ky9347n6OHyp0uyN-PC8SNRxBLsreVBLTW_wNVleMCFFEcGT7jFOhd940bWbnjUKg0QqKUfp_CMNZn4JpncR7LQi1n0QRVbkUvAI-JrwdQQeI3z9ST0-DVjhOWaAGIRG0ArfX1ihRqj7HvSP3f_XAY_h6uhooN69Hr59ANc9QVvyuAsbi_mZewhX7JfFuJk_Cvr5HXz3OfQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decade+of+metaproteomics%3A+where+we+stand+and+what+the+future+holds&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Wilmes%2C+Paul&rft.au=Heintz-Buschart%2C+Anna&rft.au=Bond%2C+Philip+L&rft.date=2015-10-01&rft.issn=1615-9861&rft.eissn=1615-9861&rft.volume=15&rft.issue=20&rft.spage=3409&rft_id=info:doi/10.1002%2Fpmic.201500183&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon |