A decade of metaproteomics: Where we stand and what the future holds

We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establ...

Full description

Saved in:
Bibliographic Details
Published in:Proteomics (Weinheim) Vol. 15; no. 20; pp. 3409 - 3417
Main Authors: Wilmes, Paul, Heintz-Buschart, Anna, Bond, Philip L.
Format: Journal Article
Language:English
Published: Germany Blackwell Publishing Ltd 01.10.2015
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects:
ISSN:1615-9853, 1615-9861, 1615-9861
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype‐phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ.
AbstractList We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype‐phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ.
We are living through exciting times during which we are able to unravel the "microbial dark matter" in and around us through the application of high-resolution "meta-omics". Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype-phenotype linkages from in situ samples. A decade has passed since the term "metaproteomics" was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ.We are living through exciting times during which we are able to unravel the "microbial dark matter" in and around us through the application of high-resolution "meta-omics". Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype-phenotype linkages from in situ samples. A decade has passed since the term "metaproteomics" was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ.
Author Wilmes, Paul
Bond, Philip L.
Heintz-Buschart, Anna
AuthorAffiliation 2 Advanced Water Management Centre University of Queensland Brisbane Australia
1 Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
AuthorAffiliation_xml – name: 1 Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
– name: 2 Advanced Water Management Centre University of Queensland Brisbane Australia
Author_xml – sequence: 1
  givenname: Paul
  surname: Wilmes
  fullname: Wilmes, Paul
  email: paul.wilmes@uni.lu
  organization: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
– sequence: 2
  givenname: Anna
  surname: Heintz-Buschart
  fullname: Heintz-Buschart, Anna
  organization: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
– sequence: 3
  givenname: Philip L.
  surname: Bond
  fullname: Bond, Philip L.
  organization: Advanced Water Management Centre, University of Queensland, Brisbane, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26315987$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URNuBLUsUiQ2bDH7ELxZI7VBKUXksCl1aju2QlCQebIdp_z2Oph1BJQQLy9a93zm6vucQ7I1-dAA8RXCJIMQv10NnlhgiCiES5AE4QAzRUgqG9nZvSvbBYYxXGeFC8kdgHzOCqBT8ALw5Kqwz2rrCN8Xgkl4Hn5zPrvFVcdm64IqNK2LSoy3ms2l1KlLrimZKU262vrfxMXjY6D66J7f3Anx5e3Kxeleefzo9Wx2dl4ZBWpVGc84raZAmopY14tzVFbXUQi2RhbZGuhayElg6bCquhbaIM1nnUoNgXZMFeL31XU_14KxxYwq6V-vQDTrcKK879Wdn7Fr1zf9UFFaSEZkNXtwaBP9jcjGpoYvG9b0enZ-iQhxzJqDk1f-gWGLO89YX4Pk99MpPYcybUBgSyiqR88jUs9-H3019l0UGqi1ggo8xuEaZLunU-fkvXa8QVHPkao5c7SLPsuU92Z3zXwV0K9h0vbv5B60-fzhbIYzQvJFyq-tictc7nQ7fFeOEU3X58VQh8l58PWZQXZBf1UnLhw
CitedBy_id crossref_primary_10_3390_ijms17081275
crossref_primary_10_1002_pmic_201500305
crossref_primary_10_3390_genes13122280
crossref_primary_10_1016_j_nbt_2017_05_002
crossref_primary_10_1016_j_ibiod_2020_104934
crossref_primary_10_1016_j_tifs_2020_11_028
crossref_primary_10_3389_fmicb_2019_02395
crossref_primary_10_1016_j_heliyon_2024_e32828
crossref_primary_10_1186_s40168_021_01176_w
crossref_primary_10_1016_j_clinms_2019_04_004
crossref_primary_10_3390_microorganisms9071400
crossref_primary_10_1021_acs_analchem_4c06645
crossref_primary_10_1016_j_foodchem_2025_146366
crossref_primary_10_3389_fchem_2017_00004
crossref_primary_10_1016_j_ymeth_2020_07_011
crossref_primary_10_1002_pmic_201700150
crossref_primary_10_1093_bib_bbx120
crossref_primary_10_1088_1755_1315_974_1_012003
crossref_primary_10_1093_ismeco_ycaf145
crossref_primary_10_1002_pmic_202500002
crossref_primary_10_3390_foods13040601
crossref_primary_10_1136_bmjopen_2022_071380
crossref_primary_10_1002_pmic_201800176
crossref_primary_10_1002_imt2_70031
crossref_primary_10_1080_1040841X_2017_1332003
crossref_primary_10_1016_j_biortech_2021_126246
crossref_primary_10_3390_proteomes7010004
crossref_primary_10_1002_elsc_202300207
crossref_primary_10_1016_j_watres_2023_120700
crossref_primary_10_1016_j_tube_2018_12_003
crossref_primary_10_1080_14789450_2017_1314786
crossref_primary_10_3390_metabo14030157
crossref_primary_10_1016_j_tim_2016_05_004
crossref_primary_10_1007_s42398_020_00158_2
crossref_primary_10_3389_fmicb_2022_845562
crossref_primary_10_3389_fmicb_2018_00540
crossref_primary_10_1007_s00216_016_0175_8
crossref_primary_10_1016_j_rhisph_2017_05_003
crossref_primary_10_1016_j_rhisph_2017_05_001
crossref_primary_10_3389_fmicb_2019_00238
crossref_primary_10_1016_j_biocon_2017_10_035
crossref_primary_10_1080_20002297_2022_2138251
crossref_primary_10_3390_ijerph20043068
crossref_primary_10_1016_j_bbapap_2019_140320
crossref_primary_10_1186_s12263_018_0594_6
crossref_primary_10_1038_s44221_025_00430_x
crossref_primary_10_1016_j_copbio_2016_02_025
crossref_primary_10_1016_j_margen_2023_101017
crossref_primary_10_1007_s13762_024_06209_z
crossref_primary_10_1016_j_copbio_2016_04_018
crossref_primary_10_1186_s40793_025_00750_1
crossref_primary_10_3390_microorganisms8111694
crossref_primary_10_1038_s41576_021_00326_y
crossref_primary_10_1186_s40168_017_0247_9
crossref_primary_10_3389_fmicb_2020_01275
crossref_primary_10_1186_s40168_020_00797_x
crossref_primary_10_1016_j_jbiotec_2017_06_1201
crossref_primary_10_1016_j_jprot_2017_05_022
crossref_primary_10_1111_nyas_13033
crossref_primary_10_1016_j_jprot_2018_11_011
crossref_primary_10_1038_srep34477
crossref_primary_10_1016_j_lwt_2017_03_022
crossref_primary_10_1038_s41467_020_17081_z
crossref_primary_10_1186_s40168_021_01139_1
crossref_primary_10_1128_CMR_00060_16
crossref_primary_10_1016_j_soilbio_2021_108170
crossref_primary_10_3389_fbioe_2021_613307
crossref_primary_10_1080_00365521_2018_1444788
crossref_primary_10_1038_srep25773
crossref_primary_10_3390_ijms20061430
crossref_primary_10_1038_nprot_2016_148
crossref_primary_10_3390_proteomes6010007
crossref_primary_10_1111_1541_4337_12601
crossref_primary_10_1016_j_ebiom_2019_08_048
crossref_primary_10_1038_s41591_023_02260_4
crossref_primary_10_1016_j_ab_2016_10_008
crossref_primary_10_3390_ani11123551
crossref_primary_10_1080_10408398_2023_2199425
crossref_primary_10_3389_fmicb_2020_00088
crossref_primary_10_1002_pmic_201500369
crossref_primary_10_3390_microorganisms13081771
crossref_primary_10_1080_14789450_2020_1738931
crossref_primary_10_1186_s12866_023_02991_x
crossref_primary_10_1007_s00784_017_2213_0
crossref_primary_10_1371_journal_pone_0153294
crossref_primary_10_1080_14737175_2019_1623026
crossref_primary_10_1111_1755_0998_12979
crossref_primary_10_3390_toxins11100576
crossref_primary_10_1007_s00248_019_01360_4
crossref_primary_10_1038_s41587_025_02660_6
crossref_primary_10_1093_femsle_fnx211
crossref_primary_10_1016_j_tifs_2017_05_002
crossref_primary_10_3390_microorganisms10102013
crossref_primary_10_1002_pmic_201900282
crossref_primary_10_1016_j_cofs_2017_01_002
crossref_primary_10_1111_1751_7915_12855
crossref_primary_10_1186_s12859_017_1849_8
crossref_primary_10_1007_s00248_016_0769_x
crossref_primary_10_1016_j_watres_2023_119805
Cites_doi 10.1038/ismej.2014.200
10.2166/wst.2013.030
10.1126/science.1121225
10.1002/pmic.201200569
10.1016/j.chemosphere.2012.10.002
10.1007/s00248-013-0346-5
10.1111/j.1462-2920.2004.00687.x
10.1016/j.watres.2008.05.014
10.1038/nbt1247
10.1111/1758-2229.12188
10.1128/AEM.01938-12
10.1186/1746-1448-1-7
10.1038/npjbiofilms.2015.7
10.1016/j.tibtech.2006.09.002
10.1111/j.1462-2920.2012.02716.x
10.1371/journal.pone.0001778
10.1136/gut.2005.073817
10.1111/j.2041-1014.2009.00558.x
10.1038/ismej.2008.17
10.1371/journal.pone.0029913
10.1111/j.1574-6941.2011.01140.x
10.1002/pmic.201200576
10.1038/ismej.2013.234
10.1126/science.1112665
10.1038/ismej.2008.108
10.1038/ismej.2011.188
10.1126/science.1109070
10.1016/j.anaerobe.2013.11.009
10.1002/pmic.201400167
10.1021/cb400210q
10.1111/1462-2920.12488
10.1016/j.jprot.2014.02.006
10.1371/journal.pone.0034242
10.1038/nature05624
10.1371/journal.pone.0026542
10.1073/pnas.0907041107
10.1021/pr500936p
10.1038/ismej.2014.113
10.1126/science.1218344
10.1007/s00253-012-4157-2
10.1128/AEM.00969-14
10.1111/1758-2229.12239
10.1136/gutjnl-2012-303184
10.1002/ibd.21793
10.1128/mBio.00246-10
10.1111/j.1462-2920.2009.02007.x
10.1016/j.resmic.2010.04.010
10.1002/pmic.201300003
10.1038/ismej.2007.53
10.1073/pnas.1121198109
10.1641/0006-3568(2000)050[1062:LBASBA]2.0.CO;2
10.1073/pnas.1322132111
10.1007/s00442-004-1698-9
10.1038/ncomms6603
10.1021/pr060477v
10.1002/pmic.201100059
10.1073/pnas.142680199
10.1038/ismej.2012.28
10.1080/08927014.2014.977267
10.1371/journal.pone.0049138
10.1074/mcp.M114.046425
10.1126/science.1126593
10.1038/msb.2010.30
10.1038/ismej.2010.4
10.1038/ismej.2012.11
10.1038/ismej.2010.168
10.1038/ismej.2010.185
10.1038/ismej.2008.38
10.1007/s00248-006-9121-1
10.1111/1462-2920.12283
10.1038/ismej.2007.39
10.1038/ismej.2010.28
10.1038/nature14238
10.1021/pr501246w
10.1093/bioinformatics/btu267
10.1038/ismej.2009.139
ContentType Journal Article
Copyright 2015 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1002/pmic.201500183
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE
MEDLINE - Academic
Engineering Research Database
CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
DocumentTitleAlternate P. Wilmes et al
EISSN 1615-9861
EndPage 3417
ExternalDocumentID PMC5049639
26315987
10_1002_pmic_201500183
PMIC12114
ark_67375_WNG_13J8VB60_T
Genre commentary
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZGI
ZZTAW
~IA
~KM
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6054-ca77749c1a38b9b177eb45d5d0a91d0db1ab894829e2c47a8ad1769b948f10bb3
IEDL.DBID 24P
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363090700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-9853
1615-9861
IngestDate Tue Nov 04 01:54:53 EST 2025
Tue Oct 07 09:26:59 EDT 2025
Sun Nov 09 13:28:00 EST 2025
Sat Nov 29 14:44:11 EST 2025
Mon Jul 21 06:01:54 EDT 2025
Sat Nov 29 07:07:09 EST 2025
Tue Nov 18 21:18:31 EST 2025
Wed Jan 22 16:56:46 EST 2025
Tue Nov 11 03:32:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Metagenomics
Microbial systems ecology
Metaproteomics
Microbiology
Integrated omics
Microbial community
Language English
License Attribution-NonCommercial-NoDerivs
2015 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6054-ca77749c1a38b9b177eb45d5d0a91d0db1ab894829e2c47a8ad1769b948f10bb3
Notes ark:/67375/WNG-13J8VB60-T
ArticleID:PMIC12114
istex:E6122B6B398ECB6D70D874FEB6E19F7B48A2AB66
phil.bond@awmc.uq.edu.au
E‐mail
Additional corresponding author: Dr. Philip L. Bond
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
E‐mail: phil.bond@awmc.uq.edu.au
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201500183
PMID 26315987
PQID 2035648986
PQPubID 1016439
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5049639
proquest_miscellaneous_1727680974
proquest_miscellaneous_1722927718
proquest_journals_2035648986
pubmed_primary_26315987
crossref_citationtrail_10_1002_pmic_201500183
crossref_primary_10_1002_pmic_201500183
wiley_primary_10_1002_pmic_201500183_PMIC12114
istex_primary_ark_67375_WNG_13J8VB60_T
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Proteomics (Weinheim)
PublicationTitleAlternate Proteomics
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References Hanson, B. T., Hewson, I., Madsen, E. L., Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb. Ecol. 2014, 67, 520-539.
Wilmes, P., Wexler, M., Bond, P. L., Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 2008, 3, e1778.
Wilmes, P., Bond, P. L., The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 2004, 6, 911-920.
Kohrs, F., Heyer, R., Magnussen, A., Benndorf, D. et al., Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 2014, 29, 59-67.
Wilmes, P., Bowen, B. P., Thomas, B. C., Mueller, R. S. et al., Metabolome-proteome differentiation coupled to microbial divergence. MBio 2010, 1.
Lo, I., Denef, V. J., Verberkmoes, N. C., Shah, M. B. et al., Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 2007, 446, 537-541.
Zhang, T., Shao, M.-F., Ye, L., 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2011, 6, 1137-1147.
Pérez-Cobas, A. E., Gosalbes, M. J., Friedrichs, A., Knecht, H. et al., Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013, 62, 1591-1601.
Hanson, B. T., Madsen, E. L., In situ expression of nitrite-dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co-occurring with expressed anammox proteins in a contaminated aquifer. Environ. Microbiol. Rep. 2015, 7, 252-264.
Hansen, S. H., Stensballe, A., Nielsen, P. H., Herbst, F.-A., Metaproteomics: evaluation of protein extraction from activated sludge. Proteomics 2014, 14, 2535-2539.
Bunge, J., Comment on "computational improvements reveal great bacterial diversity and high metal toxicity in soil." Science 2006, 313, 918c-918c.
Schulze, W. X., Gleixner, G., Kaiser, K., Guggenberger, G. et al., A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 2004, 142, 335-343.
Urich, T., Lanzén, A., Stokke, R., Pedersen, R. B. et al., Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ. Microbiol. 2014, 16, 2699-2710.
Daims, H., Taylor, M. W., Wagner, M., Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 2006, 24, 483-489.
Mosier, A. C., Li, Z., Thomas, B. C., Hettich, R. L. et al., Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. 2014, 9, 180-194.
Armengaud, J., Marie Hartmann, E., Bland, C., Proteogenomics for environmental microbiology. Proteomics 2013, 13, 2731-2742.
Li, Z., Wang, Y., Yao, Q., Justice, N. B. et al., Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nat. Commun. 2014, 5, 1-11.
Williams, T. J., Long, E., Evans, F., DeMaere, M. Z. et al., A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012, 6, 1883-1900.
Lauro, F. M., DeMaere, M. Z., Yau, S., Brown, M. V. et al., An integrative study of a meromictic lake ecosystem in Antarctica. ISME J. 2011, 5, 879-895.
Manichanh, C., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006, 55, 205-211.
Hawley, A. K., Brewer, H. M., Norbeck, A. D., Pasa-Tolic, L., Hallam, S. J., Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl. Acad. Sci. USA 2014, 111, 11395-11400.
Gans, J., Wolinsky, M., Dunbar, J., Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 2005, 309, 1387-1390.
Curtis, T. P., Sloan, W. T., Scannell, J. W., Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 2002, 99, 10494-10499.
Albertsen, M., Stensballe, A., Nielsen, K. L., Nielsen, P. H., Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach. Water Sci. Technol. 2013, 67, 1650-1656.
Lacerda, C. M. R., Choe, L. H., Reardon, K. F., Metaproteomic analysis of a bacterial community response to cadmium exposure. J. Proteome Res. 2007, 6, 1145-1152.
Silva, A. F., Carvalho, G., Soares, R., Coelho, A. V., Barreto Crespo, M. T., Step-by-step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems. Appl. Microbiol. Biotechnol. 2012, 95, 767-776.
Dong, H.-P., Hong, Y.-G., Lu, S., Xie, L.-Y., Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. Environ. Microbiol. Rep. 2014, 6, 683-695.
Verberkmoes, N. C., Russell, A. L., Shah, M., Godzik, A. et al., Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2008, 3, 179-189.
Kolmeder, C. A., deBeen, M., Nikkilä, J., Ritamo, I. et al., Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 2012, 7, e29913.
Mueller, R. S., Denef, V. J., Kalnejais, L. H., Suttle, K. B. et al., Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 2010, 6, 1-12.
Markert, S., Gardebrecht, A., Felbeck, H., Sievert, S. M. et al., Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 2011, 11, 3106-3117.
Jeans, C., Singer, S. W., Chan, C. S., Verberkmoes, N. C. et al., Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2008, 2, 542-550.
Denef, V. J., Kalnejais, L. H., Mueller, R. S., Wilmes, P. et al., Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl. Acad. Sci. USA 2010, 107, 2383-2390.
Penzlin, A., Lindner, M. S., Doellinger, J., Dabrowski, P. W. et al., Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics. Bioinformatics 2014, 30, i149-i156.
Fischer, C. R., Bowen, B. P., Pan, C., Northen, T. R., Banfield, J. F., Stable-isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species-specific. ACS Chem. Biol. 2013, 8, 1755-1763.
Aliaga Goltsman, D. S., Comolli, L. R., Thomas, B. C., Banfield, J.F., Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J. 2015, 9, 1014-1023.
Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. W., Walsh, D.A., Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014, 8, 1301-1313.
Kleiner, M., Wentrup, C., Lott, C., Teeling, H. et al., Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc. Natl. Acad. Sci. USA 2012, 109, E1173-E1182.
Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W. et al., Community proteomics of a natural microbial biofilm. Science 2005, 308, 1915-1920.
Martin, H. G., Ivanova, N., Kunin, V., Warnecke, F. et al., Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 2006, 24, 1263-1269.
Nicora, C. D., Anderson, B. J., Callister, S. J., Norbeck, A. D. et al., Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 2013, 13, 2776-2785.
Justice, N. B., Pan, C., Mueller, R., Spaulding, S. E. et al., Heterotrophic Archaea Contribute to Carbon Cycling in Low-pH, Suboxic Biofilm Communities. Appl. Environ. Microbiol. 2012, 78, 8321-8330.
Stokke, R., Roalkvam, I., Lanzén, A., Haflidason, H., Steen, I.H., Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 2012, 14, 1333-1346.
Rudney, J. D., Xie, H., Rhodus, N. L., Ondrey, F. G., Griffin, T. J., A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Oral Microbiol. 2010, 25, 38-49.
Palmer, M. A., Covich, A. P., Lake, S., Biro, P. et al., Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 2000, 50, 1062-1075.
Benndorf, D., Balcke, G. U., Harms, H., von Bergen, M., Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J. 2007, 1, 224-234.
Xiong, W., Giannone, R. J., Morowitz, M. J., Banfield, J. F., Hettich, R. L., Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J. Proteome Res. 2015, 14, 133-141.
Herbst, F.-A., Bahr, A., Duarte, M., Pieper, D. H. et al., Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 2013, 13, 2910-2920.
Lombard, N., Prestat, E., vanElsas, J. D., Simonet, P., Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol. Ecol. 2011, 78, 31-49.
Ng, C., DeMaere, M. Z., Williams, T. J., Lauro, F. M. et al., Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J. 2010, 4, 1002-1019.
Gillet, L.C., Navarro, P., Tate, S., Roest, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. P
2010; 107
2013; 67
2013; 62
2002; 99
2000; 50
2004; 6
2011; 11
2012; 18
2008; 3
2014; 29
2012; 14
2008; 2
2013; 8
2014; 67
2012; 95
2009; 11
2014; 5
2010; 1
2010; 25
2006; 24
2013; 13
2014; 16
2007; 6
2014; 14
2005; 308
2005; 309
2014; 9
2014; 8
2007; 1
2012; 336
2014; 6
2010; 4
2010; 6
2015; 1
2004; 142
2015; 14
2007; 446
2012
2015; 521
2006; 55
2013; 90
2010; 161
2011; 78
2007; 53
2015; 9
2014; 111
2006; 313
2012; 78
2011; 6
2011; 5
2015; 7
2012; 109
2014; 80
2005; 1
2008; 42
2009; 4
2014; 30
2012; 6
2012; 7
2014; 101
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Li Z. (e_1_2_10_23_1) 2014; 5
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Gillet L.C. (e_1_2_10_67_1) 2012
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – reference: Rudney, J. D., Xie, H., Rhodus, N. L., Ondrey, F. G., Griffin, T. J., A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Oral Microbiol. 2010, 25, 38-49.
– reference: Mocali, S., Benedetti, A., Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res. Microbiol. 2010, 161, 497-505.
– reference: Mosier, A. C., Li, Z., Thomas, B. C., Hettich, R. L. et al., Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J. 2014, 9, 180-194.
– reference: Presley, L. L., Ye, J., Li, X., LeBlanc, J. et al., Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm. Bowel Dis. 2012, 18, 409-417.
– reference: Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. W., Walsh, D.A., Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014, 8, 1301-1313.
– reference: Morris, R. M., Nunn, B. L., Frazar, C., Goodlett, D. R. et al., Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J. 2010, 4, 673-685.
– reference: Justice, N. B., Li, Z., Wang, Y., Spaudling, S. E. et al., 15N- and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity. Environ. Microbiol. 2014, 16, 3224-3237.
– reference: Wilmes, P., Wexler, M., Bond, P. L., Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 2008, 3, e1778.
– reference: Wexler, M., Richardson, D. J., Bond, P. L., Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal. Environ. Microbiol. 2009, 11, 3029-3044.
– reference: Kleiner, M., Wentrup, C., Lott, C., Teeling, H. et al., Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc. Natl. Acad. Sci. USA 2012, 109, E1173-E1182.
– reference: Verberkmoes, N. C., Russell, A. L., Shah, M., Godzik, A. et al., Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2008, 3, 179-189.
– reference: Manichanh, C., Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006, 55, 205-211.
– reference: Markert, S., Gardebrecht, A., Felbeck, H., Sievert, S. M. et al., Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 2011, 11, 3106-3117.
– reference: Ng, C., DeMaere, M. Z., Williams, T. J., Lauro, F. M. et al., Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J. 2010, 4, 1002-1019.
– reference: Jeans, C., Singer, S. W., Chan, C. S., Verberkmoes, N. C. et al., Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2008, 2, 542-550.
– reference: Silva, A. F., Carvalho, G., Soares, R., Coelho, A. V., Barreto Crespo, M. T., Step-by-step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems. Appl. Microbiol. Biotechnol. 2012, 95, 767-776.
– reference: Pérez-Cobas, A. E., Gosalbes, M. J., Friedrichs, A., Knecht, H. et al., Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013, 62, 1591-1601.
– reference: Li, X., LeBlanc, J., Truong, A., Vuthoori, R. et al., A Metaproteomic Approach to Study Human-Microbial Ecosystems at the Mucosal Luminal Interface. PLoS ONE 2011, 6, e26542.
– reference: Mueller, R. S., Denef, V. J., Kalnejais, L. H., Suttle, K. B. et al., Ecological distribution and population physiology defined by proteomics in a natural microbial community. Mol. Syst. Biol. 2010, 6, 1-12.
– reference: Pierre-Alain, M., Christophe, M., Severine, S., Houria, A. et al., Protein extraction and fingerprinting optimization of bacterial communities in natural environment. Microb. Ecol. 2007, 53, 426-434.
– reference: Bastida, F., Hernández, T., García, C., Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. J. Proteomics 2014, 101, 31-42.
– reference: Kohrs, F., Heyer, R., Magnussen, A., Benndorf, D. et al., Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants. Anaerobe 2014, 29, 59-67.
– reference: Wilmes, P., Andersson, A. F., Lefsrud, M. G., Wexler, M. et al., Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal. ISME J. 2008, 2, 853-864.
– reference: Teeling, H., Fuchs, B. M., Becher, D., Klockow, C. et al., Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom. Science 2012, 336, 608-611.
– reference: Martin, H. G., Ivanova, N., Kunin, V., Warnecke, F. et al., Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 2006, 24, 1263-1269.
– reference: Justice, N. B., Pan, C., Mueller, R., Spaulding, S. E. et al., Heterotrophic Archaea Contribute to Carbon Cycling in Low-pH, Suboxic Biofilm Communities. Appl. Environ. Microbiol. 2012, 78, 8321-8330.
– reference: Erickson, A. R., Cantarel, B. L., Lamendella, R., Darzi, Y. et al., Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease. PLoS ONE 2012, 7, e49138.
– reference: Park, C., Novak, J. T., Helm, R. F., Ahn, Y.-O., Esen, A., Evaluation of the extracellular proteins in full-scale activated sludges. Water Res. 2008, 42, 3879-3889.
– reference: Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W. et al., Community proteomics of a natural microbial biofilm. Science 2005, 308, 1915-1920.
– reference: Li, Z., Wang, Y., Yao, Q., Justice, N. B. et al., Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nat. Commun. 2014, 5, 1-11.
– reference: Benndorf, D., Balcke, G. U., Harms, H., von Bergen, M., Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J. 2007, 1, 224-234.
– reference: Muller, E. E. L., Pinel, N., Laczny, C. C., Hoopmann, M. R. et al., Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nat. Commun. 2014, 5, 5603.
– reference: Albertsen, M., Stensballe, A., Nielsen, K. L., Nielsen, P. H., Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach. Water Sci. Technol. 2013, 67, 1650-1656.
– reference: Roume, H., Heintz-Buschart, A., Muller, E. E. L., May, P. et al., Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biofilms Microbiomes 2015, 1, 15007.
– reference: Kolmeder, C. A., deBeen, M., Nikkilä, J., Ritamo, I. et al., Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 2012, 7, e29913.
– reference: Lombard, N., Prestat, E., vanElsas, J. D., Simonet, P., Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol. Ecol. 2011, 78, 31-49.
– reference: Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G. et al., Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007, 1, 283-290.
– reference: Kan, J., Hanson, T. E., Ginter, J. M., Wang, K., Chen, F., Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Systems 2005, 1, 7.
– reference: Herbst, F.-A., Bahr, A., Duarte, M., Pieper, D. H. et al., Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 2013, 13, 2910-2920.
– reference: Hultman, J., Waldrop, M. P., Mackelprang, R., David, M. M. et al., Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 2015, 521, 208-212.
– reference: Nicora, C. D., Anderson, B. J., Callister, S. J., Norbeck, A. D. et al., Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 2013, 13, 2776-2785.
– reference: Volkov, I., Comment on "computational improvements reveal great bacterial diversity and high metal toxicity in soil." Science 2006, 313, 918a.
– reference: Xiong, W., Giannone, R. J., Morowitz, M. J., Banfield, J. F., Hettich, R. L., Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J. Proteome Res. 2015, 14, 133-141.
– reference: Gans, J., Wolinsky, M., Dunbar, J., Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 2005, 309, 1387-1390.
– reference: Denef, V. J., Kalnejais, L. H., Mueller, R. S., Wilmes, P. et al., Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc. Natl. Acad. Sci. USA 2010, 107, 2383-2390.
– reference: Curtis, T. P., Sloan, W. T., Scannell, J. W., Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 2002, 99, 10494-10499.
– reference: Hanson, B. T., Hewson, I., Madsen, E. L., Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling. Microb. Ecol. 2014, 67, 520-539.
– reference: Schulze, W. X., Gleixner, G., Kaiser, K., Guggenberger, G. et al., A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 2004, 142, 335-343.
– reference: Krisp, C., Yang, H., van Soest, R., Molloy, M.P., Online peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics. Mol. Cell. Proteomics 2015, 14, 1708-1719.
– reference: Lauro, F. M., DeMaere, M. Z., Yau, S., Brown, M. V. et al., An integrative study of a meromictic lake ecosystem in Antarctica. ISME J. 2011, 5, 879-895.
– reference: Wilmes, P., Bowen, B. P., Thomas, B. C., Mueller, R. S. et al., Metabolome-proteome differentiation coupled to microbial divergence. MBio 2010, 1.
– reference: Lo, I., Denef, V. J., Verberkmoes, N. C., Shah, M. B. et al., Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 2007, 446, 537-541.
– reference: Leary, D. H., Li, R. W., Hamdan, L. J., Hervey, W. J. et al., Integrated metagenomic and metaproteomic analyses of marine biofilm communities. Biofouling 2014, 30, 1211-1223.
– reference: Huse, S. M., Ye, Y., Zhou, Y., Fodor, A. A., A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 2012, 7, e34242.
– reference: Bao, Z., Okubo, T., Kubota, K., Kasahara, Y. et al., Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl. Environ. Microbiol. 2014, 80, 5043-5052.
– reference: Belnap, C. P., Pan, C., Verberkmoes, N. C., Power, M. E. et al., Cultivation and quantitative proteomic analyses of acidophilic microbial communities. ISME J. 2009, 4, 520-530.
– reference: Hawley, A. K., Brewer, H. M., Norbeck, A. D., Pasa-Tolic, L., Hallam, S. J., Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl. Acad. Sci. USA 2014, 111, 11395-11400.
– reference: Daims, H., Taylor, M. W., Wagner, M., Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 2006, 24, 483-489.
– reference: Wilmes, P., Bond, P. L., The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 2004, 6, 911-920.
– reference: Williams, T. J., Long, E., Evans, F., DeMaere, M. Z. et al., A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012, 6, 1883-1900.
– reference: Hanson, B. T., Madsen, E. L., In situ expression of nitrite-dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co-occurring with expressed anammox proteins in a contaminated aquifer. Environ. Microbiol. Rep. 2015, 7, 252-264.
– reference: Collado, N., Buttiglieri, G., Kolvenbach, B. A., Comas, J. et al., Exploring the potential of applying proteomics for tracking bisphenol A and nonylphenol degradation in activated sludge. Chemosphere 2013, 90, 2309-2314.
– reference: Urich, T., Lanzén, A., Stokke, R., Pedersen, R. B. et al., Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics. Environ. Microbiol. 2014, 16, 2699-2710.
– reference: Palmer, M. A., Covich, A. P., Lake, S., Biro, P. et al., Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 2000, 50, 1062-1075.
– reference: Muth, T., Behne, A., Heyer, R., Kohrs, F. et al., The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation. J. Proteome Res. 2015, 14, 1557-1565.
– reference: Lacerda, C. M. R., Choe, L. H., Reardon, K. F., Metaproteomic analysis of a bacterial community response to cadmium exposure. J. Proteome Res. 2007, 6, 1145-1152.
– reference: Hansen, S. H., Stensballe, A., Nielsen, P. H., Herbst, F.-A., Metaproteomics: evaluation of protein extraction from activated sludge. Proteomics 2014, 14, 2535-2539.
– reference: Aliaga Goltsman, D. S., Comolli, L. R., Thomas, B. C., Banfield, J.F., Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J. 2015, 9, 1014-1023.
– reference: Bunge, J., Comment on "computational improvements reveal great bacterial diversity and high metal toxicity in soil." Science 2006, 313, 918c-918c.
– reference: Dong, H.-P., Hong, Y.-G., Lu, S., Xie, L.-Y., Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. Environ. Microbiol. Rep. 2014, 6, 683-695.
– reference: Gillet, L.C., Navarro, P., Tate, S., Roest, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012, O111.016717.
– reference: Penzlin, A., Lindner, M. S., Doellinger, J., Dabrowski, P. W. et al., Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics. Bioinformatics 2014, 30, i149-i156.
– reference: Zhang, T., Shao, M.-F., Ye, L., 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2011, 6, 1137-1147.
– reference: Stokke, R., Roalkvam, I., Lanzén, A., Haflidason, H., Steen, I.H., Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 2012, 14, 1333-1346.
– reference: Armengaud, J., Marie Hartmann, E., Bland, C., Proteogenomics for environmental microbiology. Proteomics 2013, 13, 2731-2742.
– reference: Fischer, C. R., Bowen, B. P., Pan, C., Northen, T. R., Banfield, J. F., Stable-isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species-specific. ACS Chem. Biol. 2013, 8, 1755-1763.
– reference: Sowell, S. M., Abraham, P. E., Shah, M., Verberkmoes, N. C. et al., Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 2011, 5, 856-865.
– volume: 142
  start-page: 335
  year: 2004
  end-page: 343
  article-title: A proteomic fingerprint of dissolved organic carbon and of soil particles
  publication-title: Oecologia
– volume: 4
  start-page: 520
  year: 2009
  end-page: 530
  article-title: Cultivation and quantitative proteomic analyses of acidophilic microbial communities
  publication-title: ISME J.
– volume: 4
  start-page: 1002
  year: 2010
  end-page: 1019
  article-title: Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica
  publication-title: ISME J.
– volume: 313
  start-page: 918a
  year: 2006
  article-title: Comment on “computational improvements reveal great bacterial diversity and high metal toxicity in soil
  publication-title: Science
– volume: 107
  start-page: 2383
  year: 2010
  end-page: 2390
  article-title: Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 161
  start-page: 497
  year: 2010
  end-page: 505
  article-title: Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology
  publication-title: Res. Microbiol.
– volume: 16
  start-page: 2699
  year: 2014
  end-page: 2710
  article-title: Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta‐omics
  publication-title: Environ. Microbiol.
– volume: 42
  start-page: 3879
  year: 2008
  end-page: 3889
  article-title: Evaluation of the extracellular proteins in full‐scale activated sludges
  publication-title: Water Res.
– volume: 14
  start-page: 1333
  year: 2012
  end-page: 1346
  article-title: Integrated metagenomic and metaproteomic analyses of an ANME‐1‐dominated community in marine cold seep sediments
  publication-title: Environ. Microbiol.
– volume: 18
  start-page: 409
  year: 2012
  end-page: 417
  article-title: Host–microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal–luminal interface
  publication-title: Inflamm. Bowel Dis.
– volume: 6
  start-page: 683
  year: 2014
  end-page: 695
  article-title: Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea
  publication-title: Environ. Microbiol. Rep.
– volume: 111
  start-page: 11395
  year: 2014
  end-page: 11400
  article-title: Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 1749
  year: 2012
  end-page: 1762
  article-title: Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions
– volume: 7
  start-page: e49138
  year: 2012
  article-title: Integrated Metagenomics/Metaproteomics Reveals Human Host‐Microbiota Signatures of Crohn's Disease
  publication-title: PLoS ONE
– volume: 29
  start-page: 59
  year: 2014
  end-page: 67
  article-title: Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants
  publication-title: Anaerobe
– volume: 313
  start-page: 918c
  year: 2006
  end-page: 918c
  article-title: Comment on “computational improvements reveal great bacterial diversity and high metal toxicity in soil
  publication-title: Science
– volume: 99
  start-page: 10494
  year: 2002
  end-page: 10499
  article-title: Estimating prokaryotic diversity and its limits
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 521
  start-page: 208
  year: 2015
  end-page: 212
  article-title: Multi‐omics of permafrost, active layer and thermokarst bog soil microbiomes
  publication-title: Nature
– volume: 336
  start-page: 608
  year: 2012
  end-page: 611
  article-title: Substrate‐Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom
  publication-title: Science
– volume: 1
  start-page: 283
  year: 2007
  end-page: 290
  article-title: Pyrosequencing enumerates and contrasts soil microbial diversity
  publication-title: ISME J.
– volume: 67
  start-page: 1650
  year: 2013
  end-page: 1656
  article-title: Digging into the extracellular matrix of a complex microbial community using a combined metagenomic and metaproteomic approach
  publication-title: Water Sci. Technol.
– volume: 25
  start-page: 38
  year: 2010
  end-page: 49
  article-title: A metaproteomic analysis of the human salivary microbiota by three‐dimensional peptide fractionation and tandem mass spectrometry
  publication-title: Mol. Oral Microbiol.
– volume: 4
  start-page: 673
  year: 2010
  end-page: 685
  article-title: Comparative metaproteomics reveals ocean‐scale shifts in microbial nutrient utilization and energy transduction
  publication-title: ISME J.
– volume: 6
  start-page: 911
  year: 2004
  end-page: 920
  article-title: The application of two‐dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms
  publication-title: Environ. Microbiol.
– volume: 1
  start-page: 224
  year: 2007
  end-page: 234
  article-title: Functional metaproteome analysis of protein extracts from contaminated soil and groundwater
  publication-title: ISME J.
– volume: 62
  start-page: 1591
  year: 2013
  end-page: 1601
  article-title: Gut microbiota disturbance during antibiotic therapy: a multi‐omic approach
  publication-title: Gut
– volume: 24
  start-page: 1263
  year: 2006
  end-page: 1269
  article-title: Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: e1778
  year: 2008
  article-title: Metaproteomics provides functional insight into activated sludge wastewater treatment
  publication-title: PLoS ONE
– volume: 11
  start-page: 3029
  year: 2009
  end-page: 3044
  article-title: Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal
  publication-title: Environ. Microbiol.
– volume: 5
  start-page: 879
  year: 2011
  end-page: 895
  article-title: An integrative study of a meromictic lake ecosystem in Antarctica
  publication-title: ISME J.
– volume: 7
  start-page: 252
  year: 2015
  end-page: 264
  article-title: In situ expression of nitrite‐dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co‐occurring with expressed anammox proteins in a contaminated aquifer
  publication-title: Environ. Microbiol. Rep.
– volume: 6
  start-page: 1883
  year: 2012
  end-page: 1900
  article-title: A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters
  publication-title: ISME J.
– volume: 24
  start-page: 483
  year: 2006
  end-page: 489
  article-title: Wastewater treatment: a model system for microbial ecology
  publication-title: Trends Biotechnol.
– volume: 55
  start-page: 205
  year: 2006
  end-page: 211
  article-title: Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach
  publication-title: Gut
– volume: 13
  start-page: 2776
  year: 2013
  end-page: 2785
  article-title: Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies
  publication-title: Proteomics
– volume: 1
  start-page: 15007
  year: 2015
  article-title: Comparative integrated omics: identification of key functionalities in microbial community‐wide metabolic networks
  publication-title: npj Biofilms Microbiomes
– volume: 308
  start-page: 1915
  year: 2005
  end-page: 1920
  article-title: Community proteomics of a natural microbial biofilm
  publication-title: Science
– volume: 2
  start-page: 853
  year: 2008
  end-page: 864
  article-title: Community proteogenomics highlights microbial strain‐variant protein expression within activated sludge performing enhanced biological phosphorus removal
  publication-title: ISME J.
– volume: 78
  start-page: 8321
  year: 2012
  end-page: 8330
  article-title: Heterotrophic Archaea Contribute to Carbon Cycling in Low‐pH, Suboxic Biofilm Communities
  publication-title: Appl. Environ. Microbiol.
– volume: 446
  start-page: 537
  year: 2007
  end-page: 541
  article-title: Strain‐resolved community proteomics reveals recombining genomes of acidophilic bacteria
  publication-title: Nature
– volume: 13
  start-page: 2910
  year: 2013
  end-page: 2920
  article-title: Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein‐SIP)
  publication-title: Proteomics
– volume: 30
  start-page: i149
  year: 2014
  end-page: i156
  article-title: Pipasic: similarity and expression correction for strain‐level identification and quantification in metaproteomics
  publication-title: Bioinformatics
– volume: 78
  start-page: 31
  year: 2011
  end-page: 49
  article-title: Soil‐specific limitations for access and analysis of soil microbial communities by metagenomics
  publication-title: FEMS Microbiol. Ecol.
– volume: 14
  start-page: 2535
  year: 2014
  end-page: 2539
  article-title: Metaproteomics: evaluation of protein extraction from activated sludge
  publication-title: Proteomics
– volume: 6
  start-page: 1145
  year: 2007
  end-page: 1152
  article-title: Metaproteomic analysis of a bacterial community response to cadmium exposure
  publication-title: J. Proteome Res.
– volume: 109
  start-page: E1173
  year: 2012
  end-page: E1182
  article-title: Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 90
  start-page: 2309
  year: 2013
  end-page: 2314
  article-title: Exploring the potential of applying proteomics for tracking bisphenol A and nonylphenol degradation in activated sludge
  publication-title: Chemosphere
– volume: 6
  start-page: e26542
  year: 2011
  article-title: A Metaproteomic Approach to Study Human‐Microbial Ecosystems at the Mucosal Luminal Interface
  publication-title: PLoS ONE
– volume: 2
  start-page: 542
  year: 2008
  end-page: 550
  article-title: Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community
  publication-title: ISME J.
– volume: 67
  start-page: 520
  year: 2014
  end-page: 539
  article-title: Metaproteomic survey of six aquatic habitats: discovering the identities of microbial populations active in biogeochemical cycling
  publication-title: Microb. Ecol.
– volume: 1
  start-page: 7
  year: 2005
  article-title: Metaproteomic analysis of Chesapeake Bay microbial communities
  publication-title: Saline Systems
– volume: 8
  start-page: 1755
  year: 2013
  end-page: 1763
  article-title: Stable‐isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species‐specific
  publication-title: ACS Chem. Biol.
– volume: 8
  start-page: 1301
  year: 2014
  end-page: 1313
  article-title: Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton
  publication-title: ISME J.
– volume: 7
  start-page: e34242
  year: 2012
  article-title: A core human microbiome as viewed through 16S rRNA sequence clusters
  publication-title: PLoS ONE
– volume: 9
  start-page: 180
  year: 2014
  end-page: 194
  article-title: Elevated temperature alters proteomic responses of individual organisms within a biofilm community
  publication-title: ISME J.
– volume: 6
  start-page: 1137
  year: 2011
  end-page: 1147
  article-title: 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants
  publication-title: ISME J.
– volume: 13
  start-page: 2731
  year: 2013
  end-page: 2742
  article-title: Proteogenomics for environmental microbiology
  publication-title: Proteomics
– volume: 53
  start-page: 426
  year: 2007
  end-page: 434
  article-title: Protein extraction and fingerprinting optimization of bacterial communities in natural environment
  publication-title: Microb. Ecol.
– volume: 7
  start-page: e29913
  year: 2012
  article-title: Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions
  publication-title: PLoS ONE
– volume: 101
  start-page: 31
  year: 2014
  end-page: 42
  article-title: Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods
  publication-title: J. Proteomics
– volume: 11
  start-page: 3106
  year: 2011
  end-page: 3117
  article-title: Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont
  publication-title: Proteomics
– volume: 9
  start-page: 1014
  year: 2015
  end-page: 1023
  article-title: Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities
  publication-title: ISME J.
– volume: 14
  start-page: 133
  year: 2015
  end-page: 141
  article-title: Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut
  publication-title: J. Proteome Res.
– year: 2012
  article-title: Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell. Proteomics
– volume: 16
  start-page: 3224
  year: 2014
  end-page: 3237
  article-title: 15N‐ and 2H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity
  publication-title: Environ. Microbiol.
– volume: 6
  start-page: 1
  year: 2010
  end-page: 12
  article-title: Ecological distribution and population physiology defined by proteomics in a natural microbial community
  publication-title: Mol. Syst. Biol.
– volume: 3
  start-page: 179
  year: 2008
  end-page: 189
  article-title: Shotgun metaproteomics of the human distal gut microbiota
  publication-title: ISME J.
– volume: 309
  start-page: 1387
  year: 2005
  end-page: 1390
  article-title: Computational improvements reveal great bacterial diversity and high metal toxicity in soil
  publication-title: Science
– volume: 14
  start-page: 1708
  year: 2015
  end-page: 1719
  article-title: Online peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics
  publication-title: Mol. Cell. Proteomics
– volume: 30
  start-page: 1211
  year: 2014
  end-page: 1223
  article-title: Integrated metagenomic and metaproteomic analyses of marine biofilm communities
  publication-title: Biofouling
– volume: 80
  start-page: 5043
  year: 2014
  end-page: 5052
  article-title: Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field‐grown rice plants
  publication-title: Appl. Environ. Microbiol.
– volume: 1
  year: 2010
  article-title: Metabolome‐proteome differentiation coupled to microbial divergence
  publication-title: MBio
– volume: 50
  start-page: 1062
  year: 2000
  end-page: 1075
  article-title: Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes
  publication-title: Bioscience
– volume: 5
  start-page: 5603
  year: 2014
  article-title: Community‐integrated omics links dominance of a microbial generalist to fine‐tuned resource usage
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Diverse and divergent protein post‐translational modifications in two growth stages of a natural microbial community
  publication-title: Nat. Commun.
– volume: 5
  start-page: 856
  year: 2011
  end-page: 865
  article-title: Environmental proteomics of microbial plankton in a highly productive coastal upwelling system
  publication-title: ISME J
– volume: 14
  start-page: 1557
  year: 2015
  end-page: 1565
  article-title: The MetaProteomeAnalyzer: a powerful open‐source software suite for metaproteomics data analysis and interpretation
  publication-title: J. Proteome Res.
– volume: 95
  start-page: 767
  year: 2012
  end-page: 776
  article-title: Step‐by‐step strategy for protein enrichment and proteome characterisation of extracellular polymeric substances in wastewater treatment systems
  publication-title: Appl. Microbiol. Biotechnol.
– ident: e_1_2_10_26_1
  doi: 10.1038/ismej.2014.200
– ident: e_1_2_10_13_1
  doi: 10.2166/wst.2013.030
– ident: e_1_2_10_50_1
  doi: 10.1126/science.1121225
– ident: e_1_2_10_46_1
  doi: 10.1002/pmic.201200569
– ident: e_1_2_10_11_1
  doi: 10.1016/j.chemosphere.2012.10.002
– ident: e_1_2_10_42_1
  doi: 10.1007/s00248-013-0346-5
– ident: e_1_2_10_3_1
  doi: 10.1111/j.1462-2920.2004.00687.x
– ident: e_1_2_10_14_1
  doi: 10.1016/j.watres.2008.05.014
– ident: e_1_2_10_7_1
  doi: 10.1038/nbt1247
– ident: e_1_2_10_28_1
  doi: 10.1111/1758-2229.12188
– ident: e_1_2_10_20_1
  doi: 10.1128/AEM.01938-12
– ident: e_1_2_10_27_1
  doi: 10.1186/1746-1448-1-7
– ident: e_1_2_10_70_1
  doi: 10.1038/npjbiofilms.2015.7
– ident: e_1_2_10_5_1
  doi: 10.1016/j.tibtech.2006.09.002
– ident: e_1_2_10_38_1
  doi: 10.1111/j.1462-2920.2012.02716.x
– ident: e_1_2_10_6_1
  doi: 10.1371/journal.pone.0001778
– ident: e_1_2_10_62_1
  doi: 10.1136/gut.2005.073817
– ident: e_1_2_10_79_1
  doi: 10.1111/j.2041-1014.2009.00558.x
– ident: e_1_2_10_16_1
  doi: 10.1038/ismej.2008.17
– ident: e_1_2_10_64_1
  doi: 10.1371/journal.pone.0029913
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1574-6941.2011.01140.x
– ident: e_1_2_10_2_1
  doi: 10.1002/pmic.201200576
– ident: e_1_2_10_29_1
  doi: 10.1038/ismej.2013.234
– ident: e_1_2_10_51_1
  doi: 10.1126/science.1112665
– year: 2012
  ident: e_1_2_10_67_1
  article-title: Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell. Proteomics
– ident: e_1_2_10_60_1
  doi: 10.1038/ismej.2008.108
– ident: e_1_2_10_74_1
  doi: 10.1038/ismej.2011.188
– ident: e_1_2_10_4_1
  doi: 10.1126/science.1109070
– ident: e_1_2_10_66_1
  doi: 10.1016/j.anaerobe.2013.11.009
– ident: e_1_2_10_12_1
  doi: 10.1002/pmic.201400167
– ident: e_1_2_10_21_1
  doi: 10.1021/cb400210q
– ident: e_1_2_10_22_1
  doi: 10.1111/1462-2920.12488
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jprot.2014.02.006
– ident: e_1_2_10_78_1
  doi: 10.1371/journal.pone.0034242
– ident: e_1_2_10_17_1
  doi: 10.1038/nature05624
– ident: e_1_2_10_58_1
  doi: 10.1371/journal.pone.0026542
– ident: e_1_2_10_18_1
  doi: 10.1073/pnas.0907041107
– ident: e_1_2_10_61_1
  doi: 10.1021/pr500936p
– ident: e_1_2_10_25_1
  doi: 10.1038/ismej.2014.113
– ident: e_1_2_10_32_1
  doi: 10.1126/science.1218344
– ident: e_1_2_10_15_1
  doi: 10.1007/s00253-012-4157-2
– ident: e_1_2_10_56_1
  doi: 10.1128/AEM.00969-14
– ident: e_1_2_10_45_1
  doi: 10.1111/1758-2229.12239
– ident: e_1_2_10_65_1
  doi: 10.1136/gutjnl-2012-303184
– ident: e_1_2_10_59_1
  doi: 10.1002/ibd.21793
– ident: e_1_2_10_73_1
  doi: 10.1128/mBio.00246-10
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1462-2920.2009.02007.x
– ident: e_1_2_10_47_1
  doi: 10.1016/j.resmic.2010.04.010
– ident: e_1_2_10_53_1
  doi: 10.1002/pmic.201300003
– ident: e_1_2_10_77_1
  doi: 10.1038/ismej.2007.53
– ident: e_1_2_10_35_1
  doi: 10.1073/pnas.1121198109
– ident: e_1_2_10_76_1
  doi: 10.1641/0006-3568(2000)050[1062:LBASBA]2.0.CO;2
– ident: e_1_2_10_33_1
  doi: 10.1073/pnas.1322132111
– ident: e_1_2_10_54_1
  doi: 10.1007/s00442-004-1698-9
– ident: e_1_2_10_69_1
  doi: 10.1038/ncomms6603
– ident: e_1_2_10_10_1
  doi: 10.1021/pr060477v
– ident: e_1_2_10_36_1
  doi: 10.1002/pmic.201100059
– ident: e_1_2_10_75_1
  doi: 10.1073/pnas.142680199
– ident: e_1_2_10_39_1
  doi: 10.1038/ismej.2012.28
– volume: 5
  start-page: 1
  year: 2014
  ident: e_1_2_10_23_1
  article-title: Diverse and divergent protein post‐translational modifications in two growth stages of a natural microbial community
  publication-title: Nat. Commun.
– ident: e_1_2_10_34_1
  doi: 10.1080/08927014.2014.977267
– ident: e_1_2_10_63_1
  doi: 10.1371/journal.pone.0049138
– ident: e_1_2_10_68_1
  doi: 10.1074/mcp.M114.046425
– ident: e_1_2_10_49_1
  doi: 10.1126/science.1126593
– ident: e_1_2_10_19_1
  doi: 10.1038/msb.2010.30
– ident: e_1_2_10_31_1
  doi: 10.1038/ismej.2010.4
– ident: e_1_2_10_55_1
  doi: 10.1038/ismej.2012.11
– ident: e_1_2_10_30_1
  doi: 10.1038/ismej.2010.168
– ident: e_1_2_10_43_1
  doi: 10.1038/ismej.2010.185
– ident: e_1_2_10_8_1
  doi: 10.1038/ismej.2008.38
– ident: e_1_2_10_40_1
  doi: 10.1007/s00248-006-9121-1
– ident: e_1_2_10_37_1
  doi: 10.1111/1462-2920.12283
– ident: e_1_2_10_41_1
  doi: 10.1038/ismej.2007.39
– ident: e_1_2_10_44_1
  doi: 10.1038/ismej.2010.28
– ident: e_1_2_10_57_1
  doi: 10.1038/nature14238
– ident: e_1_2_10_71_1
  doi: 10.1021/pr501246w
– ident: e_1_2_10_72_1
  doi: 10.1093/bioinformatics/btu267
– ident: e_1_2_10_24_1
  doi: 10.1038/ismej.2009.139
SSID ssj0017897
Score 2.5425844
Snippet We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of...
We are living through exciting times during which we are able to unravel the "microbial dark matter" in and around us through the application of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3409
SubjectTerms Acid mine drainage
Activated sludge
Betaproteobacteria - genetics
Biofilms
Catalysis
Chemical analysis
Communities
Community composition
Cyanobacteria - genetics
Dark matter
Ecological function
Ecosystem
Fresh Water
Genotypes
Humans
Integrated omics
Intestinal microflora
Leptospiraceae - genetics
Metagenomics
Metaproteomics
Microbial activity
Microbial community
Microbial systems ecology
Microbiology
Microbiota
Microorganisms
Phenotypes
Proteins
Proteome - genetics
Proteomics
Seawater
Soil Microbiology
Viewpoint
Water analysis
Title A decade of metaproteomics: Where we stand and what the future holds
URI https://api.istex.fr/ark:/67375/WNG-13J8VB60-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.201500183
https://www.ncbi.nlm.nih.gov/pubmed/26315987
https://www.proquest.com/docview/2035648986
https://www.proquest.com/docview/1722927718
https://www.proquest.com/docview/1727680974
https://pubmed.ncbi.nlm.nih.gov/PMC5049639
Volume 15
WOSCitedRecordID wos000363090700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1615-9861
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017897
  issn: 1615-9853
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BigQ88NHxERiTkdB4iuY4TmzzVjYKQqiq0AZ9i2zH0SpoOjUdg_-es9OGVnwJ8ZA8xJcoOd_Zv7MvvwN4litJlZFVLDXVMQ54MpZVxeOKSWozo5kwOhSbEKORnEzUeOMv_pYfoltw854Rxmvv4No0hz9IQ89nU09BiICGollehV6SpMLbNePjbh9ByLa8Cs7bscKZaU3bSNnh9v1b01LPa_jrrzDnz6mTm5A2zEnD2___NXfg1gqPkkFrQHfhiqv7sDuoMRaffSMHJGSIhqX3Plw_WleH68PNDSLDXTgekNL5THsyr8jMLXWgf_A_PDcvCI73C0cuHQnLFsQfl2d6SRB6kpbShPg9sOYenA5fnRy9iVf1GWKLQRCPrRYIHpVNdCqN8jxWzvCszEqqVVLS0iTaSMUlU45ZLrTUZSJyZfBSlVBj0vuwU89r9xCIZcaaUldpriXHqNngsJdIw2WuTWbzMoJ43T2FXZGX-xoan4uWdpkVXoFFp8AInnfy5y1tx28lD0Jvd2J68cknu4ms-Dh6XSTpW_nhZU6Lkwj21uZQrPy8wcekWc6lknkET7tm7Aq_7aJrN79oCoSITDGBIOCPMhj3UQzuInjQWlj3QgxVkSkpIhBbttcJeIbw7ZZ6ehaYwjOM_xCCRtDa3l9UUYzR8z3lH3_0rzc8hhv-apvluAc7y8WFewLX7JfltFnsB5_Es5jIfegdvx-evvsO1H05Fg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BizR44KODERhgJDSeojmuk9i8lY0yoFQT6mBvlu04WjWaTk3H4L_nnKRhFV9C4iEvycVKznf27-zz7wCeJVJQaUQeCk11iAOeCEWe8zBngtrYaJYaXRWbSMdjcXwsD5tsQn8WpuaHaBfcvGdU47V3cL8gvfuDNfRsNvUchIhoKNrlVehytKW4A939D8OjUbuVkIq6wgpO3aHEyWnF3EjZ7noLazNT1yv5669g58_Zk5dRbTUtDW_9hx-6DTcbTEoGtRHdgSuu6MHmoMB4fPaN7JAqS7Rafu_Bxt6qQlwPblwiM9yE_QHJnM-2J_OczNxSVxQQ_tBz-YLgmL9w5MKRaumC-OviRC8Jwk9S05oQvw9W3oWj4avJ3kHY1GgILQZCPLQ6RQApbaT7wkjPZeUMj7M4o1pGGc1MpI2QXDDpmOWpFjqL0kQavJVH1Jj-PegU88LdB2KZsSbTeT_RgmPkbHDoi4ThItEmtkkWQLjqH2UbAnNfR-OzqqmXmfIKVK0CA3jeyp_V1B2_ldypursV04tTn_CWxurT-LWK-m_Fx5cJVZMAtlf2oBpfL7GZfpxwIUUSwNP2MXaF33rRhZuflwphIpMsRSDwRxmM_SgGeAFs1SbWfhBDVcRSpAGka8bXCniW8PUnxfSkYguPMQZEGBpAbXx_UYU6RO_3tH_8wb--8AQ2DibvR2r0ZvzuIVz3EnXW4zZ0lotz9wiu2S_Labl43Ljod-LMPAs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Bi3gceGxpCRQwEmpPURPHiW1uS8vy1GoPBXqzbMdRV7DZ1WZL4d8zdnZDV7yExCGXZBwl43na428AnhZSJNKIKhY60TEaPBGLqmJxRUVic6MpNzo0m-DDoTg5kaNlNaE_C9PiQ3QLbl4zgr32Cu5mZXXwAzV0Nhl7DEKMaBKUy8uwyXI0tB7cmY26jQQu2v4q6Lhjia5phduY0IP18Wt-adOz-Ouvgs6faycvxrTBKQ1u_YffuQ03lxEp6bcidAcuuboHW_0as_HJN7JHQo1oWHzvwbXDVX-4Hty4AGW4BUd9Ujpfa0-mFZm4hQ4AEP7Ic_OMoMWfO3LuSFi4IP46P9ULgsEnaUFNiN8Fa-7C-8GL48NX8bJDQ2wxDWKx1RzDR2lTnQkjPZKVMywv8zLRMi2T0qTaCMkElY5axrXQZcoLafBWlSbGZNuwUU9rdw-IpcaaUldZoQXDvNmg4UuFYaLQJrdFGUG8mh9ll_DlvovGZ9UCL1PlGag6Bkaw39HPWuCO31LuhenuyPT8ky9347n6OHyp0uyN-PC8SNRxBLsreVBLTW_wNVleMCFFEcGT7jFOhd940bWbnjUKg0QqKUfp_CMNZn4JpncR7LQi1n0QRVbkUvAI-JrwdQQeI3z9ST0-DVjhOWaAGIRG0ArfX1ihRqj7HvSP3f_XAY_h6uhooN69Hr59ANc9QVvyuAsbi_mZewhX7JfFuJk_Cvr5HXz3OfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decade+of+metaproteomics%3A+where+we+stand+and+what+the+future+holds&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Wilmes%2C+Paul&rft.au=Heintz-Buschart%2C+Anna&rft.au=Bond%2C+Philip+L&rft.date=2015-10-01&rft.issn=1615-9861&rft.eissn=1615-9861&rft.volume=15&rft.issue=20&rft.spage=3409&rft_id=info:doi/10.1002%2Fpmic.201500183&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon