Engineering of robust topological quantum phases in graphene nanoribbons

Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana fermions 1 – 3 . The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of cur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature (London) Ročník 560; číslo 7717; s. 209 - 213
Hlavní autoři: Gröning, Oliver, Wang, Shiyong, Yao, Xuelin, Pignedoli, Carlo A., Borin Barin, Gabriela, Daniels, Colin, Cupo, Andrew, Meunier, Vincent, Feng, Xinliang, Narita, Akimitsu, Müllen, Klaus, Ruffieux, Pascal, Fasel, Roman
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.08.2018
Nature Publishing Group
Témata:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana fermions 1 – 3 . The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics 4 – 6 . The topological properties of quantum states have helped to explain the conductivity of doped trans -polyacetylene in terms of dispersionless soliton states 7 – 9 . In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model 10 , 11 . Because the SSH model describes chiral topological insulators, charge fractionalization and spin–charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations 12 – 14 . It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian 15 – 17 . We demonstrate the controlled periodic coupling of topological boundary states 18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin–orbit coupling 19 or superconductivity 20 , and may allow the realization of Kitaev-like Hamiltonians 3 and Majorana-type end states 21 . Graphene nanoribbons are used to design robust nanomaterials with controlled periodic coupling of topological boundary states to create quasi-one-dimensional trivial and non-trivial electronic quantum phases.
AbstractList Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions.sup.1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics.sup.4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states.sup.7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model.sup.10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations.sup.12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian.sup.15-17. We demonstrate the controlled periodic coupling of topological boundary states.sup.18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling.sup.19 or superconductivity.sup.20, and may allow the realization of Kitaev-like Hamiltonians.sup.3 and Majorana-type end states.sup.21.
Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majorana-type end states21.Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majorana-type end states21.
Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions . The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics . The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states . In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model . Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations . It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian . We demonstrate the controlled periodic coupling of topological boundary states at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling or superconductivity , and may allow the realization of Kitaev-like Hamiltonians and Majorana-type end states .
Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions.sup.1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics.sup.4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states.sup.7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model.sup.10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations.sup.12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian.sup.15-17. We demonstrate the controlled periodic coupling of topological boundary states.sup.18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling.sup.19 or superconductivity.sup.20, and may allow the realization of Kitaev-like Hamiltonians.sup.3 and Majorana-type end states.sup.21.Graphene nanoribbons are used to design robust nanomaterials with controlled periodic coupling of topological boundary states to create quasi-one-dimensional trivial and non-trivial electronic quantum phases.
Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana fermions 1 – 3 . The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics 4 – 6 . The topological properties of quantum states have helped to explain the conductivity of doped trans -polyacetylene in terms of dispersionless soliton states 7 – 9 . In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model 10 , 11 . Because the SSH model describes chiral topological insulators, charge fractionalization and spin–charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations 12 – 14 . It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian 15 – 17 . We demonstrate the controlled periodic coupling of topological boundary states 18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin–orbit coupling 19 or superconductivity 20 , and may allow the realization of Kitaev-like Hamiltonians 3 and Majorana-type end states 21 . Graphene nanoribbons are used to design robust nanomaterials with controlled periodic coupling of topological boundary states to create quasi-one-dimensional trivial and non-trivial electronic quantum phases.
Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximityinduced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majoranatype end states21.
Audience Academic
Author Wang, Shiyong
Cupo, Andrew
Feng, Xinliang
Gröning, Oliver
Narita, Akimitsu
Yao, Xuelin
Müllen, Klaus
Pignedoli, Carlo A.
Fasel, Roman
Ruffieux, Pascal
Meunier, Vincent
Borin Barin, Gabriela
Daniels, Colin
Author_xml – sequence: 1
  givenname: Oliver
  surname: Gröning
  fullname: Gröning, Oliver
  email: oliver.groening@empa.ch
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology
– sequence: 2
  givenname: Shiyong
  surname: Wang
  fullname: Wang, Shiyong
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University
– sequence: 3
  givenname: Xuelin
  surname: Yao
  fullname: Yao, Xuelin
  organization: Max Planck Institute for Polymer Research
– sequence: 4
  givenname: Carlo A.
  surname: Pignedoli
  fullname: Pignedoli, Carlo A.
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology
– sequence: 5
  givenname: Gabriela
  surname: Borin Barin
  fullname: Borin Barin, Gabriela
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology
– sequence: 6
  givenname: Colin
  surname: Daniels
  fullname: Daniels, Colin
  organization: Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute
– sequence: 7
  givenname: Andrew
  surname: Cupo
  fullname: Cupo, Andrew
  organization: Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute
– sequence: 8
  givenname: Vincent
  surname: Meunier
  fullname: Meunier, Vincent
  organization: Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute
– sequence: 9
  givenname: Xinliang
  surname: Feng
  fullname: Feng, Xinliang
  organization: Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 10
  givenname: Akimitsu
  surname: Narita
  fullname: Narita, Akimitsu
  organization: Max Planck Institute for Polymer Research
– sequence: 11
  givenname: Klaus
  surname: Müllen
  fullname: Müllen, Klaus
  organization: Max Planck Institute for Polymer Research
– sequence: 12
  givenname: Pascal
  surname: Ruffieux
  fullname: Ruffieux, Pascal
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology
– sequence: 13
  givenname: Roman
  surname: Fasel
  fullname: Fasel, Roman
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Chemistry and Biochemistry, University of Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30089919$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URKeFB2CDItjAIuX6J7FnWVWFVqqEBN1bN46TusrYGTuRytvjaAplqgF5Ycn-ztG1zzkhRz54S8hbCmcUuPqcBK1UXQJVJXBZlesXZEWFrEtRK3lEVgAs3yheH5OTlO4BoKJSvCLHHECt13S9IleXvnfe2uh8X4SuiKGZ01RMYQxD6J3BodjO6Kd5U4x3mGwqnC_6iOOd9bbw6EN0TRN8ek1edjgk--ZxPyW3Xy5vL67Km29fry_Ob0pTg5hKs-66FgRTVvKqaWRbNWglNkx1yCVC1YkOGsMFa6GtEEQtFAIKYRENl_yUfNzZjjFsZ5smvXHJ2GFAb8OcNANVs5rWQmT0wzP0PszR5-E0o8C4koxWT1SPg9XOd2GKaBZTfV5JJlVVM56p8gDV5z-IOORQOpeP9_j3B3gzuq3-Gzo7AOXV2o0zB10_7QkyM9mHqcc5JX394_s---7x9XOzsa0eo9tg_Kl_R58BugNMDClF2_1BKOilXnpXL53rpZd66UUjn2mMm3ByeY6Ibvivku2UaVyqZuNTGP8W_QI9x99z
CitedBy_id crossref_primary_10_1103_PhysRevResearch_3_023037
crossref_primary_10_3390_nano13142066
crossref_primary_10_1002_pssb_201900343
crossref_primary_10_1038_s41535_024_00637_3
crossref_primary_10_1021_acs_nanolett_5c02047
crossref_primary_10_1021_jacs_3c04487
crossref_primary_10_1021_jacs_3c00563
crossref_primary_10_1103_PhysRevB_105_115424
crossref_primary_10_1002_chem_202501399
crossref_primary_10_1021_jacs_0c01930
crossref_primary_10_1088_0256_307X_41_9_097302
crossref_primary_10_1021_jacs_4c16328
crossref_primary_10_1038_s41467_024_54774_1
crossref_primary_10_1088_1361_648X_ac533b
crossref_primary_10_1002_macp_202200337
crossref_primary_10_1016_j_chaos_2025_116044
crossref_primary_10_1021_jacs_1c01355
crossref_primary_10_1088_2053_1583_ad047e
crossref_primary_10_1002_ange_202414583
crossref_primary_10_1007_s12274_021_3409_9
crossref_primary_10_1103_PhysRevMaterials_7_084201
crossref_primary_10_1039_D5NR02677F
crossref_primary_10_1002_anie_202310880
crossref_primary_10_1002_anie_202008925
crossref_primary_10_1103_PhysRevA_111_032417
crossref_primary_10_1002_smll_202400473
crossref_primary_10_1016_j_chempr_2020_01_022
crossref_primary_10_1002_cjoc_202300614
crossref_primary_10_1021_acs_accounts_5c00157
crossref_primary_10_1038_s41467_021_26656_3
crossref_primary_10_1088_2752_5724_ac8aba
crossref_primary_10_1016_j_chaos_2025_116176
crossref_primary_10_1002_anie_202100260
crossref_primary_10_1016_j_flatc_2025_100808
crossref_primary_10_1038_s41467_021_25688_z
crossref_primary_10_1063_5_0059066
crossref_primary_10_1002_pssr_202500203
crossref_primary_10_1002_ange_201913024
crossref_primary_10_1002_ange_202500490
crossref_primary_10_1088_1361_648X_ad3872
crossref_primary_10_1002_adma_202001893
crossref_primary_10_1103_PhysRevResearch_6_043146
crossref_primary_10_1088_1361_648X_ac76fc
crossref_primary_10_1002_cphc_201900312
crossref_primary_10_1007_s41127_023_00058_2
crossref_primary_10_3390_nano11123229
crossref_primary_10_1016_j_carbon_2020_10_060
crossref_primary_10_1088_1361_648X_ab4466
crossref_primary_10_3390_ijms24021509
crossref_primary_10_1088_1674_1056_ac7bfe
crossref_primary_10_1088_1674_1056_ac80b3
crossref_primary_10_1038_s41467_020_19051_x
crossref_primary_10_3390_nano14090778
crossref_primary_10_1002_cnma_201900706
crossref_primary_10_1021_jacs_3c05233
crossref_primary_10_1038_s41467_023_40542_0
crossref_primary_10_1016_j_physe_2025_116260
crossref_primary_10_1002_smtd_202400211
crossref_primary_10_1002_cphc_201900445
crossref_primary_10_1002_smll_202308430
crossref_primary_10_1016_j_mseb_2023_116785
crossref_primary_10_1088_1367_2630_ad1071
crossref_primary_10_1038_s42005_022_01049_0
crossref_primary_10_1007_s12274_021_3539_0
crossref_primary_10_1039_D2PY00809B
crossref_primary_10_1002_ange_202000488
crossref_primary_10_1038_s42005_024_01737_z
crossref_primary_10_1002_bio_4334
crossref_primary_10_1038_s41535_023_00558_7
crossref_primary_10_1039_D5CC02473K
crossref_primary_10_1038_s41557_025_01887_9
crossref_primary_10_3390_nano12193357
crossref_primary_10_1002_anie_202006176
crossref_primary_10_1021_acsnano_4c10357
crossref_primary_10_1021_acsnano_5c03817
crossref_primary_10_1039_D2NR05443D
crossref_primary_10_3390_molecules26102965
crossref_primary_10_1021_jacs_3c01576
crossref_primary_10_1002_adma_202200956
crossref_primary_10_1002_ange_201808640
crossref_primary_10_1016_j_chaos_2022_113010
crossref_primary_10_1016_j_apmt_2022_101593
crossref_primary_10_1002_anie_202312610
crossref_primary_10_1088_2053_1583_aaefdb
crossref_primary_10_1039_D4NR05192K
crossref_primary_10_1063_1_5054823
crossref_primary_10_1038_s41565_020_0667_8
crossref_primary_10_1038_s41557_022_01112_x
crossref_primary_10_1016_j_chempr_2023_11_002
crossref_primary_10_1088_1367_2630_ac04c9
crossref_primary_10_1039_C8SC03780A
crossref_primary_10_1002_adfm_202104031
crossref_primary_10_1002_adom_202500998
crossref_primary_10_1002_anie_201913783
crossref_primary_10_1002_ange_202006176
crossref_primary_10_1016_j_physleta_2023_128826
crossref_primary_10_1021_acs_nanolett_5c02355
crossref_primary_10_1002_adma_201905957
crossref_primary_10_1039_D3SC02824K
crossref_primary_10_1039_D1SC04908A
crossref_primary_10_1039_D3NR04656G
crossref_primary_10_1088_2053_1583_ab1e0a
crossref_primary_10_1016_j_physe_2019_113648
crossref_primary_10_1039_D0NR05763K
crossref_primary_10_1038_s41467_024_53927_6
crossref_primary_10_1038_s41565_024_01775_2
crossref_primary_10_1021_jacs_9b08060
crossref_primary_10_1088_2752_5724_ac8a63
crossref_primary_10_1016_j_physb_2024_416711
crossref_primary_10_1088_2633_4356_adcfe5
crossref_primary_10_1016_j_physrep_2020_05_003
crossref_primary_10_1007_s11426_019_9491_2
crossref_primary_10_1016_j_progsurf_2020_100595
crossref_primary_10_1016_j_mtquan_2025_100041
crossref_primary_10_1002_adma_202306311
crossref_primary_10_1016_j_carbon_2023_01_054
crossref_primary_10_1016_j_diamond_2023_110426
crossref_primary_10_1002_advs_202303222
crossref_primary_10_1007_s00214_025_03223_3
crossref_primary_10_1002_adma_202110099
crossref_primary_10_1002_cphc_201900510
crossref_primary_10_1016_j_cjph_2025_03_012
crossref_primary_10_1016_j_susc_2022_122180
crossref_primary_10_3390_nano11123303
crossref_primary_10_1088_1361_6528_acc1eb
crossref_primary_10_1002_adma_201904177
crossref_primary_10_1002_adma_202207212
crossref_primary_10_1039_D4TC04581E
crossref_primary_10_1088_1361_648X_ab3f81
crossref_primary_10_1038_s41565_020_0668_7
crossref_primary_10_1002_ange_202100260
crossref_primary_10_1002_anie_201808640
crossref_primary_10_1038_s41557_022_01061_5
crossref_primary_10_1038_s41467_023_36613_x
crossref_primary_10_1002_chem_202200584
crossref_primary_10_1038_s41467_025_63159_x
crossref_primary_10_1103_PhysRevB_111_035113
crossref_primary_10_1016_j_jmmm_2022_169948
crossref_primary_10_1016_j_physleta_2025_130945
crossref_primary_10_1016_j_rinp_2023_107254
crossref_primary_10_1016_j_synthmet_2019_03_016
crossref_primary_10_1002_smll_202103044
crossref_primary_10_1021_acsnano_5c08991
crossref_primary_10_1103_PhysRevResearch_6_033268
crossref_primary_10_1002_andp_202500232
crossref_primary_10_1063_1_5125859
crossref_primary_10_1016_j_chempr_2023_01_019
crossref_primary_10_1007_s12274_023_5605_2
crossref_primary_10_1002_chem_202203622
crossref_primary_10_1016_j_cclet_2024_110100
crossref_primary_10_1063_5_0081074
crossref_primary_10_1126_science_ade6219
crossref_primary_10_1016_j_commt_2024_100008
crossref_primary_10_1021_jacs_2c02491
crossref_primary_10_1103_hjt2_3s9h
crossref_primary_10_1016_j_carbon_2020_08_065
crossref_primary_10_1038_s41598_021_99596_z
crossref_primary_10_1021_jacs_5c03736
crossref_primary_10_1039_D1SC03976H
crossref_primary_10_1002_ange_202114697
crossref_primary_10_5802_crphys_3
crossref_primary_10_1002_adma_201906054
crossref_primary_10_1021_jacs_2c13822
crossref_primary_10_1039_D4NR02458C
crossref_primary_10_3390_nano12010137
crossref_primary_10_1002_ange_202008838
crossref_primary_10_1016_j_chempr_2020_06_009
crossref_primary_10_1038_s41557_019_0392_9
crossref_primary_10_1002_anie_202000488
crossref_primary_10_1088_1742_5468_ad8f2c
crossref_primary_10_1021_prechem_3c00072
crossref_primary_10_1088_1361_648X_ab62bb
crossref_primary_10_1038_s41565_024_01634_0
crossref_primary_10_1088_1361_648X_ad0766
crossref_primary_10_1021_jacs_3c02451
crossref_primary_10_1002_cphc_202000476
crossref_primary_10_1038_s41467_018_06940_5
crossref_primary_10_1021_jacs_0c03946
crossref_primary_10_1021_jacs_5c01783
crossref_primary_10_1103_PhysRevApplied_14_064019
crossref_primary_10_1038_s41598_024_62624_9
crossref_primary_10_1016_j_enchem_2021_100066
crossref_primary_10_1021_jacs_0c05235
crossref_primary_10_1093_nsr_nwae236
crossref_primary_10_1038_s41586_021_04201_y
crossref_primary_10_1002_anie_202509932
crossref_primary_10_1007_s10853_022_07524_x
crossref_primary_10_1088_2632_959X_ad04f8
crossref_primary_10_1038_s41928_023_00992_2
crossref_primary_10_1002_ange_201913783
crossref_primary_10_1038_s41586_024_08563_x
crossref_primary_10_1002_anie_202414583
crossref_primary_10_1002_chem_202200944
crossref_primary_10_1016_j_carbon_2021_08_001
crossref_primary_10_1088_1361_648X_adc35c
crossref_primary_10_1002_ange_202012328
crossref_primary_10_1126_science_abq6948
crossref_primary_10_1021_jacs_3c05755
crossref_primary_10_1007_s44214_022_00023_9
crossref_primary_10_1016_j_progpolymsci_2019_101179
crossref_primary_10_1063_1_5125137
crossref_primary_10_1140_epjp_s13360_025_06492_w
crossref_primary_10_1016_j_apsusc_2020_145797
crossref_primary_10_1016_j_ssc_2024_115673
crossref_primary_10_1038_s43246_022_00326_3
crossref_primary_10_1038_s42005_020_0377_4
crossref_primary_10_1038_s41534_020_0253_9
crossref_primary_10_1039_D5CC03666F
crossref_primary_10_1021_jacs_4c00270
crossref_primary_10_1038_d41586_018_05851_1
crossref_primary_10_1002_aelm_202200252
crossref_primary_10_1038_s44160_024_00488_7
crossref_primary_10_1088_1674_1056_ac904d
crossref_primary_10_1016_j_chempr_2020_10_009
crossref_primary_10_1002_ange_202312610
crossref_primary_10_1002_anie_202012328
crossref_primary_10_1016_j_carbon_2023_118688
crossref_primary_10_1038_s42005_025_02110_4
crossref_primary_10_1002_smtd_202300401
crossref_primary_10_1038_s41535_020_0219_3
crossref_primary_10_1021_jacs_0c09973
crossref_primary_10_1088_2053_1583_ab1116
crossref_primary_10_1002_advs_202106055
crossref_primary_10_1039_D1RA05902E
crossref_primary_10_1002_aelm_202201204
crossref_primary_10_1016_j_physe_2022_115516
crossref_primary_10_1088_2053_1583_ab9ea3
crossref_primary_10_1038_s41597_020_00638_4
crossref_primary_10_1002_ange_202008925
crossref_primary_10_1002_adma_202106909
crossref_primary_10_1088_1367_2630_ad19aa
crossref_primary_10_1039_D3NR03736C
crossref_primary_10_1016_j_carbon_2024_119164
crossref_primary_10_1088_1361_648X_aae9cb
crossref_primary_10_1103_PhysRevB_103_165403
crossref_primary_10_1063_5_0039777
crossref_primary_10_1088_2053_1583_abf716
crossref_primary_10_1088_2516_1075_ad159f
crossref_primary_10_1002_macp_201900374
crossref_primary_10_1021_jacs_0c03635
crossref_primary_10_3390_nano13111757
crossref_primary_10_1002_cphc_202100049
crossref_primary_10_1021_acs_jpcc_5c04965
crossref_primary_10_1103_PhysRevResearch_3_013265
crossref_primary_10_1002_anie_201913024
crossref_primary_10_1002_anie_202500490
crossref_primary_10_1021_acsanm_5c02753
crossref_primary_10_1039_D3NH00416C
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1021_acs_nanolett_4c06641
crossref_primary_10_1002_smll_202202301
crossref_primary_10_1080_23746149_2019_1651672
crossref_primary_10_1002_ange_202509932
crossref_primary_10_1002_anie_202114697
crossref_primary_10_1021_jacs_2c05570
crossref_primary_10_1038_s41467_024_45138_w
crossref_primary_10_1021_jacs_1c05586
crossref_primary_10_1038_s41598_025_03707_z
crossref_primary_10_1088_1361_648X_ac8a7f
crossref_primary_10_1103_PhysRevLett_130_026401
crossref_primary_10_1103_l1n5_1jsm
crossref_primary_10_1126_science_abb8880
crossref_primary_10_1002_andp_202500099
crossref_primary_10_1103_lphs_gz7c
crossref_primary_10_1103_PhysRevResearch_6_033323
crossref_primary_10_1007_s11467_021_1125_2
crossref_primary_10_1088_1402_4896_adcd09
crossref_primary_10_3390_photonics10111259
crossref_primary_10_1103_PhysRevLett_127_166401
crossref_primary_10_1063_5_0143663
crossref_primary_10_1088_2516_1075_acbdd9
crossref_primary_10_1016_j_physleta_2019_126183
crossref_primary_10_1021_acs_chemmater_5c01593
crossref_primary_10_1038_s42005_020_00395_1
crossref_primary_10_1088_0256_307X_38_9_097101
crossref_primary_10_1038_s41598_020_58660_w
crossref_primary_10_1002_adfm_202409174
crossref_primary_10_1016_j_carbon_2024_119624
crossref_primary_10_1038_s41563_025_02317_4
crossref_primary_10_1088_1674_1056_abfbd0
crossref_primary_10_1021_jacs_9b04649
crossref_primary_10_1002_adma_202104495
crossref_primary_10_1126_science_aay3588
crossref_primary_10_1016_j_pmatsci_2020_100665
crossref_primary_10_1002_anie_202008838
crossref_primary_10_1016_j_physe_2020_114438
crossref_primary_10_1002_ange_202310880
crossref_primary_10_1088_1361_648X_ac2330
crossref_primary_10_1093_chemle_upae036
crossref_primary_10_1002_ange_202306938
crossref_primary_10_1038_s42005_023_01231_y
crossref_primary_10_1246_bcsj_20190368
crossref_primary_10_1038_s41557_021_00773_4
crossref_primary_10_3389_fphy_2021_813801
crossref_primary_10_1002_anie_202305733
crossref_primary_10_1016_j_micrna_2025_208263
crossref_primary_10_1103_PhysRevResearch_2_043190
crossref_primary_10_1002_adma_202104481
crossref_primary_10_1016_j_surfrep_2019_05_001
crossref_primary_10_1088_1361_6528_acf93a
crossref_primary_10_1021_jacs_9b01805
crossref_primary_10_1021_jacs_4c02386
crossref_primary_10_1021_jacs_2c05670
crossref_primary_10_1002_pol_20210902
crossref_primary_10_1038_s44160_025_00744_4
crossref_primary_10_1021_jacs_2c11431
crossref_primary_10_1038_s41557_022_01042_8
crossref_primary_10_1021_jacs_8b10407
crossref_primary_10_3390_molecules26061621
crossref_primary_10_1021_jacs_1c09000
crossref_primary_10_1063_5_0174477
crossref_primary_10_1016_j_molstruc_2024_137492
crossref_primary_10_1038_s43586_021_00033_2
crossref_primary_10_1039_D0RA06007K
crossref_primary_10_1088_1361_648X_accdac
crossref_primary_10_1038_s41467_023_42256_9
crossref_primary_10_1002_anie_202306938
crossref_primary_10_1021_jacs_1c01882
crossref_primary_10_1002_adma_202402467
crossref_primary_10_1002_andp_202200116
crossref_primary_10_1002_ange_202305733
crossref_primary_10_1039_D0NR01270J
crossref_primary_10_1038_s41928_023_00991_3
crossref_primary_10_3390_nano12020224
Cites_doi 10.1070/1063-7869/44/10S/S29
10.1126/science.1222360
10.1143/JPSJ.65.1920
10.1038/s41467-017-00734-x
10.1103/PhysRevLett.39.1098
10.1038/ncomms11507
10.1038/nature09211
10.1002/adma.201505738
10.1098/rspa.1959.0100
10.1038/nnano.2017.155
10.1038/srep03842
10.1016/j.ssc.2009.02.049
10.1021/acsnano.7b06765
10.1103/PhysRevLett.42.1698
10.1126/science.1259327
10.1103/PhysRevB.92.201102
10.1038/ncomms10177
10.1126/science.1148047
10.1021/acs.jpclett.6b00422
10.1103/RevModPhys.82.3045
10.1088/1468-6996/11/5/054504
10.1038/ncomms9339
10.1103/PhysRevB.91.045429
10.1016/j.nantod.2017.02.007
10.1021/acs.nanolett.6b04727
10.1073/pnas.1405969111
10.1103/PhysRevB.22.2099
10.1103/PhysRevLett.119.076401
10.1038/ncomms13986
10.1039/C6NR08975E
10.1038/nature23268
10.1007/978-3-319-25607-8
ContentType Journal Article
Copyright Springer Nature Limited 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Aug 9, 2018
Copyright_xml – notice: Springer Nature Limited 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Aug 9, 2018
DBID AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-018-0375-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep (ProQuest)
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed




Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 213
ExternalDocumentID A572785623
30089919
10_1038_s41586_018_0375_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AFBBN
AFFDN
AFHKK
AGCDD
AGGDT
AGOIJ
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c604t-c9ffd0428e735bb7d5bae7ab28fa37a05f4f0bc342d0d5a04648a0a44eaac373
IEDL.DBID P5Z
ISICitedReferencesCount 472
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441115200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Sun Nov 09 13:43:28 EST 2025
Tue Oct 07 06:48:43 EDT 2025
Tue Nov 11 10:26:07 EST 2025
Sat Nov 29 11:23:23 EST 2025
Tue Jun 10 15:34:49 EDT 2025
Tue Nov 04 17:57:02 EST 2025
Thu Nov 13 15:51:00 EST 2025
Wed Feb 19 02:31:53 EST 2025
Sat Nov 29 02:12:46 EST 2025
Tue Nov 18 21:58:38 EST 2025
Fri Feb 21 02:38:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7717
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-c9ffd0428e735bb7d5bae7ab28fa37a05f4f0bc342d0d5a04648a0a44eaac373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30089919
PQID 2102387215
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_2086261644
proquest_journals_2102387215
gale_infotracmisc_A572785623
gale_infotracgeneralonefile_A572785623
gale_infotraccpiq_572785623
gale_infotracacademiconefile_A572785623
gale_incontextgauss_ISR_A572785623
pubmed_primary_30089919
crossref_primary_10_1038_s41586_018_0375_9
crossref_citationtrail_10_1038_s41586_018_0375_9
springer_journals_10_1038_s41586_018_0375_9
PublicationCentury 2000
PublicationDate 2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-00
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References de Vries (CR5) 2015; 92
Llinas (CR24) 2017; 8
Hasan, Kane (CR1) 2010; 82
Su, Schrieffer, Heeger (CR10) 1979; 42
Feigel’man, Skvortsov, Tikhonov (CR20) 2009; 149
Meier, An, Gadway (CR12) 2016; 7
Deniz (CR27) 2017; 17
CR11
Shen, Gao, Fuchs (CR22) 2017; 13
Kharche, Meunier (CR31) 2016; 7
Cai (CR15) 2010; 466
Söde (CR26) 2015; 91
König (CR2) 2007; 318
Talirz, Ruffieux, Fasel (CR17) 2016; 28
Bradlyn (CR4) 2017; 547
Wang (CR28) 2016; 7
Chiang (CR7) 1977; 39
Fujita, Wakabayashi, Nakada, Kusakabe (CR32) 1996; 65
Su, Schrieffer, Heeger (CR8) 1980; 22
Kitaev (CR3) 2001; 44
Longuet-Higgins, Salem (CR9) 1959; 251
Mourik (CR6) 2012; 336
Nguyen (CR16) 2017; 12
Tan, Sun, Chen, Shen (CR13) 2015; 4
Nadj-Perge (CR21) 2014; 346
Wakabayashi, Sasaki, Nakanishi, Enoki (CR25) 2010; 11
Kimouche (CR29) 2015; 6
Chen, Upadhyaya, Vitelli (CR14) 2014; 111
Merino-Díez (CR30) 2017; 11
Cao, Zhao, Louie (CR18) 2017; 119
Wang (CR19) 2015; 6
Fairbrother (CR23) 2017; 9
N Kharche (375_CR31) 2016; 7
M König (375_CR2) 2007; 318
Q Shen (375_CR22) 2017; 13
T Cao (375_CR18) 2017; 119
MZ Hasan (375_CR1) 2010; 82
A Kimouche (375_CR29) 2015; 6
MV Feigel’man (375_CR20) 2009; 149
W-P Su (375_CR8) 1980; 22
CK Chiang (375_CR7) 1977; 39
S Wang (375_CR28) 2016; 7
K Wakabayashi (375_CR25) 2010; 11
EJ Meier (375_CR12) 2016; 7
J Cai (375_CR15) 2010; 466
O Deniz (375_CR27) 2017; 17
A Fairbrother (375_CR23) 2017; 9
EK de Vries (375_CR5) 2015; 92
BG-g Chen (375_CR14) 2014; 111
M Fujita (375_CR32) 1996; 65
W Su (375_CR10) 1979; 42
375_CR11
L Talirz (375_CR17) 2016; 28
G Kitaev (375_CR3) 2001; 44
Z Wang (375_CR19) 2015; 6
N Merino-Díez (375_CR30) 2017; 11
H Söde (375_CR26) 2015; 91
S Nadj-Perge (375_CR21) 2014; 346
W Tan (375_CR13) 2015; 4
V Mourik (375_CR6) 2012; 336
GD Nguyen (375_CR16) 2017; 12
HC Longuet-Higgins (375_CR9) 1959; 251
JP Llinas (375_CR24) 2017; 8
B Bradlyn (375_CR4) 2017; 547
30087484 - Nature. 2018 Aug;560(7717):175-176
References_xml – volume: 44
  start-page: 131
  year: 2001
  end-page: 136
  ident: CR3
  article-title: Unpaired Majorana fermions in quantum wires
  publication-title: Phys. Usp.
  doi: 10.1070/1063-7869/44/10S/S29
– volume: 336
  start-page: 1003
  year: 2012
  end-page: 1007
  ident: CR6
  article-title: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices
  publication-title: Science
  doi: 10.1126/science.1222360
– volume: 65
  start-page: 1920
  year: 1996
  end-page: 1923
  ident: CR32
  article-title: Peculiar localized state at zigzag graphite edge
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.65.1920
– volume: 8
  year: 2017
  ident: CR24
  article-title: Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00734-x
– volume: 39
  start-page: 1098
  year: 1977
  ident: CR7
  article-title: Electrical conductivity in doped polyacetylene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.39.1098
– volume: 7
  year: 2016
  ident: CR28
  article-title: Giant edge state splitting at atomically precise graphene zigzag edges
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11507
– volume: 466
  start-page: 470
  year: 2010
  end-page: 473
  ident: CR15
  article-title: Atomically precise bottom-up fabrication of graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature09211
– volume: 28
  start-page: 6222
  year: 2016
  end-page: 6231
  ident: CR17
  article-title: On-surface synthesis of atomically precise graphene nanoribbons
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505738
– volume: 251
  start-page: 172–183
  year: 1959
  ident: CR9
  article-title: The alternation of bond lengths in long conjugated chain molecules
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1959.0100
– volume: 12
  start-page: 1077
  year: 2017
  end-page: 1082
  ident: CR16
  article-title: Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.155
– volume: 4
  year: 2015
  ident: CR13
  article-title: Photonic simulation of topological excitations in metamaterials
  publication-title: Sci. Rep.
  doi: 10.1038/srep03842
– volume: 149
  start-page: 1101
  year: 2009
  end-page: 1105
  ident: CR20
  article-title: Theory of proximity-induced superconductivity in graphene
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2009.02.049
– volume: 11
  start-page: 11661
  year: 2017
  end-page: 11668
  ident: CR30
  article-title: Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111)
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06765
– volume: 42
  start-page: 1698
  year: 1979
  ident: CR10
  article-title: Solitons in polyacetylene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.1698
– volume: 346
  start-page: 602
  year: 2014
  end-page: 607
  ident: CR21
  article-title: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor
  publication-title: Science
  doi: 10.1126/science.1259327
– volume: 92
  start-page: 201102
  year: 2015
  ident: CR5
  article-title: Towards the understanding of the origin of charge-current-induced spin voltage signals in the topological insulator Bi Se
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.201102
– volume: 6
  year: 2015
  ident: CR29
  article-title: Ultra-narrow metallic armchair graphene nanoribbons
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10177
– volume: 318
  start-page: 766
  year: 2007
  end-page: 770
  ident: CR2
  article-title: Quantum spin Hall insulator state in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 7
  start-page: 1526
  year: 2016
  end-page: 1533
  ident: CR31
  article-title: Width and crystal orientation dependent band gap renormalization in substrate-supported graphene nanoribbons
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00422
– volume: 82
  start-page: 3045
  year: 2010
  end-page: 3067
  ident: CR1
  article-title: Topological insulators
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 11
  start-page: 054504
  year: 2010
  ident: CR25
  article-title: Electronic states of graphene nanoribbons and analytical solutions
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/11/5/054504
– volume: 6
  year: 2015
  ident: CR19
  article-title: Strong interface-induced spin–orbit interaction in graphene on WS
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9339
– ident: CR11
– volume: 91
  start-page: 045429
  year: 2015
  ident: CR26
  article-title: Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.045429
– volume: 13
  start-page: 77
  year: 2017
  end-page: 96
  ident: CR22
  article-title: Frontiers of on-surface synthesis: from principles to applications
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.02.007
– volume: 17
  start-page: 2197
  year: 2017
  end-page: 2203
  ident: CR27
  article-title: Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04727
– volume: 111
  start-page: 13004
  year: 2014
  end-page: 13009
  ident: CR14
  article-title: Nonlinear conduction via solitons in a topological mechanical insulator
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1405969111
– volume: 22
  start-page: 2099
  year: 1980
  end-page: 2111
  ident: CR8
  article-title: Soliton excitations in polyacetylene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.22.2099
– volume: 119
  start-page: 076401
  year: 2017
  ident: CR18
  article-title: Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.076401
– volume: 7
  year: 2016
  ident: CR12
  article-title: Observation of the topological soliton state in the Su–Schrieffer–Heeger model
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13986
– volume: 9
  start-page: 2785
  year: 2017
  end-page: 2792
  ident: CR23
  article-title: High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons
  publication-title: Nanoscale
  doi: 10.1039/C6NR08975E
– volume: 547
  start-page: 298
  year: 2017
  end-page: 305
  ident: CR4
  article-title: Topological quantum chemistry
  publication-title: Nature
  doi: 10.1038/nature23268
– volume: 318
  start-page: 766
  year: 2007
  ident: 375_CR2
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 28
  start-page: 6222
  year: 2016
  ident: 375_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505738
– volume: 547
  start-page: 298
  year: 2017
  ident: 375_CR4
  publication-title: Nature
  doi: 10.1038/nature23268
– volume: 111
  start-page: 13004
  year: 2014
  ident: 375_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1405969111
– volume: 7
  year: 2016
  ident: 375_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11507
– volume: 11
  start-page: 054504
  year: 2010
  ident: 375_CR25
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/11/5/054504
– volume: 82
  start-page: 3045
  year: 2010
  ident: 375_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 42
  start-page: 1698
  year: 1979
  ident: 375_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.1698
– volume: 17
  start-page: 2197
  year: 2017
  ident: 375_CR27
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04727
– volume: 65
  start-page: 1920
  year: 1996
  ident: 375_CR32
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.65.1920
– volume: 7
  year: 2016
  ident: 375_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13986
– volume: 13
  start-page: 77
  year: 2017
  ident: 375_CR22
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.02.007
– volume: 119
  start-page: 076401
  year: 2017
  ident: 375_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.076401
– volume: 6
  year: 2015
  ident: 375_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10177
– volume: 149
  start-page: 1101
  year: 2009
  ident: 375_CR20
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2009.02.049
– ident: 375_CR11
  doi: 10.1007/978-3-319-25607-8
– volume: 9
  start-page: 2785
  year: 2017
  ident: 375_CR23
  publication-title: Nanoscale
  doi: 10.1039/C6NR08975E
– volume: 12
  start-page: 1077
  year: 2017
  ident: 375_CR16
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.155
– volume: 346
  start-page: 602
  year: 2014
  ident: 375_CR21
  publication-title: Science
  doi: 10.1126/science.1259327
– volume: 4
  year: 2015
  ident: 375_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/srep03842
– volume: 92
  start-page: 201102
  year: 2015
  ident: 375_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.201102
– volume: 6
  year: 2015
  ident: 375_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9339
– volume: 91
  start-page: 045429
  year: 2015
  ident: 375_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.045429
– volume: 251
  start-page: 172–183
  year: 1959
  ident: 375_CR9
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1959.0100
– volume: 466
  start-page: 470
  year: 2010
  ident: 375_CR15
  publication-title: Nature
  doi: 10.1038/nature09211
– volume: 7
  start-page: 1526
  year: 2016
  ident: 375_CR31
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00422
– volume: 39
  start-page: 1098
  year: 1977
  ident: 375_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.39.1098
– volume: 11
  start-page: 11661
  year: 2017
  ident: 375_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06765
– volume: 44
  start-page: 131
  year: 2001
  ident: 375_CR3
  publication-title: Phys. Usp.
  doi: 10.1070/1063-7869/44/10S/S29
– volume: 336
  start-page: 1003
  year: 2012
  ident: 375_CR6
  publication-title: Science
  doi: 10.1126/science.1222360
– volume: 22
  start-page: 2099
  year: 1980
  ident: 375_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.22.2099
– volume: 8
  year: 2017
  ident: 375_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00734-x
– reference: 30087484 - Nature. 2018 Aug;560(7717):175-176
SSID ssj0005174
Score 2.6977313
Snippet Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana...
Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms 639/766/119/2792/4128
639/766/119/995
639/925/918/1052
639/925/918/1055
Atoms
Condensed matter physics
Energy
Graphene
Graphite
Humanities and Social Sciences
Information technology
Letter
multidisciplinary
Nanomaterials
Nanoribbons
Nanotechnology
Phases
Photonics
Polyacetylene
Properties
Quantum phenomena
Qubits (quantum computing)
Robustness
Science
Science (multidisciplinary)
Solitons
Spectrum analysis
Superconductors
Topological insulators
Title Engineering of robust topological quantum phases in graphene nanoribbons
URI https://link.springer.com/article/10.1038/s41586-018-0375-9
https://www.ncbi.nlm.nih.gov/pubmed/30089919
https://www.proquest.com/docview/2102387215
https://www.proquest.com/docview/2086261644
Volume 560
WOSCitedRecordID wos000441115200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature (UW-Madison Shared)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbSLwAG19lowoI8amwtLFj5wl106ahqaXqKlR4sRwnHpUgaZuE38-dk36kgr3wclLks5P4PnyXu9wR8gqsBsrCKHAFi5VLTRy4KqDMVcaA1xzGoUi0bTbBBwMxmYTD-oNbXqdVLnWiVdRxpvEb-TG6Jr4Af4V9ms1d7BqF0dW6hcYO2cMqCSiYQ_Z9neKxVYV5GdX0xXEOB5dAXxp_MOPMDRvn0rZ23jietuKl9hg6v_-_L_CA3KsNUKdXccw-uZWkB-SOTQTV-QHZr4U9d97WFanfPSQXG1ULncw4iywq88IpqgYLSGZnXgKJyl_O7Acci7kzTR1bChuWcFKVwnNEEfD3IzI-PxufXrh1CwZXBx4tXB0aE6NblXCfRRGPWaQSrqKuMMrnymOGGi_SPu3GXswUxkmF8hSliVLa5_5jsptmafKUOJqCutAdY4IITLCARlhOHQM9jNOE8rBFvOX-S12XJ8cuGT-lDZP7QlYkk0AyiSSTMOX9asqsqs1xE_JLJKrEmhcpJtVcqzLP5eerkewxMOIEGoIt8qZGMhncXKv6HwV4BSyT1cA8bGDq2XQuN0ZfN0avK4L9bZmjBiLItm4OL3lJ1roll2tGapEXq2GciflyaZKVgGM9VXCFaYs8qVh3tUW-h6HeDuzIhyUvrxf_5_49u_lRDsndrhUmTI08IrvFokyek9v6dzHNF22yw0dfEU64hQKgOO20yd7J2WA4gqvLk48A-94lwm7fwi8WDhHyCl61rYDDvGFv3P_2B_RGRxs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGAMELsMGgbIBBfA0ULUvsOHlAaAKmVhsVgj70zbKdeFSCpG0SEH8U_yN3-WibCva2B559dmv7d1-58x0hT8FqYDzSgRPyWDnMxoGjAsYdZS14zVEchYmpmk2I4TAcj6NPG-R3-xYG0ypbmVgJ6jgz-I38AF0TPwR_hb-dzhzsGoXR1baFRg2Lk-TXT3DZ8jeD93C_zzzv-MPoXd9pugo4JnBZ4ZjI2hg9hUT4XGsRc60SobQXWuUL5XLLrKuNz7zYjbnC0F-oXMVYopTxhQ_LXiKXQYwLzCATY7HMKFkr-twGUf3wIAc9GaLrju_ZBHeijhpcVwYr2nAtPFtpveOb_9l53SI3GvOaHtX8sEU2knSbXK3SXE2-TbYaUZbTl0297f3bpL9Sk5Fmls4zXeYFLer2EQhiOisBgOV3Ov0KSj-nk5RWhb5hCZqqFLatNXDvHTK6iK3tkM00S5N7hBoGwtAcWhtoMDADprFYPIaxuGAJE1GPuO11S9MUX8ceIN9klQTgh7JGiASESESIhCmvFlOmdeWR84ifIIYkVvRIMWXoTJV5LgdfPssjDiZqiGZuj7xoiGwGP25U8wIDtoBFwDqUux1KM53M5Mro887oWX1hf1tmr0MIkst0h1voykZy5nKJ2x55vBjGmZgNmCZZCTSVHw6OPuuRuzWnLI7IdzGQfQgn8rplneXi_zy_--f_lUfkWn_08VSeDoYnu-S6V_ExJoHukc1iXiYPyBXzo5jk84eVRKBEXjBH_QF6FpgL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtNAcFTKQ1yAlldogQXxRlaceNePA0IVJWpUFFW0h4rLanftLZHATuIYxKfxd8z4kcQR9NYD552dZGfn6ZmdAXiGXgMXkfadUMTK4Tb2HeVz4ShrMWqO4ihMTDlsIhiNwtPT6GgDfjdvYaisstGJpaKOM0PfyLsUmnghxiuia-uyiKP9wfvJ1KEJUpRpbcZpVCxymPz6ieFb_m64j3f9vN8ffDz5cODUEwYc47t87pjI2piihiTwhNZBLLRKAqX7oVVeoFxhuXW18Xg_dmOhKA0YKldxnihlvMBDtJfgcoAhJsV9R-LLsrpkrQF0k1D1wm6ONjOkMJ7etgXCiVomcd0wrFjGtVRtaQEHN_9j2t2CG7XbzfYqOdmCjSTdhqtl-avJt2GrVnE5e1X34X59Gw5WejWyzLJZpot8zubVWAlibjYtkDGL72zyFZ2BnI1TVjYARxQsVSkeW2uU6jtwchFHuwubaZYm94EZjkrS9Kz1NTqePtfURJ7SWyLgCQ-iDrjN1UtTN2Wn2SDfZFkc4IWy4haJ3CKJWyRuebPYMqk6kpwH_JT4SVKnj5Tu_UwVeS6Hx5_lnkDXNST3twMvayCb4Y8bVb_MwCNQc7AW5E4L0kzGU7my-qK1elZd2N_Q7LYAUaOZ9nLDxrLWqLlc8nAHniyWaSdVCaZJViBMGZ_3kNIduFdJzYJEnksJ7h5S5G0jRkvk_6Tfg_P_ymO4hoIkPw1HhztwvV-KNNWG7sLmfFYkD-GK-TEf57NHpXJgIC9YoP4AhvWg_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+robust+topological+quantum+phases+in+graphene+nanoribbons&rft.jtitle=Nature+%28London%29&rft.au=Gr%C3%B6ning%2C+Oliver&rft.au=Narita%2C+Akimitsu&rft.au=M%C3%BCllen%2C+Klaus&rft.au=Ruffieux%2C+Pascal&rft.date=2018-08-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=560&rft.issue=7717&rft.spage=209&rft.epage=213A&rft_id=info:doi/10.1038%2Fs41586-018-0375-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon