Engineering of robust topological quantum phases in graphene nanoribbons
Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana fermions 1 – 3 . The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of cur...
Uloženo v:
| Vydáno v: | Nature (London) Ročník 560; číslo 7717; s. 209 - 213 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.08.2018
Nature Publishing Group |
| Témata: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana fermions
1
–
3
. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics
4
–
6
. The topological properties of quantum states have helped to explain the conductivity of doped
trans
-polyacetylene in terms of dispersionless soliton states
7
–
9
. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model
10
,
11
. Because the SSH model describes chiral topological insulators, charge fractionalization and spin–charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations
12
–
14
. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian
15
–
17
. We demonstrate the controlled periodic coupling of topological boundary states
18
at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin–orbit coupling
19
or superconductivity
20
, and may allow the realization of Kitaev-like Hamiltonians
3
and Majorana-type end states
21
.
Graphene nanoribbons are used to design robust nanomaterials with controlled periodic coupling of topological boundary states to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. |
|---|---|
| AbstractList | Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions.sup.1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics.sup.4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states.sup.7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model.sup.10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations.sup.12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian.sup.15-17. We demonstrate the controlled periodic coupling of topological boundary states.sup.18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling.sup.19 or superconductivity.sup.20, and may allow the realization of Kitaev-like Hamiltonians.sup.3 and Majorana-type end states.sup.21. Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majorana-type end states21.Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majorana-type end states21. Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions . The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics . The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states . In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model . Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations . It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian . We demonstrate the controlled periodic coupling of topological boundary states at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling or superconductivity , and may allow the realization of Kitaev-like Hamiltonians and Majorana-type end states . Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions.sup.1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics.sup.4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states.sup.7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model.sup.10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations.sup.12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian.sup.15-17. We demonstrate the controlled periodic coupling of topological boundary states.sup.18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling.sup.19 or superconductivity.sup.20, and may allow the realization of Kitaev-like Hamiltonians.sup.3 and Majorana-type end states.sup.21.Graphene nanoribbons are used to design robust nanomaterials with controlled periodic coupling of topological boundary states to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana fermions 1 – 3 . The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics 4 – 6 . The topological properties of quantum states have helped to explain the conductivity of doped trans -polyacetylene in terms of dispersionless soliton states 7 – 9 . In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model 10 , 11 . Because the SSH model describes chiral topological insulators, charge fractionalization and spin–charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations 12 – 14 . It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian 15 – 17 . We demonstrate the controlled periodic coupling of topological boundary states 18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin–orbit coupling 19 or superconductivity 20 , and may allow the realization of Kitaev-like Hamiltonians 3 and Majorana-type end states 21 . Graphene nanoribbons are used to design robust nanomaterials with controlled periodic coupling of topological boundary states to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximityinduced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majoranatype end states21. |
| Audience | Academic |
| Author | Wang, Shiyong Cupo, Andrew Feng, Xinliang Gröning, Oliver Narita, Akimitsu Yao, Xuelin Müllen, Klaus Pignedoli, Carlo A. Fasel, Roman Ruffieux, Pascal Meunier, Vincent Borin Barin, Gabriela Daniels, Colin |
| Author_xml | – sequence: 1 givenname: Oliver surname: Gröning fullname: Gröning, Oliver email: oliver.groening@empa.ch organization: Empa, Swiss Federal Laboratories for Materials Science and Technology – sequence: 2 givenname: Shiyong surname: Wang fullname: Wang, Shiyong organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University – sequence: 3 givenname: Xuelin surname: Yao fullname: Yao, Xuelin organization: Max Planck Institute for Polymer Research – sequence: 4 givenname: Carlo A. surname: Pignedoli fullname: Pignedoli, Carlo A. organization: Empa, Swiss Federal Laboratories for Materials Science and Technology – sequence: 5 givenname: Gabriela surname: Borin Barin fullname: Borin Barin, Gabriela organization: Empa, Swiss Federal Laboratories for Materials Science and Technology – sequence: 6 givenname: Colin surname: Daniels fullname: Daniels, Colin organization: Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute – sequence: 7 givenname: Andrew surname: Cupo fullname: Cupo, Andrew organization: Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute – sequence: 8 givenname: Vincent surname: Meunier fullname: Meunier, Vincent organization: Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute – sequence: 9 givenname: Xinliang surname: Feng fullname: Feng, Xinliang organization: Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 10 givenname: Akimitsu surname: Narita fullname: Narita, Akimitsu organization: Max Planck Institute for Polymer Research – sequence: 11 givenname: Klaus surname: Müllen fullname: Müllen, Klaus organization: Max Planck Institute for Polymer Research – sequence: 12 givenname: Pascal surname: Ruffieux fullname: Ruffieux, Pascal organization: Empa, Swiss Federal Laboratories for Materials Science and Technology – sequence: 13 givenname: Roman surname: Fasel fullname: Fasel, Roman organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Chemistry and Biochemistry, University of Bern |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30089919$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhS1URKeFB2CDItjAIuX6J7FnWVWFVqqEBN1bN46TusrYGTuRytvjaAplqgF5Ycn-ztG1zzkhRz54S8hbCmcUuPqcBK1UXQJVJXBZlesXZEWFrEtRK3lEVgAs3yheH5OTlO4BoKJSvCLHHECt13S9IleXvnfe2uh8X4SuiKGZ01RMYQxD6J3BodjO6Kd5U4x3mGwqnC_6iOOd9bbw6EN0TRN8ek1edjgk--ZxPyW3Xy5vL67Km29fry_Ob0pTg5hKs-66FgRTVvKqaWRbNWglNkx1yCVC1YkOGsMFa6GtEEQtFAIKYRENl_yUfNzZjjFsZ5smvXHJ2GFAb8OcNANVs5rWQmT0wzP0PszR5-E0o8C4koxWT1SPg9XOd2GKaBZTfV5JJlVVM56p8gDV5z-IOORQOpeP9_j3B3gzuq3-Gzo7AOXV2o0zB10_7QkyM9mHqcc5JX394_s---7x9XOzsa0eo9tg_Kl_R58BugNMDClF2_1BKOilXnpXL53rpZd66UUjn2mMm3ByeY6Ibvivku2UaVyqZuNTGP8W_QI9x99z |
| CitedBy_id | crossref_primary_10_1103_PhysRevResearch_3_023037 crossref_primary_10_3390_nano13142066 crossref_primary_10_1002_pssb_201900343 crossref_primary_10_1038_s41535_024_00637_3 crossref_primary_10_1021_acs_nanolett_5c02047 crossref_primary_10_1021_jacs_3c04487 crossref_primary_10_1021_jacs_3c00563 crossref_primary_10_1103_PhysRevB_105_115424 crossref_primary_10_1002_chem_202501399 crossref_primary_10_1021_jacs_0c01930 crossref_primary_10_1088_0256_307X_41_9_097302 crossref_primary_10_1021_jacs_4c16328 crossref_primary_10_1038_s41467_024_54774_1 crossref_primary_10_1088_1361_648X_ac533b crossref_primary_10_1002_macp_202200337 crossref_primary_10_1016_j_chaos_2025_116044 crossref_primary_10_1021_jacs_1c01355 crossref_primary_10_1088_2053_1583_ad047e crossref_primary_10_1002_ange_202414583 crossref_primary_10_1007_s12274_021_3409_9 crossref_primary_10_1103_PhysRevMaterials_7_084201 crossref_primary_10_1039_D5NR02677F crossref_primary_10_1002_anie_202310880 crossref_primary_10_1002_anie_202008925 crossref_primary_10_1103_PhysRevA_111_032417 crossref_primary_10_1002_smll_202400473 crossref_primary_10_1016_j_chempr_2020_01_022 crossref_primary_10_1002_cjoc_202300614 crossref_primary_10_1021_acs_accounts_5c00157 crossref_primary_10_1038_s41467_021_26656_3 crossref_primary_10_1088_2752_5724_ac8aba crossref_primary_10_1016_j_chaos_2025_116176 crossref_primary_10_1002_anie_202100260 crossref_primary_10_1016_j_flatc_2025_100808 crossref_primary_10_1038_s41467_021_25688_z crossref_primary_10_1063_5_0059066 crossref_primary_10_1002_pssr_202500203 crossref_primary_10_1002_ange_201913024 crossref_primary_10_1002_ange_202500490 crossref_primary_10_1088_1361_648X_ad3872 crossref_primary_10_1002_adma_202001893 crossref_primary_10_1103_PhysRevResearch_6_043146 crossref_primary_10_1088_1361_648X_ac76fc crossref_primary_10_1002_cphc_201900312 crossref_primary_10_1007_s41127_023_00058_2 crossref_primary_10_3390_nano11123229 crossref_primary_10_1016_j_carbon_2020_10_060 crossref_primary_10_1088_1361_648X_ab4466 crossref_primary_10_3390_ijms24021509 crossref_primary_10_1088_1674_1056_ac7bfe crossref_primary_10_1088_1674_1056_ac80b3 crossref_primary_10_1038_s41467_020_19051_x crossref_primary_10_3390_nano14090778 crossref_primary_10_1002_cnma_201900706 crossref_primary_10_1021_jacs_3c05233 crossref_primary_10_1038_s41467_023_40542_0 crossref_primary_10_1016_j_physe_2025_116260 crossref_primary_10_1002_smtd_202400211 crossref_primary_10_1002_cphc_201900445 crossref_primary_10_1002_smll_202308430 crossref_primary_10_1016_j_mseb_2023_116785 crossref_primary_10_1088_1367_2630_ad1071 crossref_primary_10_1038_s42005_022_01049_0 crossref_primary_10_1007_s12274_021_3539_0 crossref_primary_10_1039_D2PY00809B crossref_primary_10_1002_ange_202000488 crossref_primary_10_1038_s42005_024_01737_z crossref_primary_10_1002_bio_4334 crossref_primary_10_1038_s41535_023_00558_7 crossref_primary_10_1039_D5CC02473K crossref_primary_10_1038_s41557_025_01887_9 crossref_primary_10_3390_nano12193357 crossref_primary_10_1002_anie_202006176 crossref_primary_10_1021_acsnano_4c10357 crossref_primary_10_1021_acsnano_5c03817 crossref_primary_10_1039_D2NR05443D crossref_primary_10_3390_molecules26102965 crossref_primary_10_1021_jacs_3c01576 crossref_primary_10_1002_adma_202200956 crossref_primary_10_1002_ange_201808640 crossref_primary_10_1016_j_chaos_2022_113010 crossref_primary_10_1016_j_apmt_2022_101593 crossref_primary_10_1002_anie_202312610 crossref_primary_10_1088_2053_1583_aaefdb crossref_primary_10_1039_D4NR05192K crossref_primary_10_1063_1_5054823 crossref_primary_10_1038_s41565_020_0667_8 crossref_primary_10_1038_s41557_022_01112_x crossref_primary_10_1016_j_chempr_2023_11_002 crossref_primary_10_1088_1367_2630_ac04c9 crossref_primary_10_1039_C8SC03780A crossref_primary_10_1002_adfm_202104031 crossref_primary_10_1002_adom_202500998 crossref_primary_10_1002_anie_201913783 crossref_primary_10_1002_ange_202006176 crossref_primary_10_1016_j_physleta_2023_128826 crossref_primary_10_1021_acs_nanolett_5c02355 crossref_primary_10_1002_adma_201905957 crossref_primary_10_1039_D3SC02824K crossref_primary_10_1039_D1SC04908A crossref_primary_10_1039_D3NR04656G crossref_primary_10_1088_2053_1583_ab1e0a crossref_primary_10_1016_j_physe_2019_113648 crossref_primary_10_1039_D0NR05763K crossref_primary_10_1038_s41467_024_53927_6 crossref_primary_10_1038_s41565_024_01775_2 crossref_primary_10_1021_jacs_9b08060 crossref_primary_10_1088_2752_5724_ac8a63 crossref_primary_10_1016_j_physb_2024_416711 crossref_primary_10_1088_2633_4356_adcfe5 crossref_primary_10_1016_j_physrep_2020_05_003 crossref_primary_10_1007_s11426_019_9491_2 crossref_primary_10_1016_j_progsurf_2020_100595 crossref_primary_10_1016_j_mtquan_2025_100041 crossref_primary_10_1002_adma_202306311 crossref_primary_10_1016_j_carbon_2023_01_054 crossref_primary_10_1016_j_diamond_2023_110426 crossref_primary_10_1002_advs_202303222 crossref_primary_10_1007_s00214_025_03223_3 crossref_primary_10_1002_adma_202110099 crossref_primary_10_1002_cphc_201900510 crossref_primary_10_1016_j_cjph_2025_03_012 crossref_primary_10_1016_j_susc_2022_122180 crossref_primary_10_3390_nano11123303 crossref_primary_10_1088_1361_6528_acc1eb crossref_primary_10_1002_adma_201904177 crossref_primary_10_1002_adma_202207212 crossref_primary_10_1039_D4TC04581E crossref_primary_10_1088_1361_648X_ab3f81 crossref_primary_10_1038_s41565_020_0668_7 crossref_primary_10_1002_ange_202100260 crossref_primary_10_1002_anie_201808640 crossref_primary_10_1038_s41557_022_01061_5 crossref_primary_10_1038_s41467_023_36613_x crossref_primary_10_1002_chem_202200584 crossref_primary_10_1038_s41467_025_63159_x crossref_primary_10_1103_PhysRevB_111_035113 crossref_primary_10_1016_j_jmmm_2022_169948 crossref_primary_10_1016_j_physleta_2025_130945 crossref_primary_10_1016_j_rinp_2023_107254 crossref_primary_10_1016_j_synthmet_2019_03_016 crossref_primary_10_1002_smll_202103044 crossref_primary_10_1021_acsnano_5c08991 crossref_primary_10_1103_PhysRevResearch_6_033268 crossref_primary_10_1002_andp_202500232 crossref_primary_10_1063_1_5125859 crossref_primary_10_1016_j_chempr_2023_01_019 crossref_primary_10_1007_s12274_023_5605_2 crossref_primary_10_1002_chem_202203622 crossref_primary_10_1016_j_cclet_2024_110100 crossref_primary_10_1063_5_0081074 crossref_primary_10_1126_science_ade6219 crossref_primary_10_1016_j_commt_2024_100008 crossref_primary_10_1021_jacs_2c02491 crossref_primary_10_1103_hjt2_3s9h crossref_primary_10_1016_j_carbon_2020_08_065 crossref_primary_10_1038_s41598_021_99596_z crossref_primary_10_1021_jacs_5c03736 crossref_primary_10_1039_D1SC03976H crossref_primary_10_1002_ange_202114697 crossref_primary_10_5802_crphys_3 crossref_primary_10_1002_adma_201906054 crossref_primary_10_1021_jacs_2c13822 crossref_primary_10_1039_D4NR02458C crossref_primary_10_3390_nano12010137 crossref_primary_10_1002_ange_202008838 crossref_primary_10_1016_j_chempr_2020_06_009 crossref_primary_10_1038_s41557_019_0392_9 crossref_primary_10_1002_anie_202000488 crossref_primary_10_1088_1742_5468_ad8f2c crossref_primary_10_1021_prechem_3c00072 crossref_primary_10_1088_1361_648X_ab62bb crossref_primary_10_1038_s41565_024_01634_0 crossref_primary_10_1088_1361_648X_ad0766 crossref_primary_10_1021_jacs_3c02451 crossref_primary_10_1002_cphc_202000476 crossref_primary_10_1038_s41467_018_06940_5 crossref_primary_10_1021_jacs_0c03946 crossref_primary_10_1021_jacs_5c01783 crossref_primary_10_1103_PhysRevApplied_14_064019 crossref_primary_10_1038_s41598_024_62624_9 crossref_primary_10_1016_j_enchem_2021_100066 crossref_primary_10_1021_jacs_0c05235 crossref_primary_10_1093_nsr_nwae236 crossref_primary_10_1038_s41586_021_04201_y crossref_primary_10_1002_anie_202509932 crossref_primary_10_1007_s10853_022_07524_x crossref_primary_10_1088_2632_959X_ad04f8 crossref_primary_10_1038_s41928_023_00992_2 crossref_primary_10_1002_ange_201913783 crossref_primary_10_1038_s41586_024_08563_x crossref_primary_10_1002_anie_202414583 crossref_primary_10_1002_chem_202200944 crossref_primary_10_1016_j_carbon_2021_08_001 crossref_primary_10_1088_1361_648X_adc35c crossref_primary_10_1002_ange_202012328 crossref_primary_10_1126_science_abq6948 crossref_primary_10_1021_jacs_3c05755 crossref_primary_10_1007_s44214_022_00023_9 crossref_primary_10_1016_j_progpolymsci_2019_101179 crossref_primary_10_1063_1_5125137 crossref_primary_10_1140_epjp_s13360_025_06492_w crossref_primary_10_1016_j_apsusc_2020_145797 crossref_primary_10_1016_j_ssc_2024_115673 crossref_primary_10_1038_s43246_022_00326_3 crossref_primary_10_1038_s42005_020_0377_4 crossref_primary_10_1038_s41534_020_0253_9 crossref_primary_10_1039_D5CC03666F crossref_primary_10_1021_jacs_4c00270 crossref_primary_10_1038_d41586_018_05851_1 crossref_primary_10_1002_aelm_202200252 crossref_primary_10_1038_s44160_024_00488_7 crossref_primary_10_1088_1674_1056_ac904d crossref_primary_10_1016_j_chempr_2020_10_009 crossref_primary_10_1002_ange_202312610 crossref_primary_10_1002_anie_202012328 crossref_primary_10_1016_j_carbon_2023_118688 crossref_primary_10_1038_s42005_025_02110_4 crossref_primary_10_1002_smtd_202300401 crossref_primary_10_1038_s41535_020_0219_3 crossref_primary_10_1021_jacs_0c09973 crossref_primary_10_1088_2053_1583_ab1116 crossref_primary_10_1002_advs_202106055 crossref_primary_10_1039_D1RA05902E crossref_primary_10_1002_aelm_202201204 crossref_primary_10_1016_j_physe_2022_115516 crossref_primary_10_1088_2053_1583_ab9ea3 crossref_primary_10_1038_s41597_020_00638_4 crossref_primary_10_1002_ange_202008925 crossref_primary_10_1002_adma_202106909 crossref_primary_10_1088_1367_2630_ad19aa crossref_primary_10_1039_D3NR03736C crossref_primary_10_1016_j_carbon_2024_119164 crossref_primary_10_1088_1361_648X_aae9cb crossref_primary_10_1103_PhysRevB_103_165403 crossref_primary_10_1063_5_0039777 crossref_primary_10_1088_2053_1583_abf716 crossref_primary_10_1088_2516_1075_ad159f crossref_primary_10_1002_macp_201900374 crossref_primary_10_1021_jacs_0c03635 crossref_primary_10_3390_nano13111757 crossref_primary_10_1002_cphc_202100049 crossref_primary_10_1021_acs_jpcc_5c04965 crossref_primary_10_1103_PhysRevResearch_3_013265 crossref_primary_10_1002_anie_201913024 crossref_primary_10_1002_anie_202500490 crossref_primary_10_1021_acsanm_5c02753 crossref_primary_10_1039_D3NH00416C crossref_primary_10_1002_admt_202000744 crossref_primary_10_1021_acs_nanolett_4c06641 crossref_primary_10_1002_smll_202202301 crossref_primary_10_1080_23746149_2019_1651672 crossref_primary_10_1002_ange_202509932 crossref_primary_10_1002_anie_202114697 crossref_primary_10_1021_jacs_2c05570 crossref_primary_10_1038_s41467_024_45138_w crossref_primary_10_1021_jacs_1c05586 crossref_primary_10_1038_s41598_025_03707_z crossref_primary_10_1088_1361_648X_ac8a7f crossref_primary_10_1103_PhysRevLett_130_026401 crossref_primary_10_1103_l1n5_1jsm crossref_primary_10_1126_science_abb8880 crossref_primary_10_1002_andp_202500099 crossref_primary_10_1103_lphs_gz7c crossref_primary_10_1103_PhysRevResearch_6_033323 crossref_primary_10_1007_s11467_021_1125_2 crossref_primary_10_1088_1402_4896_adcd09 crossref_primary_10_3390_photonics10111259 crossref_primary_10_1103_PhysRevLett_127_166401 crossref_primary_10_1063_5_0143663 crossref_primary_10_1088_2516_1075_acbdd9 crossref_primary_10_1016_j_physleta_2019_126183 crossref_primary_10_1021_acs_chemmater_5c01593 crossref_primary_10_1038_s42005_020_00395_1 crossref_primary_10_1088_0256_307X_38_9_097101 crossref_primary_10_1038_s41598_020_58660_w crossref_primary_10_1002_adfm_202409174 crossref_primary_10_1016_j_carbon_2024_119624 crossref_primary_10_1038_s41563_025_02317_4 crossref_primary_10_1088_1674_1056_abfbd0 crossref_primary_10_1021_jacs_9b04649 crossref_primary_10_1002_adma_202104495 crossref_primary_10_1126_science_aay3588 crossref_primary_10_1016_j_pmatsci_2020_100665 crossref_primary_10_1002_anie_202008838 crossref_primary_10_1016_j_physe_2020_114438 crossref_primary_10_1002_ange_202310880 crossref_primary_10_1088_1361_648X_ac2330 crossref_primary_10_1093_chemle_upae036 crossref_primary_10_1002_ange_202306938 crossref_primary_10_1038_s42005_023_01231_y crossref_primary_10_1246_bcsj_20190368 crossref_primary_10_1038_s41557_021_00773_4 crossref_primary_10_3389_fphy_2021_813801 crossref_primary_10_1002_anie_202305733 crossref_primary_10_1016_j_micrna_2025_208263 crossref_primary_10_1103_PhysRevResearch_2_043190 crossref_primary_10_1002_adma_202104481 crossref_primary_10_1016_j_surfrep_2019_05_001 crossref_primary_10_1088_1361_6528_acf93a crossref_primary_10_1021_jacs_9b01805 crossref_primary_10_1021_jacs_4c02386 crossref_primary_10_1021_jacs_2c05670 crossref_primary_10_1002_pol_20210902 crossref_primary_10_1038_s44160_025_00744_4 crossref_primary_10_1021_jacs_2c11431 crossref_primary_10_1038_s41557_022_01042_8 crossref_primary_10_1021_jacs_8b10407 crossref_primary_10_3390_molecules26061621 crossref_primary_10_1021_jacs_1c09000 crossref_primary_10_1063_5_0174477 crossref_primary_10_1016_j_molstruc_2024_137492 crossref_primary_10_1038_s43586_021_00033_2 crossref_primary_10_1039_D0RA06007K crossref_primary_10_1088_1361_648X_accdac crossref_primary_10_1038_s41467_023_42256_9 crossref_primary_10_1002_anie_202306938 crossref_primary_10_1021_jacs_1c01882 crossref_primary_10_1002_adma_202402467 crossref_primary_10_1002_andp_202200116 crossref_primary_10_1002_ange_202305733 crossref_primary_10_1039_D0NR01270J crossref_primary_10_1038_s41928_023_00991_3 crossref_primary_10_3390_nano12020224 |
| Cites_doi | 10.1070/1063-7869/44/10S/S29 10.1126/science.1222360 10.1143/JPSJ.65.1920 10.1038/s41467-017-00734-x 10.1103/PhysRevLett.39.1098 10.1038/ncomms11507 10.1038/nature09211 10.1002/adma.201505738 10.1098/rspa.1959.0100 10.1038/nnano.2017.155 10.1038/srep03842 10.1016/j.ssc.2009.02.049 10.1021/acsnano.7b06765 10.1103/PhysRevLett.42.1698 10.1126/science.1259327 10.1103/PhysRevB.92.201102 10.1038/ncomms10177 10.1126/science.1148047 10.1021/acs.jpclett.6b00422 10.1103/RevModPhys.82.3045 10.1088/1468-6996/11/5/054504 10.1038/ncomms9339 10.1103/PhysRevB.91.045429 10.1016/j.nantod.2017.02.007 10.1021/acs.nanolett.6b04727 10.1073/pnas.1405969111 10.1103/PhysRevB.22.2099 10.1103/PhysRevLett.119.076401 10.1038/ncomms13986 10.1039/C6NR08975E 10.1038/nature23268 10.1007/978-3-319-25607-8 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Aug 9, 2018 |
| Copyright_xml | – notice: Springer Nature Limited 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Aug 9, 2018 |
| DBID | AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
| DOI | 10.1038/s41586-018-0375-9 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep (ProQuest) AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 213 |
| ExternalDocumentID | A572785623 30089919 10_1038_s41586_018_0375_9 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFBBN AFFDN AFHKK AGCDD AGGDT AGOIJ AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 ACMFV AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
| ID | FETCH-LOGICAL-c604t-c9ffd0428e735bb7d5bae7ab28fa37a05f4f0bc342d0d5a04648a0a44eaac373 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 472 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441115200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Sun Nov 09 13:43:28 EST 2025 Tue Oct 07 06:48:43 EDT 2025 Tue Nov 11 10:26:07 EST 2025 Sat Nov 29 11:23:23 EST 2025 Tue Jun 10 15:34:49 EDT 2025 Tue Nov 04 17:57:02 EST 2025 Thu Nov 13 15:51:00 EST 2025 Wed Feb 19 02:31:53 EST 2025 Sat Nov 29 02:12:46 EST 2025 Tue Nov 18 21:58:38 EST 2025 Fri Feb 21 02:38:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7717 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c604t-c9ffd0428e735bb7d5bae7ab28fa37a05f4f0bc342d0d5a04648a0a44eaac373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30089919 |
| PQID | 2102387215 |
| PQPubID | 40569 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2086261644 proquest_journals_2102387215 gale_infotracmisc_A572785623 gale_infotracgeneralonefile_A572785623 gale_infotraccpiq_572785623 gale_infotracacademiconefile_A572785623 gale_incontextgauss_ISR_A572785623 pubmed_primary_30089919 crossref_primary_10_1038_s41586_018_0375_9 crossref_citationtrail_10_1038_s41586_018_0375_9 springer_journals_10_1038_s41586_018_0375_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-00 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-00 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | de Vries (CR5) 2015; 92 Llinas (CR24) 2017; 8 Hasan, Kane (CR1) 2010; 82 Su, Schrieffer, Heeger (CR10) 1979; 42 Feigel’man, Skvortsov, Tikhonov (CR20) 2009; 149 Meier, An, Gadway (CR12) 2016; 7 Deniz (CR27) 2017; 17 CR11 Shen, Gao, Fuchs (CR22) 2017; 13 Kharche, Meunier (CR31) 2016; 7 Cai (CR15) 2010; 466 Söde (CR26) 2015; 91 König (CR2) 2007; 318 Talirz, Ruffieux, Fasel (CR17) 2016; 28 Bradlyn (CR4) 2017; 547 Wang (CR28) 2016; 7 Chiang (CR7) 1977; 39 Fujita, Wakabayashi, Nakada, Kusakabe (CR32) 1996; 65 Su, Schrieffer, Heeger (CR8) 1980; 22 Kitaev (CR3) 2001; 44 Longuet-Higgins, Salem (CR9) 1959; 251 Mourik (CR6) 2012; 336 Nguyen (CR16) 2017; 12 Tan, Sun, Chen, Shen (CR13) 2015; 4 Nadj-Perge (CR21) 2014; 346 Wakabayashi, Sasaki, Nakanishi, Enoki (CR25) 2010; 11 Kimouche (CR29) 2015; 6 Chen, Upadhyaya, Vitelli (CR14) 2014; 111 Merino-Díez (CR30) 2017; 11 Cao, Zhao, Louie (CR18) 2017; 119 Wang (CR19) 2015; 6 Fairbrother (CR23) 2017; 9 N Kharche (375_CR31) 2016; 7 M König (375_CR2) 2007; 318 Q Shen (375_CR22) 2017; 13 T Cao (375_CR18) 2017; 119 MZ Hasan (375_CR1) 2010; 82 A Kimouche (375_CR29) 2015; 6 MV Feigel’man (375_CR20) 2009; 149 W-P Su (375_CR8) 1980; 22 CK Chiang (375_CR7) 1977; 39 S Wang (375_CR28) 2016; 7 K Wakabayashi (375_CR25) 2010; 11 EJ Meier (375_CR12) 2016; 7 J Cai (375_CR15) 2010; 466 O Deniz (375_CR27) 2017; 17 A Fairbrother (375_CR23) 2017; 9 EK de Vries (375_CR5) 2015; 92 BG-g Chen (375_CR14) 2014; 111 M Fujita (375_CR32) 1996; 65 W Su (375_CR10) 1979; 42 375_CR11 L Talirz (375_CR17) 2016; 28 G Kitaev (375_CR3) 2001; 44 Z Wang (375_CR19) 2015; 6 N Merino-Díez (375_CR30) 2017; 11 H Söde (375_CR26) 2015; 91 S Nadj-Perge (375_CR21) 2014; 346 W Tan (375_CR13) 2015; 4 V Mourik (375_CR6) 2012; 336 GD Nguyen (375_CR16) 2017; 12 HC Longuet-Higgins (375_CR9) 1959; 251 JP Llinas (375_CR24) 2017; 8 B Bradlyn (375_CR4) 2017; 547 30087484 - Nature. 2018 Aug;560(7717):175-176 |
| References_xml | – volume: 44 start-page: 131 year: 2001 end-page: 136 ident: CR3 article-title: Unpaired Majorana fermions in quantum wires publication-title: Phys. Usp. doi: 10.1070/1063-7869/44/10S/S29 – volume: 336 start-page: 1003 year: 2012 end-page: 1007 ident: CR6 article-title: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices publication-title: Science doi: 10.1126/science.1222360 – volume: 65 start-page: 1920 year: 1996 end-page: 1923 ident: CR32 article-title: Peculiar localized state at zigzag graphite edge publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.65.1920 – volume: 8 year: 2017 ident: CR24 article-title: Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons publication-title: Nat. Commun. doi: 10.1038/s41467-017-00734-x – volume: 39 start-page: 1098 year: 1977 ident: CR7 article-title: Electrical conductivity in doped polyacetylene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.39.1098 – volume: 7 year: 2016 ident: CR28 article-title: Giant edge state splitting at atomically precise graphene zigzag edges publication-title: Nat. Commun. doi: 10.1038/ncomms11507 – volume: 466 start-page: 470 year: 2010 end-page: 473 ident: CR15 article-title: Atomically precise bottom-up fabrication of graphene nanoribbons publication-title: Nature doi: 10.1038/nature09211 – volume: 28 start-page: 6222 year: 2016 end-page: 6231 ident: CR17 article-title: On-surface synthesis of atomically precise graphene nanoribbons publication-title: Adv. Mater. doi: 10.1002/adma.201505738 – volume: 251 start-page: 172–183 year: 1959 ident: CR9 article-title: The alternation of bond lengths in long conjugated chain molecules publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1959.0100 – volume: 12 start-page: 1077 year: 2017 end-page: 1082 ident: CR16 article-title: Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.155 – volume: 4 year: 2015 ident: CR13 article-title: Photonic simulation of topological excitations in metamaterials publication-title: Sci. Rep. doi: 10.1038/srep03842 – volume: 149 start-page: 1101 year: 2009 end-page: 1105 ident: CR20 article-title: Theory of proximity-induced superconductivity in graphene publication-title: Solid State Commun. doi: 10.1016/j.ssc.2009.02.049 – volume: 11 start-page: 11661 year: 2017 end-page: 11668 ident: CR30 article-title: Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111) publication-title: ACS Nano doi: 10.1021/acsnano.7b06765 – volume: 42 start-page: 1698 year: 1979 ident: CR10 article-title: Solitons in polyacetylene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.42.1698 – volume: 346 start-page: 602 year: 2014 end-page: 607 ident: CR21 article-title: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor publication-title: Science doi: 10.1126/science.1259327 – volume: 92 start-page: 201102 year: 2015 ident: CR5 article-title: Towards the understanding of the origin of charge-current-induced spin voltage signals in the topological insulator Bi Se publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.201102 – volume: 6 year: 2015 ident: CR29 article-title: Ultra-narrow metallic armchair graphene nanoribbons publication-title: Nat. Commun. doi: 10.1038/ncomms10177 – volume: 318 start-page: 766 year: 2007 end-page: 770 ident: CR2 article-title: Quantum spin Hall insulator state in HgTe quantum wells publication-title: Science doi: 10.1126/science.1148047 – volume: 7 start-page: 1526 year: 2016 end-page: 1533 ident: CR31 article-title: Width and crystal orientation dependent band gap renormalization in substrate-supported graphene nanoribbons publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00422 – volume: 82 start-page: 3045 year: 2010 end-page: 3067 ident: CR1 article-title: Topological insulators publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 11 start-page: 054504 year: 2010 ident: CR25 article-title: Electronic states of graphene nanoribbons and analytical solutions publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/5/054504 – volume: 6 year: 2015 ident: CR19 article-title: Strong interface-induced spin–orbit interaction in graphene on WS publication-title: Nat. Commun. doi: 10.1038/ncomms9339 – ident: CR11 – volume: 91 start-page: 045429 year: 2015 ident: CR26 article-title: Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.045429 – volume: 13 start-page: 77 year: 2017 end-page: 96 ident: CR22 article-title: Frontiers of on-surface synthesis: from principles to applications publication-title: Nano Today doi: 10.1016/j.nantod.2017.02.007 – volume: 17 start-page: 2197 year: 2017 end-page: 2203 ident: CR27 article-title: Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04727 – volume: 111 start-page: 13004 year: 2014 end-page: 13009 ident: CR14 article-title: Nonlinear conduction via solitons in a topological mechanical insulator publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1405969111 – volume: 22 start-page: 2099 year: 1980 end-page: 2111 ident: CR8 article-title: Soliton excitations in polyacetylene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.22.2099 – volume: 119 start-page: 076401 year: 2017 ident: CR18 article-title: Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.076401 – volume: 7 year: 2016 ident: CR12 article-title: Observation of the topological soliton state in the Su–Schrieffer–Heeger model publication-title: Nat. Commun. doi: 10.1038/ncomms13986 – volume: 9 start-page: 2785 year: 2017 end-page: 2792 ident: CR23 article-title: High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons publication-title: Nanoscale doi: 10.1039/C6NR08975E – volume: 547 start-page: 298 year: 2017 end-page: 305 ident: CR4 article-title: Topological quantum chemistry publication-title: Nature doi: 10.1038/nature23268 – volume: 318 start-page: 766 year: 2007 ident: 375_CR2 publication-title: Science doi: 10.1126/science.1148047 – volume: 28 start-page: 6222 year: 2016 ident: 375_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201505738 – volume: 547 start-page: 298 year: 2017 ident: 375_CR4 publication-title: Nature doi: 10.1038/nature23268 – volume: 111 start-page: 13004 year: 2014 ident: 375_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1405969111 – volume: 7 year: 2016 ident: 375_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms11507 – volume: 11 start-page: 054504 year: 2010 ident: 375_CR25 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/5/054504 – volume: 82 start-page: 3045 year: 2010 ident: 375_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.3045 – volume: 42 start-page: 1698 year: 1979 ident: 375_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.42.1698 – volume: 17 start-page: 2197 year: 2017 ident: 375_CR27 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04727 – volume: 65 start-page: 1920 year: 1996 ident: 375_CR32 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.65.1920 – volume: 7 year: 2016 ident: 375_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms13986 – volume: 13 start-page: 77 year: 2017 ident: 375_CR22 publication-title: Nano Today doi: 10.1016/j.nantod.2017.02.007 – volume: 119 start-page: 076401 year: 2017 ident: 375_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.076401 – volume: 6 year: 2015 ident: 375_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms10177 – volume: 149 start-page: 1101 year: 2009 ident: 375_CR20 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2009.02.049 – ident: 375_CR11 doi: 10.1007/978-3-319-25607-8 – volume: 9 start-page: 2785 year: 2017 ident: 375_CR23 publication-title: Nanoscale doi: 10.1039/C6NR08975E – volume: 12 start-page: 1077 year: 2017 ident: 375_CR16 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.155 – volume: 346 start-page: 602 year: 2014 ident: 375_CR21 publication-title: Science doi: 10.1126/science.1259327 – volume: 4 year: 2015 ident: 375_CR13 publication-title: Sci. Rep. doi: 10.1038/srep03842 – volume: 92 start-page: 201102 year: 2015 ident: 375_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.201102 – volume: 6 year: 2015 ident: 375_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms9339 – volume: 91 start-page: 045429 year: 2015 ident: 375_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.045429 – volume: 251 start-page: 172–183 year: 1959 ident: 375_CR9 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1959.0100 – volume: 466 start-page: 470 year: 2010 ident: 375_CR15 publication-title: Nature doi: 10.1038/nature09211 – volume: 7 start-page: 1526 year: 2016 ident: 375_CR31 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00422 – volume: 39 start-page: 1098 year: 1977 ident: 375_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.39.1098 – volume: 11 start-page: 11661 year: 2017 ident: 375_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.7b06765 – volume: 44 start-page: 131 year: 2001 ident: 375_CR3 publication-title: Phys. Usp. doi: 10.1070/1063-7869/44/10S/S29 – volume: 336 start-page: 1003 year: 2012 ident: 375_CR6 publication-title: Science doi: 10.1126/science.1222360 – volume: 22 start-page: 2099 year: 1980 ident: 375_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.22.2099 – volume: 8 year: 2017 ident: 375_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00734-x – reference: 30087484 - Nature. 2018 Aug;560(7717):175-176 |
| SSID | ssj0005174 |
| Score | 2.6977313 |
| Snippet | Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin–momentum locked transport channels or Majorana... Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 209 |
| SubjectTerms | 639/766/119/2792/4128 639/766/119/995 639/925/918/1052 639/925/918/1055 Atoms Condensed matter physics Energy Graphene Graphite Humanities and Social Sciences Information technology Letter multidisciplinary Nanomaterials Nanoribbons Nanotechnology Phases Photonics Polyacetylene Properties Quantum phenomena Qubits (quantum computing) Robustness Science Science (multidisciplinary) Solitons Spectrum analysis Superconductors Topological insulators |
| Title | Engineering of robust topological quantum phases in graphene nanoribbons |
| URI | https://link.springer.com/article/10.1038/s41586-018-0375-9 https://www.ncbi.nlm.nih.gov/pubmed/30089919 https://www.proquest.com/docview/2102387215 https://www.proquest.com/docview/2086261644 |
| Volume | 560 |
| WOSCitedRecordID | wos000441115200043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature (UW-Madison Shared) customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0GIbSLwAG19lowoI8amwtLFj5wl106ahqaXqKlR4sRwnHpUgaZuE38-dk36kgr3wclLks5P4PnyXu9wR8gqsBsrCKHAFi5VLTRy4KqDMVcaA1xzGoUi0bTbBBwMxmYTD-oNbXqdVLnWiVdRxpvEb-TG6Jr4Af4V9ms1d7BqF0dW6hcYO2cMqCSiYQ_Z9neKxVYV5GdX0xXEOB5dAXxp_MOPMDRvn0rZ23jietuKl9hg6v_-_L_CA3KsNUKdXccw-uZWkB-SOTQTV-QHZr4U9d97WFanfPSQXG1ULncw4iywq88IpqgYLSGZnXgKJyl_O7Acci7kzTR1bChuWcFKVwnNEEfD3IzI-PxufXrh1CwZXBx4tXB0aE6NblXCfRRGPWaQSrqKuMMrnymOGGi_SPu3GXswUxkmF8hSliVLa5_5jsptmafKUOJqCutAdY4IITLCARlhOHQM9jNOE8rBFvOX-S12XJ8cuGT-lDZP7QlYkk0AyiSSTMOX9asqsqs1xE_JLJKrEmhcpJtVcqzLP5eerkewxMOIEGoIt8qZGMhncXKv6HwV4BSyT1cA8bGDq2XQuN0ZfN0avK4L9bZmjBiLItm4OL3lJ1roll2tGapEXq2GciflyaZKVgGM9VXCFaYs8qVh3tUW-h6HeDuzIhyUvrxf_5_49u_lRDsndrhUmTI08IrvFokyek9v6dzHNF22yw0dfEU64hQKgOO20yd7J2WA4gqvLk48A-94lwm7fwi8WDhHyCl61rYDDvGFv3P_2B_RGRxs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGAMELsMGgbIBBfA0ULUvsOHlAaAKmVhsVgj70zbKdeFSCpG0SEH8U_yN3-WibCva2B559dmv7d1-58x0hT8FqYDzSgRPyWDnMxoGjAsYdZS14zVEchYmpmk2I4TAcj6NPG-R3-xYG0ypbmVgJ6jgz-I38AF0TPwR_hb-dzhzsGoXR1baFRg2Lk-TXT3DZ8jeD93C_zzzv-MPoXd9pugo4JnBZ4ZjI2hg9hUT4XGsRc60SobQXWuUL5XLLrKuNz7zYjbnC0F-oXMVYopTxhQ_LXiKXQYwLzCATY7HMKFkr-twGUf3wIAc9GaLrju_ZBHeijhpcVwYr2nAtPFtpveOb_9l53SI3GvOaHtX8sEU2knSbXK3SXE2-TbYaUZbTl0297f3bpL9Sk5Fmls4zXeYFLer2EQhiOisBgOV3Ov0KSj-nk5RWhb5hCZqqFLatNXDvHTK6iK3tkM00S5N7hBoGwtAcWhtoMDADprFYPIaxuGAJE1GPuO11S9MUX8ceIN9klQTgh7JGiASESESIhCmvFlOmdeWR84ifIIYkVvRIMWXoTJV5LgdfPssjDiZqiGZuj7xoiGwGP25U8wIDtoBFwDqUux1KM53M5Mro887oWX1hf1tmr0MIkst0h1voykZy5nKJ2x55vBjGmZgNmCZZCTSVHw6OPuuRuzWnLI7IdzGQfQgn8rplneXi_zy_--f_lUfkWn_08VSeDoYnu-S6V_ExJoHukc1iXiYPyBXzo5jk84eVRKBEXjBH_QF6FpgL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtNAcFTKQ1yAlldogQXxRlaceNePA0IVJWpUFFW0h4rLanftLZHATuIYxKfxd8z4kcQR9NYD552dZGfn6ZmdAXiGXgMXkfadUMTK4Tb2HeVz4ShrMWqO4ihMTDlsIhiNwtPT6GgDfjdvYaisstGJpaKOM0PfyLsUmnghxiuia-uyiKP9wfvJ1KEJUpRpbcZpVCxymPz6ieFb_m64j3f9vN8ffDz5cODUEwYc47t87pjI2piihiTwhNZBLLRKAqX7oVVeoFxhuXW18Xg_dmOhKA0YKldxnihlvMBDtJfgcoAhJsV9R-LLsrpkrQF0k1D1wm6ONjOkMJ7etgXCiVomcd0wrFjGtVRtaQEHN_9j2t2CG7XbzfYqOdmCjSTdhqtl-avJt2GrVnE5e1X34X59Gw5WejWyzLJZpot8zubVWAlibjYtkDGL72zyFZ2BnI1TVjYARxQsVSkeW2uU6jtwchFHuwubaZYm94EZjkrS9Kz1NTqePtfURJ7SWyLgCQ-iDrjN1UtTN2Wn2SDfZFkc4IWy4haJ3CKJWyRuebPYMqk6kpwH_JT4SVKnj5Tu_UwVeS6Hx5_lnkDXNST3twMvayCb4Y8bVb_MwCNQc7AW5E4L0kzGU7my-qK1elZd2N_Q7LYAUaOZ9nLDxrLWqLlc8nAHniyWaSdVCaZJViBMGZ_3kNIduFdJzYJEnksJ7h5S5G0jRkvk_6Tfg_P_ymO4hoIkPw1HhztwvV-KNNWG7sLmfFYkD-GK-TEf57NHpXJgIC9YoP4AhvWg_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+robust+topological+quantum+phases+in+graphene+nanoribbons&rft.jtitle=Nature+%28London%29&rft.au=Gr%C3%B6ning%2C+Oliver&rft.au=Narita%2C+Akimitsu&rft.au=M%C3%BCllen%2C+Klaus&rft.au=Ruffieux%2C+Pascal&rft.date=2018-08-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=560&rft.issue=7717&rft.spage=209&rft.epage=213A&rft_id=info:doi/10.1038%2Fs41586-018-0375-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |