Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models
The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudin...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 109; číslo 505; s. 108 - 118 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Taylor & Francis
2014
Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 1537-274X, 0162-1459, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this article, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. Supplementary materials for this article are available online. |
|---|---|
| AbstractList | The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this article, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and Cortisol in the patient group are weaker than in healthy controls. Supplementary materials for this article are available online. The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this article, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. |
| Author | Guo, Wensheng Crofford, Leslie J. Liu, Ziyue Cappola, Anne R. |
| Author_xml | – sequence: 1 givenname: Ziyue surname: Liu fullname: Liu, Ziyue – sequence: 2 givenname: Anne R. surname: Cappola fullname: Cappola, Anne R. – sequence: 3 givenname: Leslie J. surname: Crofford fullname: Crofford, Leslie J. – sequence: 4 givenname: Wensheng surname: Guo fullname: Guo, Wensheng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24729646$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wD3hEYsNmhmvHTxYgqIBBGgTSUImd5TjO1KOMPdhJ0fx7HNJWQzfFG1u63zn36vqcFkc-eFsUTxHMEQh4DYhhRKicY0DVXFQAHD0oThCt-Axz8vPo4H1cnKa0gXy4EI-KY0w4loywk2L1NTS2c35dfnBXOjrd23IZ_Nr1Q-O87spFiNvcuPweQ-s6m8p6Xy6cjTqaS2cysOpHzWqnjS3_mqXHxcNWd8k-ub7PiotPH3-cL2bLb5-_nL9fzgwD0s-0qC1psRC6llZIS7IDk9g2mtcIEU2pBmE4ZiLfAioLmDLKecNqDlya6qx4O_nuhnprG2N9H3WndtFtddyroJ36t-LdpVqHK1VJLikT2eDVtUEMvwaberV1ydiu096GISkkMGMAEsn_QKFCUBGOMvryDroJQ8y7zBQTgIEC4Ew9Pxz-duqbr8kAmQATQ0rRtrcIAjUmQN0kQI0JUFMCsuzNHZlx-YdcGFfguvvEzybxJvUhHsyUp0JkrL-b6s63ORf6d4hdo3q970Jso_bGJVXd0-HF5NDqoPQ6ZsHFKgN5zSAo5bT6AwEt2ok |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1109_TBME_2018_2879227 crossref_primary_10_1002_sim_10097 crossref_primary_10_1016_j_physbeh_2023_114104 crossref_primary_10_1002_sim_6579 crossref_primary_10_1007_s40750_021_00162_8 crossref_primary_10_1002_cjs_11543 |
| Cites_doi | 10.1002/9781118619193 10.1080/01621459.1998.10474115 10.1038/nrendo.2011.153 10.1080/01621459.1983.10477935 10.1214/aos/1176349739 10.1111/j.1541-0420.2009.01308.x 10.1016/j.csda.2009.03.026 10.1002/sim.1885 10.1080/01621459.1981.10477734 10.1198/016214503000000387 10.2307/2529876 10.1016/S0006-3223(96)00005-4 10.1016/j.psc.2010.01.001 10.1111/1467-9892.00294 10.1016/j.bbi.2012.06.002 10.2307/2533956 10.1093/biomet/80.1.75 10.1007/s12529-010-9097-6 10.1016/S0169-2607(02)00017-2 10.1093/acprof:oso/9780199641178.001.0001 10.1002/sim.3456 10.1017/S0033291701004664 10.1093/biomet/61.2.383 10.1080/01621459.1982.10477785 10.1111/j.0006-341X.2000.01047.x 10.1111/j.0006-341X.2002.00121.x 10.1111/j.1541-0420.2008.01117.x 10.1080/02664760802124422 10.1080/01621459.1999.10474177 10.1111/j.1365-2826.2010.02096.x 10.1080/01621459.1997.10474030 10.1093/biomet/asn035 10.1111/j.2517-6161.1978.tb01050.x 10.1016/j.bbi.2003.12.011 10.1186/1478-7954-5-5 10.1093/biostatistics/kxj003 |
| ContentType | Journal Article |
| Copyright | 2014 American Statistical Association 2014 copyright © 2014 American Statistical Association Copyright Taylor & Francis Ltd. Mar 2014 |
| Copyright_xml | – notice: 2014 American Statistical Association 2014 – notice: copyright © 2014 American Statistical Association – notice: Copyright Taylor & Francis Ltd. Mar 2014 |
| DBID | FBQ AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| DOI | 10.1080/01621459.2013.830071 |
| DatabaseName | AGRIS CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 118 |
| ExternalDocumentID | PMC3979568 3681322871 24729646 10_1080_01621459_2013_830071 24247141 830071 US201600085575 |
| Genre | Article Journal Article Feature |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM104470 – fundername: NIA NIH HHS grantid: R01 AG027058 – fundername: NCATS NIH HHS grantid: UL1 TR001108 – fundername: NCRR NIH HHS grantid: M01 RR000042 |
| GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 3V. 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVI AAAVZ AABCJ AAENE AAFWJ AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABJVF ABLIJ ABLJU ABPEM ABPFR ABPPZ ABQHQ ABRLO ABTAI ABUWG ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADBBV ADCVX ADGTB ADLSF ADODI ADULT AEGYZ AEISY AELPN AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFOLD AFSUE AFVYC AFWLO AFXHP AFXKK AGCQS AGDLA AGLEN AGMYJ AGROQ AHDLD AHMOU AI. AIHXQ AIJEM AIRXU AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMATQ AMXXU AQRUH AQUVI AVBZW AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EFSUC EJD E~A E~B F20 F5P FBQ FEDTE FJW FRNLG FUNRP FVMVE FVPDL FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 N95 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PQBIZ PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI U5U UB9 UKHRP UPT UQL UT5 UU3 V1K VH1 VOH WH7 WHG WZA XFK YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ AAGDL AAHBH AAHIA AAWIL ABAWQ ABPAQ ABPQH ABUFD ABXSQ ACHJO ADMHG ADXHL AFRVT AGLNM AHDZW AIHAF AIYEW ALRMG AMVHM AQTUD AWYRJ H13 IPSME TASJS TBQAZ TDBHL TUROJ ADYSH ALIPV AMPGV AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
| ID | FETCH-LOGICAL-c604t-a8be4f288ab9e89e4ace692eda7b114a55a08c7268a08803e0256577d6b7079c3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333787300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1537-274X 0162-1459 |
| IngestDate | Tue Nov 04 01:59:27 EST 2025 Thu Nov 20 07:34:22 EST 2025 Fri Oct 03 00:05:17 EDT 2025 Mon Nov 10 06:51:25 EST 2025 Thu Apr 03 06:58:06 EDT 2025 Tue Nov 18 20:53:07 EST 2025 Sat Nov 29 03:56:39 EST 2025 Fri May 30 11:46:48 EDT 2025 Mon Oct 20 23:43:51 EDT 2025 Wed Dec 27 19:27:14 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 505 |
| Keywords | Feedback Relationship HPA axis Periodic splines Circadian rhythm Kalman filter |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c604t-a8be4f288ab9e89e4ace692eda7b114a55a08c7268a08803e0256577d6b7079c3 |
| Notes | http://dx.doi.org/10.1080/01621459.2013.830071 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1080/01621459.2013.830071 |
| PMID | 24729646 |
| PQID | 1680205002 |
| PQPubID | 41715 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1803103471 fao_agris_US201600085575 crossref_citationtrail_10_1080_01621459_2013_830071 jstor_primary_24247141 proquest_journals_1680205002 crossref_primary_10_1080_01621459_2013_830071 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3979568 proquest_miscellaneous_1826600919 informaworld_taylorfrancis_310_1080_01621459_2013_830071 pubmed_primary_24729646 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-00-00 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – year: 2014 text: 2014-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2014 |
| Publisher | Taylor & Francis Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group, LLC – name: Taylor & Francis Ltd |
| References | Reeves W.C. (cit0025) 2007; 5 cit0034 cit0010 Fink G. (cit0011) 2012 cit0030 Funatogawa I. (cit0012) 2008; 27 Shah A. (cit0031) 1997; 92 Gudmundsson A. (cit0014) 1997; 41 Arnold L.M. (cit0003) 2010; 33 cit0019 cit0018 Gordon N. (cit0013) 1993; 140 cit0015 cit0037 Carlson N.E. (cit0006) 2009; 65 cit0038 cit0022 cit0001 cit0023 Wang Y. (cit0036) 1998; 93 cit0020 Zeger S.L. (cit0039) 1991; 1 cit0021 cit0040 Spiga F. (cit0032) 2011; 23 Qin L. (cit0024) 2006; 7 Guo W. (cit0016) 2001; 11 Guo W. (cit0017) 1999; 94 Box G. E.P. (cit0005) 2008 Rosen O. (cit0028) 2009; 53 cit0008 Sy J.P. (cit0033) 1997; 53 cit0009 Wahba G. (cit0035) 1978; 40 cit0007 cit0029 cit0004 cit0026 Ansley C.F. (cit0002) 1993; 80 cit0027 |
| References_xml | – volume-title: Time Series Analysis: Forecasting and Control (4th ed.) year: 2008 ident: cit0005 doi: 10.1002/9781118619193 – volume: 93 start-page: 341 year: 1998 ident: cit0036 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10474115 – ident: cit0022 doi: 10.1038/nrendo.2011.153 – ident: cit0037 doi: 10.1080/01621459.1983.10477935 – ident: cit0001 doi: 10.1214/aos/1176349739 – ident: cit0038 doi: 10.1111/j.1541-0420.2009.01308.x – volume: 53 start-page: 3773 year: 2009 ident: cit0028 publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2009.03.026 – ident: cit0010 doi: 10.1002/sim.1885 – ident: cit0030 doi: 10.1080/01621459.1981.10477734 – ident: cit0008 doi: 10.1198/016214503000000387 – ident: cit0020 doi: 10.2307/2529876 – volume: 41 start-page: 342 year: 1997 ident: cit0014 publication-title: Biological Psychiatry doi: 10.1016/S0006-3223(96)00005-4 – volume: 33 start-page: 375 year: 2010 ident: cit0003 publication-title: Psychiatric Clinics of North America doi: 10.1016/j.psc.2010.01.001 – ident: cit0019 doi: 10.1111/1467-9892.00294 – ident: cit0004 doi: 10.1016/j.bbi.2012.06.002 – volume: 53 start-page: 542 year: 1997 ident: cit0033 publication-title: Biometrics doi: 10.2307/2533956 – volume: 1 start-page: 51 year: 1991 ident: cit0039 publication-title: Statistica Sinica – volume: 80 start-page: 75 year: 1993 ident: cit0002 publication-title: Biometrika doi: 10.1093/biomet/80.1.75 – ident: cit0027 doi: 10.1007/s12529-010-9097-6 – ident: cit0034 doi: 10.1016/S0169-2607(02)00017-2 – ident: cit0009 doi: 10.1093/acprof:oso/9780199641178.001.0001 – volume: 27 start-page: 6367 year: 2008 ident: cit0012 publication-title: Statistics in Medicine doi: 10.1002/sim.3456 – ident: cit0023 doi: 10.1017/S0033291701004664 – volume: 11 start-page: 961 year: 2001 ident: cit0016 publication-title: Statistica Sinica – volume-title: Handbook of Neuroendocrinology (1st ed.) year: 2012 ident: cit0011 – ident: cit0018 doi: 10.1093/biomet/61.2.383 – ident: cit0026 doi: 10.1080/01621459.1982.10477785 – ident: cit0029 doi: 10.1111/j.0006-341X.2000.01047.x – ident: cit0015 doi: 10.1111/j.0006-341X.2002.00121.x – volume: 65 start-page: 650 year: 2009 ident: cit0006 publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01117.x – volume: 140 start-page: 107 year: 1993 ident: cit0013 publication-title: IEEE Proceedings Part F: Radar and Sonar Navigation – ident: cit0021 doi: 10.1080/02664760802124422 – volume: 94 start-page: 746 year: 1999 ident: cit0017 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1999.10474177 – volume: 23 start-page: 136 year: 2011 ident: cit0032 publication-title: Journal of Neuroendocrinology doi: 10.1111/j.1365-2826.2010.02096.x – volume: 92 start-page: 775 year: 1997 ident: cit0031 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1997.10474030 – ident: cit0040 doi: 10.1093/biomet/asn035 – volume: 40 start-page: 364 year: 1978 ident: cit0035 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1978.tb01050.x – ident: cit0007 doi: 10.1016/j.bbi.2003.12.011 – volume: 5 start-page: 5 year: 2007 ident: cit0025 publication-title: Population Health Metrics doi: 10.1186/1478-7954-5-5 – volume: 7 start-page: 225 year: 2006 ident: cit0024 publication-title: Biostatistics doi: 10.1093/biostatistics/kxj003 |
| SSID | ssj0000788 |
| Score | 2.1576838 |
| Snippet | The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both... |
| SourceID | pubmedcentral proquest pubmed crossref jstor informaworld fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108 |
| SubjectTerms | Algorithms Applications and Case Studies Brain Chronic fatigue syndrome Circadian rhythm Complexity Coping corticotropin Cortisol Data smoothing Disease models Feedback Feedback relationship Fibromyalgia Hierarchies Homeostasis Hormones HPA axis Hypothalamic-pituitary-adrenal axis Inference Kalman filter Kalman filters Multilevel models Nonparametric models patients Periodic splines Profiles Statistical discrepancies Statistics Stress Time series analysis Time series models |
| Title | Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2013.830071 https://www.jstor.org/stable/24247141 https://www.ncbi.nlm.nih.gov/pubmed/24729646 https://www.proquest.com/docview/1680205002 https://www.proquest.com/docview/1803103471 https://www.proquest.com/docview/1826600919 https://pubmed.ncbi.nlm.nih.gov/PMC3979568 |
| Volume | 109 |
| WOSCitedRecordID | wos000333787300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 1537-274X databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RikMvvEsXSmUkroZ9-XUERJRDVVVKK3KzbMcLkapN1SSV-PfMeHdDUlGQ4BRFtkde73jm83rmG4B3WkUZxcxzmZee18Y33DSh4MG4Mg-ikdElyvxTdXamp1NzvpXFT2GVdIZuOqKIZKtpczu_HCLiPiBKIX5tSjMpqve6IjeJRhg9P-3Mi9HXX6ZYpcKTNIDTiCF37h4hO75pr3GLO_ylQ8zi79Do3aDKLS81evz_z_cEHvUIlX3sVOopPIjtMzggUNpxOj-HCRVQozR29ml-i2dthKvsdEGFj9YzKrLFxvgsizay864g-JL5H2w8p1TnVHnliiWIyyZ4Xo8sCVu-gMvRl4vPY94XZ-BB5vWKO-1j3ZRaO2-iNrHGEdKUceaUxzOWE8LlOqhSavzVeRUJXAmlZtITKV-oDmG_xakcAdOuFC4qlFKFuojRiMYHZ3xtVCjyJmRQDa_Fhp65nApoXNliIDjtV8zSitluxTLgm1HXHXPHX_of4Ru37hsaV3s5KYl6L0XxKZGB3lYDu0ofU5qu8omt_iz1MKnMZgqUjqOKGhuOBx2yvdlY2kJqhO8CvVQGbzfNuOHpFse1cbHGPprYXKuaZN_fB3EXoufCZPCyU8utCSi6apcZqB2F3XQgwvHdlnb-PRGP0x2wkPrVvy_HazjAf3X3DesY9lc36_gGHoZbVOGbE9hTU32StvBPKao-Jg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB7RgkQvvEsXChiJ68K-_DoCIgoiRJWSit4s2_FCpGqDmqQS_54Z725IKgoS4rQH2yOvPfZ8tme-AXilZBCBz1wqssKllXZ1qmufp17bIvO8FsFGyvyRHI_V2Zk-6bwJl51bJZ2h65YoIu7VtLjpMrp3iXuDMIUItinOJC9fq5Ls5B7c5GhqiT5_OvjyazOWMfUktUipSR89d42UHeu0V9vFFQbT3mvxd3j0qlvllp0a3P0Pf3gP7nQglb1tteo-3AjNAzggXNrSOj-ECeVQo0h29m5-icdtRKxstKDcR-sZ5dliQ_yZRRPYSZsTfMncDzacU7RzTL5yziLKZRM8sgcWhS0fwengw_T9MO3yM6ReZNUqtcqFqi6Usk4HpUOFLYQuwsxKh8csy7nNlJeFUPhVWRkIX3EpZ8IRL58vD2G_wa4cAVO24DZIlFL6Kg9B89p5q12lpc-z2idQ9vNifEdeTjk0zk3ec5x2I2ZoxEw7Ygmkm1bfW_KOv9Q_wik39ivur-Z0UhD7XnTkkzwBta0HZhXvU-o2-Ykp_yz1MOrMpgsUkSPzCguOeyUy3c6xNLlQiOA5GqoEXm6Kcc3TQ45twmKNdRQRupYVyb6-DkIvBNC5TuBxq5dbHZD02i4SkDsau6lAnOO7Jc38W-Qep2dgLtSTfx-OF3B7OP08MqOP409P4QBLqvZK6xj2Vxfr8Axu-UtU54vncSX_BLpZQWg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoQaiX8izdUsBIXBf25deRVxREFEVKK3qzbK9dIlWbqkkq8e-Z8e6GpKIgwWkPtkde79j-vJ75PkLeSOG5Z7VNeVbYtFI2pCq4PHXKFJljgXsTKfNHYjyWZ2dqspHFj2GVeIYOLVFEXKtxcl_WoY-IewcoBfm1Mc0kL9_KErfJHXIXkDNHHz8ZfPu1FouoPIktUmzSJ8_dYmVrc9oJZn6DwLQPWvwdHL0ZVbmxTQ0e_P8LPiT7HUSl71ufekTu-OYx2UNU2pI6PyFTVFDDPHb6YXYNh23Aq3Q0R-WjVY0qW3QI7zJvPJ20iuALan_Q4QxznaP0ygWNGJdO4cDuaTS2eEpOB59PPg7TTp0hdTyrlqmR1lehkNJY5aXyFbTgqvC1ERYOWYYxk0knCi7hKbPSI7piQtTcIiufKw_IbgNdOSRUmoIZL8BK6arce8WCdUbZSgmXZ8ElpOw_i3YddTkqaFzovGc47UZM44jpdsQSkq5bXbbUHX-pfwhfXJtzWF316bRA7r0YxidYQuSmG-hl_JsSWukTXf7Z6kF0mXUXMB9H5BUUHPc-pLt1Y6FzLgG_M9imEvJ6XQwzHq9xTOPnK6gjkc61rND27XUAeAF8zlVCnrVuudEBgXftPCFiy2HXFZBxfLukmX2PzON4Ccy4PPr34XhF7k8-DfToy_jrc7IHBVX7P-uY7C6vVv4FueeuwZuvXsZ5_BOzwEAa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Bivariate+Longitudinal+Hormone+Profiles+by+Hierarchical+State+Space+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liu%2C+Ziyue&rft.au=Cappola%2C+Anne+R.&rft.au=Crofford%2C+Leslie+J.&rft.au=Guo%2C+Wensheng&rft.date=2014&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=109&rft.issue=505&rft.spage=108&rft.epage=118&rft_id=info:doi/10.1080%2F01621459.2013.830071&rft_id=info%3Apmid%2F24729646&rft.externalDocID=PMC3979568 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |