Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models

The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 109; číslo 505; s. 108 - 118
Hlavní autori: Liu, Ziyue, Cappola, Anne R., Crofford, Leslie J., Guo, Wensheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Taylor & Francis 2014
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Predmet:
ISSN:1537-274X, 0162-1459, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this article, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. Supplementary materials for this article are available online.
AbstractList The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this article, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and Cortisol in the patient group are weaker than in healthy controls. Supplementary materials for this article are available online.
The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this article, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.
The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.
The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.
Author Guo, Wensheng
Crofford, Leslie J.
Liu, Ziyue
Cappola, Anne R.
Author_xml – sequence: 1
  givenname: Ziyue
  surname: Liu
  fullname: Liu, Ziyue
– sequence: 2
  givenname: Anne R.
  surname: Cappola
  fullname: Cappola, Anne R.
– sequence: 3
  givenname: Leslie J.
  surname: Crofford
  fullname: Crofford, Leslie J.
– sequence: 4
  givenname: Wensheng
  surname: Guo
  fullname: Guo, Wensheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24729646$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wD3hEYsNmhmvHTxYgqIBBGgTSUImd5TjO1KOMPdhJ0fx7HNJWQzfFG1u63zn36vqcFkc-eFsUTxHMEQh4DYhhRKicY0DVXFQAHD0oThCt-Axz8vPo4H1cnKa0gXy4EI-KY0w4loywk2L1NTS2c35dfnBXOjrd23IZ_Nr1Q-O87spFiNvcuPweQ-s6m8p6Xy6cjTqaS2cysOpHzWqnjS3_mqXHxcNWd8k-ub7PiotPH3-cL2bLb5-_nL9fzgwD0s-0qC1psRC6llZIS7IDk9g2mtcIEU2pBmE4ZiLfAioLmDLKecNqDlya6qx4O_nuhnprG2N9H3WndtFtddyroJ36t-LdpVqHK1VJLikT2eDVtUEMvwaberV1ydiu096GISkkMGMAEsn_QKFCUBGOMvryDroJQ8y7zBQTgIEC4Ew9Pxz-duqbr8kAmQATQ0rRtrcIAjUmQN0kQI0JUFMCsuzNHZlx-YdcGFfguvvEzybxJvUhHsyUp0JkrL-b6s63ORf6d4hdo3q970Jso_bGJVXd0-HF5NDqoPQ6ZsHFKgN5zSAo5bT6AwEt2ok
CODEN JSTNAL
CitedBy_id crossref_primary_10_1109_TBME_2018_2879227
crossref_primary_10_1002_sim_10097
crossref_primary_10_1016_j_physbeh_2023_114104
crossref_primary_10_1002_sim_6579
crossref_primary_10_1007_s40750_021_00162_8
crossref_primary_10_1002_cjs_11543
Cites_doi 10.1002/9781118619193
10.1080/01621459.1998.10474115
10.1038/nrendo.2011.153
10.1080/01621459.1983.10477935
10.1214/aos/1176349739
10.1111/j.1541-0420.2009.01308.x
10.1016/j.csda.2009.03.026
10.1002/sim.1885
10.1080/01621459.1981.10477734
10.1198/016214503000000387
10.2307/2529876
10.1016/S0006-3223(96)00005-4
10.1016/j.psc.2010.01.001
10.1111/1467-9892.00294
10.1016/j.bbi.2012.06.002
10.2307/2533956
10.1093/biomet/80.1.75
10.1007/s12529-010-9097-6
10.1016/S0169-2607(02)00017-2
10.1093/acprof:oso/9780199641178.001.0001
10.1002/sim.3456
10.1017/S0033291701004664
10.1093/biomet/61.2.383
10.1080/01621459.1982.10477785
10.1111/j.0006-341X.2000.01047.x
10.1111/j.0006-341X.2002.00121.x
10.1111/j.1541-0420.2008.01117.x
10.1080/02664760802124422
10.1080/01621459.1999.10474177
10.1111/j.1365-2826.2010.02096.x
10.1080/01621459.1997.10474030
10.1093/biomet/asn035
10.1111/j.2517-6161.1978.tb01050.x
10.1016/j.bbi.2003.12.011
10.1186/1478-7954-5-5
10.1093/biostatistics/kxj003
ContentType Journal Article
Copyright 2014 American Statistical Association 2014
copyright © 2014 American Statistical Association
Copyright Taylor & Francis Ltd. Mar 2014
Copyright_xml – notice: 2014 American Statistical Association 2014
– notice: copyright © 2014 American Statistical Association
– notice: Copyright Taylor & Francis Ltd. Mar 2014
DBID FBQ
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
DOI 10.1080/01621459.2013.830071
DatabaseName AGRIS
CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList


International Bibliography of the Social Sciences (IBSS)
AGRICOLA

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 118
ExternalDocumentID PMC3979568
3681322871
24729646
10_1080_01621459_2013_830071
24247141
830071
US201600085575
Genre Article
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM104470
– fundername: NIA NIH HHS
  grantid: R01 AG027058
– fundername: NCATS NIH HHS
  grantid: UL1 TR001108
– fundername: NCRR NIH HHS
  grantid: M01 RR000042
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
3V.
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVI
AAAVZ
AABCJ
AAENE
AAFWJ
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABRLO
ABTAI
ABUWG
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADODI
ADULT
AEGYZ
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AFXKK
AGCQS
AGDLA
AGLEN
AGMYJ
AGROQ
AHDLD
AHMOU
AI.
AIHXQ
AIJEM
AIRXU
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMATQ
AMXXU
AQRUH
AQUVI
AVBZW
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EFSUC
EJD
E~A
E~B
F20
F5P
FBQ
FEDTE
FJW
FRNLG
FUNRP
FVMVE
FVPDL
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
N95
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PQBIZ
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
V1K
VH1
VOH
WH7
WHG
WZA
XFK
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
AAGDL
AAHBH
AAHIA
AAWIL
ABAWQ
ABPAQ
ABPQH
ABUFD
ABXSQ
ACHJO
ADMHG
ADXHL
AFRVT
AGLNM
AHDZW
AIHAF
AIYEW
ALRMG
AMVHM
AQTUD
AWYRJ
H13
IPSME
TASJS
TBQAZ
TDBHL
TUROJ
ADYSH
ALIPV
AMPGV
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c604t-a8be4f288ab9e89e4ace692eda7b114a55a08c7268a08803e0256577d6b7079c3
IEDL.DBID TFW
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333787300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-274X
0162-1459
IngestDate Tue Nov 04 01:59:27 EST 2025
Thu Nov 20 07:34:22 EST 2025
Fri Oct 03 00:05:17 EDT 2025
Mon Nov 10 06:51:25 EST 2025
Thu Apr 03 06:58:06 EDT 2025
Tue Nov 18 20:53:07 EST 2025
Sat Nov 29 03:56:39 EST 2025
Fri May 30 11:46:48 EDT 2025
Mon Oct 20 23:43:51 EDT 2025
Wed Dec 27 19:27:14 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 505
Keywords Feedback Relationship
HPA axis
Periodic splines
Circadian rhythm
Kalman filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-a8be4f288ab9e89e4ace692eda7b114a55a08c7268a08803e0256577d6b7079c3
Notes http://dx.doi.org/10.1080/01621459.2013.830071
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1080/01621459.2013.830071
PMID 24729646
PQID 1680205002
PQPubID 41715
PageCount 11
ParticipantIDs proquest_miscellaneous_1803103471
fao_agris_US201600085575
crossref_citationtrail_10_1080_01621459_2013_830071
jstor_primary_24247141
proquest_journals_1680205002
crossref_primary_10_1080_01621459_2013_830071
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3979568
proquest_miscellaneous_1826600919
informaworld_taylorfrancis_310_1080_01621459_2013_830071
pubmed_primary_24729646
PublicationCentury 2000
PublicationDate 2014-00-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014-00-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group, LLC
– name: Taylor & Francis Ltd
References Reeves W.C. (cit0025) 2007; 5
cit0034
cit0010
Fink G. (cit0011) 2012
cit0030
Funatogawa I. (cit0012) 2008; 27
Shah A. (cit0031) 1997; 92
Gudmundsson A. (cit0014) 1997; 41
Arnold L.M. (cit0003) 2010; 33
cit0019
cit0018
Gordon N. (cit0013) 1993; 140
cit0015
cit0037
Carlson N.E. (cit0006) 2009; 65
cit0038
cit0022
cit0001
cit0023
Wang Y. (cit0036) 1998; 93
cit0020
Zeger S.L. (cit0039) 1991; 1
cit0021
cit0040
Spiga F. (cit0032) 2011; 23
Qin L. (cit0024) 2006; 7
Guo W. (cit0016) 2001; 11
Guo W. (cit0017) 1999; 94
Box G. E.P. (cit0005) 2008
Rosen O. (cit0028) 2009; 53
cit0008
Sy J.P. (cit0033) 1997; 53
cit0009
Wahba G. (cit0035) 1978; 40
cit0007
cit0029
cit0004
cit0026
Ansley C.F. (cit0002) 1993; 80
cit0027
References_xml – volume-title: Time Series Analysis: Forecasting and Control (4th ed.)
  year: 2008
  ident: cit0005
  doi: 10.1002/9781118619193
– volume: 93
  start-page: 341
  year: 1998
  ident: cit0036
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1998.10474115
– ident: cit0022
  doi: 10.1038/nrendo.2011.153
– ident: cit0037
  doi: 10.1080/01621459.1983.10477935
– ident: cit0001
  doi: 10.1214/aos/1176349739
– ident: cit0038
  doi: 10.1111/j.1541-0420.2009.01308.x
– volume: 53
  start-page: 3773
  year: 2009
  ident: cit0028
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2009.03.026
– ident: cit0010
  doi: 10.1002/sim.1885
– ident: cit0030
  doi: 10.1080/01621459.1981.10477734
– ident: cit0008
  doi: 10.1198/016214503000000387
– ident: cit0020
  doi: 10.2307/2529876
– volume: 41
  start-page: 342
  year: 1997
  ident: cit0014
  publication-title: Biological Psychiatry
  doi: 10.1016/S0006-3223(96)00005-4
– volume: 33
  start-page: 375
  year: 2010
  ident: cit0003
  publication-title: Psychiatric Clinics of North America
  doi: 10.1016/j.psc.2010.01.001
– ident: cit0019
  doi: 10.1111/1467-9892.00294
– ident: cit0004
  doi: 10.1016/j.bbi.2012.06.002
– volume: 53
  start-page: 542
  year: 1997
  ident: cit0033
  publication-title: Biometrics
  doi: 10.2307/2533956
– volume: 1
  start-page: 51
  year: 1991
  ident: cit0039
  publication-title: Statistica Sinica
– volume: 80
  start-page: 75
  year: 1993
  ident: cit0002
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.75
– ident: cit0027
  doi: 10.1007/s12529-010-9097-6
– ident: cit0034
  doi: 10.1016/S0169-2607(02)00017-2
– ident: cit0009
  doi: 10.1093/acprof:oso/9780199641178.001.0001
– volume: 27
  start-page: 6367
  year: 2008
  ident: cit0012
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3456
– ident: cit0023
  doi: 10.1017/S0033291701004664
– volume: 11
  start-page: 961
  year: 2001
  ident: cit0016
  publication-title: Statistica Sinica
– volume-title: Handbook of Neuroendocrinology (1st ed.)
  year: 2012
  ident: cit0011
– ident: cit0018
  doi: 10.1093/biomet/61.2.383
– ident: cit0026
  doi: 10.1080/01621459.1982.10477785
– ident: cit0029
  doi: 10.1111/j.0006-341X.2000.01047.x
– ident: cit0015
  doi: 10.1111/j.0006-341X.2002.00121.x
– volume: 65
  start-page: 650
  year: 2009
  ident: cit0006
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01117.x
– volume: 140
  start-page: 107
  year: 1993
  ident: cit0013
  publication-title: IEEE Proceedings Part F: Radar and Sonar Navigation
– ident: cit0021
  doi: 10.1080/02664760802124422
– volume: 94
  start-page: 746
  year: 1999
  ident: cit0017
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1999.10474177
– volume: 23
  start-page: 136
  year: 2011
  ident: cit0032
  publication-title: Journal of Neuroendocrinology
  doi: 10.1111/j.1365-2826.2010.02096.x
– volume: 92
  start-page: 775
  year: 1997
  ident: cit0031
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10474030
– ident: cit0040
  doi: 10.1093/biomet/asn035
– volume: 40
  start-page: 364
  year: 1978
  ident: cit0035
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1978.tb01050.x
– ident: cit0007
  doi: 10.1016/j.bbi.2003.12.011
– volume: 5
  start-page: 5
  year: 2007
  ident: cit0025
  publication-title: Population Health Metrics
  doi: 10.1186/1478-7954-5-5
– volume: 7
  start-page: 225
  year: 2006
  ident: cit0024
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj003
SSID ssj0000788
Score 2.1576838
Snippet The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Algorithms
Applications and Case Studies
Brain
Chronic fatigue syndrome
Circadian rhythm
Complexity
Coping
corticotropin
Cortisol
Data smoothing
Disease models
Feedback
Feedback relationship
Fibromyalgia
Hierarchies
Homeostasis
Hormones
HPA axis
Hypothalamic-pituitary-adrenal axis
Inference
Kalman filter
Kalman filters
Multilevel models
Nonparametric models
patients
Periodic splines
Profiles
Statistical discrepancies
Statistics
Stress
Time series analysis
Time series models
Title Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2013.830071
https://www.jstor.org/stable/24247141
https://www.ncbi.nlm.nih.gov/pubmed/24729646
https://www.proquest.com/docview/1680205002
https://www.proquest.com/docview/1803103471
https://www.proquest.com/docview/1826600919
https://pubmed.ncbi.nlm.nih.gov/PMC3979568
Volume 109
WOSCitedRecordID wos000333787300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 1537-274X
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RikMvvEsXSmUkroZ9-XUERJRDVVVKK3KzbMcLkapN1SSV-PfMeHdDUlGQ4BRFtkde73jm83rmG4B3WkUZxcxzmZee18Y33DSh4MG4Mg-ikdElyvxTdXamp1NzvpXFT2GVdIZuOqKIZKtpczu_HCLiPiBKIX5tSjMpqve6IjeJRhg9P-3Mi9HXX6ZYpcKTNIDTiCF37h4hO75pr3GLO_ylQ8zi79Do3aDKLS81evz_z_cEHvUIlX3sVOopPIjtMzggUNpxOj-HCRVQozR29ml-i2dthKvsdEGFj9YzKrLFxvgsizay864g-JL5H2w8p1TnVHnliiWIyyZ4Xo8sCVu-gMvRl4vPY94XZ-BB5vWKO-1j3ZRaO2-iNrHGEdKUceaUxzOWE8LlOqhSavzVeRUJXAmlZtITKV-oDmG_xakcAdOuFC4qlFKFuojRiMYHZ3xtVCjyJmRQDa_Fhp65nApoXNliIDjtV8zSitluxTLgm1HXHXPHX_of4Ru37hsaV3s5KYl6L0XxKZGB3lYDu0ofU5qu8omt_iz1MKnMZgqUjqOKGhuOBx2yvdlY2kJqhO8CvVQGbzfNuOHpFse1cbHGPprYXKuaZN_fB3EXoufCZPCyU8utCSi6apcZqB2F3XQgwvHdlnb-PRGP0x2wkPrVvy_HazjAf3X3DesY9lc36_gGHoZbVOGbE9hTU32StvBPKao-Jg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB7RgkQvvEsXChiJ68K-_DoCIgoiRJWSit4s2_FCpGqDmqQS_54Z725IKgoS4rQH2yOvPfZ8tme-AXilZBCBz1wqssKllXZ1qmufp17bIvO8FsFGyvyRHI_V2Zk-6bwJl51bJZ2h65YoIu7VtLjpMrp3iXuDMIUItinOJC9fq5Ls5B7c5GhqiT5_OvjyazOWMfUktUipSR89d42UHeu0V9vFFQbT3mvxd3j0qlvllp0a3P0Pf3gP7nQglb1tteo-3AjNAzggXNrSOj-ECeVQo0h29m5-icdtRKxstKDcR-sZ5dliQ_yZRRPYSZsTfMncDzacU7RzTL5yziLKZRM8sgcWhS0fwengw_T9MO3yM6ReZNUqtcqFqi6Usk4HpUOFLYQuwsxKh8csy7nNlJeFUPhVWRkIX3EpZ8IRL58vD2G_wa4cAVO24DZIlFL6Kg9B89p5q12lpc-z2idQ9vNifEdeTjk0zk3ec5x2I2ZoxEw7Ygmkm1bfW_KOv9Q_wik39ivur-Z0UhD7XnTkkzwBta0HZhXvU-o2-Ykp_yz1MOrMpgsUkSPzCguOeyUy3c6xNLlQiOA5GqoEXm6Kcc3TQ45twmKNdRQRupYVyb6-DkIvBNC5TuBxq5dbHZD02i4SkDsau6lAnOO7Jc38W-Qep2dgLtSTfx-OF3B7OP08MqOP409P4QBLqvZK6xj2Vxfr8Axu-UtU54vncSX_BLpZQWg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoQaiX8izdUsBIXBf25deRVxREFEVKK3qzbK9dIlWbqkkq8e-Z8e6GpKIgwWkPtkde79j-vJ75PkLeSOG5Z7VNeVbYtFI2pCq4PHXKFJljgXsTKfNHYjyWZ2dqspHFj2GVeIYOLVFEXKtxcl_WoY-IewcoBfm1Mc0kL9_KErfJHXIXkDNHHz8ZfPu1FouoPIktUmzSJ8_dYmVrc9oJZn6DwLQPWvwdHL0ZVbmxTQ0e_P8LPiT7HUSl71ufekTu-OYx2UNU2pI6PyFTVFDDPHb6YXYNh23Aq3Q0R-WjVY0qW3QI7zJvPJ20iuALan_Q4QxznaP0ygWNGJdO4cDuaTS2eEpOB59PPg7TTp0hdTyrlqmR1lehkNJY5aXyFbTgqvC1ERYOWYYxk0knCi7hKbPSI7piQtTcIiufKw_IbgNdOSRUmoIZL8BK6arce8WCdUbZSgmXZ8ElpOw_i3YddTkqaFzovGc47UZM44jpdsQSkq5bXbbUHX-pfwhfXJtzWF316bRA7r0YxidYQuSmG-hl_JsSWukTXf7Z6kF0mXUXMB9H5BUUHPc-pLt1Y6FzLgG_M9imEvJ6XQwzHq9xTOPnK6gjkc61rND27XUAeAF8zlVCnrVuudEBgXftPCFiy2HXFZBxfLukmX2PzON4Ccy4PPr34XhF7k8-DfToy_jrc7IHBVX7P-uY7C6vVv4FueeuwZuvXsZ5_BOzwEAa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Bivariate+Longitudinal+Hormone+Profiles+by+Hierarchical+State+Space+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Liu%2C+Ziyue&rft.au=Cappola%2C+Anne+R.&rft.au=Crofford%2C+Leslie+J.&rft.au=Guo%2C+Wensheng&rft.date=2014&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=109&rft.issue=505&rft.spage=108&rft.epage=118&rft_id=info:doi/10.1080%2F01621459.2013.830071&rft_id=info%3Apmid%2F24729646&rft.externalDocID=PMC3979568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon