A heterogeneous label propagation approach to explore the potential associations between miRNA and disease

Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. None...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of translational medicine Ročník 16; číslo 1; s. 348 - 14
Hlavní autoři: Chen, Xing, Zhang, De-Hong, You, Zhu-Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 11.12.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1479-5876, 1479-5876
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
AbstractList Abstract Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 [+ or -] 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Keywords: miRNA, Disease, miRNA-disease association, Multi-network, Label propagation
Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments.BACKGROUNDResearch on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments.In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction.METHODSIn this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction.HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports.RESULTSHLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports.All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.CONCLUSIONSAll the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 [+ or -] 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.
ArticleNumber 348
Audience Academic
Author You, Zhu-Hong
Zhang, De-Hong
Chen, Xing
Author_xml – sequence: 1
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  email: xingchen@amss.ac.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 2
  givenname: De-Hong
  surname: Zhang
  fullname: Zhang, De-Hong
  organization: School of Information and Control Engineering, China University of Mining and Technology
– sequence: 3
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
  email: zhuhongyou@ms.xjb.ac.cn
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30537965$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAYhSNURC_wAGyQJTbdpNiOL_EGaVRxqVSBhGBtOfbvjEeZONgZoG-PZ6alnQpQFkmc73zRb5_T6miMI1TVS4IvCGnFm0yoErLGpK2JpLQmT6oTwqSqeSvF0YPn4-o05xXGlHGmnlXHDeaNVIKfVKsFWsIMKfYwQtxkNJgOBjSlOJnezCGOyEzlzdglmiOCX9MQE6B5CWiKM4xzMAMyOUcbdnRGHcw_AUa0Dl8-LZAZHXIhg8nwvHrqzZDhxe39rPr2_t3Xy4_19ecPV5eL69oK3Mw1WN46Lxn1hDippBeCObAYA1NAwBGMne1MJ70Ejo0roFUMgHFuuWKmOauu9l4XzUpPKaxNutHRBL1biKnXJs3BDqAp94zJprPgBTPF6ooLS4pdI3zrXXG93bumTbcGZ8vAyQwH0sMvY1jqPv7QgirMaVsE57eCFL9vIM96HbKFYTC77daUcF7ODre4oK8foau4SWPZqi3VskZwpe6p3pQBwuhj-a_dSvWCC4Wpks2WuvgLVS4H62BLi3wo6weBVw8H_TPhXVMKIPeATTHnBF7bMO-OvJjDoAnW207qfSd16aTedlKTkiSPknfy_2XoPpMLO_aQ7vfi36HfFoH0ng
CitedBy_id crossref_primary_10_3390_cells8080866
crossref_primary_10_1109_TCBB_2020_2973091
crossref_primary_10_3390_ijms20010110
crossref_primary_10_3389_fgene_2019_00385
crossref_primary_10_1093_bib_bbaa061
crossref_primary_10_1186_s12859_020_03765_2
crossref_primary_10_1038_s41598_022_20529_5
crossref_primary_10_1371_journal_pcbi_1009655
crossref_primary_10_1109_TCBB_2022_3176456
crossref_primary_10_1371_journal_pone_0252971
crossref_primary_10_1186_s12859_020_03578_3
crossref_primary_10_1016_j_ymthe_2021_01_003
crossref_primary_10_1093_bib_bbaa158
crossref_primary_10_3389_fgene_2021_742992
crossref_primary_10_3389_fgene_2021_743665
crossref_primary_10_1038_s41598_019_46939_6
crossref_primary_10_1093_bib_bbac292
crossref_primary_10_1186_s13059_019_1811_3
crossref_primary_10_3892_mmr_2021_12206
crossref_primary_10_1093_bib_bbab165
crossref_primary_10_1016_j_compbiomed_2021_104706
crossref_primary_10_3389_fgene_2019_01106
crossref_primary_10_1186_s12859_020_3409_x
crossref_primary_10_1186_s12967_019_2063_4
crossref_primary_10_1038_s42003_020_0858_8
crossref_primary_10_3389_fgene_2022_980497
crossref_primary_10_3390_biology11050777
Cites_doi 10.1111/j.1469-185X.2008.00061.x
10.1186/1755-8417-2-7
10.1039/c2mb25180a
10.1016/j.semcancer.2014.04.002
10.1016/j.virol.2012.12.016
10.1093/nar/gkn714
10.1038/nrc1840
10.1016/j.ejca.2007.04.002
10.1371/journal.pone.0051387
10.1093/nar/gkt1248
10.1093/bioinformatics/btq241
10.1093/bioinformatics/btt677
10.1016/j.gde.2005.08.005
10.1186/1471-2156-6-45
10.1038/leu.2011.81
10.1186/1752-0509-7-101
10.1093/nar/gki200
10.1093/bioinformatics/bty503
10.1080/15476286.2017.1312226
10.1186/1471-2164-11-S4-S5
10.1002/ijc.24972
10.1080/15476286.2018.1460016
10.1016/j.cell.2009.01.002
10.1093/bioinformatics/btr500
10.1093/bib/bbw060
10.1038/nature02871
10.1093/nar/gks1099
10.1073/pnas.0701361104
10.1038/nature02873
10.1371/journal.pone.0003420
10.1126/science.1149460
10.1158/1535-7163.MCT-11-0055
10.1016/S0092-8674(04)00045-5
10.1371/journal.pcbi.1005455
10.1038/nbt1203
10.1182/blood-2011-07-370122
10.1002/path.2978
10.18632/oncotarget.10108
10.1038/srep05501
10.1111/cas.12156
10.1371/journal.pone.0050469
10.1038/msb4100089
10.1038/onc.2013.226
10.1103/PhysRevE.76.046115
10.1093/bib/bbv066
10.1371/journal.pcbi.1005912
10.1038/srep43792
10.1038/srep13877
10.1093/bioinformatics/btv039
10.1093/bioinformatics/btt426
10.1161/CIRCRESAHA.107.163147
10.1186/1758-907X-1-6
10.1371/journal.pcbi.1006418
10.1371/journal.pone.0070204
10.1016/j.tig.2004.09.010
10.1242/dev.02073
10.1093/bioinformatics/bty333
10.1038/s41419-017-0003-x
10.1093/nar/gkt1023
10.1001/jamaoncol.2015.3413
10.1038/srep27036
10.18632/oncotarget.15061
10.18632/oncotarget.11251
10.1016/S0092-8674(01)00616-X
10.1039/C6MB00853D
10.18632/aging.101080
10.1126/science.1113329
10.1038/srep21106
10.1126/science.1121566
10.1186/1471-2105-14-S12-S1
10.1038/ng895
10.1016/j.gpb.2017.02.002
10.1016/j.jbi.2017.03.006
10.1093/nar/gkq1027
10.1038/mtna.2016.96
10.3322/caac.21412
10.1186/1752-0509-4-S1-S2
10.1182/blood-2011-09-381905
10.1038/cgt.2016.5
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s12967-018-1722-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 14
ExternalDocumentID oai_doaj_org_article_25f4473bcef64acbadfc90720d36f8fd
PMC6290528
A569029739
30537965
10_1186_s12967_018_1722_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772531
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61772531
– fundername: ;
  grantid: 61772531
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c603t-ec58df742f11d797f664dec00e49e1ed100dcbab7f7e50ad42fc94ee455c594a3
IEDL.DBID DOA
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452893600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1479-5876
IngestDate Fri Oct 03 12:38:12 EDT 2025
Tue Nov 04 01:57:14 EST 2025
Sun Nov 09 10:07:31 EST 2025
Sat Oct 18 23:47:10 EDT 2025
Tue Nov 11 10:31:54 EST 2025
Tue Nov 04 17:59:21 EST 2025
Thu Jan 02 22:59:05 EST 2025
Tue Nov 18 21:52:00 EST 2025
Sat Nov 29 06:00:33 EST 2025
Sat Sep 06 07:28:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords miRNA
Multi-network
miRNA-disease association
Disease
Label propagation
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-ec58df742f11d797f664dec00e49e1ed100dcbab7f7e50ad42fc94ee455c594a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/25f4473bcef64acbadfc90720d36f8fd
PMID 30537965
PQID 2158436599
PQPubID 43076
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_25f4473bcef64acbadfc90720d36f8fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6290528
proquest_miscellaneous_2155172080
proquest_journals_2158436599
gale_infotracmisc_A569029739
gale_infotracacademiconefile_A569029739
pubmed_primary_30537965
crossref_citationtrail_10_1186_s12967_018_1722_1
crossref_primary_10_1186_s12967_018_1722_1
springer_journals_10_1186_s12967_018_1722_1
PublicationCentury 2000
PublicationDate 2018-12-11
PublicationDateYYYYMMDD 2018-12-11
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of translational medicine
PublicationTitleAbbrev J Transl Med
PublicationTitleAlternate J Transl Med
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References G Meister (1722_CR3) 2004; 431
X Chen (1722_CR36) 2018; 15
ZH You (1722_CR52) 2017; 13
R Hummel (1722_CR70) 2011; 26
M Lu (1722_CR20) 2008; 3
P Xuan (1722_CR40) 2015; 31
Y Li (1722_CR55) 2014; 42
JH Li (1722_CR57) 2014; 42
X Chen (1722_CR34) 2018; 9
X Chen (1722_CR62) 2013; 29
K Chiang (1722_CR21) 2013; 438
D Wang (1722_CR58) 2010; 26
Q Jiang (1722_CR37) 2010; 4
X Chen (1722_CR39) 2017
J Xu (1722_CR44) 2011; 10
X Chen (1722_CR46) 2015; 5
S Vasudevan (1722_CR6) 2007; 318
O Giricz (1722_CR24) 2012; 226
1722_CR53
CE Desantis (1722_CR71) 2017; 67
H Yu (1722_CR51) 2017; 7
X Chen (1722_CR48) 2016; 6
CC Sun (1722_CR28) 2016; 8
G Chen (1722_CR56) 2013; 41
C Perez-Iratxeta (1722_CR31) 2002; 31
N Lynam-Lennon (1722_CR17) 2009; 84
DP Bartel (1722_CR2) 2004; 116
L Xie (1722_CR75) 2012; 119
JQ Li (1722_CR50) 2017; 8
M Lotfi Shahreza (1722_CR63) 2017; 68
F Kopp (1722_CR72) 2012; 7
MF Berry (1722_CR69) 2014; 6
X Karp (1722_CR9) 2005; 310
A Watanabe (1722_CR77) 2011; 25
X Chen (1722_CR35) 2017; 13
X Chen (1722_CR33) 2018
X Chen (1722_CR49) 2016; 7
Q Jiang (1722_CR66) 2009; 37
A Esquelakerscher (1722_CR18) 2006; 6
Q Li (1722_CR23) 2013; 33
C Pasquier (1722_CR47) 2016; 6
T Zhou (1722_CR64) 2007; 76
V Ambros (1722_CR4) 2001; 107
DP Bartel (1722_CR13) 2009; 136
CC Sun (1722_CR27) 2016; 5
VP Tryndyak (1722_CR73) 2010; 126
TV Laarhoven (1722_CR61) 2011; 27
P Xu (1722_CR11) 2005; 20
EAC Wiemer (1722_CR25) 2007; 43
X Chen (1722_CR65) 2012; 8
C Sun (1722_CR29) 2016; 7
X Chen (1722_CR84) 2016; 17
X Chen (1722_CR54) 2017; 18
V Ambros (1722_CR1) 2004; 431
X Chen (1722_CR45) 2014; 4
N Meola (1722_CR16) 2009; 2
S Aerts (1722_CR32) 2006; 24
S Mørk (1722_CR42) 2014; 30
B Sanghamitra (1722_CR59) 2010; 1
1722_CR74
AM Cheng (1722_CR8) 2005; 33
EA Miska (1722_CR10) 2005; 15
Q Cui (1722_CR14) 2014; 2
K Goh (1722_CR60) 2007; 104
P Xuan (1722_CR38) 2013; 8
CK Mantri (1722_CR22) 2012; 7
C Perez-Iratxeta (1722_CR30) 2005; 6
X Chen (1722_CR43) 2017; 13
Z Yang (1722_CR67) 2010; 11
M Alshalalfa (1722_CR12) 2013; 14
H Shi (1722_CR41) 2013; 7
S Chen (1722_CR78) 2013; 104
SR McGee (1722_CR83) 2017; 15
I Alvarez-Garcia (1722_CR15) 2005; 132
MV Latronico (1722_CR19) 2007; 101
X Chen (1722_CR81) 2018; 14
B He (1722_CR68) 2012; 6
E Wang (1722_CR79) 2015; 30
C Yang (1722_CR26) 2016; 23
X Chen (1722_CR80) 2018
A Kozomara (1722_CR5) 2011; 39
CL Jopling (1722_CR7) 2005; 309
S Gao (1722_CR82) 2016; 2
J Iqbal (1722_CR76) 2012; 119
References_xml – volume: 84
  start-page: 55
  year: 2009
  ident: 1722_CR17
  publication-title: Biol Rev
  doi: 10.1111/j.1469-185X.2008.00061.x
– volume: 2
  start-page: 7
  year: 2009
  ident: 1722_CR16
  publication-title: PathoGenetics
  doi: 10.1186/1755-8417-2-7
– volume: 8
  start-page: 2792
  year: 2012
  ident: 1722_CR65
  publication-title: Mol BioSyst
  doi: 10.1039/c2mb25180a
– volume: 30
  start-page: 4
  year: 2015
  ident: 1722_CR79
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2014.04.002
– volume: 438
  start-page: 1
  year: 2013
  ident: 1722_CR21
  publication-title: Virology
  doi: 10.1016/j.virol.2012.12.016
– volume: 37
  start-page: D98
  year: 2009
  ident: 1722_CR66
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– volume: 6
  start-page: 259
  year: 2006
  ident: 1722_CR18
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1840
– volume: 43
  start-page: 1529
  year: 2007
  ident: 1722_CR25
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2007.04.002
– volume: 7
  start-page: e51387
  year: 2012
  ident: 1722_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0051387
– volume: 42
  start-page: D92
  year: 2014
  ident: 1722_CR57
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1248
– volume: 26
  start-page: 1644
  year: 2010
  ident: 1722_CR58
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 30
  start-page: 392
  year: 2014
  ident: 1722_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt677
– volume: 15
  start-page: 563
  year: 2005
  ident: 1722_CR10
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2005.08.005
– volume: 6
  start-page: 1
  year: 2005
  ident: 1722_CR30
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-6-45
– volume: 25
  start-page: 1324
  year: 2011
  ident: 1722_CR77
  publication-title: Leukemia
  doi: 10.1038/leu.2011.81
– volume: 7
  start-page: 1
  year: 2013
  ident: 1722_CR41
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-101
– volume: 33
  start-page: 1290
  year: 2005
  ident: 1722_CR8
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki200
– year: 2018
  ident: 1722_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty503
– year: 2017
  ident: 1722_CR39
  publication-title: RNA Biol
  doi: 10.1080/15476286.2017.1312226
– volume: 11
  start-page: S5
  issue: Suppl 4
  year: 2010
  ident: 1722_CR67
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-S4-S5
– volume: 126
  start-page: 2575
  year: 2010
  ident: 1722_CR73
  publication-title: Int J Cancer
  doi: 10.1002/ijc.24972
– volume: 15
  start-page: 807
  issue: 6
  year: 2018
  ident: 1722_CR36
  publication-title: RNA Biology
  doi: 10.1080/15476286.2018.1460016
– volume: 136
  start-page: 215
  year: 2009
  ident: 1722_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 27
  start-page: 3036
  year: 2011
  ident: 1722_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– ident: 1722_CR53
  doi: 10.1093/bib/bbw060
– volume: 431
  start-page: 350
  year: 2004
  ident: 1722_CR1
  publication-title: Nature
  doi: 10.1038/nature02871
– volume: 41
  start-page: 983
  year: 2013
  ident: 1722_CR56
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1099
– volume: 104
  start-page: 8685
  year: 2007
  ident: 1722_CR60
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0701361104
– volume: 431
  start-page: 343
  year: 2004
  ident: 1722_CR3
  publication-title: Nature
  doi: 10.1038/nature02873
– volume: 3
  start-page: e3420
  year: 2008
  ident: 1722_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003420
– ident: 1722_CR74
– volume: 318
  start-page: 1931
  year: 2007
  ident: 1722_CR6
  publication-title: Science
  doi: 10.1126/science.1149460
– volume: 10
  start-page: 1857
  year: 2011
  ident: 1722_CR44
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-11-0055
– volume: 116
  start-page: 281
  year: 2004
  ident: 1722_CR2
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 13
  start-page: e1005455
  year: 2017
  ident: 1722_CR52
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005455
– volume: 24
  start-page: 537
  year: 2006
  ident: 1722_CR32
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1203
– volume: 119
  start-page: 4939
  year: 2012
  ident: 1722_CR76
  publication-title: Blood
  doi: 10.1182/blood-2011-07-370122
– volume: 226
  start-page: 108
  year: 2012
  ident: 1722_CR24
  publication-title: J Pathol
  doi: 10.1002/path.2978
– volume: 6
  start-page: S289
  issue: Suppl 3
  year: 2014
  ident: 1722_CR69
  publication-title: J Thorac Dis
– volume: 7
  start-page: 51784
  year: 2016
  ident: 1722_CR29
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10108
– volume: 4
  start-page: 5501
  year: 2014
  ident: 1722_CR45
  publication-title: Sci Rep
  doi: 10.1038/srep05501
– volume: 18
  start-page: 558
  year: 2017
  ident: 1722_CR54
  publication-title: Brief Bioinform
– volume: 104
  start-page: 826
  year: 2013
  ident: 1722_CR78
  publication-title: Cancer Sci
  doi: 10.1111/cas.12156
– volume: 7
  start-page: e50469
  year: 2012
  ident: 1722_CR72
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0050469
– volume: 2
  start-page: 46
  year: 2014
  ident: 1722_CR14
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100089
– volume: 33
  start-page: 2589
  year: 2013
  ident: 1722_CR23
  publication-title: Oncogene
  doi: 10.1038/onc.2013.226
– volume: 76
  start-page: 046115
  year: 2007
  ident: 1722_CR64
  publication-title: Phys Rev E Stat Nonlin Soft Matter Phys
  doi: 10.1103/PhysRevE.76.046115
– volume: 17
  start-page: 696
  year: 2016
  ident: 1722_CR84
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv066
– volume: 6
  start-page: 459
  year: 2012
  ident: 1722_CR68
  publication-title: Mol Med Rep
– volume: 13
  start-page: e1005912
  year: 2017
  ident: 1722_CR35
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005912
– volume: 7
  start-page: 43792
  year: 2017
  ident: 1722_CR51
  publication-title: Sci Rep
  doi: 10.1038/srep43792
– volume: 5
  start-page: 13877
  year: 2015
  ident: 1722_CR46
  publication-title: Sci Rep
  doi: 10.1038/srep13877
– volume: 31
  start-page: 1805
  year: 2015
  ident: 1722_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv039
– volume: 26
  start-page: 1011
  year: 2011
  ident: 1722_CR70
  publication-title: Oncol Rep
– volume: 29
  start-page: 2617
  year: 2013
  ident: 1722_CR62
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– volume: 101
  start-page: 1225
  year: 2007
  ident: 1722_CR19
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.107.163147
– volume: 1
  start-page: 6
  year: 2010
  ident: 1722_CR59
  publication-title: Silence
  doi: 10.1186/1758-907X-1-6
– volume: 14
  start-page: e1006418
  year: 2018
  ident: 1722_CR81
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006418
– volume: 8
  start-page: e70204
  year: 2013
  ident: 1722_CR38
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0070204
– volume: 20
  start-page: 617
  year: 2005
  ident: 1722_CR11
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2004.09.010
– volume: 132
  start-page: 4653
  year: 2005
  ident: 1722_CR15
  publication-title: Development
  doi: 10.1242/dev.02073
– year: 2018
  ident: 1722_CR80
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty333
– volume: 9
  start-page: 3
  year: 2018
  ident: 1722_CR34
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-017-0003-x
– volume: 42
  start-page: 1070
  year: 2014
  ident: 1722_CR55
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1023
– volume: 2
  start-page: 37
  year: 2016
  ident: 1722_CR82
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2015.3413
– volume: 6
  start-page: 27036
  year: 2016
  ident: 1722_CR47
  publication-title: Sci Rep
  doi: 10.1038/srep27036
– volume: 8
  start-page: 21187
  year: 2017
  ident: 1722_CR50
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15061
– volume: 7
  start-page: 65257
  year: 2016
  ident: 1722_CR49
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11251
– volume: 107
  start-page: 823
  year: 2001
  ident: 1722_CR4
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00616-X
– volume: 13
  start-page: 1202
  year: 2017
  ident: 1722_CR43
  publication-title: Mol BioSyst
  doi: 10.1039/C6MB00853D
– volume: 8
  start-page: 2509
  year: 2016
  ident: 1722_CR28
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.101080
– volume: 309
  start-page: 1577
  year: 2005
  ident: 1722_CR7
  publication-title: Science
  doi: 10.1126/science.1113329
– volume: 6
  start-page: 21106
  year: 2016
  ident: 1722_CR48
  publication-title: Sci Rep
  doi: 10.1038/srep21106
– volume: 310
  start-page: 1288
  year: 2005
  ident: 1722_CR9
  publication-title: Science
  doi: 10.1126/science.1121566
– volume: 14
  start-page: S1
  year: 2013
  ident: 1722_CR12
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-S12-S1
– volume: 31
  start-page: 316
  year: 2002
  ident: 1722_CR31
  publication-title: Nat Genet
  doi: 10.1038/ng895
– volume: 15
  start-page: 121
  year: 2017
  ident: 1722_CR83
  publication-title: Genomics Proteom Bioinform
  doi: 10.1016/j.gpb.2017.02.002
– volume: 68
  start-page: 167
  year: 2017
  ident: 1722_CR63
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.03.006
– volume: 39
  start-page: D152
  year: 2011
  ident: 1722_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1027
– volume: 5
  start-page: e387
  year: 2016
  ident: 1722_CR27
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1038/mtna.2016.96
– volume: 67
  start-page: 439
  year: 2017
  ident: 1722_CR71
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21412
– volume: 4
  start-page: S2
  issue: Suppl 1
  year: 2010
  ident: 1722_CR37
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 119
  start-page: 3503
  year: 2012
  ident: 1722_CR75
  publication-title: Blood
  doi: 10.1182/blood-2011-09-381905
– volume: 23
  start-page: 90
  year: 2016
  ident: 1722_CR26
  publication-title: Cancer Gene Ther
  doi: 10.1038/cgt.2016.5
SSID ssj0024549
Score 2.417976
Snippet Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that...
Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA...
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that...
In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for...
Abstract Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 348
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Breast cancer
Chemotherapy
Computational Biology - methods
Computer applications
Disease
Drug resistance
Esophageal cancer
Esophagus
Gene expression
Genetic Association Studies
Genetic disorders
Genetic Predisposition to Disease
Genomes
Genomics
Humans
Label propagation
Lung cancer
Lymphoma
Medical bioinformatics
Medical prognosis
Medical research
Medicine/Public Health
Methods
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
miRNA-disease association
Multi-network
Neoplasms - genetics
Non-coding RNA
Propagation
Proteins
Reproducibility of Results
Research methodology
Risk factors
Signal transduction
Similarity measures
Tumors
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEB-0J-KL3x-rp0QQBGVpdjfJJk9SxUPBK4conE8hm2TvKme3dnv-_U7StHVPvCdfm4RmOr-ZyTST3wC8qJwwinOXt5h65YwZmze04TkeJZjB8Md8ER8Kf6qnU3l8rI7S8-g-lVVufGJ01Gu251C3jU547Dob_jEfY6CSrBJcqTeLn3noIRXuWlNDjauwF4i35Aj2jj4eHn3bce9hMpRuNgspxj3GOhEKLzGPqjEnKwaxKVL4_-2o_4hUF6soL1ylxgh1cOv_ynYbbqaTKpmsoXUHrvj5Xbh-mO7i78H3CTkNtTQdQtB35z1BPPkzgl-NPirqm2wIy8mqIz4W-3mCB06y6MJWEPnE7NDRk1QzRn7MPk8nxMwdSddH9-Hrwfsv7z7kqXNDbgWtVrm3XLoWs-62KFyt6lYI5ryl1DOFyncFpc42pqnb2nNqHE60innPOLdcMVM9gNG8m_tHQOrQI0uWrbI1LrbScGu8k5Y1jFvHfAZ0ozNtE6156K5xpmN6I4Veq1mjmnVQsy4yeLVdslhzelw2-W0AwnZioOOOH3TLE52sW5e8ZayuGutbgXBvjEN5aF1SV4lWti6DlwFGOjgN3Jw16e0Dihjot_SEo6WELmIqg_3BTDR2OxzeIEgnZ9PrHWAyeL4dDitDAV2EQJjDUSDMDzJ4uMbtVqQqcPoowTOoB4geyDwcmc9OIxW5KBXlpczg9Qb7u2398yd9fLkQT-BGGW0SLbLYh9Fqee6fwjX7azXrl8-STf8GvhJddA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEA6yivji_VJdJYIgKMW0zfXxKC4-6EHWC_sW0lzcI2u7nHb9_U5y0nPsegF9bSYlk_lmJsNMJgg9aRw3ijFXBgi9SkqNLVvSshKOEtSA-6O-SheF34rlUh4dqff5HvcwVbtPKclkqZNaS_5iAM_EY5kkRD0CIigIeS6Ct5NRGw8_fN412IOIJ6cvfztt5oBSn_5frfFP7uh8qeS5fGlyQwfX_ouB6-hqPnXixQYmN9AF391El9_lvPot9HWBj2NdTA9w8v3ZgAEb_gTDQsHeJNnhqfk4HnvsU-Gex3B4xKf9GAuO4O9mJ-kB5_ov_G11uFxg0zmcU0G30aeD1x9fvSnzKwyl5aQZS2-ZdAEi6FBVTigROKfOW0I8VSBIVxHibGtaEYRnxDggtIp6TxmzTFHT3EF7Xd_5ewiL-N6VrIOyAiZbaZg13klLW8qso75AZBKNtrlFeXwp40SnUEVyvdlDDXuo4x7qqkDPtlNON_05_kb8Msp7Sxhba6cP_fqLzpqqaxYoFU1rfeAA3dY44IeImriGBxlcgZ5GtOhoAGBx1uR7DMBibKWlFwxQH18EUwXan1GC4tr58IQ3nQ3HoOEEJmnDmYLhx9vhODMWwyUIRBoGDMFZv0B3N_DcstTE_jyKswKJGXBnPM9HutVxaivOa0VYLQv0fILvbll_3NL7_0T9AF2pE_4B_dU-2hvXZ_4humS_j6th_Sjp8Q9UIkXs
  priority: 102
  providerName: Springer Nature
Title A heterogeneous label propagation approach to explore the potential associations between miRNA and disease
URI https://link.springer.com/article/10.1186/s12967-018-1722-1
https://www.ncbi.nlm.nih.gov/pubmed/30537965
https://www.proquest.com/docview/2158436599
https://www.proquest.com/docview/2155172080
https://pubmed.ncbi.nlm.nih.gov/PMC6290528
https://doaj.org/article/25f4473bcef64acbadfc90720d36f8fd
Volume 16
WOSCitedRecordID wos000452893600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RSV
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3raxQxEB-0ivSL-Ha1HhEEQVm6jzw_XqVFwR7H-eD8FLJ50JN6V3pX_34n2d1rt6J-8cvCbia7ycxvMjNkdgLwqnbcKMZcHjD0yik1Nm-KhuXoSlCD5o_6Mv0o_FFMJnI-V9MrR33FnLC2PHDLuP2KBUpF3VgfOL6pMS5YDOiqwtU8yODi6oteTx9M9VX2MOzp9jBLyffXaNV4TLHEiElg9FUOrFAq1v_7knzFJl3Pl7y2aZps0dE9uNs5kWTcDv4-3PDLB3DnuNsmfwjfx-QkprmsEB0eQ3uCovanBD-Jy0cSBelriZPNiviUh-cJ-oLkbLWJ-UP4dnMpuDXp0rnIj8VsMiZm6Ui3s_MIvhwdfn73Pu8OVcgtL-pN7i2TLmBAHMrSCSUC59R5WxSeKpSLK4vCIZcbEYRnhXFIaBX1njJmmaKmfgw7y9XSPwUi4vFVsgrKCuxspWHWeCctbSizjvoMip7J2nYVx-PBF6c6RR6S61YuGuWio1x0mcGbbZezttzG34gPouS2hLFSdnqA-NEdfvS_8JPB6yh3HfUZB2dN91sCTjFWxtJjhiCOB3ypDPYGlKiHdtjcI0d368Bao0Mlac2ZwuaX2-bYM-a2JQhEGoYTQhBn8KQF2nZKdSy3ozjLQAwgOJjzsGW5OElVwnmlClbJDN72YL0c1h9Z-ux_sPQ57FZJ1VDRyj3Y2Zxf-Bdw2_7cLNbnI7gp5iJd5QhuHRxOprNRUl68m344nn7Du9mnr78AfsxKHQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJFASKCoefgRHxBaHlWrtiuEirQ349gOXVQ2y2YL4k_xGxl7k11SRG89cF2PI0_2m2888XgG4EluuZaM2bjC0CumVJu4TEoW41aCanR_1KXhovCeGA6L0Ui-X4Nf3V0Yn1bZcWIgalsb_418E11TQXPOpHw1_Rb7rlH-dLVrobGAxa77-QNDtublzlv8f59m2da7gzfbcdtVIDY8yeexM6ywFUaEVZpaIUXFObXOJImjEhdm0ySxptSlqIRjibYoaCR1jjJmmKQ6x-eeg_PI48KnkInRKsCjGGy1J6dpwTcb9KXcJ3ZinCYw5kt7vi-0CPjbEfzhCU9maZ44qg0ecOvq__bursGVdq9NBgvjuA5rbnIDLu632QQ34cuAHPpsoBqNyNXHDUGLcEcElUOWDYglXcl1Mq-JC-mKjuCWmUzruU-zwqfrFb4b0ma9ka_jD8MB0RNL2gOwW_DxTDS9DeuTeuLuAhG-y1eRVdIInGwKzYx2tjC0pMxY6iJIOlQo0xZm9_1BjlQI0AquFkBSCCTlgaTSCJ4vp0wXVUlOE37tobYU9AXFww_17LNq-UllrKJU5KVxFUeDLbVFfRKRJTbnVVHZCJ55oCpPe7g4o9vbG6iiLyCmBgxt3fdBkxFs9CSRrkx_uMOoaumyUSuARvB4Oexn-hTAAAEvw1AhjHAiuLOwjKVKua9KJDmLQPRspqdzf2QyPgzF1HkmE5YVEbzorGu1rH--0nunK_EILm0f7O-pvZ3h7n24nAUGQPtPN2B9Pjt2D-CC-T4fN7OHgT8IfDpro_sNRxqv7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA9yyuEX357VUyMIglIubfNoPq6PRfFcDl_ct5Dm4a2c7bLt-fc7Sdtdez5A_NpMIJP8JpNhpr9B6HFhuZaM2dRD6JVSqk1akYql8JSgGtwfdVn8UfhQLBbl8bE8GvqctmO1-5iS7P9pCCxNdXewsr438ZIftOCleCiZhAhIQDQF4c9FGnoGhXD9w-ct2R5EP0Mq87fTJs4ocvb_ejP_5JrOl02ey51GlzS_-t_KXENXhtconvXwuY4uuPoG2n035Ntvoq8zfBLqZRqAmWvOWgyYcacYFg33UDxTPJKS467BLhb0OQyPSrxqwhIA3VhvEdDioS4Mf1u-X8ywri0eUkS30Kf5q48vXqdDd4bUcFJ0qTOstB4ia59lVkjhOafWGUIclXDANiPEmkpXwgvHiLYgaCR1jjJmmKS6uI126qZ2dxAWoQ9WmXtpBEw2pWZGO1saWlFmLHUJIuMxKTNQl4cOGqcqhjAlV_0eKthDFfZQZQl6upmy6nk7_ib8PJz9RjBQbscPzfqLGixY5cxTKorKOM8B0pW2oA8RObEF96W3CXoSkKPCxQCLM3r4vwFUDBRbasbAGkKnMJmg_YkkGLSZDo_YU8OF0ip4mZW04EzC8KPNcJgZiuQiBIIMA4UgBkjQXg_VjUpF4O2RnCVITEA80Xk6Ui9PIt04zyVheZmgZyOUt8v645be_Sfph2j36OVcHb5ZvL2HLufRFMAQsn20063P3H10yXzvlu36QTTvH2weUbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heterogeneous+label+propagation+approach+to+explore+the+potential+associations+between+miRNA+and+disease&rft.jtitle=Journal+of+translational+medicine&rft.au=Xing+Chen&rft.au=De-Hong+Zhang&rft.au=Zhu-Hong+You&rft.date=2018-12-11&rft.pub=BMC&rft.eissn=1479-5876&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2Fs12967-018-1722-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_25f4473bcef64acbadfc90720d36f8fd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon