A heterogeneous label propagation approach to explore the potential associations between miRNA and disease
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. None...
Uloženo v:
| Vydáno v: | Journal of translational medicine Ročník 16; číslo 1; s. 348 - 14 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
11.12.2018
BioMed Central Ltd Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 1479-5876, 1479-5876 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments.
Methods
In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction.
Results
HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports.
Conclusions
All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. |
|---|---|
| AbstractList | Abstract Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 [+ or -] 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Keywords: miRNA, Disease, miRNA-disease association, Multi-network, Label propagation Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments.BACKGROUNDResearch on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments.In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction.METHODSIn this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction.HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports.RESULTSHLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports.All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers.CONCLUSIONSAll the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA-miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 [+ or -] 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. |
| ArticleNumber | 348 |
| Audience | Academic |
| Author | You, Zhu-Hong Zhang, De-Hong Chen, Xing |
| Author_xml | – sequence: 1 givenname: Xing surname: Chen fullname: Chen, Xing email: xingchen@amss.ac.cn organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 2 givenname: De-Hong surname: Zhang fullname: Zhang, De-Hong organization: School of Information and Control Engineering, China University of Mining and Technology – sequence: 3 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong email: zhuhongyou@ms.xjb.ac.cn organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30537965$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAYhSNURC_wAGyQJTbdpNiOL_EGaVRxqVSBhGBtOfbvjEeZONgZoG-PZ6alnQpQFkmc73zRb5_T6miMI1TVS4IvCGnFm0yoErLGpK2JpLQmT6oTwqSqeSvF0YPn4-o05xXGlHGmnlXHDeaNVIKfVKsFWsIMKfYwQtxkNJgOBjSlOJnezCGOyEzlzdglmiOCX9MQE6B5CWiKM4xzMAMyOUcbdnRGHcw_AUa0Dl8-LZAZHXIhg8nwvHrqzZDhxe39rPr2_t3Xy4_19ecPV5eL69oK3Mw1WN46Lxn1hDippBeCObAYA1NAwBGMne1MJ70Ejo0roFUMgHFuuWKmOauu9l4XzUpPKaxNutHRBL1biKnXJs3BDqAp94zJprPgBTPF6ooLS4pdI3zrXXG93bumTbcGZ8vAyQwH0sMvY1jqPv7QgirMaVsE57eCFL9vIM96HbKFYTC77daUcF7ODre4oK8foau4SWPZqi3VskZwpe6p3pQBwuhj-a_dSvWCC4Wpks2WuvgLVS4H62BLi3wo6weBVw8H_TPhXVMKIPeATTHnBF7bMO-OvJjDoAnW207qfSd16aTedlKTkiSPknfy_2XoPpMLO_aQ7vfi36HfFoH0ng |
| CitedBy_id | crossref_primary_10_3390_cells8080866 crossref_primary_10_1109_TCBB_2020_2973091 crossref_primary_10_3390_ijms20010110 crossref_primary_10_3389_fgene_2019_00385 crossref_primary_10_1093_bib_bbaa061 crossref_primary_10_1186_s12859_020_03765_2 crossref_primary_10_1038_s41598_022_20529_5 crossref_primary_10_1371_journal_pcbi_1009655 crossref_primary_10_1109_TCBB_2022_3176456 crossref_primary_10_1371_journal_pone_0252971 crossref_primary_10_1186_s12859_020_03578_3 crossref_primary_10_1016_j_ymthe_2021_01_003 crossref_primary_10_1093_bib_bbaa158 crossref_primary_10_3389_fgene_2021_742992 crossref_primary_10_3389_fgene_2021_743665 crossref_primary_10_1038_s41598_019_46939_6 crossref_primary_10_1093_bib_bbac292 crossref_primary_10_1186_s13059_019_1811_3 crossref_primary_10_3892_mmr_2021_12206 crossref_primary_10_1093_bib_bbab165 crossref_primary_10_1016_j_compbiomed_2021_104706 crossref_primary_10_3389_fgene_2019_01106 crossref_primary_10_1186_s12859_020_3409_x crossref_primary_10_1186_s12967_019_2063_4 crossref_primary_10_1038_s42003_020_0858_8 crossref_primary_10_3389_fgene_2022_980497 crossref_primary_10_3390_biology11050777 |
| Cites_doi | 10.1111/j.1469-185X.2008.00061.x 10.1186/1755-8417-2-7 10.1039/c2mb25180a 10.1016/j.semcancer.2014.04.002 10.1016/j.virol.2012.12.016 10.1093/nar/gkn714 10.1038/nrc1840 10.1016/j.ejca.2007.04.002 10.1371/journal.pone.0051387 10.1093/nar/gkt1248 10.1093/bioinformatics/btq241 10.1093/bioinformatics/btt677 10.1016/j.gde.2005.08.005 10.1186/1471-2156-6-45 10.1038/leu.2011.81 10.1186/1752-0509-7-101 10.1093/nar/gki200 10.1093/bioinformatics/bty503 10.1080/15476286.2017.1312226 10.1186/1471-2164-11-S4-S5 10.1002/ijc.24972 10.1080/15476286.2018.1460016 10.1016/j.cell.2009.01.002 10.1093/bioinformatics/btr500 10.1093/bib/bbw060 10.1038/nature02871 10.1093/nar/gks1099 10.1073/pnas.0701361104 10.1038/nature02873 10.1371/journal.pone.0003420 10.1126/science.1149460 10.1158/1535-7163.MCT-11-0055 10.1016/S0092-8674(04)00045-5 10.1371/journal.pcbi.1005455 10.1038/nbt1203 10.1182/blood-2011-07-370122 10.1002/path.2978 10.18632/oncotarget.10108 10.1038/srep05501 10.1111/cas.12156 10.1371/journal.pone.0050469 10.1038/msb4100089 10.1038/onc.2013.226 10.1103/PhysRevE.76.046115 10.1093/bib/bbv066 10.1371/journal.pcbi.1005912 10.1038/srep43792 10.1038/srep13877 10.1093/bioinformatics/btv039 10.1093/bioinformatics/btt426 10.1161/CIRCRESAHA.107.163147 10.1186/1758-907X-1-6 10.1371/journal.pcbi.1006418 10.1371/journal.pone.0070204 10.1016/j.tig.2004.09.010 10.1242/dev.02073 10.1093/bioinformatics/bty333 10.1038/s41419-017-0003-x 10.1093/nar/gkt1023 10.1001/jamaoncol.2015.3413 10.1038/srep27036 10.18632/oncotarget.15061 10.18632/oncotarget.11251 10.1016/S0092-8674(01)00616-X 10.1039/C6MB00853D 10.18632/aging.101080 10.1126/science.1113329 10.1038/srep21106 10.1126/science.1121566 10.1186/1471-2105-14-S12-S1 10.1038/ng895 10.1016/j.gpb.2017.02.002 10.1016/j.jbi.2017.03.006 10.1093/nar/gkq1027 10.1038/mtna.2016.96 10.3322/caac.21412 10.1186/1752-0509-4-S1-S2 10.1182/blood-2011-09-381905 10.1038/cgt.2016.5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.1186/s12967-018-1722-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1479-5876 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_25f4473bcef64acbadfc90720d36f8fd PMC6290528 A569029739 30537965 10_1186_s12967_018_1722_1 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772531 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61772531 – fundername: ; grantid: 61772531 |
| GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7T5 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c603t-ec58df742f11d797f664dec00e49e1ed100dcbab7f7e50ad42fc94ee455c594a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452893600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1479-5876 |
| IngestDate | Fri Oct 03 12:38:12 EDT 2025 Tue Nov 04 01:57:14 EST 2025 Sun Nov 09 10:07:31 EST 2025 Sat Oct 18 23:47:10 EDT 2025 Tue Nov 11 10:31:54 EST 2025 Tue Nov 04 17:59:21 EST 2025 Thu Jan 02 22:59:05 EST 2025 Tue Nov 18 21:52:00 EST 2025 Sat Nov 29 06:00:33 EST 2025 Sat Sep 06 07:28:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | miRNA Multi-network miRNA-disease association Disease Label propagation |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c603t-ec58df742f11d797f664dec00e49e1ed100dcbab7f7e50ad42fc94ee455c594a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/25f4473bcef64acbadfc90720d36f8fd |
| PMID | 30537965 |
| PQID | 2158436599 |
| PQPubID | 43076 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_25f4473bcef64acbadfc90720d36f8fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_6290528 proquest_miscellaneous_2155172080 proquest_journals_2158436599 gale_infotracmisc_A569029739 gale_infotracacademiconefile_A569029739 pubmed_primary_30537965 crossref_citationtrail_10_1186_s12967_018_1722_1 crossref_primary_10_1186_s12967_018_1722_1 springer_journals_10_1186_s12967_018_1722_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-11 |
| PublicationDateYYYYMMDD | 2018-12-11 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Journal of translational medicine |
| PublicationTitleAbbrev | J Transl Med |
| PublicationTitleAlternate | J Transl Med |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | G Meister (1722_CR3) 2004; 431 X Chen (1722_CR36) 2018; 15 ZH You (1722_CR52) 2017; 13 R Hummel (1722_CR70) 2011; 26 M Lu (1722_CR20) 2008; 3 P Xuan (1722_CR40) 2015; 31 Y Li (1722_CR55) 2014; 42 JH Li (1722_CR57) 2014; 42 X Chen (1722_CR34) 2018; 9 X Chen (1722_CR62) 2013; 29 K Chiang (1722_CR21) 2013; 438 D Wang (1722_CR58) 2010; 26 Q Jiang (1722_CR37) 2010; 4 X Chen (1722_CR39) 2017 J Xu (1722_CR44) 2011; 10 X Chen (1722_CR46) 2015; 5 S Vasudevan (1722_CR6) 2007; 318 O Giricz (1722_CR24) 2012; 226 1722_CR53 CE Desantis (1722_CR71) 2017; 67 H Yu (1722_CR51) 2017; 7 X Chen (1722_CR48) 2016; 6 CC Sun (1722_CR28) 2016; 8 G Chen (1722_CR56) 2013; 41 C Perez-Iratxeta (1722_CR31) 2002; 31 N Lynam-Lennon (1722_CR17) 2009; 84 DP Bartel (1722_CR2) 2004; 116 L Xie (1722_CR75) 2012; 119 JQ Li (1722_CR50) 2017; 8 M Lotfi Shahreza (1722_CR63) 2017; 68 F Kopp (1722_CR72) 2012; 7 MF Berry (1722_CR69) 2014; 6 X Karp (1722_CR9) 2005; 310 A Watanabe (1722_CR77) 2011; 25 X Chen (1722_CR35) 2017; 13 X Chen (1722_CR33) 2018 X Chen (1722_CR49) 2016; 7 Q Jiang (1722_CR66) 2009; 37 A Esquelakerscher (1722_CR18) 2006; 6 Q Li (1722_CR23) 2013; 33 C Pasquier (1722_CR47) 2016; 6 T Zhou (1722_CR64) 2007; 76 V Ambros (1722_CR4) 2001; 107 DP Bartel (1722_CR13) 2009; 136 CC Sun (1722_CR27) 2016; 5 VP Tryndyak (1722_CR73) 2010; 126 TV Laarhoven (1722_CR61) 2011; 27 P Xu (1722_CR11) 2005; 20 EAC Wiemer (1722_CR25) 2007; 43 X Chen (1722_CR65) 2012; 8 C Sun (1722_CR29) 2016; 7 X Chen (1722_CR84) 2016; 17 X Chen (1722_CR54) 2017; 18 V Ambros (1722_CR1) 2004; 431 X Chen (1722_CR45) 2014; 4 N Meola (1722_CR16) 2009; 2 S Aerts (1722_CR32) 2006; 24 S Mørk (1722_CR42) 2014; 30 B Sanghamitra (1722_CR59) 2010; 1 1722_CR74 AM Cheng (1722_CR8) 2005; 33 EA Miska (1722_CR10) 2005; 15 Q Cui (1722_CR14) 2014; 2 K Goh (1722_CR60) 2007; 104 P Xuan (1722_CR38) 2013; 8 CK Mantri (1722_CR22) 2012; 7 C Perez-Iratxeta (1722_CR30) 2005; 6 X Chen (1722_CR43) 2017; 13 Z Yang (1722_CR67) 2010; 11 M Alshalalfa (1722_CR12) 2013; 14 H Shi (1722_CR41) 2013; 7 S Chen (1722_CR78) 2013; 104 SR McGee (1722_CR83) 2017; 15 I Alvarez-Garcia (1722_CR15) 2005; 132 MV Latronico (1722_CR19) 2007; 101 X Chen (1722_CR81) 2018; 14 B He (1722_CR68) 2012; 6 E Wang (1722_CR79) 2015; 30 C Yang (1722_CR26) 2016; 23 X Chen (1722_CR80) 2018 A Kozomara (1722_CR5) 2011; 39 CL Jopling (1722_CR7) 2005; 309 S Gao (1722_CR82) 2016; 2 J Iqbal (1722_CR76) 2012; 119 |
| References_xml | – volume: 84 start-page: 55 year: 2009 ident: 1722_CR17 publication-title: Biol Rev doi: 10.1111/j.1469-185X.2008.00061.x – volume: 2 start-page: 7 year: 2009 ident: 1722_CR16 publication-title: PathoGenetics doi: 10.1186/1755-8417-2-7 – volume: 8 start-page: 2792 year: 2012 ident: 1722_CR65 publication-title: Mol BioSyst doi: 10.1039/c2mb25180a – volume: 30 start-page: 4 year: 2015 ident: 1722_CR79 publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2014.04.002 – volume: 438 start-page: 1 year: 2013 ident: 1722_CR21 publication-title: Virology doi: 10.1016/j.virol.2012.12.016 – volume: 37 start-page: D98 year: 2009 ident: 1722_CR66 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – volume: 6 start-page: 259 year: 2006 ident: 1722_CR18 publication-title: Nat Rev Cancer doi: 10.1038/nrc1840 – volume: 43 start-page: 1529 year: 2007 ident: 1722_CR25 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2007.04.002 – volume: 7 start-page: e51387 year: 2012 ident: 1722_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0051387 – volume: 42 start-page: D92 year: 2014 ident: 1722_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1248 – volume: 26 start-page: 1644 year: 2010 ident: 1722_CR58 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 30 start-page: 392 year: 2014 ident: 1722_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt677 – volume: 15 start-page: 563 year: 2005 ident: 1722_CR10 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2005.08.005 – volume: 6 start-page: 1 year: 2005 ident: 1722_CR30 publication-title: BMC Genet doi: 10.1186/1471-2156-6-45 – volume: 25 start-page: 1324 year: 2011 ident: 1722_CR77 publication-title: Leukemia doi: 10.1038/leu.2011.81 – volume: 7 start-page: 1 year: 2013 ident: 1722_CR41 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-101 – volume: 33 start-page: 1290 year: 2005 ident: 1722_CR8 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki200 – year: 2018 ident: 1722_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty503 – year: 2017 ident: 1722_CR39 publication-title: RNA Biol doi: 10.1080/15476286.2017.1312226 – volume: 11 start-page: S5 issue: Suppl 4 year: 2010 ident: 1722_CR67 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-S4-S5 – volume: 126 start-page: 2575 year: 2010 ident: 1722_CR73 publication-title: Int J Cancer doi: 10.1002/ijc.24972 – volume: 15 start-page: 807 issue: 6 year: 2018 ident: 1722_CR36 publication-title: RNA Biology doi: 10.1080/15476286.2018.1460016 – volume: 136 start-page: 215 year: 2009 ident: 1722_CR13 publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 27 start-page: 3036 year: 2011 ident: 1722_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr500 – ident: 1722_CR53 doi: 10.1093/bib/bbw060 – volume: 431 start-page: 350 year: 2004 ident: 1722_CR1 publication-title: Nature doi: 10.1038/nature02871 – volume: 41 start-page: 983 year: 2013 ident: 1722_CR56 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1099 – volume: 104 start-page: 8685 year: 2007 ident: 1722_CR60 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0701361104 – volume: 431 start-page: 343 year: 2004 ident: 1722_CR3 publication-title: Nature doi: 10.1038/nature02873 – volume: 3 start-page: e3420 year: 2008 ident: 1722_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0003420 – ident: 1722_CR74 – volume: 318 start-page: 1931 year: 2007 ident: 1722_CR6 publication-title: Science doi: 10.1126/science.1149460 – volume: 10 start-page: 1857 year: 2011 ident: 1722_CR44 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-11-0055 – volume: 116 start-page: 281 year: 2004 ident: 1722_CR2 publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 13 start-page: e1005455 year: 2017 ident: 1722_CR52 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005455 – volume: 24 start-page: 537 year: 2006 ident: 1722_CR32 publication-title: Nat Biotechnol doi: 10.1038/nbt1203 – volume: 119 start-page: 4939 year: 2012 ident: 1722_CR76 publication-title: Blood doi: 10.1182/blood-2011-07-370122 – volume: 226 start-page: 108 year: 2012 ident: 1722_CR24 publication-title: J Pathol doi: 10.1002/path.2978 – volume: 6 start-page: S289 issue: Suppl 3 year: 2014 ident: 1722_CR69 publication-title: J Thorac Dis – volume: 7 start-page: 51784 year: 2016 ident: 1722_CR29 publication-title: Oncotarget doi: 10.18632/oncotarget.10108 – volume: 4 start-page: 5501 year: 2014 ident: 1722_CR45 publication-title: Sci Rep doi: 10.1038/srep05501 – volume: 18 start-page: 558 year: 2017 ident: 1722_CR54 publication-title: Brief Bioinform – volume: 104 start-page: 826 year: 2013 ident: 1722_CR78 publication-title: Cancer Sci doi: 10.1111/cas.12156 – volume: 7 start-page: e50469 year: 2012 ident: 1722_CR72 publication-title: PLoS ONE doi: 10.1371/journal.pone.0050469 – volume: 2 start-page: 46 year: 2014 ident: 1722_CR14 publication-title: Mol Syst Biol doi: 10.1038/msb4100089 – volume: 33 start-page: 2589 year: 2013 ident: 1722_CR23 publication-title: Oncogene doi: 10.1038/onc.2013.226 – volume: 76 start-page: 046115 year: 2007 ident: 1722_CR64 publication-title: Phys Rev E Stat Nonlin Soft Matter Phys doi: 10.1103/PhysRevE.76.046115 – volume: 17 start-page: 696 year: 2016 ident: 1722_CR84 publication-title: Brief Bioinform doi: 10.1093/bib/bbv066 – volume: 6 start-page: 459 year: 2012 ident: 1722_CR68 publication-title: Mol Med Rep – volume: 13 start-page: e1005912 year: 2017 ident: 1722_CR35 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005912 – volume: 7 start-page: 43792 year: 2017 ident: 1722_CR51 publication-title: Sci Rep doi: 10.1038/srep43792 – volume: 5 start-page: 13877 year: 2015 ident: 1722_CR46 publication-title: Sci Rep doi: 10.1038/srep13877 – volume: 31 start-page: 1805 year: 2015 ident: 1722_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv039 – volume: 26 start-page: 1011 year: 2011 ident: 1722_CR70 publication-title: Oncol Rep – volume: 29 start-page: 2617 year: 2013 ident: 1722_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt426 – volume: 101 start-page: 1225 year: 2007 ident: 1722_CR19 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.107.163147 – volume: 1 start-page: 6 year: 2010 ident: 1722_CR59 publication-title: Silence doi: 10.1186/1758-907X-1-6 – volume: 14 start-page: e1006418 year: 2018 ident: 1722_CR81 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006418 – volume: 8 start-page: e70204 year: 2013 ident: 1722_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0070204 – volume: 20 start-page: 617 year: 2005 ident: 1722_CR11 publication-title: Trends Genet doi: 10.1016/j.tig.2004.09.010 – volume: 132 start-page: 4653 year: 2005 ident: 1722_CR15 publication-title: Development doi: 10.1242/dev.02073 – year: 2018 ident: 1722_CR80 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty333 – volume: 9 start-page: 3 year: 2018 ident: 1722_CR34 publication-title: Cell Death Dis doi: 10.1038/s41419-017-0003-x – volume: 42 start-page: 1070 year: 2014 ident: 1722_CR55 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1023 – volume: 2 start-page: 37 year: 2016 ident: 1722_CR82 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2015.3413 – volume: 6 start-page: 27036 year: 2016 ident: 1722_CR47 publication-title: Sci Rep doi: 10.1038/srep27036 – volume: 8 start-page: 21187 year: 2017 ident: 1722_CR50 publication-title: Oncotarget doi: 10.18632/oncotarget.15061 – volume: 7 start-page: 65257 year: 2016 ident: 1722_CR49 publication-title: Oncotarget doi: 10.18632/oncotarget.11251 – volume: 107 start-page: 823 year: 2001 ident: 1722_CR4 publication-title: Cell doi: 10.1016/S0092-8674(01)00616-X – volume: 13 start-page: 1202 year: 2017 ident: 1722_CR43 publication-title: Mol BioSyst doi: 10.1039/C6MB00853D – volume: 8 start-page: 2509 year: 2016 ident: 1722_CR28 publication-title: Aging (Albany NY) doi: 10.18632/aging.101080 – volume: 309 start-page: 1577 year: 2005 ident: 1722_CR7 publication-title: Science doi: 10.1126/science.1113329 – volume: 6 start-page: 21106 year: 2016 ident: 1722_CR48 publication-title: Sci Rep doi: 10.1038/srep21106 – volume: 310 start-page: 1288 year: 2005 ident: 1722_CR9 publication-title: Science doi: 10.1126/science.1121566 – volume: 14 start-page: S1 year: 2013 ident: 1722_CR12 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-S12-S1 – volume: 31 start-page: 316 year: 2002 ident: 1722_CR31 publication-title: Nat Genet doi: 10.1038/ng895 – volume: 15 start-page: 121 year: 2017 ident: 1722_CR83 publication-title: Genomics Proteom Bioinform doi: 10.1016/j.gpb.2017.02.002 – volume: 68 start-page: 167 year: 2017 ident: 1722_CR63 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2017.03.006 – volume: 39 start-page: D152 year: 2011 ident: 1722_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1027 – volume: 5 start-page: e387 year: 2016 ident: 1722_CR27 publication-title: Mol Ther Nucleic Acids doi: 10.1038/mtna.2016.96 – volume: 67 start-page: 439 year: 2017 ident: 1722_CR71 publication-title: CA Cancer J Clin doi: 10.3322/caac.21412 – volume: 4 start-page: S2 issue: Suppl 1 year: 2010 ident: 1722_CR37 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S1-S2 – volume: 119 start-page: 3503 year: 2012 ident: 1722_CR75 publication-title: Blood doi: 10.1182/blood-2011-09-381905 – volume: 23 start-page: 90 year: 2016 ident: 1722_CR26 publication-title: Cancer Gene Ther doi: 10.1038/cgt.2016.5 |
| SSID | ssj0024549 |
| Score | 2.417976 |
| Snippet | Background
Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that... Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA... Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that... In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for... Abstract Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 348 |
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Biomedicine Breast cancer Chemotherapy Computational Biology - methods Computer applications Disease Drug resistance Esophageal cancer Esophagus Gene expression Genetic Association Studies Genetic disorders Genetic Predisposition to Disease Genomes Genomics Humans Label propagation Lung cancer Lymphoma Medical bioinformatics Medical prognosis Medical research Medicine/Public Health Methods MicroRNA MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA miRNA-disease association Multi-network Neoplasms - genetics Non-coding RNA Propagation Proteins Reproducibility of Results Research methodology Risk factors Signal transduction Similarity measures Tumors |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEB-0J-KL3x-rp0QQBGVpdjfJJk9SxUPBK4conE8hm2TvKme3dnv-_U7StHVPvCdfm4RmOr-ZyTST3wC8qJwwinOXt5h65YwZmze04TkeJZjB8Md8ER8Kf6qnU3l8rI7S8-g-lVVufGJ01Gu251C3jU547Dob_jEfY6CSrBJcqTeLn3noIRXuWlNDjauwF4i35Aj2jj4eHn3bce9hMpRuNgspxj3GOhEKLzGPqjEnKwaxKVL4_-2o_4hUF6soL1ylxgh1cOv_ynYbbqaTKpmsoXUHrvj5Xbh-mO7i78H3CTkNtTQdQtB35z1BPPkzgl-NPirqm2wIy8mqIz4W-3mCB06y6MJWEPnE7NDRk1QzRn7MPk8nxMwdSddH9-Hrwfsv7z7kqXNDbgWtVrm3XLoWs-62KFyt6lYI5ryl1DOFyncFpc42pqnb2nNqHE60innPOLdcMVM9gNG8m_tHQOrQI0uWrbI1LrbScGu8k5Y1jFvHfAZ0ozNtE6156K5xpmN6I4Veq1mjmnVQsy4yeLVdslhzelw2-W0AwnZioOOOH3TLE52sW5e8ZayuGutbgXBvjEN5aF1SV4lWti6DlwFGOjgN3Jw16e0Dihjot_SEo6WELmIqg_3BTDR2OxzeIEgnZ9PrHWAyeL4dDitDAV2EQJjDUSDMDzJ4uMbtVqQqcPoowTOoB4geyDwcmc9OIxW5KBXlpczg9Qb7u2398yd9fLkQT-BGGW0SLbLYh9Fqee6fwjX7azXrl8-STf8GvhJddA priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEA6yivji_VJdJYIgKMW0zfXxKC4-6EHWC_sW0lzcI2u7nHb9_U5y0nPsegF9bSYlk_lmJsNMJgg9aRw3ijFXBgi9SkqNLVvSshKOEtSA-6O-SheF34rlUh4dqff5HvcwVbtPKclkqZNaS_5iAM_EY5kkRD0CIigIeS6Ct5NRGw8_fN412IOIJ6cvfztt5oBSn_5frfFP7uh8qeS5fGlyQwfX_ouB6-hqPnXixQYmN9AF391El9_lvPot9HWBj2NdTA9w8v3ZgAEb_gTDQsHeJNnhqfk4HnvsU-Gex3B4xKf9GAuO4O9mJ-kB5_ov_G11uFxg0zmcU0G30aeD1x9fvSnzKwyl5aQZS2-ZdAEi6FBVTigROKfOW0I8VSBIVxHibGtaEYRnxDggtIp6TxmzTFHT3EF7Xd_5ewiL-N6VrIOyAiZbaZg13klLW8qso75AZBKNtrlFeXwp40SnUEVyvdlDDXuo4x7qqkDPtlNON_05_kb8Msp7Sxhba6cP_fqLzpqqaxYoFU1rfeAA3dY44IeImriGBxlcgZ5GtOhoAGBx1uR7DMBibKWlFwxQH18EUwXan1GC4tr58IQ3nQ3HoOEEJmnDmYLhx9vhODMWwyUIRBoGDMFZv0B3N_DcstTE_jyKswKJGXBnPM9HutVxaivOa0VYLQv0fILvbll_3NL7_0T9AF2pE_4B_dU-2hvXZ_4humS_j6th_Sjp8Q9UIkXs priority: 102 providerName: Springer Nature |
| Title | A heterogeneous label propagation approach to explore the potential associations between miRNA and disease |
| URI | https://link.springer.com/article/10.1186/s12967-018-1722-1 https://www.ncbi.nlm.nih.gov/pubmed/30537965 https://www.proquest.com/docview/2158436599 https://www.proquest.com/docview/2155172080 https://pubmed.ncbi.nlm.nih.gov/PMC6290528 https://doaj.org/article/25f4473bcef64acbadfc90720d36f8fd |
| Volume | 16 |
| WOSCitedRecordID | wos000452893600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1479-5876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024549 issn: 1479-5876 databaseCode: RBZ dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1479-5876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024549 issn: 1479-5876 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1479-5876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024549 issn: 1479-5876 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1479-5876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024549 issn: 1479-5876 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1479-5876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024549 issn: 1479-5876 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1479-5876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024549 issn: 1479-5876 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1479-5876 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024549 issn: 1479-5876 databaseCode: RSV dateStart: 20030601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3raxQxEB-0ivSL-Ha1HhEEQVm6jzw_XqVFwR7H-eD8FLJ50JN6V3pX_34n2d1rt6J-8cvCbia7ycxvMjNkdgLwqnbcKMZcHjD0yik1Nm-KhuXoSlCD5o_6Mv0o_FFMJnI-V9MrR33FnLC2PHDLuP2KBUpF3VgfOL6pMS5YDOiqwtU8yODi6oteTx9M9VX2MOzp9jBLyffXaNV4TLHEiElg9FUOrFAq1v_7knzFJl3Pl7y2aZps0dE9uNs5kWTcDv4-3PDLB3DnuNsmfwjfx-QkprmsEB0eQ3uCovanBD-Jy0cSBelriZPNiviUh-cJ-oLkbLWJ-UP4dnMpuDXp0rnIj8VsMiZm6Ui3s_MIvhwdfn73Pu8OVcgtL-pN7i2TLmBAHMrSCSUC59R5WxSeKpSLK4vCIZcbEYRnhXFIaBX1njJmmaKmfgw7y9XSPwUi4vFVsgrKCuxspWHWeCctbSizjvoMip7J2nYVx-PBF6c6RR6S61YuGuWio1x0mcGbbZezttzG34gPouS2hLFSdnqA-NEdfvS_8JPB6yh3HfUZB2dN91sCTjFWxtJjhiCOB3ypDPYGlKiHdtjcI0d368Bao0Mlac2ZwuaX2-bYM-a2JQhEGoYTQhBn8KQF2nZKdSy3ozjLQAwgOJjzsGW5OElVwnmlClbJDN72YL0c1h9Z-ux_sPQ57FZJ1VDRyj3Y2Zxf-Bdw2_7cLNbnI7gp5iJd5QhuHRxOprNRUl68m344nn7Du9mnr78AfsxKHQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJFASKCoefgRHxBaHlWrtiuEirQ349gOXVQ2y2YL4k_xGxl7k11SRG89cF2PI0_2m2888XgG4EluuZaM2bjC0CumVJu4TEoW41aCanR_1KXhovCeGA6L0Ui-X4Nf3V0Yn1bZcWIgalsb_418E11TQXPOpHw1_Rb7rlH-dLVrobGAxa77-QNDtublzlv8f59m2da7gzfbcdtVIDY8yeexM6ywFUaEVZpaIUXFObXOJImjEhdm0ySxptSlqIRjibYoaCR1jjJmmKQ6x-eeg_PI48KnkInRKsCjGGy1J6dpwTcb9KXcJ3ZinCYw5kt7vi-0CPjbEfzhCU9maZ44qg0ecOvq__bursGVdq9NBgvjuA5rbnIDLu632QQ34cuAHPpsoBqNyNXHDUGLcEcElUOWDYglXcl1Mq-JC-mKjuCWmUzruU-zwqfrFb4b0ma9ka_jD8MB0RNL2gOwW_DxTDS9DeuTeuLuAhG-y1eRVdIInGwKzYx2tjC0pMxY6iJIOlQo0xZm9_1BjlQI0AquFkBSCCTlgaTSCJ4vp0wXVUlOE37tobYU9AXFww_17LNq-UllrKJU5KVxFUeDLbVFfRKRJTbnVVHZCJ55oCpPe7g4o9vbG6iiLyCmBgxt3fdBkxFs9CSRrkx_uMOoaumyUSuARvB4Oexn-hTAAAEvw1AhjHAiuLOwjKVKua9KJDmLQPRspqdzf2QyPgzF1HkmE5YVEbzorGu1rH--0nunK_EILm0f7O-pvZ3h7n24nAUGQPtPN2B9Pjt2D-CC-T4fN7OHgT8IfDpro_sNRxqv7A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA9yyuEX357VUyMIglIubfNoPq6PRfFcDl_ct5Dm4a2c7bLt-fc7Sdtdez5A_NpMIJP8JpNhpr9B6HFhuZaM2dRD6JVSqk1akYql8JSgGtwfdVn8UfhQLBbl8bE8GvqctmO1-5iS7P9pCCxNdXewsr438ZIftOCleCiZhAhIQDQF4c9FGnoGhXD9w-ct2R5EP0Mq87fTJs4ocvb_ejP_5JrOl02ey51GlzS_-t_KXENXhtconvXwuY4uuPoG2n035Ntvoq8zfBLqZRqAmWvOWgyYcacYFg33UDxTPJKS467BLhb0OQyPSrxqwhIA3VhvEdDioS4Mf1u-X8ywri0eUkS30Kf5q48vXqdDd4bUcFJ0qTOstB4ia59lVkjhOafWGUIclXDANiPEmkpXwgvHiLYgaCR1jjJmmKS6uI126qZ2dxAWoQ9WmXtpBEw2pWZGO1saWlFmLHUJIuMxKTNQl4cOGqcqhjAlV_0eKthDFfZQZQl6upmy6nk7_ib8PJz9RjBQbscPzfqLGixY5cxTKorKOM8B0pW2oA8RObEF96W3CXoSkKPCxQCLM3r4vwFUDBRbasbAGkKnMJmg_YkkGLSZDo_YU8OF0ip4mZW04EzC8KPNcJgZiuQiBIIMA4UgBkjQXg_VjUpF4O2RnCVITEA80Xk6Ui9PIt04zyVheZmgZyOUt8v645be_Sfph2j36OVcHb5ZvL2HLufRFMAQsn20063P3H10yXzvlu36QTTvH2weUbQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+heterogeneous+label+propagation+approach+to+explore+the+potential+associations+between+miRNA+and+disease&rft.jtitle=Journal+of+translational+medicine&rft.au=Xing+Chen&rft.au=De-Hong+Zhang&rft.au=Zhu-Hong+You&rft.date=2018-12-11&rft.pub=BMC&rft.eissn=1479-5876&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2Fs12967-018-1722-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_25f4473bcef64acbadfc90720d36f8fd |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon |